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Success Probability of Grant-Free Random Access

with Massive MIMO
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Abstract—Massive MIMO opens up new avenues for enabling
highly efficient random access (RA) by offering abundance of
spatial degrees of freedom. In this paper, we investigate the grant-
free RA with massive MIMO and derive the analytic expres-
sions of success probability of the grant-free RA for conjugate
beamforming and zero-forcing beamforming techniques. With the
derived analytic expressions, we further shed light on the impact
of system parameters on the success probability. Simulation
results verify the accuracy of the analyses. It is confirmed that
the grant-free RA with massive MIMO is an attractive RA
technique with low signaling overhead that could simultaneously
accommodate a number of RA users, which is multiple times the
number of RA channels, with close-to-one success probability.
In addition, when the number of antennas in massive MIMO
is sufficiently large, we show that the number of orthogonal
preambles would dominate the success probability.

Index Terms—Success probability, Grant-free, Random access,
Massive MIMO, M2M.

I. INTRODUCTION

Future mobile communication systems not only envision

enhancing the traditional mobile broadband use case, but also

aim to meet the requirements of new emerging use cases,

such as Internet of Things (IoT) [1] [2]. As an enabler of

the IoT, machine-to-machine (M2M) communications have

attracted considerable attention from academia and industries.

In M2M, the number of random access (RA) user equipments

(UEs) is enormous and their data packets are usually short

and sporadic in nature. As a result, fulfilling the demand of

massive access with low signaling overhead and access delay

is a key technological issue in future wireless communications

[3].

The legacy request-grant RA procedure in long term evo-

lution (LTE) was only designed to provide reliable access to

a small number of UEs with long packets to transmit [4].

To support M2M communications, several modifications and

improvements have been proposed [5]–[7]. Additionally, a new

narrowband IoT (NB-IoT) technology, based on LTE, has been

standardized by 3GPP to this end. In [8]–[10], design and

optimization of RA in NB-IoT have been presented, shedding

light on the potential of NB-IoT toward supporting M2M

communications. Nevertheless, since the RA of NB-IoT is

a request-grant protocol based on slotted-ALOHA and very

limited wireless resources are provided for NB-IoT RA UEs,
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it is unable to support massive access as required by the M2M,

where low signaling overhead and access delay are essential.

Recently, massive multiple-input multiple-output (MIMO),

has been identified as a promising technology to mitigate the

wireless resource scarcity and handle the rapid growth of data

traffic [11]–[13], which opens up new avenues for massive

access by offering abundance of spatial degrees of freedom

[14]. Several works were devoted to improving the legacy

request-grant RA procedure [15]–[17] by taking advantage

of high spatial resolution and channel hardening of massive

MIMO [12]. These works validated the effectiveness of mas-

sive MIMO in resolving access collision and enhancing RA

capacity. However, considering small-sized packets generated

by IoT applications, the request-grant RA procedure brings

in relatively long waiting time before data transmissions for

RA UEs. Moreover, since the channel resources reserved for

request and grant signaling are not utilized as efficiently as

the data channel that takes full advantage of massive MIMO,

the request-grant RA is not an efficient approach in the case

of massive MIMO.

To effectively manage M2M communications at low sig-

naling overhead and access delay, grant-free RA (also known

as one-stage RA) with massive MIMO is a compelling alter-

native. In the grant-free RA, request-grant procedure in the

legacy RA is omitted and RA UEs contend (i.e., perform RA)

with their uplink payloads directly by transmitting preamble

along with data [18]. As a result, signaling overhead and

access delay are minimized, and the radio resources reserved

for the request-grant procedure could be unleashed for ac-

commodating more RA UEs. With all the benefits manifested

in [15]–[17], features of massive MIMO could be exploited

to effectively accommodating multiple access in RA over

the same channel. Therefore, the grant-free RA with massive

MIMO exhibits potential advantages towards addressing RA

issues for future wireless communications. However, to the

best of the authors knowledge, this paper is the first one to

investigate the performance of grant-free RA with massive

MIMO. In [19], a joint pilot assignment and data transmis-

sion protocol was proposed to support massive intermittent

transmissions, which relies on pilot-hopping patterns across

multiple transmission slots. Since this protocol assumed that

each RA UE is associated to a unique and predefined pilot-

hopping pattern and the BS knows in advance the pilot-

hopping patterns of all RA UEs, it is not a genuine grant-free

RA protocol with which RA UEs compete for the channel

access by transmitting preambles randomly chosen from a

preamble pool.

In this regard, the grant-free RA with massive MIMO is
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investigated in this paper to provide insights into the design of

RA protocols for future wireless communications. Specifically,

we consider a grant-free RA scenario that a large number

of RA UEs contend for access to limited channel resources

by directly transmitting preamble along with data. Success

probability, as the performance metric, is used in this paper

to evaluate the effectiveness of grant-free RA with massive

MIMO.

The novelty and contribution of this paper are summarized

as follows.

• We propose the idea of grant-free RA with massive

MIMO and derive approximate expressions of the success

probability of the grant-free RA for the cases of conjugate

beamforming (CB) and zero-forcing beamforming (ZFB),

respectively.

• Taking into consideration that the number of antennas

M in massive MIMO is usually sufficiently large, it is

found that the number of orthogonal preambles P would

dominate the success probability.

• Simulation results show that our analyses are accurate

and the grant-free RA with massive MIMO is able to

support Na simultaneous grant-free access over C RA

channels with close-to-one success probability, where Na

is multiple times C. A great MIMO gain in terms of η
could be achieved for the grant-free RA compared to its

single-antenna counterpart, where η = Na/C reflects the

channel reuse efficiency.

• It is demonstrated that the grant-free RA with massive

MIMO achieves a close performance to the one with

even user distribution (EUD) over channels. This is

an important merit of the grant-free RA with massive

MIMO, considering the fact that the EUD is desirable

but unattainable in the grant-free RA.

The remainder of this paper is organized as follows. In

Section II, the grant-free RA with massive MIMO is briefly

described. In Section III, analyses and derivations on the

success probability of grant-free RA with massive MIMO are

detailed. Simulation results are presented in Section IV and

the work is concluded in Section V.

Notations: Boldface lower and upper case symbols represent

vectors and matrices, respectively. In is the n × n identity

matrix. The trace, conjugate, transpose, and complex conju-

gate transpose operators are denoted by tr(·), (·)∗, (·)T and

(·)H. E[·] denotes the expectation operator. ‖ · ‖ denotes the

Euclidean norm and [G]ij denotes the entry of matrix G

on the ith row and jth column. x ∼ CN (0,Σ) indicates

that x is a circularly symmetric complex Gaussian (CSCG)

random vector with zero-mean and covariance matrix Σ.

B(r, n, p) =
(
n
r

)
pr(1− p)n−r is the probability mass function

of a binomial distribution with parameters r, n, and p, where
(
n
r

)
= n!

r!(n−r)! is the binomial coefficient.

II. GRANT-FREE RANDOM ACCESS WITH MASSIVE MIMO

In this section, we firstly outline the system model with

massive MIMO considered in this paper. Then, the procedure

of grant-free RA with massive MIMO is introduced.

In Fig. 1, a single-cell massive MIMO system is depicted,

where the base station (BS) is configured with M active

antenna elements and single-antenna RA UEs are uniformly

distributed throughout the cell. With spatial reuse capability of

massive MIMO, the BS is able to support multiple RA UEs

simultaneously over a same channel. In this paper, we assume

that Na RA UEs are active to perform RA in a RA slot. The

RA slot herein is the wireless radio resources dedicated to the

grant-free RA, which consists of C channels over frequency,

as shown in Fig. 2.

RA UE

BS with Massive MIMO

Time

Frequency

Space

C channels

Channel 

1

Channel 

2

Channel 

C

Figure 1. System model with massive MIMO.

Since M is sufficiently large in massive MIMO, favorable

propagation (FP) can be approximately achieved, which means

that RA UEs’ channel vectors are approximately orthogonal.

The feature of FP enables spatial multiplexing of multiple RA

UEs over a same channel [11] [12]. Specifically, simple linear

processing, such as CB and ZFB, could be applied at the BS,

to discriminate the signal transmitted by each RA UE from

the signals of other RA UEs.

Frequency

Channel 1

Channel 2

Channel C

Time

RA Slot

Figure 2. Time-frequency resources in a RA slot.

In Fig. 3, the procedure of grant-free RA with massive

MIMO is briefly described. Specifically, once a RA UE
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decides to transmit at the RA slot, it randomly selects one

of the C RA channels. Over the selected channel, the RA

UE transmits a RA preamble followed by its data. The RA

preamble is randomly chosen out of a RA preamble pool,

which is used by the BS for preamble detection and chan-

nel estimation. We assume that there are P orthogonal RA

preambles available in the pool. If the chosen preamble by a

RA UE is different from the ones by other RA UEs over the

same channel, the RA UE could be detected and its channel

response could be estimated with adequate accuracy at the BS.

Otherwise, if multiple RA UEs choose the same preamble over

the same channel, preamble collision occurs and we assume

that all these RA UEs would not be detected and their channel

estimations would be failed at the BS.

Information about the available RA preambles is periodi-

cally broadcasted by the BS. For RA UEs with only small-

sized packet transmissions, they are able to achieve reduced

signaling overhead and transmission delay as well as effective

power saving with the grant-free RA. At the BS, after preamble

detection and channel estimation, receive beamforming is then

used for data recovering.

Channel Selection 

Preamble Selection

Preamble Detection and Channel 

Estimation

Data Recovery with Beamforming 

At RA UEs

At BS

Preamble and Data Transmission

Figure 3. Procedure of grant-free RA with massive MIMO.

By utilizing spatial multiplexing offered by the excess

spatial degrees of freedom, massive MIMO is able to serve

multiple RA UEs over a same channel, which makes it possible

for the grant-free RA with massive MIMO to meet the need

of massive access. In Section III.A, key factors influencing the

performance of multiple simultaneous access in the grant-free

RA with massive MIMO are discussed.

III. SUCCESS PROBABILITY OF GRANT-FREE RA WITH

MASSIVE MIMO

To evaluate the performance of the grant-free RA with

massive MIMO, we use success probability as the performance

metric. In this paper, the success probability is defined as

the probability of no preamble collision and γ ≥ γTh for an

arbitrary RA UE, where γ is the received signal to interference

and noise ratio (SINR) after beamforming at the BS and γTh

is a given SINR threshold.

In this section, we firstly analyze key factors influencing the

performance of grant-free RA with massive MIMO and then

derive the success probabilities of the grant-free RA in massive

MIMO for CB and ZFB techniques. Lastly, a proposition is

provided to shed light on how M and P affect the success

probability of the grant-free RA with massive MIMO.

A. Factors Influencing Success Probability

In order to successfully decode the data of a RA UE in

the grant-free RA, it is essential for the BS to have accurate

channel response of the RA UE. The BS acquires the channel

response from the preamble transmitted by the RA UE. In the

case of multiple simultaneous access over a same channel, if

other RA UEs select the same preamble with the RA UE, the

preamble collision occurs. The BS is thus unable to acquire

the correct channel response for the RA UE and the data

transmission would be failed. Moreover, the incorrect channel

responses lead to an incorrect beamforming pattern (especially

for ZFB), which would bring in multiuser interference to other

RA UEs and degrade the beamforming performance as a result.

On the other hand, even that the BS acquires good channel

estimations for all the RA UEs, data transmission of the RA

UEs would also not be successful if the multiuser interference

is sufficiently strong such that γ < γTh .

In summary, the key factors influencing the success proba-

bility can be outlined as follows

1) Preamble collision. Only RA UEs without experiencing

preamble collisions have the chance to get their data

recovered by the BS.

2) Noise and multiuser interference. Multiuser interference

in beamforming would result in loss of γ. Data trans-

mission of a RA UE is considered successful only when

its γ is greater than γTh.

In the sequel, the mathematical expressions of success

probability are derived by taking the above influencing factors

into account. To make the derivations trackable, a block

independent Rayleigh fading propagation model is considered,

where the propagation channels are assumed constant within

the RA slot. The channel response vector between an arbitrary

RA UE and the BS is modelled by g =
√
ℓh ∈ CM , where

ℓ denotes the large scale fading coefficient between RA UE

and BS, and h ∼ CN (0, IM ) stands for the small scale fading

vector between RA UE and BS. In the derivations, we ignore

the impact of noise on the channel estimation. Moreover,

perfect power control is assumed so that all RA UEs have

the same expected receive power at the BS.

B. Success Probability of Grant-Free RA with Conjugate

Beamforming

In this subsection, we derive the success probability of the

grant-free RA with CB. Without loss of generality, we take the

1st RA UE as an example to specify the theoretical derivations.

Then, the success probability is expressed as

PCB =

Na−1∑

K=0

P̄ (K)P̃CB(K)P (γ1
CB ≥ γTh|K), (1)

where γ1
CB is the SINR corresponding to the 1st RA UE after

CB at the BS and the subscript CB indicates that the CB is
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utilized. Na is the number of RA UEs for grant-free RA in a

RA slot.

P̄ (K) represents the probability that K other RA UEs select

the same channel with the 1st RA UE, which is given by

P̄ (K) = B(K,Na − 1,
1

C
). (2)

P̃CB(K) represents the probability that no preamble colli-

sions occur between the K RA UEs and the 1st RA UE, which

is given by

P̃CB(K) = (1− 1

P
)K . (3)

P (γ1
CB ≥ γTh|K) is the probability of γ1

CB ≥ γTh, given

that 1) the channel response of the 1st RA UE is available to

the BS; 2) K other RA UEs share the same channel resource

with the 1st RA UE for data transmissions.

Under the assumption of perfect power control at each RA

UE, let PR denote the expected receive power from each RA

UE at each BS antenna. The received uplink signal vector

r ∈ CM at the BS is thus written as

r =
K+1∑

i=1

√

PRhixi + n, (4)

where the index set of K RA UEs is assumed to be I =
{2, 3, . . . ,K+1}. hi is the small scale fading vector between

the ith RA UE and the BS. xi is data symbol transmitted

by the ith RA UE and E[|xi|2] = 1. n ∼ CN (0, σ2
nIM ) is

a vector of the additive white Gaussian noise (AWGN). We

denote the uplink SNR at the BS corresponding to each RA

UE by ρR , PR/σ
2
n.

With r, the BS recovers the 1st RA UE’s data symbols by

CB based on its channel response. Then, the recovered signal

corresponding to the 1st RA UE after CB is given as

y1 = bT
1 r

=
√

PRh
H
1 h1x1 +

K+1∑

i=2

√

PRh
H
1 hixi + hH

1 n, (5)

where bT
1 = hH

1 refers to the receive conjugate beamformer

for the 1st RA UE. The SINR of the 1st RA UE is therefore

calculated as

γ1
CB =

PR|hH
1 h1|2

|hH
1 n|2 + PR

K+1∑

i=2

|hH
1 hi|2

. (6)

In massive MIMO, M is assumed large. By using the strong

law of large numbers, we have
h

H

1
h1

M

M→∞−−−−→ 1. Thus, (4) can

be simplified as follows

γ1
CB =

ρRM

1 + ρRYK

, (7)

where YK = 1
M

K+1∑

i=2

|hH
1 hi|2. It is known that 1

M
hH
1 hi

converges to the standard normal distribution [20]. Then,
1
M
|hH

1 hi|2 converges to the Gamma distribution φ(y; 1, 1).

From Corollary 1 of [20], the probability density function

(PDF) of YK has the following approximation:

fYK (y)

≈βη−K+1

[

e−βy − e
−

√

M
√

M−1
y
K−2∑

n=0

( √
M√

M − 1
η

)n

yn

n!

]

,

(8)

where β =
√
M√

M+K−1
and η = K√

M+K−1
.

By using (7), P (γ1
CB ≥ γTh|K) is obtained as

P (γ1
CB ≥ γTh|K)

=P (
ρRM

1 + ρRYK

≥ γTh)

=

{
P (YK ≤ M

γTh

− 1
ρR

), if γTh ≤ MρR;

0, otherwise.
(9)

In a typical massive MIMO setup, the condition of γTh ≤
MρR is usually satisfied. P (γ1

CB ≥ γTh|K) is thus approxi-

mated as the following by using (8)

P (γ1
CB ≥ γTh|K)

=

∫ M
γTh

− 1

ρR

0

fYK (y)dy

=1− η−K+1e−βΛ

+(1− η)

K−2∑

n=0

1

n!
ηn−K+1Γ(n+ 1,

√
M√

M − 1
Λ), (10)

where Λ = M
γTh

− 1
ρR

. Γ(s, x) =
∫∞
x

ts−1e−tdt is the upper

incomplete Gamma function.

Substituting (2), (3) and (10) into (1), the approximate

expression of the success probability of the grant-free RA with

CB is obtained.

C. Success Probability of Grant-Free RA with Zero-Forcing

Beamforming

Similar to the case of CB, the success probability of the

grant-free RA with ZFB is expressed as

PZF

=

Na−1∑

K=0

P̄ (K)

min{P−1,K}
∑

S=1

P̃ZF(S|K)P (γ1
ZF ≥ γTh|K,S),

(11)

where γ1
ZF is the SINR corresponding to the 1st RA UE after

ZFB at the BS and the subscript ZF indicates that the ZFB

is utilized. P̄ (K) is defined in (2), referring to the probability

that K other RA UEs select the same channel with the 1st RA

UE.

P̃ZF(S|K) refers to the probability that S preambles in total

are selected by the K cochannel RA UEs and no preamble

collisions occur between the K RA UEs and the 1st RA UE,

given that K other RA UEs select the same channel with the

1st RA UE, which is given by

P̃ZF(S|K) =

(
P−1
S

)
S!
{
K
S

}

PK
, (12)
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where
{
K
S

}
= 1

S!

S∑

j=0

(−1)S−j
(
S
j

)
jK is the Stirling numbers

of the second kind [21]. It is the number of ways to partition a

set of K objects into S non-empty subsets. In short words, it

is the number of ways to distribute K distinguishable elements

into S indistinguishable receptacles with no receptacle empty.

P (γ1
ZF ≥ γTh|K,S) is the probability of γ1

ZF ≥ γTh, given

that 1) K other RA UEs share the same channel resource

with the 1st RA UE for data transmissions; 2) S preambles

in total are selected by the K RA UEs, which are different

from the one selected by the 1st RA UE. The mathematical

expression of P (γ1
ZF ≥ γTh|K,S) is analyzed and derived in

the followings.

Unlike the case of CB, ZFB utilizes all the estimated

channel information to decode the data. As S preambles in

total are selected by the K RA UEs, the BS would obtain

S channel estimates by detecting the S selected preambles,

where S ≤ K . When S < K , some of the S channel estimates

would be the superposition of multiple RA UEs’ channel

responses. As a result, the ZFB with the incorrect channel

estimates would impose interference to the targeted UE, which

has to be taken into consideration in the derivations.

In this regard, we define Ws : s ∈ S = {1, 2, . . . , S} as the

nonempty subset of RA UEs that select the sth preamble in

the selected S preambles. Ws ⊂ I, where I is the index set

of the K RA UEs defined in (4). We also define that ws is an

arbitrary element in subset Ws and Ws\ws refers to the subset

Ws excluding the element ws. In addition, we define as, for

s ∈ S, as the channel response estimated via the detection of

the sth preamble, where as =
∑

j∈Ws

hj as the impact of noise

on the channel estimation is ignored herein.

With the above definitions and r in (4), the recovered signal

vector y ∈ C
S+1 after ZFB is given as

y = Br = (AHA)−1AHr, (13)

where A = [h1, a1, a2, . . . , aS ] ∈ CM×(S+1) and B =
(AHA)−1AH ∈ C(S+1)×M refers to the receive ZF beam-

former.

To make the derivations tractable, we apply the following

transformation to r:

r =
K+1∑

i=1

√

PRhixi + n

=
√

PRAx̂+
∑

j∈{Ws\ws:s∈S}

√

PRhj(xj − xws)

︸ ︷︷ ︸

Sum of K−S terms

+n,

(14)

where x̂ = [x1, xw1
, xw2

, . . . , xwS ]
T ∈ CS+1. Then, two cases

are discussed as follows:

1) Case of K > S: Substituting (14) into (13), we have

that

y =
√

PRx̂+
∑

j∈{Ws\ws:s∈S}

√

PRBhj(xj − xws) +Bn.

(15)

Correspondingly, the recovered signal for the 1st RA UE at

the BS is derived as

y1 =
√

PRx1 +
∑

j∈{Ws\ws:s∈S}

√

PRb
T
1 hjxws,j + bT

1 n,

(16)

where bT
1 denotes the 1st row of matrix B. xws,j = xj −xws

and E[|xws,j |2] = 2 since the data symbols are independent

to each other.

From (16), the SINR of the 1st RA UE is written as

γ1
ZF =

ρR

ρR

∣
∣
∣

∑

j∈{Ws\ws:s∈S}

√
2bT

1 hj

∣
∣
∣

2

+ ‖bT
1 ‖2

=
ρRU1

ρRZK−S + 1
, (17)

where

U1 = ‖bT
1 ‖−2.

And

ZK−S =
∣
∣

∑

j∈{Ws\ws:s∈S}

√
2bT

1

‖bT
1 ‖

hj

︸ ︷︷ ︸

Sum of K−S terms

∣
∣
2
.

Since ‖bT
1 ‖2 = [(AHA)−1]11, U1 follows an Erlang dis-

tribution with shape parameter M − S and scale parameter 1
[22]. Therefore, the PDF of U1 is given by

fU1
(u) =

e−u

(M − S − 1)!
uM−S−1, u > 0. (18)

On the other hand, since it is difficult to derive the exact

distribution of ZK−S , an approximation is considered herein.

Specifically, by ignoring the correlations between the K − S
terms in the sum, we approximate ZK−S as

ZK−S ≈
∑

j∈{Ws\ws:s∈S}

∣
∣

√
2bT

1 hj

‖bT
1 ‖

∣
∣
2

=
∑

j∈{Ws\ws:s∈S}

∣
∣Kj

∣
∣
2
, (19)

where Kj =
√
2bT

1
hj

‖bT

1
‖ . It is proved that Kj follows stan-

dard complex normal distribution [25]. Therefore, ZK−S is

approximated as the sum of K − S statistically independent

and identically distributed exponential random variables. As a

result, the PDF of ZK−S is given by [23] [24]

fZK−S (z) ≈
1

(K − S − 1)!
zK−S−1e−z, z > 0. (20)

With (17), (18), and (20), we obtain that

P (γ1
ZF ≥ γTh|K,S)

≈e
− γTh

ρR

M−S−1∑

p=0

p
∑

q=0

(
p

q

)
γp
Th

p!

ρq−p
R

(K − S − 1)!

Γ(K − S + q, 0)

(1 + γTh)K−S+q
.

(21)
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2) Case of K = S: In the case of K = S, no preamble

collisions occur among the K RA UEs, i.e., their channel

estimations would be successful, and the multiuser interference

could be suppressed effectively with ZFB. The recovered

signal for the 1st RA UE at the BS in (16) is hence simplified

as

y1 =
√

PRx1 + bT
1 n. (22)

Accordingly, the SINR of the 1st RA UE is written as

γ1
ZF = ρRU1. (23)

With (18), P(γ1
ZF ≥ γTh|K,S) in the case of K = S is

therefore given by

P (γ1
ZF ≥ γTh|K,S)

=P (γ1
ZF ≥ γTh|K,K)

=e
− γTh

ρR

M−K−1∑

p=0

1

p!
(
γTh

ρR
)p. (24)

Substituting (2), (12), (21) and (24) into (11), the approx-

imate expression of the success probability of the grant-free

RA with ZFB is obtained.

D. Analysis under Assumption of Even User Distribution

In this subsection, we simplify the analytic expressions

of the success probability under assumption of even user

distribution (EUD) over channels to shed light on how M
and P impact on the success probability of the grant-free RA

with massive MIMO. Herein, the EUD assumes a genie user

distribution management such that the number of RA UEs

distributed on each RA channel is exact Na/C. Please note

that, the number of RA UEs on each RA channel is random

in practice, therefore the EUD is desirable but unattainable in

the grant-free RA. The reasons of making the assumption for

the analysis lie in:

1) The assumption of the EUD eliminates the effects of

random user distribution over channels, which simplifies

the analytic expressions in (1) and (11), thus making

it more straightforward to understand how M and P
impact on the success probability;

2) Although the assumption of the EUD is impractical, the

number of RA UEs distributed on each RA channel with

random user distribution is close to Na/C when Na ≫
C. Thus, it is a reasonable approximation to the real

case with random user distribution.

3) The EUD provides a performance upper bound for

the grant-free RA. By comparing to the upper bound,

we can evaluate the performance gap to this desirable

performance.

With the EUD assumption, one proposition is hereby intro-

duced.

Proposition 1. In the grant-free RA with EUD, when M is

sufficiently large, the success probability approaches to (1 −
1
P
)

Na
C −1 for both CB and ZFB.

Proof. We only provide the proof for CB herein. The proof

for ZFB is similar and omitted due to space constraints.

With CB and EUD, the success probability in (1) could be

modified as

PCB = (1− 1

P
)

Na
C −1P

(
γ1
CB ≥ γTh|

Na

C
− 1
)
. (25)

When M approaches to infinity, γ1
CB converges to its asymp-

totic deterministic equivalence γ1
CB [20], which is given by

γ1
CB =

M

Na/C
v, (26)

where v = ρR

1+ρR
Na/C−1

Na/C

. Since Na

C
and v are constant, the

value of γ1
CB is increased with M . When M increases to a

certain value, γ1
CB > γTh and P

(
γ1
CB ≥ γTh|Na

C
− 1
)
= 1.

Therefore, the success probability approaches to (1− 1
P
)

Na
C −1.

We conclude the proof.

Remark 1. In a massive MIMO deployment, with large M ,

Proposition 1 indicates that the success probability of the

grant-free RA with massive MIMO mainly depends on P ,

where P is the number of orthogonal preambles.

Remark 2. Based on Proposition 1, it is clear that the success

probability would approach to 1 when P approaches to infinity

and M is sufficiently large.

Remark 3. In the case of Na ≫ C, the number of RA UEs

distributed on each RA channel with random user distribution

would be close to Na/C. Then, the EUD performance of the

grant-free RA with massive MIMO could be approximately

achieved by the practical case of random user distribution.

IV. NUMERICAL RESULTS

In this section, numerical results are presented to verify the

accuracy of the analyses in Section III and also the effective-

ness of the grant-free RA with massive MIMO. To evaluate the

performance, comparisons with three performance baselines

are made. The three performance baselines are considered as

three different upper bounds of the success probability of the

grant-free RA with massive MIMO.

• For Upper Bound 1, EUD is assumed, such that the

number of RA UEs distributed on each RA channel is

exact Na/C.

• For Upper Bound 2, EUD and M = ∞ are assumed.

From Proposition 1, we see that the corresponding suc-

cess probability is (1− 1
P
)

Na
C −1.

• For Upper Bound 3, random user distribution and P = ∞
are assumed, i.e., Na RA UEs are randomly distributed

among C RA channels and no preamble collisions occur

during the grant-free RA.

Although the three upper bounds are impractical considering

the randomness of user distribution over channels and finite

P and M , they would help to understand the effects of these

key system parameters on the success probability of the grant-

free RA with massive MIMO. Besides, we define η = Na/C
for notation simplicity, which represents the average load on

each channel. Please note that, η is also a measure of channel

reuse efficiency when its corresponding success probability

satisfies the system requirement. Simulation parameters are

summarized in Table I.
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Table I
SIMULATION PARAMETERS

Number of antennas M 50, 100, 200, 400

Average load on each channel η 1 ∼ 20

Number of orthogonal preambles P 64, 128, 256

SINR threshold γTh 8dB

A. Success Probability by Conjugate Beamforming under In-

dependent Rayleigh Fading Channel

The success probabilities as a function of ρR with different

values of M and P are presented in Fig. 4, for grant-free

RA with CB in massive MIMO, under independent Rayleigh

fading channel. As shown in this figure, the analytic results are

close to the simulation ones and tighter results are observed

as M grows. Moreover, it is clear that the success probability

increases as M and P increase. When ρR increases, the

success probability tends to get saturated and the saturated

success probability primarily depends on M and P .
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Figure 4. Success probability versus ρR with CB under independent Rayleigh
fading channel, η = 4.

In Fig. 5, we plot the success probability as a function of

η at ρR = 0dB. Various P and M are considered in the

figure. As expected, the analytic results closely match with

the simulation ones with different η, M , and P . Also, it is

plain to see that the grant-free RA with CB is capable of

simultaneously supporting a number of RA UEs, which is

several times the number of RA channels, with high success

probability. For example, when P = 256 and M = 200, on

average η = 5 RA UEs could be accommodated over a same

channel with 98% success probability. As η gets larger, we

see that the grant-free RA performance is compromised and

the success probability declines gradually. It is evident that the

performance loss could be compensated by increasing M or

P .
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Figure 5. Success probability versus η with CB under independent Rayleigh
fading channel, with different values of P and M , ρR = 0dB.

As observed from Fig. 5, Upper Bound 1 (the case with the

EUD and M = 200) almost overlaps with Upper Bound 2 (the

case with the EUD and M = ∞) with various P for η ≤ 14,

which verifies Proposition 1. Over the range of 5 ≤ η ≤ 14,

the success probability is significantly improved by increasing

M from 100 to 200. As M increases to 200, it becomes almost

parallel with Upper Bound 1 and Upper Bound 2 with various

P . This indicates that M = 200 is adequate within this range

of η. Over the range of 2 ≤ η ≤ 5, however, there is little

improvement in the success probability with various P when

M grows from 100 to 200, which shows that M = 100 is

adequate with this range of η. These observations imply that

further increasing M would be of little help to the success

probability of the grant-free RA as long as M ≫ η. In a

typical massive MIMO deployment, it is tacit knowledge that

the number of antennas is much greater than the number of

served UEs over a same channel. Therefore, we conclude that

P would dominate the success probability with a wide range of

η in a typical massive MIMO system, which validates Remark

1 in Section III. D. In addition, we see that Upper Bound 3
(the case with P = ∞) approaches to 1 when M ≫ η. This

observation confirms Remark 2. Results also show a small

performance gap between the success probability and Upper

Bound 1 with various P for η ≤ 14, which validates Remark

3.

B. Success Probability by Zero Forcing Beamforming under

Independent Rayleigh Fading Channel

In Fig. 6, success probabilities as a function of ρR with

various M and P at η = 4 are illustrated for grant-free RA

with ZFB, under independent Rayleigh fading channel. As we

can see, the analytic results agree with the simulation ones.

Similar to what we observed in Fig. 4, the success probability

shows a tendency to saturation with increase of ρR. Compared

to the results with CB in Fig. 4, the success probability with

ZFB of M = 50 almost converges to the one of M = 200
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with different P when ρR ≥ −6dB, which shows that the ZFB

requires less antennas to achieve a given success probability.

Moreover, we see that the grant-free RA with ZFB performs

much better at low ρR (e.g., ρR ≤ 0dB) and limited M (e.g.,

M = 50). These observations reveal that the ZFB is a better

option for the grant-free RA when the receive signals of RA

UEs are weak and the number of antennas is limited.
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Figure 6. Success probability versus ρR with ZFB under independent
Rayleigh fading channel, η = 4.

In Fig. 7, we plot the success probability with ZFB as

a function of η at ρR = 0dB. We see that the analytic

results with ZFB match exactly with the simulation ones under

different values of η, M , and P . Similar to what we observed

in Fig. 5, results validate Proposition 1 as well as Remark

1− 3. Compared to the case of CB, it is shown that the grant-

free RA with ZFB is more effective in the sense that less

antennas are required to achieve a given success probability

with the same η. In order to accommodate on average η = 5
RA UEs over a same channel with 98% success probability,

for instance, much less antennas (e.g., M = 50) are required

by the ZFB, in contrast to M = 200 by the CB.

C. Success Probability by Zero-Forcing Beamforming under

More Realistic Channel Model

From Fig. 8 to Fig. 10, we consider the success probability

of the grant-free RA with ZFB under a more realistic chan-

nel model. Specifically, spatially correlated Rayleigh fading

channel is considered herein, which has been widely used in

MIMO systems for analysis and simulations [26] [27]. The

channel response between the BS and an arbitrary RA UE is

modelled by

g =
√
ℓh =

√
ℓAv,

where ℓ denotes large scale fading coefficient between RA

UE and BS. h = Av stands for small scale fading vector

between RA UE and BS. A ∈ CM×Q is antenna correlation

matrix. v ∼ CN (0, IQ) is independent fast-fading channel

vector, where Q is the number of independently faded paths.
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Figure 7. Success probability versus η with ZFB under independent Rayleigh
fading channel, with different values of P and M , ρR = 0dB.

For a uniform linear array, A = [a(φ1), . . . , a(φQ)] is

composed of the steering vector a(φq) defined as

a(φq) =
1√
Q
[1, e−j2πω cos(φq), . . . , e−j2πω(M−1) cos(φq)]T,

where φq , q = 1, . . . , Q, is the angle of arrival (AOA) of the

qth path, which is uniformly generated within [φA− φS

2 , φA+
φS

2 ]. And φA and φS are defined as the azimuth angle of the UE

location and the angle spread, respectively. ω is the antenna

spacing in multiples of the wavelength. In practical wireless

scenarios, different UEs have different antenna correlation ma-

trix A due to their random distributions in the cell. Simulation

parameters of spatially correlated Rayleigh fading channel are

given in Table II.

Table II
SIMULATION PARAMETERS OF SPATIALLY CORRELATED RAYLEIGH

FADING CHANNEL

Angle spread φS 20◦

Azimuth angle φA Uniform distribution within [−60◦, 60◦]
Antenna spacing ω 1/2

Number of faded paths Q M/2

Comparing Fig. 8 and Fig. 9 to Fig. 6 and Fig. 7, the success

probability evidently degrades under the spatially correlated

Rayleigh fading channel due to the channel spatial correla-

tions among antennas. Nevertheless, employing more antennas

would lessen the effect of channel spatial correlations and

compensate the performance loss. Furthermore, it is obersved

that Proposition 1 and Remark 1−3 is valid under the spatially

correlated Rayleigh fading channel, as long as M increases to

a sufficiently large value.

D. Merits in terms of MIMO Gain and Gap to EUD

To further evaluate the merits of the grant-free RA with

massive MIMO, comparison between the grant-free RA with

massive MIMO and that with single antenna is presented in

Fig. 10, Table III, and Table IV.
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Figure 8. Success probability versus ρR with different M under spatially
correlated Rayleigh fading channel, η = 4.
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Figure 9. Success probability versus η with different P under spatially
correlated Rayleigh fading channel, ρR = 0dB.

For the single-antenna case, it is equivalent to the slotted

ALOHA based random access and collision-free transmissions

in the preamble and data domains have to be guaranteed for a

successful data recovery. Therefore, the corresponding success

probability of an arbitrary RA UE is give by

PSA = (1− 1

C
)Na−1, (27)

where the subscript SA indicates that the single antenna is

considered.

Table III
MIMO GAINS WITH DIFFERENT M , UNDER SPATIALLY CORRELATED

RAYLEIGH FADING CHANNEL, PZF = 95%, P = 128, AND ρR = 0DB.

Number of antennas M 100 200 400
MIMO gain 35.8 99.6 120.3
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Figure 10. Comparison of success probability between the grant-free RA
with massive MIMO and that with single antenna, under spatially correlated
Rayleigh fading channel. In the case of massive MIMO, we fix M = 200,
P = 128, and ρR = 0dB.

As shown in Fig. 10, compared to the single-antenna case,

the grant-free RA with massive MIMO is able to achieve a

great MIMO gain in terms of η. Herein, the MIMO gain is

given by

GAINMIMO =
ηM
ηS

, (28)

where ηM is defined as the average number of RA UEs

that can be accommodated per RA channel with a targeted

success probability in the grant-free RA with massive MIMO.

ηS is defined as the average number of RA UEs that can

be accommodated per RA channel with a targeted success

probability in the single-antenna case. Obviously, given a

95% success probability and P = 128, an almost 100 times

MIMO gain is achieved with the simulated Na by employing

M = 200 antennas in massive MIMO. In other words,

with the targeted success probability of 95% and P = 128,

200 antennas is adequate in exchanging for about 100 times

spectrum resources. MIMO gains with different values of M
is further shown in Table III. Considering the fact of spectrum

resource scarcity, this rate of resource exchange by massive

MIMO could be cost-effective.

To highlight another attractive merit of grant-free RA with

massive MIMO, a new term called “Gap to EUD” (measured

in percentage) is coined herein, which is given by

GAPEUD =
ηE − ηR

ηR
, (29)

where ηE is defined as the average number of RA UEs that

can be accommodated per RA channel with a targeted success

probability by the grant-free RA with the EUD. ηR is defined

as the average number of RA UEs that can be accommodated

per RA channel with a targeted success probability in the case

of the random user distribution. The gap to EUD reflects the

performance superiority of the EUD over the random user

distribution. In the followings, we will show that the gap to

EUD vanishes as M increases.
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As shown in Fig. 9, given a 95% success probability, when

M = 400 and P = 128, the gap to EUD of the grant-free

RA with ZFB is only about 16%, which indicates that the

grant-free RA in massive MIMO is able to achieve a close

performance to the one of the EUD. On the contrary, a gap

to EUD of about 1917% for the single-antenna case could be

observed according to the results in Fig. 10.

Table IV
GAPS TO EUD WITH DIFFERENT M , UNDER SPATIALLY CORRELATED

RAYLEIGH FADING CHANNEL, PZF = 95%, P = 128, AND ρR = 0DB.

Number of antennas M 1 50 100 200 400
Gap to EUD 1917% 68% 47% 24% 16%

In Table IV, the gaps to EUD with different M are given

under the spatially correlated Rayleigh fading channel, where

PZF = 95%, P = 128, and ρR = 0dB. It is evident that

increasing M would reduce the gap to EUD and it will

be close to 0 when the number of antennas is massive. As

aforementioned, the EUD assumes a genie user distribution

management, which is desirable but unattainable in realistic

grant-free RA. Fortunately, with massive MIMO, the grant-free

RA becomes so effective that the performance of this genie

user distribution management is approximately achieved.

V. CONCLUSIONS

Massive MIMO is a promising technique to greatly increase

capacity for future wireless communications. In this paper,

we discussed the success probability of the grant-free RA

with massive MIMO and derived the analytic expressions

of success probability for conjugate beamforming and zero-

forcing beamforming techniques. Simulation results verified

the accuracy of the analyses, and confirmed that the grant-

free RA with massive MIMO is capable of supporting Na

simultaneous grant-free access over C RA channels with

close-to-one success probability, where Na is multiple times

C. We also showed that, with a specified success probability,

utilizing more M and P both provide significant benefits in

increasing η of the grant-free RA, where η = Na/C reflects

the channel reuse efficiency. In other words, a great MIMO

gain in terms of η could be achieved for the grant-free RA

by massive MIMO compared to its single-antenna counterpart.

For instance, given 95% success probability, the grant-free RA

with M = 200 and P = 128 is able to achieve about 100 times

η over the single-antenna counterpart, which is a spectrum

saving of about 99%. In addition, the grant-free RA with

massive MIMO evidently demonstrates an attractive feature

of achieving a close performance to the one with even user

distribution (EUD) over channels. This is an important merit of

the grant-free RA with massive MIMO, considering the fact

that the EUD is desirable but unattainable in the grant-free

RA. Finally, as M in massive MIMO is usually assumed much

greater than the average number of served UEs per channel, we

found that P would dominate the success probability within

a wide range of η. Therefore, preamble designs to increase

P and/or reduce preamble collision are very much in need to

ensure the performance gain of the grant-free RA with massive

MIMO.
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