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A Minimally Invasive Low-Power Platform for
Real-Time Brain Computer Interaction based on

Canonical Correlation Analysis
Mattia Salvaro, Simone Benatti, Victor Kartsch, Marco Guermandi and Luca Benini, Fellow, IEEE

Abstract—A growing trend in Human Computer Interaction
(HCI) is to integrate computational capabilities into wearable
devices, to enable sophisticated and natural interaction modali-
ties. Acting directly by decoding neural activity is a very natural
way of interaction and one of the fundamental paradigms of
Brain Computer Interfaces (BCIs) as well.
In this work we present a wearable IoT node designed for
BCI spelling. The system is based on Visual Evoked Potentials
detection and runs the Canonical Correlation Analysis (CCA)
on a low power microcontroller. Neural data is acquired by an
array of EEG active dry electrodes, suitable for a minimally
intrusive interface. To evaluate our solution, we optimized the
system on eight subjects and tested it on five different subjects
for four and eight stimuli, reaching a peak transfer rate of
1.57 bps, comparable with those achieved by state-of-the-art
non-embedded systems. The power consumption of the device
is less than 30 mW, resulting in 122 hours of operation with a
standard 1000 mAh battery.

I. INTRODUCTION

Brain Computer Interfaces (BCIs) for Human-Computer
Interaction (HCI) were first developed to support people with
disabilities in their interaction with the external world, with
one of the first successful examples being BCI spellers.
Recent years have seen BCI applications reach out to a
larger set of scenarios, such as industry, gaming, learning,
healthcare [1] and rehabilitation [2]. Several tech compa-
nies developing consumer-oriented products (Google, Apple,
Facebook, etc.) have also become active in this field [3], [4],
[5], with the vision of being able to substitute traditional
HCIs based on conventional computer input devices, gesture
and voice recognition, touch-screen interaction [6], [7], [8],
with the possibility to directly interact and control computers
with our brain signals.

Bringing this fascinating idea into life will be a tremen-
dous boost towards integrating actions and interactions with
objects in a fully-connected IoT scenario. Applications can
range from verifying whether a worker is attending a specific
task or effectively receiving a communication for safety
purposes, to remotely control devices in industrial or home
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environments, to navigating menus in shops or restaurants,
to gaming. These applications have different requirements
as compared to traditional BCI spellers since, on the one
hand, they mostly require less symbols to be recognized with
respect to a full speller. On the other hand they need system
latencies to be minimized, both in setup time and real-time
performance, and suffer from the complexity, cost and size
of traditional BCI systems, which can only be reduced by
moving processing to an external hardware, compromising
portability and ease-of-use.

The foundation of every BCI system lies in the acqui-
sition of signals which relates to brain activity. Among
the available techniques to extract such information, Elec-
troEncephaloGraphy (EEG) is considered as the ideal (if
the not the only) candidate for consumer applications and
has enjoyed significant improvements in recent years. What
was once possible only through expensive and cumbersome
devices, is now available on the market in cheap and
relatively attractive form-factors. Most of them are conceived
for gaming and entertainment or leisure, like MindMaze
Mask [9], Neurosky MindWave [10], Emotiv Insight and
EPOC+ [11], others are designed for custom application
development, like OpenBCI [12], while a few focus primar-
ily on machine interaction and control, like g.tec Intendix
[13]. Not all these systems can acquire EEG with the same
signal quality and setup complexity (i.e. number and type
of electrodes), resulting in different BCI ease-of-use and
performance. A common drawback of these systems and of
BCI systems presented in section II is that they require a
continuous data-link between on-body sensors and mobile
phones/tablets, or, more frequently, laptop computers and
workstations. This impairs some important features such
as wearability and minimal intrusiveness, increasing overall
system cost as well. Moreover, it causes a severe reduction
of the energy efficiency of the whole system [14], [15], [16]
as it requires transmission of non-negligible amounts of data.
To avoid these issues, the digital processing should be moved
near-sensor, executing algorithms directly on the wearable
device [17], [18]. However, such solutions are not readily
available, both in commercial and research systems.

In an effort to provide a BCI system better tailored for the
new scenarios which are envisioned for the near future, this
work proposes three major contributions. The first one is the
design and implementation of an embedded asynchronous
BCI speller, able to recognize up to eight different stimuli
with an information transfer rate (ITR) of more than 1
bps. This is comparable with state-of-the-art non-wearable
systems (where signal processing is computed on external
hardware), thanks to careful optimization of the processing
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and pre-processing algorithms, which are tailored to our
specific system configuration. The second contribution is
the design of a low-power, low-cost system to acquire and
process EEG signal in a minimally invasive fashion, via a
head-mounted device which allocates a minimum number of
electrodes (three) with zero-preparation time. The prototype
is self-contained as integrating custom active electrodes (for
high quality signal pick-up despite the use of dry electrodes),
analog-to-digital conversion, a microcontroller unit (MCU)
for signal processing and system control and a bluetooth
module for data communication. The final contribution is
the public release of the EEG datasets and the optimized
open source code [19].

The paper is organized as follows: Sec. II introduces an
overview of existing BCI systems which share features and
target application with ours, while Sec. III describes the
system, from both acquisition and processing point of view.
Experimental results on 13 subjects are presented in Sec. IV,
and in Sec. V we draw the conclusions.

II. RELATED WORK

The first BCI spellers were introduced at the end of
the 80s and exploited a cerebral reaction called Event-
Related Potential (ERP), consisting in very small responses
to specific events or sensory stimuli which can be detected
by acquiring and processing the ElectroEncephaolographic
(EEG) signal on the scalp of the subject [31]. In particular,
P300 is an ERP which is elicited by a relevant stimuli (i.e.
the flashing of the intended symbol) which is infrequently
presented among non-relevant ones (i.e. the other available
symbols). In [32], researchers presented a BCI capable of
detecting 36 different target stimuli associated with the
letters of the alphabet and some symbols. By repeatedly
flashing entire rows or columns of a matrix constructed with
the target characters, the authors capture the attended symbol
as the intersection of the row and column that elicited the
P300 response. This first approach to P300 BCI led to an
overall performance of 2.3 characters per minute with 95%
accuracy, which translates to an ITR of 0.17 bits per second.

Similar attempts were introduced later by [33] and [34],
where the original Farwell and Donchin’s system is en-
hanced with regard to the computing platform or the process-
ing algorithm, resulting in ITR improvements up to respec-
tively 0.45 and 0.40 b/s. While less than half bit per second
might be an acceptable transfer rate for disabled people, it
is still quite a slow communication speed to be tolerated by
able-bodied subjects, which most likely will refuse to adopt
such system. Steady State Visual Evoked Potential (SSVEP)
is another BCI paradigm that has been used in more recent
works with considerable success [20], [21], [22], [23]. This
potential is elicited in the primary visual cortex as a result of
repetitive external visual stimulation, and is therefore phase
and frequency locked with it. Processing requires identifying
the frequency (and possibly the phase) of the SSVEP signal
to determine which stimuli evoked it. The SSVEP paradigm
is attractive due to its higher signal-to-noise ratio (SNR) in
comparison with ERPs, being significantly more immune to
eye-related and electrode shifting artifacts when a proper
frequency band is used [35].

SSVEPs relying only on frequency information have two
major advantages with respect to mixed phase/frequency
SSVEP and ERPs. The first one is that they don’t require

synchronization between stimuli and detection platform.
This allows to minimize setup time since it considers stim-
ulation and acquisition/processing as stand-alone systems.
Such solution simplifies SSVEP use in IoT environments
where the user might need to interact with several different
stimuli presentation systems, which might not be on the
same network or might not be connected at all. The second
advantage is that they can operate directly without the
need for a training phase in which the BCI adapts to the
specific user. As this training is often a function of the
specific session setup (including exact electrode position
and contact quality), in many cases it must be periodically
repeated [36], severely hampering the plug-and-play features
of such a device. Nevertheless, many works still rely on both
frequency and phase, significantly reducing the advantages
of such techniques and focusing only on maximizing ITR
[37]. Our work demonstrates that practical ITR can be
achieved with ”frequency only” SSVEP.

Basic feature extraction for SSVEP can be performed
using simple techniques. An early example is found in [38],
where the authors designed and implemented a BCI to help
users to input phone numbers based almost entirely on FFT-
based Power Spectral Density (PSD) analysis. Some studies
later combined FFT-based features with more advanced clas-
sification algorithms such as Linear Discriminant Analysis
(LDA) [39], Support Vector Machine (SVM) or Artificial
Neural Networks (ANN) [40] to improve performance. Nev-
ertheless, these systems are relatively slow, with ITR of 0.56
and 0.44 bps, respectively.

Other systems employ different signal processing tech-
niques like PSDA [30], [28], PCA [26] and Matched Filter
Detector (MFD) [23]. Chi et al. [30] and Garcia et al.
[28] developed a BCI based on custom acquisition systems.
The former uses LED matrices for stimuli presentation,
while the latter focuses on assessing the performance of
three types of electrodes: wet, dry and contactless. Both of
them use PSDA for features extraction, achieving an ITR
of respectively 0.44 and 0.46 bps. Cecotti [26] proposes
an asynchronous multilevel speller grouping letters within
three stimuli, meaning that for each letter selection the
BCI must correctly perform SSVEP detection three times.
Feature extraction is performed using PCA, and the ITR
is 0.63 bps. Chang et al. [23] analyzed SSVEP response
with a Matched Filter Detector (MFD), which consists of a
bank of matched filters, followed by an amplitude detector.
The authors managed to remotely control a wheel robot,
achieving an ITR of 0.83 bps using only one electrode.

Such systems have the common drawback of low ITR. To
tackle this issue, a well accepted solution is represented by
the use of Canonical Correlation Analysis (CCA). Developed
by Hotelling [41] and first introduced by Lin et al. in the
BCI context, it explores the relationship of two multivariate
sets of variables, determining if they have some underlying
correlation [42]. Lin et al. [42] employed CCA to extract the
correlation features from nine frequency-coded simulations
from multiple EEG channels, demonstrating that ITR can
be improved with respect to FFT-based methods. Authors
in [43] have also confirmed that CCA outperforms FFT-
based methods in accuracy and response delay. Using a joint
frequency-phase modulation method to tag 40 characters
with 0.5-s-long stimuli, authors in [21] have developed a
noninvasive BCI capable of achieving an ITR of 4.50 b/s.
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TABLE I. COMPARISON BETWEEN STATE-OF-THE-ART BCI SYSTEMS IN TERMS OF SETUPS AND ITR.

Stimulus
type

Phase
synch.

Signal
proc.

Synch/
Asynch

Acquisition
system

Training Electrodes
type

N° Elec-
trodes

Processing
platform

Classifier ITR

Nakanishi et al. [20] : SSVEP yes TRCA synch Synamps2 yes wet 9 PC n/a 5.42

Chen et al. [21] : SSVEP yes CCA synch Synamps2 yes wet 9 PC n/a 4.50

Chen et al. [22] : SSVEP no CCA synch Synamps2 no wet 9 PC n/a 1.75

Chang et al. [23] : SSVEP no MFD synch Quickamp no n/a 1 PC max 0.83

Spuler [24] : c-VEP yes CCA synch g.USBamp yes dry 16 PC threshold 0.76

Mora et al. [25] : SSVEP no CCA asynch custom no wet up to 16 PC confidence
indicator

0.72

Cecotti [26] : SSVEP no PCA asynch g.tec no wet 6 PC threshold 0.63

Lin [27] : SSVEP no FFT synch NeuroSky n/a n/a 2 tablet max 0.56

Garcia et al. [28] : SSVEP no PSDA synch custom no wet 2 PC max 0.46

Guo et al. [29] : SSVEP no FFT synch Blackrock
Cerebus

no dry 1 PC threshold 0.44

Chi et al. [30] : SSVEP no PSDA/CCA synch custom no wet 3 phone max 0.40
dry 0.44

noncontact 0.24

Our work : SSVEP no CCA asynch custom no dry 3 wearable threshold 1.06

Some attempts were made also with similar correlation
analyses, like in Nakanishi et al. [20] where a high speed
SSVEP brain speller uses Task Related Component Analysis
(TRCA), a spatial filtering in which weight coefficients
are optimized to maximize the covariance of time-locked
SSVEP trials. The authors achieved 5.42 bps ITR using
9 channels and 40 phase-locked flickering targets. Another
powerful method for direct frequency estimation, described
in [44], [45], is based on the Vandermonde decomposition.
Although this solution provides a direct frequency estimation
with a short time window, its computational complexity hin-
ders the implementation on a resource-constrained platform
because of the large dimension (> 64 × 64) of the input
matrices calculated to execute the algorithm.

The approaches cited above can reach high level of ITR,
enabling a fast BCI for SSVEP decoding. Anyway, they
require a training session to adapt the setup on the user.
A solution to adapt the CCA without specific subject-
dependent training is presented in [22], where authors in-
clude in the CCA the information of frequency harmonics
from 9 EEG channels, achieving an ITR of 1.75 b/s using
42 different frequency-coded stimuli. Nevertheless, all the
aforementioned solutions require a synchronization mech-
anism between stimuli and acquisition phases. Moreover,
to maximize accuracy and ITR, EEG acquisition systems
rely on 9 wet electrodes, which limit ease-of-use and unob-
trusiveness, hindering the deployment of such solutions in
wearable, minimally invasive form-factor.

The work presented in [25] represents a step forward in
the development of a CCA based system, since it is based
on non-synchronized stimuli presentation and it does not
require subject-dependent training. However, it achieve an
ITR lower than 1 bps, with a bulky setup, based on 16 wet
EEG electrodes.

The lesson learned from the analysis of the SoA in
BCI speller is that the development of a high-performance
wearable platform for BCI spelling is still an open challenge.
Although some systems target a portable setup, (e.g. a tablet
[27] or a smartphone [30]), they achieve low values of ITR,
in a bulky setup (i.e. many electrodes which requires skin

preparation) with power-hungry computational platforms.
Hence, our goal is to design a wearable system for brain

computer interaction which relies on a minimally intrusive
setup (i.e. 3 dry sensors), without subject dependent training
and stimuli synchronization, and achieving ITR higher than 1
bps.

III.MATERIAL AND METHODS

The presented system is a novel embedded asynchronous
BCI featuring a custom acquisition platform and non-
invasive dry electrodes for real-time classification of eight
frequency-coded stimuli. Being able to operate in stand-
alone mode, it provides full portability by removing the need
for any external processing device. At the core of the system,
a CCA-based algorithm performs the feature extraction of
the incoming EEG signals from three dry electrodes. The
system requires no training phase and does not need to tailor
any parameter on the specific subject or trial, as we fixed
all critical parameters of the system, such as the number of
channels and location, frequency band, and window lengths
through offline data analysis before the final implementation
in a user-independent fashion. An overview of the overall
system is depicted in Fig. 1.

The wearable platform is designed for medical IoT ap-
plications and derived from [46] and [47]. The system is
composed of an active EEG sensor array interfaced to a
custom board with a biopotential ADC and a low power mi-
crocontroller with DSP capabilities. It acquires and processes
the subject response to a visual stimuli. The results of the
CCA analysis, computed in real-time on the microcontroller,
can then be communicated to the host PC as HCI commands.

A. Sensor interface
Detecting EEG activity is not a trivial task, since sen-

sors and circuitry must cope with non-stable skin-electrode
interface as well as with an intrinsically high-noise signal.
Apart from brain activity unrelated to the SSVEP, additional
sources of noise can come from acquisition system like
electrical noise and external interference. The most common
source of EEG signal degradation is the finite contact
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Fig. 1. Architectural diagram of the proposed system. Fig. 1 (a) and (b) show, respectively, an image and the block diagram of the wearable node. Fig.
1 (c) and (d) present an image of the dry active electrodes and (d) the electrical schematics of the custom amplifier stage PCB. Finally, in Fig. 1 (e) the
LCD screen with stimuli presentation is depicted.

impedance at the interface between the electrode and the
skin. A high value of contact impedance leads to a potential
divider effect at the amplifier input, which causes a reduction
of the capability to reject common-mode noise such as that
from mains, increases the noise generated at the metal-skin
interface and augments the effect of interference coupling
through capacitive effects to the cables, or artifacts due
to cable movement, microphony and piezoelectric effect.
Contact impedance is minimized in clinical EEG protocols
by removing superficial skin layers by abrasion and inserting
a conductive gel or paste in-between the two surfaces. Skin
preparation is obviously not suitable for non-clinical settings
where system setup needs to be as quick and easy as possible
for an untrained person, and associated infection risks are
not acceptable.
To minimize setup time and allow self-positioning of the
system, zero-preparation electrodes were adopted as inter-
face between the system and the subject. Two options were
evaluated, dry and wet electrodes. Dry electrodes are recog-
nized as the best option for zero-preparation time. However,
they present contact impedance up to 3 orders of magnitude
higher than wet electrodes with skin preparation, hence, to
mitigate such high contact impedance, an amplification stage
is placed directly right on the electrode.

Fig. 1 (c) and (d) show, respectively, a picture and the
schematic of the active sensor custom PCB designed for
this work. As single-ended amplification stages with gain
higher than one reduce the rejection of common mode noise,
only signal buffering is performed on the active electrode
by a low-power, low-noise, rail-to-rail Operational Amplifier
(O.A.) connected as a unity-gain buffer. Protection resistors
with 68 KΩ are used to limit patient auxiliary current in
cases of single fault condition below the applicable limit
of 50 µA. The O.A. is an AD8603 from Analog Devices,
which has a quiescent current of 50µA and low voltage
noise (2.3 µV peak-to-peak in the 0.1 to 10 Hz band and 25
nV/sqrt(Hz) at 1 KHz). The input leakage current is below
1 pA at room temperature, while total input capacitance

is below 5 pF, which translates into an input impedance
in excess of 500MΩ in the EEG band. In section IV,
we evaluate system performance either with wet passive
electrodes (Kendall from Covidien-Medtronic [48]) and dry
active electrodes (g.SAHARA from g.tec Gmbh [49])

B. Embedded wearable system
The proposed IoT node is based on a multichannel com-

mercial Analog Front End (AFE) [50] connected with a low
power ARM Cortex M4 microcontroller. The AFE is the de-
facto standard used in biopotential acquisition platforms. The
8 channels are connected in single ended configuration with
the active EEG sensors while the AFE’s back-end streams
the data via SPI to the microcontroller. The Arm Cortex M4
microcontroller is equipped with a single precision FPU unit
and has an instruction set architecture with DSP extensions
to enable a more efficient near-sensor processing. It can
reach operating frequency of 168 MHz with 192 kB of RAM
and 1 Mb of FLASH memory.

The board is a 6-layers printed circuit board (PCB) with a
single solid ground plane. To minimize current return paths,
the power planes are split, keeping separated the analog and
digital circuitry. Discrete components were carefully placed
on both sides of the PCB to maximize signal integrity,
maintaining a low level of noise and a small form-factor
that results in 85x50 mm. The board mounts a dedicated IC
for power management, that automatically detects the power
source (battery or USB). Analog, digital and communication
subsystems are supplied by separate low-dropout voltage
regulators. This versatile configuration allows power man-
agement strategies, like duty-cycling submodules, to enhance
battery life.

C. SSVEP Signal Acquisition and CCA
A graphical interface of the SSVEP-based BCI system

usually consists of different areas of a screen which are
associated to different commands, e.g. letters or symbols,
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Fig. 2. Block diagram of CCA algorithm and implementation. (a) Signal matrices input for CCA: X is the raw EEG signal matrix with Ns rows and
n columns where Ns is the number of samples of the currently processed time window and n is the number of acquisition channels; Y is the reference
signal matrix for a specific stimulus frequency f , formed by Nh pairs of columns (sine and cosine of f up to the Nh harmonics) sampled at the same Fs

frequency of the EEG signal, where Nh is the number of harmonics considered (including the fundamental frequency) and the columns length is Ns. (b)
CCA formulation algorithm: the algorithm computes d = min(n, 2Nh) couples of basis (ai,bi) such that the correlation between the linear combination
of the canonical variates (X,Y ) according to the basis (ai, bi) is maximized. The resulting correlation is the canonical coefficient ρi. At each iteration,
the basis (ai, bi) must be chosen in an orthogonal subspace, guaranteeing that the canonical coefficient are mutually uncorrelated. (c) CCA implementation
algorithm: the set of d canonical coefficients is computed in a faster way applying QR decomposition on both X and Y signal matrices, and then SVD
decomposition on the product of the Qx and Qy matrices. The diagonal matrix S of the SVD decomposition holds the set of canonical coefficients ρ1···d.
(d) Feature extraction: the set of d canonical coefficients can be then compressed into a single feature value by computing the Euclidean norm on the first
s ≤ d coefficients. In our system we use s = d.

that flicker at specific frequencies. When the user pays
attention to a particular flickering command, SSVEPs are
induced at the corresponding frequency and its harmonics.
The BCI system identifies the user intention by quantifying
and classifying SSVEP. It is generally acknowledged that the
SSVEP response depends on the frequency of the stimula-
tion, nevertheless there is no consensus on which frequency
bands are better suited for maximizing information transfer
rate and accuracy. Regan has shown three distinct maxima
in the response to flickering stimuli at 10, 13-25 and 40-
60 Hz [51]. Other subsequent works showed similar results
[52]. Kuś et al. [53] observed how signal-to-noise ratio of
SSVEP signal vs. unrelated brain activity is maximized in
the 8-20 Hz band, however not taking into account higher
order harmonics in the computation. It should be observed
that, in general, the lower the target frequencies, the lower
the sampling rate required to the system, and consequently
its power consumption, which is of major importance in
portable systems.

The state-of-the-art method for SSVEP-based BCIs [54] is
named Canonical Correlation Analysis (CCA). This method
quantifies the linear dependency between two multidimen-
sional variables by finding a couple of linear combinations,
one for each multidimensional variable, that maximizes their
correlation. The resulting maximized correlation is called
canonical coefficient and extends the concept of correlation
to multidimensional variables. More than that, CCA actually
provides a whole set of canonical coefficients, sorted by
size. The first canonical coefficient of the set is the biggest,
and represents the correlation between a pair of linear
combinations that maximizes the correlation. The second
canonical correlation coefficient is the second biggest, and

represents the correlation between another pair of linear
combinations, that are uncorrelated with the previous pair.
The number of canonical correlation coefficients and corre-
sponding linear combination pairs depends on the dimension
of the two variables, and corresponds to the minimum
of the dimension of the two variables. In SSVEP-based
BCIs, the two multidimensional variables to be correlated
are the n EEG input channels, and a set of m reference
signals that identify the frequency of one single stimulus,
usually sine and cosine of that frequency and one or more
harmonics. Therefore, one execution of the CCA algorithm
returns a set of size d = min(n,m) of canonical correlation
coefficients that quantify the correlation between the EEG
signal window and one specific stimulus. In order for the
system to compute an output, it is necessary to retrieve
canonical correlation values with respect to all the reference
signal sets, which means executing CCA for each possible
stimulus. Figure 2 summarizes the CCA algorithm and its
actual implementation on many statistical packages.

D. Firmware implementation
All firmware has been implemented in C language on

a low-power ARM CORTEX M4 microcontroller, using
STM32 WorkBench, a dedicated Integrated Development
Environment (IDE) based on the open-source GCC compiler
version 5.4.1. The proposed implementation of CCA is
based on the Golub algorithm [55], [56], which, by virtue
of its computational efficiency, is widely used in many
statistical packages [57]. The Golub algorithm relies on the
computation of two QR decompositions, followed by a SVD
factorization. The implemented algorithm is summarized in
Figure 2c.
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In the implementation of the firmware, this algorithm must
be executed Nf times, once for every stimulus presented
at different frequency, and its execution must be optimized
in order to achieve near real-time performance even with
several stimuli. We applied three levels of optimization: (i)
usage of CMSIS-DSP library provided by ARM whenever
possible [58], (ii) precomputation and storage in Flash
memory of the orthogonal matrices Qy resulting from the
QR decomposition of all the reference signals, and (iii)
input filtering and downsampling. A time window of the
acquired EEG signal channels constitutes the multidimen-
sional variable X . The length Ns of the time window is
a parameter affecting the overall BCI performance, and its
computation is described later.

Before applying CCA, the input signal must be prepro-
cessed in two steps: (i) a band pass filter is applied for
removing low frequency and 50 Hz noise, and allowing a
downsampling factor up to 10, that reflects in a speedup > 4
in CCA computation; (ii) all the channels are reduced to
zero mean in order to be later correlated with the reference
signals. The band pass filter features a low pass 100 taps
FIR with cutoff frequency at 18.4 Hz, and a second order
high pass IIR. The low pass FIR filter guarantees to preserve
the signal amplitude up to the first harmonic of the higher
stimulus frequency, since we use Nh = 1, and at the
same time it achieves 60 dB attenuation at 50 Hz, without
introducing excessive delay or computational effort.

After preprocessing, the resulting multidimensional vari-
able X must be correlated with the corresponding reference
signals for each frequency used for the stimuli. We therefore
compute the QR decomposition once, obtaining the orthog-
onal matrix Qx, then we enter a loop for each stimulus
frequency k, where the same Qx matrix is multiplied by the
corresponding Qy(k) matrix already precomputed and stored
in Flash memory. The resulting matrix is factorized by the
SVD, where we optimized the code execution by skipping
computations which involve elements of the matrices which
zeros values.

All the coefficients of the diagonal matrix S obtained
by the decomposition are used in the computation of the
Euclidean norm, which is the measure of the correlation
between EEG and reference signal that we use for frequency
detection. The algorithm performance is discussed in subsec-
tion IV-E.

Since our BCI system is asynchronous, independent and
potentially disconnected from the source of the stimuli, at
the end of each data window processing the system must
deliver some output, regardless of actual activity of the user.
We use a threshold as simplest possible classifier to perform
frequency detection: if the maximum of the Nf correlation
features exceeds the threshold, then the BCI output is the
corresponding frequency, otherwise the system output is the
rest or idle state, decoded with class 0. The choice of the
threshold value will be discussed in section IV-C.

IV.EXPERIMENTAL RESULTS

A. Experimental setup

The BCI system presented in this work is the product of an
initial phase of offline tests used to fix critical parameters,
such as the number and location of electrodes, frequency
intervals, window length for data processing, etc. Subse-

Fig. 3. Acquisition setup: the flickering stimuli layouts (layout L2 in the
figure, featuring four checkerboards) are presented on a 24-inches LED
screen. The subject stares at the screen from a distance of 80 cm.

quently, online tests have been carried out to assess the real-
time performance. Eight healthy subjects (aged 25-40 years)
with normal or corrected-to-normal vision participated in
the offline experiments. Another group of five subjects was
taken later for the online tests. All participants reported no
history of neurological or psychiatric disorders and provided
a written consent to participate in the experiments.

SSVEP signals are elicited by adjusting the luminosity
(contrast) of black and white 10 x 10 square checkerboards
[59] on a grey background employing the sampled sinusoidal
stimulation method [60] on three different layouts. The first
layout (L1) only contains one checkerboard covering 75 % of
the screen and centered at the middle point and is employed
to display different stimuli in successive order. The second
layout (L2), comprises four checkerboards arranged in a 2 x
2 pattern at equidistant positions, each displaying a different
frequency-coded stimulus (a single checkerboard occupies
20 % of the screen). The third layout (L3) contains eight
checkerboards arranged in a 2 x 4 pattern, each one covering
10 % of the screen. The design of the layouts aims to test
the level of response of the SSVEP signals with consecutive
smaller stimuli in the presence of non-target stimuli. Fig. 3
depicts the acquisition setup with L2.

The luminosity (contrast) of the checkerboards was ad-
justed using the following equation:

Contrast(f, φ, i) = A · sin(2πfi/Fr + φ) +A

where i indicates the frame index, A the initial amplitude,
φ the initial phase, constant for all experiments (φ=0), f the
frequency of the stimulation, and Fr is the refresh rate of the
screen. All checkerboards included a grey diagonal cross to
help visual fixation. All the textures were generated using
Psychtoolbox 3.0.10 for Windows in Matlab 9.1. All the
layouts were presented on a 24-inch LED (60fps) screen at
a distance of approximately 80 cm.

EEG data were acquired using the hardware presented in
section III-B at a sample rate of 1 KSPS. For the offline
test, five electrodes over the occipital lobe (P5, PO3, POZ,
PO4, and P6) and two over the frontal lobe (F3 and F4)
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Fig. 4. Average CCA correlation of SSVEP responses for different stimuli
(x-axes) calculated with different reference signals (y-axes). On the diagonal
we can observe higher correlation due to the correspondence between the
stimulus frequency and the reference signals. We can notice that the lower
part of the stimuli spectrum allows for higher correlation response with
respect to the higher part.

were placed to record the SSVEPs, with reference and
ground electrodes located at A1 and A2 respectively. Online
tests were performed only with three electrodes, located at
P5, POZ, and P6, while reference and ground remained at
the same position. Electrodes impedance was kept below
10K. Triggers generated by the stimulation program were
bound to the incoming raw data by custom software. It is
worth mentioning that all experiments were repeated twice
to evaluate the performance of our dry electrode system with
respect to a classic wet configuration.

B. Frequency bands and electrode location

Equally spaced frequency-coded stimuli ranging from 5
Hz to 17.5 Hz, with a step of 1.2 Hz were used to select
suitable frequency targets. Each trial included five seconds of
stimulation followed by 5 seconds of pause to reduce visual
fatigue. The results from eight test subjects are summarized
in Fig.4 showing that the range of frequencies between
5-12.2 Hz have a significantly higher average correlation
magnitude. Nevertheless, we have narrowed the useful range
up to 9.5 Hz to avoid any interference from the alpha
band in our final implementation. Simultaneously, we have
performed an exhaustive search to determine the minimum
number of electrodes required, finding that there are no
significant differences in correlation when using only the
electrodes P5, POz and P6 with respect to the full setup.
Thus, the final system adopted these changes allowing us
to maximize the performance while reducing overall the
complexity and intrusiveness of the hardware. It is worth
noticing that in Fig. 4 we only present the results of the
wet-electrodes test since there are no significant differences
when using dry electrodes.

Fig. 5. Average ITR results for the system with wet electrodes (blue
triangles), and dry electrodes (red circles) calculated using different classi-
fication thresholds.

C. Offline Classification
The system presented at III-D was evaluated using dry

and wet electrodes while performing a new test session using
L2 and L3 layouts presenting four and eight simultaneous
stimuli, respectively. All the stimuli were coded using a
∆F = range/Nstimuli, to allow maximum separation
between targets in the frequency range. The subjects (same
as the previous test) fixed the sight at the target frequency in-
dicated with a red square before the onset of the stimulation.
Later, all the stimuli remained active for five seconds with a
resting time of 5 seconds in between trials. The experiment
ends when the subject has been staring once at each stimulus
on the screen.

After an exhaustive analysis of the offline results, we
identified the most performing data window length as 2 s
for both wet and dry systems, which turns in Ns = 2000
samples to process for each channel at each CCA iteration.
This window size guarantees a good trade-off between
system latency (∼ 2s) and accuracy (> 90%). Even if
our system is asynchronous, we assessed offline system
latency by measuring the time interval between the stimulus
onset and the first correct detection. For detailed results
description refer to tables II and III. The other parameter
of the system, the classification threshold, is chosen to
maximize the average ITR, calculated for the asynchronous
BCIs as in [61]:

ITR = 1−Pr

davg

(
log2Nf + (1 − Pw) log2(1 − Pw) + Pw log2

(
PW

Nf−1

))
where Pr is the probability of non-detected stimuli or trial

error, Pw is the probability of incorrect detected cases, Nf is
the number of target stimuli, and davg is the average delay or
latency of the system in seconds. Figure 5 shows the value
of the average ITR of the wet and dry system calculated with
several thresholds. The threshold value of 0.55 maximizes
both curves, therefore it is the most suitable threshold value
to use for our BCI output classification.

Tables II and III show the classification performance using
four and eight stimuli for wet and dry electrodes. Even
though the average latency for the 4-stimuli wet system is
smaller than the 8-stimuli system, the latter achieves higher
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ITR due to the increase in the number of targets. This
situation improves when analyzing the dry systems, where
the 8-stimuli not only outperforms the 4-stimuli, it also
achieves similar performance than the wet system. These
results also demonstrate that the interference created by
placing different stimuli at the same layout with decreasing
target size is negligible.

D. System validation
Following the results introduced before, we conducted the

system validation while performing the acquisition of the
EEG data and classification in real time, employing five
test subjects, that have not been involved in the offline
experiments. To ease the computation of the results, the
outputs of the classification are transmitted directly to a
computer using a BT communication module, automatically
synchronized with the onset of the corresponding stimu-
lation by a custom software. During the experiments, the
checkerboards with the target frequency were indicated with
a red square that appears before the stimulation. Once a valid
frequency was detected, the stimulation was stopped and the
detected frequency was highlighted and cued with a white
frame. The accuracy of the system was then asserted by
the number of correct classifications over the total number
of classifications, and the latency is computed as the time
needed for detection of the trials that succeeded. The results
of the experiment are summarized in tables IV and V, allow-
ing us to conclude that there are no significant differences
between offline and online experiments. Also, the average
ITR using eight stimuli and the dry sensor interface is 1.25
b/s, proving that our embedded implementation can achieve
performance that is comparable with non-wearable systems
[22], [23], [24], [26], while outperforming other wearable or
mobile systems [25], [27], [30].

E. Computational results
The algorithm described in III-D was implemented on

the board described in III-B. DMA transfer, clock gating
and optimization of clock frequency were used to minimize
the power consumption. To speed up execution time, we
employed CMSIS [58] functions when possible, and pushed
compiler optimization to -O2 within those functions. As
mentioned before, the number of samples to process at
each CCA iteration is 2000. However, it is possible to
downsample the data up to factor 10 for a twofold goal:
reduce power consumption and decrease the delay between
two consecutive classifications. In fact, higher BCI output
frequency contributes to boost ITR and to enhance the user
real time experience. Downsampling 10 allows to reduce
MCU cycles from about 3157k to about 768k, achieving
speedup > 4 without significantly degrading the accuracy. In
fact, while ITR remains constant, Fig. 6 shows the decreas-
ing curve of power consumption according to downsampling
factor.

The time needed to execute the optimized algorithm on
our device is less than 5 ms, which allows us great liberty in
the choice of the performance/power consumption trade-off.
Fig. 7 shows the trend of the ITR over power consumption
with reference to the period of the CCA execution. The
curves suggest that 100 ms is a good CCA execution
period for both dry and wet systems, in fact 100 ms period

Fig. 6. Trend of the power consumption calculated for several downsam-
pling factors (blue triangles) for four stimuli.

Fig. 7. Trend of the ITR/power consumption ratio calculated for sev-
eral CCA execution periods with wet electrodes (blue triangles) and dry
electrodes (red circles).

guarantees average ITR > 1b/s, power consumption of 22.4
mW for four stimuli and 27.5 mW for eight stimuli, and
ten outputs per seconds for a real-time user experience. The
power consumption was measured on the board using a
source measure unit instrument.

TABLE II. OFFLINE RESULTS FOR 4 STIMULI BCI, WET AND
DRY SETUP.

Total
accuracy

Trial
accuracy

Latency [s] ITR [b/s]

(wet / dry) (wet / dry) (wet / dry) (wet / dry)

S1 0.97 / 0.98 1 / 1 1.91 / 1.86 0.94 / 1.00

S2 0.96 / 0.96 1 / 0.75 1.57 / 2.41 1.07 / 0.53

S3 0.98 / 0.96 1 / 1 1.60 / 1.83 1.12 / 0.91

S4 0.95 / 0.96 1 / 0.75 2.10 / 1.91 0.79 / 0.67

S5 0.96 / 0.98 1 / 1 1.41 / 1.65 1.19 / 1.11

S6 0.99 / 0.97 1 / 1 1.33 / 1.60 1.42 / 1.09

S7 0.95 / 0.99 1 / 1 0.86 / 1.17 1.90 / 1.59

S8 0.97 / 0.98 1 / 1 1.33 / 2.00 1.32 / 0.90

Average 0.97 / 0.97 1 / 0.94 1.51 / 1.80 1.22 / 0.98

V. CONCLUSIONS

In this paper we presented a novel SSVEP embedded BCI
system based on a custom hardware platform for medical
IoT and a minimally intrusive setup with 3 zero-preparation
EEG dry electrodes. Our work, leveraging a multimodal
approach which ranges from EEG acquisition to embedded



9

TABLE III. OFFLINE RESULTS FOR 8 STIMULI BCI, WET AND
DRY SETUP.

Total
accuracy

Trial
accuracy

Latency [s] ITR [b/s]

(wet/dry) (wet/dry) (wet/dry) (wet/dry)

S1 0.92 / 0.92 1 / 1 2.11 / 2.84 1.12 / 0.84

S2 0.93 / 0.93 1 / 1 1.43 / 1.66 1.69 / 1.48

S3 0.89 / 0.96 1 / 1 2.24 / 3.25 0.99 / 0.82

S4 0.94 / 0.92 1 / 1 1.71 / 1.87 1.46 / 1.27

S5 0.95 / 0.97 1 / 1 1.70 / 1.59 1.51 / 1.70

S6 0.98 / 0.98 0.75 / 1 2.37 / 2.17 0.90 / 1.28

S7 0.74 / 0.94 1 / 1 1.21 / 3.42 1.20 / 0.74

S8 0.92 / 0.91 1 / 1 1.53 / 1.58 1.54 / 1.48

Average 0.91 / 0.94 0.97 / 1 1.79 / 2.30 1.30 / 1.20

TABLE IV. ONLINE RESULTS FOR 4 STIMULI BCI, WET AND
DRY SETUP.

Total
accuracy

Trial
accuracy

Latency [s] ITR [b/s]

(wet/dry) (wet/dry) (wet/dry) (wet/dry)

S1 0.88 / 0.87 1 / 1 0.76 / 3.01 1.69 / 0.41

S2 0.87 / 0.91 1 / 1 0.76 / 1.34 1.64 / 1.06

S3 0.91 / 0.92 1 / 1 1.44 / 2.05 1.01 / 0.72

S4 0.93 / 0.94 1 / 1 2.16 / 1.31 0.70 / 1.24

S5 0.89 / 0.92 1 / 1 1.36 / 0.99 0.96 / 1.48

Average 0.89 / 0.91 1 / 1 1.30 / 1.74 1.20 / 0.99

optimization, aims at widening the usage of BCI systems
among able-bodied people, by designing a fully wearable
and easy-to-use system for multilevel spelling interface with
up to eight stimuli. The whole processing chain, from raw
EEG signal acquisition to frequency identification via CCA
algorithm, is performed in real-time on an embedded cost-
effective microcontroller. The code optimization, tailored
for the CORTEX M4 Instruction Set Architecture (ISA)
allows to calculate up to 10 EEG feature classifications per
second, keeping power consumption as low as 27.5 mW.
The system has been fully designed, tested and validated on
five subjects, achieving an average ITR of 1.06 b/s with the
dry electrodes interface and 1.28 b/s with the wet electrodes
interface. The proposed solution does not require subject
dependent training and synchronization mechanisms for the
stimuli presentation, hence it is suitable for the deployment
in non-prepared environment.

In future, we plan to study the system detection accuracy
with multi-frequency stimuli, since it would allow us to
either provide more stimuli using the same frequency set,
or reducing frequency misclassification. In both cases, we
expect to improve the current ITR. Furthermore, we will
explore the combination of the CCA with more advanced
classification techniques (e.g. SVM or ANN) for better
frequency classification or rest vs. stimulus classification.
Finally, we will explore other frequency estimation tech-
niques and their implementation on more energy-efficient
and powerful multicore computational platforms [62].
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TABLE V. ONLINE RESULTS FOR 8 STIMULI BCI, WET AND
DRY SETUP.

Total
accuracy

Trial
accuracy

Latency [s] ITR [b/s]

(wet/dry) (wet/dry) (wet/dry) (wet/dry)

S1 0.83 / 0.83 1 / 1 2.01 / 2.52 0.92 / 0.74

S2 0.84 / 0.88 1 / 1 1.19 / 1.34 1.62 / 1.57

S3 0.89 / 0.86 1 / 1 1.18 / 1.50 1.83 / 1.36

S4 0.81 / 0.76 1 / 1 1.65 / 1.40 1.07 / 1.08

S5 0.79 / 0.83 1 / 1 1.79 / 2.02 0.94 / 0.92

Average 0.83 / 0.83 1 / 1 1.56 / 1.76 1.27 / 1.13
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