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Abstract—An increasing number of cities are confronted with challenges resulting from the rapid urbanisation and new demands that
a rapidly growing digital economy imposes on current applications and information systems. Smart city applications enable city
authorities to monitor, manage and provide plans for public resources and infrastructures in city environments, while offering citizens
and businesses to develop and use intelligent services in cities. However, providing such smart city applications gives rise to several
issues such as semantic heterogeneity and trustworthiness of data sources, and extracting up-to-date information in real time from
large-scale dynamic data streams. In order to address these issues, we propose a novel framework with an efficient semantic data
processing pipeline, allowing for real-time observation of the pulse of a city. The proposed framework enables efficient semantic
integration of data streams and complex event processing on top of real-time data aggregation and quality analysis in a Semantic Web
environment. To evaluate our system, we use real-time sensor observations that have been published via an open platform called Open
Data Aarhus by the City of Aarhus. We examine the framework utilising Symbolic Aggregate Approximation to reduce the size of data
streams, and perform quality analysis taking into account both single and multiple data streams. We also investigate the optimisation of
the semantic data discovery and integration based on the proposed stream quality analysis and data aggregation techniques.

Index Terms—Smart Cities, Internet of Things, Time Series Analysis, Complex Event Processing, Quality Analysis

1 INTRODUCTION

Over centuries, cities have been a flourishing place for peo-
ple on account of prosperity and socio-economic prospects.
While citizens of a city form the key facet of city sys-
tems, city systems need to serve the demands of its in-
habitants and elaborate interactions between different city
applications. City authorities, however, encounter several
difficulties in implementing, sustaining, and optimising op-
erations and interactions among different city departments
and services [1]. Therefore, smart cities seek to improve
living standards and quality of life of its citizens through
the utilisation of the advancements in the Internet of Things
(IoT) to tackle common urban challenges such as reducing
energy consumption, traffic congestion [2] and environ-
mental pollution [3], [4]. Smart cities rely on data streams
collected from various sensors (e.g. traffic congestion level,
air quality and trash bin levels) to observe the pulse of
cities. City of Aarhus provides an open data platform called
Open Data Aarhus (ODAA)!, which contains city related

1. http:/ /www.odaa.dk

information generated by various sensors deployed within
the city. Although such platforms allow city-related data
to be published and shared, considering the fact that vast
a number of sensors will be connected to the Internet in
the future, leading consequent challenges in utilisation and
analysis of IoT data, the interpretation of time-series data
and discovery of city events remain among some of the most
vital challenges for smooth operation of cities [5].

In smart cities, collection, transmission, and processing of
observations in IoT environments should be efficient. To
cope with large volumes of data, dimensionality reduction
techniques can be applied to reduce the size of the data
while maintaining essential information and patterns in ag-
gregated data. This allows the communication overhead in
Smart City Frameworks (SCF) to be reduced and facilitates
more advance tasks to be performed in large scale, such as
clustering, outlier detection and event detection. However,
most of the existing approaches transmit raw sensor data
constantly [6], [7], [8], [9], [10], [11], [12], [13]. Therefore,
novel methods are required to provide aggregated data
transmission to save processing power while distributing
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data in the whole network. In the meantime, semantic repre-
sentation of the aggregations and abstractions are crucial to
provide machine-interpretable observations for higher-level
interpretations of the real world context.

Reliability, inconsistency and incompleteness are other
challenges in smart cities. Since city data is provided by
diverse sources, quality of data varies: it may include errors,
missing values, and in some cases data collected from
citizens (e.g. smart phone sensors or social media) can
be biased. Determining and managing trustworthiness of
information sources is an important step towards safe and
secure operation of smart cities. Provenance information is
one of the most important features to keep track of the
source of information and assess trustworthiness of different
information sources. However, although there are increased
numbers of studies in this field [14], [15], [16], there remains
a need to develop techniques for real-time monitoring of
heterogeneous data streams to detect reliability violations
and adapt data acquisition accordingly.

In addition to data aggregation, abstraction and Quality
of Information (Qol) issues, smart city applications need
to handle discovery and integration of heterogeneous data
sources, and extract up-to-date information in real-time to
enable further complex processing. Since current semantic
service discovery and composition approaches (e.g. WSMO,
OWL-S) are based on input, output, precondition and effect,
they are not well suited to describe complex event process-
ing services with event patterns and to cope with dynamic
and resource constrained data streams.

In this study, we present a novel framework developed
within the EU FP7 CityPulse project® for real-time data
stream analysis using data aggregation, quality analysis,
and optimisation techniques to improve the performance of
real-time semantic integration of data streams and complex
event processing. Using a real-world traffic dataset that is
collected from the City of Aarhus, we evaluate the perfor-
mance of the framework in three parts:

o data aggregation using Symbolic Aggregate Approx-
imation (SAX) algorithm;

e quality analysis of data streams based on analysis of
single data streams as well as evaluation of multiple
data stream sources describing the city traffic flow.

e semantic integration of data using the estimation and
assessment of Quality of Service (QoS) for event ser-
vice compositions using a Genetic Algorithm (GA);

The remainder of the paper is organised as follows.
Section 2 describes the related work. Section 3 demonstrates
the proposed framework and semantic annotation of each
stage including data federation, aggregation, abstraction,
and reliability processing of data stream. Section 4 provides
a use case scenario and evaluations of the proposed frame-
work. Section 5 details a discussion and describes the future
work.

2 RELATED WORK

In this section, we present the existing smart city and IoT
frameworks and we discuss the related work in the three

2. http:/ /www.ict-citypulse.eu/page/
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main aspects of the study, namely, ¢) semantic annotation &
data aggregation, ii) Qol, stream dependency and correlat-
ing information sources, and #ii) semantic data integration
and complex event processing.

2.1 Smart City Frameworks

Several IoT frameworks, and in particular smart city frame-
works, have been developed in recent years, enabling access
to sensory data and interaction with sensors. One of the
pioneers in IoT platforms is Global Sensor Networks (GSN)
[17] which offers a federation of sensor networks by means
of XML-based deployment descriptors that homogenised
the sensory data. More recently, the standard de facto Iot
architecture, IoT-A [18], has provided a semantic descrip-
tion based on the concept sensing-as-a-service that other
platforms have adopted, such as IoT-est. IoT-est [10] is a
dynamic service and test framework, that allows the cre-
ation of dynamic composed services that provides access to
heterogeneous sensory data. OpenloT [9] is an instantiation
of IoT-A [18], and similar to IoT.est, it uses the concept of
sensing-as-a-service, and provides cloud-based IoT services
including a middleware platform and tools for application
development. It provides access to an enhanced version of
GSN (X-GSN) and uses semantics for better interoperability,
based on the IoT-A model. Some well-known examples
of this architecture that are focused solely on providing a
data platform, semantic modelling and/or semantic sensor
discovery are Km4city [6], SmartSantander [7], Spitfire [8],
OpenloT [9], IoT.est [10], OpenCube [11], iCore [12]. Start-
City [13] semantically annotates and aggregates traffic data
to predict spatio-temporal traffic conditions. The ontology
here is domain specific (traffic domain), without generic
concepts that can be reused for different kinds of do-
mains. The aggregation of the data is based on traditional
aggregation methods (e.g. average, maximum, minimum).
OneM2M? is working on a new standard for machine-to-
machine communications, covering aspects such as proto-
cols, security, services, and data management. However,
data aggregation at the framework layer is not supplied,
at least in the current version of OneM2M. This initiative
is also studying the possibility of adding semantics to the
standard through the first draft of SAREF [19]. In this
current version SAREF only covers household appliances
at a physical level. A meta model was built by [20] in order
to annotate the sensory data. While this study introduced
numerous metadata to represent sensory observations and
devices, it is suffers from not having any links to one of
the well-known W3C Semantic Sensor Network Ontology*.
There has been a recent study such as [21] where authors
tested the performance of their IoT middleware based on
memory consumption and efficiency. It was particularly
tested on smart phones. Although the purpose of this pa-
per also includes efficient communication in IoT systems,
developing a unified middleware application is beyond the
scope of our study. Recently, there has been similar studies
in the smart city domain, such as [22], [23]. However, while
these studies contributed to the smart city systems in their

3. http://www.onem2m.org/
4. https:/ /www.w3.org/TR/vocab-ssn/



JOURNAL OF IATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014

own right, none of these studies tackle the semantic inter-
operability, data aggregation, complex event processing and
quality of information all at the same time in the semantic
web environment for smart city systems.

Nonetheless, none of these platforms involve ontolo-
gies to handle generic annotations for heterogeneous data
streams nor an effective time-series data analysis approach
for the sensory domain. Consequently, there still remains a
need for efficient semantic knowledge representation and
adaptive aggregation of sensory observations in dynamic
environments such as smart cities that handles real-time or
almost real time annotations.

2.2 Time-Series Data Aggregation and Abstraction

Regarding the time-series analysis, there is a need for
much smaller storage space and faster processing due to
increasing size and channels of available time-series data
streams. Data reduction often serves as the first step in an
effort to keep good-quality synopsis of data. Lower bounding
principle assures preserving the meaning of data by keeping
the distance between two time-series data streams in the
reduced space (i.e. aggregated data) less than or equal to the
true distance of time-series data (i.e. the original data). Some
of the well-known algorithms for numerical representation
of time-series analysis that accomplish good quality of data
reduction and lower bounding principle are Discrete Fourier
Transform (DFT) [24], Discrete Wavelet Transform (DWT)
[25], [26], Singular Value Decomposition (SVD) [27], Piece-
wise Aggregate Approximation (PAA) [28]. DFT enables
to transform time-series data into the frequency domain
by obtaining a single complex number, called Fourier co-
efficient for each signal by the superposition of a finite
number of sine (and/or cosine) waves. Once it has been
transformed into the frequency domain, it allows the Fourier
coefficients with high amplitude to be obtained and dis-
cards the low amplitude coefficients for data compression
without much loss of information. However, although it
satisfies the lower bounding principle by using Parseval’s
Theorem, the computational complexity (i.e. C'(n?) time, or
C(nlogn) time with algorithm in [29]) and choice of the
best number of coefficients are the main challenges of this
algorithm [30]. While Fourier coefficients always represent
global contributions of the data, DWT represent small, local
segments of the data with a less computational complexity
(C(n)) and satisfies lower bounding principle. Its limitation
is the data length must be a power of two (n = 2™). In
parallel, SVN can also perform dimensionality reduction by
optimally transforming a dataset into a new k-dimensional
dataset based on the first ordered k-biggest singular values.
However, it demands to use of an entire dataset prior to
transformation to perform dimensionality reduction, and
it cannot work incrementally since a new data insertion
requires a new global computation. On the other hand, PAA
is a very simple and strongly competitive method compared
to more sophisticated transforms such as DFT and DWT.
The computational complexity is low (C(n)), and supports
lower bounding principle, which can be simply calculated
using the distances on PAA representation.

Contrary to the numerical approaches, the discretisation
of the original data into symbolic strings has not been
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considered in great detail. Even though it seems a straight-
forward solution, it comes with substantial advantages
over existing algorithms and data structures that enable
the efficient manipulations of symbolic representations in
addition to allowing the framing of time. However, while
general symbolic representation methods are not capable
of calculating distance in symbolic space and supporting
lower bounding at the same time [31], [32], SAX is the
most known symbolic representation technique on time
series data mining [33]. Due to the fact that it is based on
PAA, it is not computationally expensive, and ensures both
considerable dimensionality reduction and lower bounding
support. Therefore, we use the SAX algorithm to obtain
reduced space of time series data.

2.3 Quality of Information, Stream Dependency and
Correlating Information Sources

When processing data streams from external sources an
often underestimated part is the evaluation of the quality
of the provided data. In [34] Wang and Strong describe
the impacts of faulty information. Their work is focused
on the utilisation of large scale databases that contain data
from multiple data sources, where it has been pointed out
that faulty, incorrect or incomplete data can cost billions of
dollars. To describe possible issues affecting the utilisation
of information, they defined four categories with a list
of dimensions for data quality. These categories are used
to describe the quality of fixed data sets (in comparison
to smart city data streams) like database. In this study a
(re)evaluation of the Qol for incoming sensor observations
is envisaged, reflecting the dynamics of smart cities.

While the work by Wang and Strong is the theoretical
cornerstone for the categorisation of quality metrics, Stvilla
et al. presented a framework for the assessment of infor-
mation quality in [35]. The framework is designed as an
abstract model and can be extended for specific quality
measurement settings. However, it requires a domain expert
to define and implement quality measurement rules for each
data set. Thus, it is not feasible in a smart city context, where
new data streams need to be integrated fairly quickly and
frequently. This requires a generic approach that automati-
cally adapts to new data streams.

A development towards application or context inde-
pendent quality measurement is described by Bisdikian et
al. [36]. To describe both application dependent as well
as application independent quality metrics, they divided
the quality analysis into two main parts: namely Qol and
Value of Information (Vol). A UML-based data model is
introduced supporting both parts of the quality analysis in
order to provide a general template for organising Qol/Vol
meta-data allowing an effective exchange of Qol/Vol data in
a repeatable, consistent and reproducible manner. However,
it lacks machine interoperable data format.

2.4 Complex Event Processing and QoS-aware Event
Service Composition

Event processing systems are crucial for smart city appli-
cations to extract high-level and complex situations from
low-level information. Traditional event notification systems
only allow filtering over primitive level events, where each
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event is considered an individual entity [37]. As an advance-
ment of the traditional event notification systems, complex
event processing systems can filter and correlate multiple
events by matching a specific pattern [38], [39]. Harnessing
over the benefits of semantic technologies, ontology-based
event specification has been presented in [40]. However,
most of the existing complex event ontologies [41], [42]
lack expressivity to describe a broader range of complex
event operators. Moreover, these ontologies do not include
the semantic description of non-functional properties within
specifications of complex events, hence hinder the imple-
mentation of a quality-aware complex event composition.

QoS-aware service composition has been studied ex-
tensively. The first step of solving the QoS-aware service
composition problem is to define a QoS model, a set of
QoS aggregation rules and a utility function. Existing works
have discussed these topics extensively, e.g., in [43], [44],
[45]. However, the aggregation rules in existing works focus
on conventional web services rather than complex event
services, which need a different QoS aggregation schema.
For example, the event engine also has an impact on the
QoS aggregation, which is not considered in conventional
QoS aggregation for services. Also, the aggregation rules for
some QoS properties based on event composition patterns
is different to those based on workflow patterns (as in [44]).

As a second step, different concrete service compositions
are created and compared with regard to their QoS utilities
to determine the optimal choice. To achieve this efficiently,
various heuristic approaches are developed. There are two
prominent strands: Integer Programming (IP) (e.g., [43],
[46], [47]) and Genetic Algorithm (GA) (e.g., [48], [49], [50],
[51]) based solutions.

In [46] the limitation of local optimization and the neces-
sity of global planning are elaborated. The authors propose
to address the complexity problem of global planning by
introducing an IP-based solution with a Simple Additive
Weighting (SAW) based utility function to determine the
desirability of an execution plan. This approach is extended
in [47] with more heuristics to promote efficiency. In [43] a
hybrid approach of local and global optimization is pro-
posed, in which global constraints are delegated to local
tasks, and the constraint delegation is modeled as an IP-
based optimization problem. The problem with IP-based
solutions is that they require QoS metrics to be linear, and
they do not address the service re-planning problem.

In [48] the chromosomes are encoded with binary bits
representing whether a service is selected or not. The prob-
lem with this approach is that the readability of the genomes
are poor and the chromosome length is not fixed during
evolution. In [49] the authors use a different encoding
approach, which leads to a fixed chromosome length. In
[50] a two-dimensional genome encoding is proposed to
express all execution paths while considering task relations,
but crossover and mutation need validation. In [51], the
authors use tree coding chromosomes, crossovers operate
on sub-trees and mutation operate on leaf nodes to avoid
invalid reproductions. In [52] the authors develop a GA-
based approach that goes beyond QoS-aware composition
and enables compliance-aware service composition.

The above GA-based approaches can only evaluate ser-
vice composition plans with fixed sets of service tasks
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(abstract services) and cannot evaluate composition plans
which are semantically equivalent but consists of different
service tasks, i.e., service tasks on different granularity
levels. A more recent work in [45] addresses this issue by
presenting the concept of Generalized Component Services
(GCS) and developing the GA encoding techniques and
genetic operators based on GCS. Results in [45] indicate
that up to 10% utility enhancement can be obtained by
expanding the search space. Composing events on different
granularity levels is also a desired feature for complex
event service composition. However, the work described
in [45] only caters for Input, Output, Precondition and Effect
(IOPE) based service compositions, which creates composi-
tion plans as imperative workflows. Complex event service
composition creates declarative event patterns (transformed
from the requested event pattern with the same event se-
mantics) as composition plans. It requires an event pattern
based reuse mechanism [53] and as a result, different genetic
encoding mechanisms and crossover operations are needed.

3 LARGE SCALE DATA ANALYSIS WITH CITYPULSE
FRAMEWORK

In this section, we present a large-scale data analysis frame-
work for smart cities. The proposed framework enables se-
mantic annotation and analysis of IoT and social media data
streams by taking into account dimensionality reduction
and reliability processing. It involves the following units: a)
virtualisation, b) federation, c) aggregation, and d) reliable
information processing. While the first three units are part
of the large scale data analysis component, the last unit has
been divided into atomic and composite monitoring units.
The atomic reliable information processing components are
called Quality of Information (Qol) units assessing informa-
tion quality in the first appearance of the data in the IoT
system. Figure 1 depicts the main components and basic
workflow of the framework.
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Fig. 1: Architectural overview of the CityPulse framework.
The examined units have been illustrated in shaded areas.

Initially, the sensor nodes transmit either raw or aggre-
gated data to the virtualisation component. After collecting
the data, it forwards it to three components of the system,
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namely, semantic annotation, data federation, and reliable infor-
mation processing. The data federation component discovers
and composes data streams to answer queries over multiple
streams in real-time. In parallel, the pattern creation and dis-
cretisation process is applied in the data aggregation compo-
nent. Afterwards, the event detection component performs
abstraction process. The abstracted data is finally accessible
through the middleware where different layers such as real-
time intelligence layer or graphical user interface can access
the data. In parallel, the reliable information processing
aims at the annotation of information sources with Qol.
Therefore, it conducts active evaluation of Qol for data
sources and their steady adaption triggered by events that
could be sent by the monitoring components and the event
management components of other CityPulse framework
modules. Figure 2 illustrates an example snapshot from the
3D visualisation tool of the CityPulse framework.

3.1

The virtualisation component facilitates access to hetero-
geneous data sources and infrastructure concealing the
technical facets of data streams such as location, storage
structure, access format, and streaming technology. The
system designates various wrappers to encompass a large
number of input formats, while it provides a unified format
as output (i.e. RDF or Turtle). Describing the obtained sensor
data stream for interoperability or facilitated search is the
core objective of this component. However, the amount
of IoT data streams can be voluminous, while the details
often provided by resource constrained devices with limited
bandwidth, memory or power. Therefore, the information
model that is being used by the IoT and smart city frame-
works not only needs to explicitly represent the meaning
and relationships of terms in vocabularies but also should
be lightweight in order to reduce the traffic and processing
time. In our experiments, we used CityPulse information
models, namely, Stream Annotation Ontology®, Quality On-
tology®, Complex Event Processing Ontology” for semantic
representation of data aggregation, quality, and complex
event services, which are extensions of existing ontologies
such as W3C SSN and other data annotation frameworks to
describe the streams and their resources as well as quality
related features of the data. In the implementation stage, we
used a semantic annotation library, called SAOPY8, which
involves the ontologies given above along with state-of-the-
art IoT-related ontologies.

Virtualisation

3.2 Data Aggregation and Abstraction

SAX algorithm [33] transforms a time-series into a discre-
tised series of letters e.g. a word. It divides a time series data
into equal segments and then creates a string representation
for each segment. The algorithm involves 3 main steps,
namely normalisation, PAA and discretising of the aggre-
gated data. Initially, time series data is normalised to have a
mean of zero and standard deviation of one before convert-
ing it to PAA. Afterwards, PAA divides the original data

5. http:/ /iot.ee.surrey.ac.uk/citypulse/ontologies /sao/sao

6. https:/ /mobcom.ecs.hs-osnabrueck.de/cp_quality/

7. http:/ /citypulse.insight-centre.org/ontology /ces/

8. http:/ /iot.ee.surrey.ac.uk/citypulse/ontologies /sao/saopy.html
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into desired number of windows and calculates the average
amount of data falling into each window. This results in a
reduction of data size. A shorter window length n results in
a better reconstruction of the original data, however more
data space is needed to store the data and eventually higher
energy consumption by higher communication costs. The
calculation of each window of PAA segments is given as:

n
’U/Z

>

Zj7 (1)
n . -
j=5(=1)+1

where Z; represents the ith element of a time series
data, Z, of length n, and w represents the number of
segments. This results in a reduction of data size from n
to n/w data points. Once time series data transformed into
PAA coefficients, symbolising the PAA representation into
a discrete string is the final stage. Considering the fact that
normalised time series data follows a Gaussian distribution,
the discretisation phase allows symbolic representations
of data to be obtained by mapping PAA coefficients to
breakpoints that are produced according to the alphabet
size ‘a’, which in turn determines equal-sized areas under
a Gaussian curve. Table 1 shows the Gaussian breakpoints
for values of alphabet size, ‘a’, from 3 to 10. The definition
for breakpoints are given below:

Definition 1. (Breakpoints). breakpoints are a sorted list of
numbers B = f,...., Bo_1 such that the area under a N(0,1)
Gaussian curve from f3; to 8;4+1 = 1/a, where 5y and (3, are
defined as —oo and oo, respectively.

By 043

-0.67 -0.84 -0.97 -1.07 -1.15 -1.22 -1.28

TABLE 1: Breakpoints that divide a Gaussian distribution in
an arbitrary number from 3 to 10 of equiprobable regions

The break lines are distributed vertically according to the
Gaussian distribution, the first letter of the alphabet repre-
sents the smallest PAA coefficient, ‘a’, and the greatest PAA
coefficient is represented by the last letter of the alphabet.
The definition to obtain the symbolic representation is given
below:

Definition 2. (Word). A subsequence C' of length n can be
represented as a word C = ¢1,....,Cy as follows. Let f3;
denote the i — th element of the alphabet, i.e., 51 = a and
B2 = b. then the mapping from a PAA approximation C to a
word C is obtained as follows:

¢ =By, = Bj—1 < ¢ < B )

Example 1. Let’s assume that we have a time-series data,
time-series (c) = {2,3,4.5,7.6}. Following the steps given
above, we apply z — transform and obtain time-series (z)
={—-0.93, -0.52,0.09, 1.36}. Here we use SAX with window
size of ‘2" and alphabet size of ‘4": it leads to a set of
PAA coefficients of {—0.72,0.72}. Finally, we map the PAA
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Fig. 2: An example snapshot from CityPulse 3D map, which illustrates the traffic events that are present on the travel route

of a user in the city of Aarhus.

(a) Normalisation

(b) PAA

(c) Discretisation

Fig. 3: A real time data obtained for average speed from a pair of sensor points are normalised, discretised by first obtaining
a PAA approximation and then using predetermined breakpoints to map the PAA coefficients into SAX symbols. In the
example above, with n=144, w=6 and a=5, the time series is mapped to the words “bbdcddbdcabcbbcbedbbdddddec”.

coefficients into SAX symbols by using the cut off ranges of
B and f,-1, given in Table 1, {—0.67,0,0.67}, and obtain
corresponding SAX word {ad}. Given that the first PAA
coefficient is smaller than —0.67 and the second coefficient

is greater than 0.67, the former is assigned to ‘a’ and latter
to ‘d’".

3.2.1 Semantic Annotation of Aggregated Data

Using SAO, we can describe the time series data further to
take into account aggregated features as well as temporal
entities such as particular segments of a data stream. Figure
3 shows an exemplification of the creation of SAX patterns
obtained from the real-time data — average speed from a
pair of sensor points — which are initially normalised using
z — trans form (Figure 3(a)), segmented using PAA (Figure
3(b)), and mapped to SAX symbols in discretisation phase
(Figure 3(c)). Listings 1 depicts an example of describing a
PAA segment from the data stream presented in Figure 3,
which has been extracted by SAX algorithm with alphabet
size of ‘5’ and segmentation size of “2928”. First, we identify
a data stream, then we describe a timeline instance. This
timeline is used to link the segment feature description with
the time extent of a temporal entity representing the data
stream. Thus, we can express a stream data as a time interval
on the universal timeline, and also relate such an interval

with the corresponding interval on the discrete timeline.
This particular segment represents 30-minute time intervals
and a window size of 6. The output of discretisation phase
has also been provided with a SAX letter, ‘c’ for a PAA
segment as well as a SAX word as an overall SAX output
for the entire data stream using sao:value in the RDF
document.

3.3 Quality Analysis

Due to the large amount of data it is not feasible to de-
termine the Qol with respect to the application that pro-
cesses the data. Thus, we use the application-independent
approach introduced in [15]. To realise an application in-
dependent approach, a new ontology was developed to
describe the quality of data sources. Some of the ambiguous
definitions of quality concepts (as in section 2) required re-
definition in the CityPulse context. Table ?? lists the cate-
gories along with their definitions to understand their util-
isation in the framework and to avoid misunderstandings
caused by different definitions in the referenced literature.
It consists of typical quality categories like Accuracy or
Timeliness. These categories may be further divided into
sub-categories (e.g. Completeness and Correctness in
the category Accuracy). The quality value of an upper-
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@prefix ces: <http://www.insight-centre.org/ces#> .
@prefix ct: <http://www.insight-centre.org/ct#> .
@prefix prov: <http://www.w3.org/ns/prov#> .

@prefix sao: <http://purl.oclc.org/NET/sao/sao#> .

http://unis/trafficData206369Property-Ocfcabfd
a "http://www.surrey.ac.uk/ics#Average_Speed" ;

ssn:isPropertyOf <http://unis/trafficData206369FoI-0£6046e9b> .

PAA-Average_Speed4d7d270f-e5e2-4bb9-9559-2a0e2719%e63e a
sao:PiecewiseAggregateApproximation ;
sao:time [ a tl:Instant ;
tl:at "20-Aug-2014 07:29:00"""xsd:date ;
tl:duration "PT30M""“xsd:duration
17
“xsd:string ;
tl:onTimeLine <feature_ timeline> ;

sao:value "c"

prov:wasGeneratedBy <http://unis/trafficData206369Property—0Ocfcabfd> .

ics:Average_SpeedSaxWord-7d5374cd-d092-4d50-8bd3-ce48c569b7d0 a
sao:SymbolicAggregateApproximation ;
sao:alphabetsize "5"""xsd:int ;
sao:segmentsize "2928""“xsd:int ;
sao:time [ a tl:Instant ;
tl:at "0l-Aug-2014 07:59:00"""xsd:date ;
tl:duration "P2M""“xsd:duration
13
sao:value "bbdcddbdccabebbebedbbddddec" ™ “xsd:string ;

prov:wasGeneratedBy <http://unis/trafficData206369Property—0cfcabfd>

feature_timeline a tl:DiscreteTimeline .
feature_timeline_map
a tl:UniformSamplingWindowMap ;
tl:rangeTimeLine <feature timeline> ;
tl:windowlength "6""“xsd:int .

Listing 1: Summarised data expressed using the Stream
Annotation Ontology.

level category is the combination of the contained lower-
level Qol metrics. The intention is to determine the val-
ues for the sub-metrics by analysing sensor observations
and provide a top-level Qol metrics as a tuple of lower
level categories. The Communication category contains
attributes to describe QoS characteristics. In addition, the
categories Cost and Security contain attributes that de-
scribe non-functional static characteristics of the streams
important for the end user. Throughout this paper we
use Completeness and Correctness subcategories to
represent the Accuracy of data streams, and Frequency,
Latency and Age to represent the Timeliness of the
data streams. The following list describes the upper-level
categories while the lower-level categories for each of the
upper-level categories can be found in Table 2.

e Accuracy: Metrics in the Accuracy category
describe the degree to which delivered informa-
tion is correct, precise and complete. To determine
the Resolution, Deviation, Completeness and
Correctness, and to allow a comparison with geo-
spatial related data streams, a registration of sensor
characteristics is necessary.

e Communication: As stated earlier the
Communication category contains attributes
related to typical QoS parameters of a data stream.
With this category it is possible that an application
receives only information from data sources that
fulfil the QoS requirements e.g. have only a small
packet loss. Example subcategories are: Bandwidth,
Latency or Throughput.

e Cost: The Cost category is required to be able to
describe the monetary, energy and network costs of a

Evaluation System
(Increase Frequency Quality)

o

Temperature a)
Sensor Temperature Update
Sensor (Frequency = 60 sec)

Registration
(Frequency = 60 sec)
Update
(Frequency = 77 sec)

[ S—
Fig. 4: Quality Analysis - General Approach

Evaluation System
(Decrease Frequency Quality)

Qol
o

data stream. This will allow an application (depend-

ing on the user’s preferences) using the CityPulse

framework to potentially find a trade-off between
cost-efficient and reliable data source.

e Security: This category contains metrics to de-

scribe the permission levels for provided data, e.g.

if the data owner allows the data to be repub-

lished /distributed or prohibits any further usage.

Furthermore metrics to describe the encryption and

data integrity through signing mechanisms are in-

cluded in this category.

e Timeliness: With the metrics in the Timeliness
category it is possible to select data streams by their
update frequency, the amount of time information
is valid (Volatility) and the timespan between
the data measurements and the publication time
(Frequency).

To use the full variety of information sources in city
deployments, a vast number of heterogeneous interfaces
and data formats have to be adapted. Furthermore, the
varying information quality and uncertain reliability of
multiple information providers has to be considered in the
selection of the best available data stream. Therefore, the
framework continuously monitors and calculates the Qol
of incoming data streams and exploits this information to
provide reliable applications.

3.3.1

The quality analysis involves multiple quality met-
rics, which have been introduced above and in Table
tab:qualitymetricdefinitions. Figure 4 shows the general ap-
proach in calculating the quality of a data source/stream
for the update frequency of a simple temperature sensor.
In the first step a temperature sensor (temperature data
stream) is registered at the framework. Within the regis-
tration the frequency of the stream is annotated with ‘60s’
which implies that the sensor should deliver an update
every 60 seconds. The second part of the graphic shows
the update mechanism. If the stream sends an update, the
time difference between the current and the last update is
calculated. If it fits the registered frequency (example a of
Figure 4) the frequency quality increases or stays at the max-
imum level. The second update (example b) is received with
a time difference of 77s. This denotes that the registered
frequency for the stream update is not fulfilled. In this case
the frequency quality is decreased.

General Approach

3.3.2 Correlating Information Sources

The goal of the quality analysis is to produce a metric
which indicates the current performance of a sensor node
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Category | Metric Definition
o Correctness Probability that provided data is within the range of precision and completeness.
o Precision
5 Resolution Resolution detail for the measured value.
<8 Deviation The maximum percentage of deviation from the real value.
Completeness The ratio of attribute values compared to expected parameters.
Network Performance
Packet Loss The probability that a set of data / a packet will not be transported correctly from the source to its sink.
Bandwidth Min/Avrg/Max amount of bandwidth that is required to transport the stream.
.5 Latency Measurement of the time delay between the stream is sent and received in the virtualisation layer.
= Jitter Deviation from true periodicity of an assumed periodic signal.
i Throughput The amount of useful information sent by the network (ex: sensor data), without protocol information.
g Queuing
& Queuing Type Type of queuing, e.g. FIFO, LIFO, unordered.
S Ordered Probability that datasets arrive in the defined order.
- Energy Consumption The amount of energy used to access the steam.
8 Monetary Consumption [ Ts the usage of the stream free of charge or how much does it cost.
v Network Consumption | How much traffic is caused by usage of the data source.
Confidentiality
License Definition Reference to Licence class, e.g. http://creativecommons.org /ns#Licence.
>, May Be Used Reference to Permission class, e.g. http://creativecommons.org /ns#Permission.
g May Be Published Reference to Permission class, e.g. http://creativecommons.org /ns#Permission.
§ Encryption Encryption method, authority for key management.
N Signing
Authority Certificate authority.
Public Key Key to decrypt signatures.
% Age The time an information was created /measured /sensed.
£ 3 Frequency Maximum timespan between two datasets.
= & [ Volatility The amount of time the information remains valid in the context of a particular activity.
TABLE 2: Quality Metrics Categorisation and Definition
compared with promised quality metrics annotated dur- for the current input. The reward is calculated as:
ing the registration process. This metric can be either the Wl ) W=1(4 _ 1) 4 qeurrent ()
absolute value of a specific Qol metric or a normalised Rd(t) = @ _ @ ) +a 4)

value. An advantage of using a normalised value is a)
that sensor nodes of different providers can be compared
and b) different Qol metrics can be combined to derive
an overall reputation metric for a sensor node or network.
To calculate normalised Qol values the following algorithm
was designed. The output of the algorithm is in the range
of 0 and 1. The input is a discrete value and indicates if
the last observation update satisfies the annotated quality
metric. The output is increased if the input was positive
with respect to the output value range, and vice versa. The
algorithm considers past behaviour of the sensor node so
that continuous reliability results in a higher output. The
magnitude of a negative input decreases over time. At the
same time it allows the system to fully recover from negative
inputs such as sporadic outliers after a series of observation
updates. The algorithm requires a constant amount of mem-
ory and processing power.

In our quality analysis, we have modified the reward
and punishment algorithm introduced in [54]. The witness
(i.e. a sensors) agrees if the new value is within the upper
and lower bounds. Quality value has been computed based
on the majority of agreed witnesses. In our approach we
combine the reward and the punishment equations into
one equation. It uses a sliding window over the last inputs
with window length W. The quality metric is calculated as
follows:

q(t) = [q(t — 1) = 2 Rd(t)] ®

where ¢(t) is the quality metric at time ¢ and ¢(¢ — 1) is the
past quality metric. Rd(t) denotes the reward to be added

W -1 w

where o'V ~! denotes the number of positive entries within
the window and a“*""¢"* € {0, 1} the current input.

3.4 Semantic Sensors Stream Discovery & Integration

In this section, the ontology used for describing event
services and event requests are presented, the discovery
and integration mechanism for the sensor data streams are
discussed. Notably, the discovery task given in Section 3.4.1
should not be confused with the integration task described
in Section 3.4.2, where former matches most fine-grained
and atomic service requests and responses, and the latter
deals with service compositions.

3.4.1 Sensors Streams Discovery

The task of sensor stream discovery is to find candidate
sensor services based on sensor service descriptions and
request specifications. A sensor stream is an atomic unit in
IoT stream discovery and integration. It is described both
as a PrimitiveEventService in CES ontology, as well as a
Sensor device in SSN ontology. The CES ontology is mainly
used to describe the non-functional aspects of sensor service
requests/descriptions, including sensor event types, quality
parameters and sensor service groundings. SSN ontology is
used to describe the functional aspects, including Observed-
Properties and FeatureOflnterest.

A sensor service description is denoted as sq =
(ta,9,qa, Pa, Folg, fq), where t is the sensor event type,
g is the service grounding, ¢4 is a QoS vector describing
the QoS values, P, is the set of ObservedProperties, Fol,
is the set of FeatureOflnterests and fq : Py — Folg is a
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@prefix ces: <http://www.insight-centre.org/ces#> .
@prefix owls: <http://www.ai.sri.com/daml/services/owl-s/> .
@prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema> .

:sampleTrafficSensor a ssn:Sensor,ces:PrimitiveEventService;
owls:presents :sampleProfile ;
owls:supports :sampleGrounding;
ssn:observes [ a ces:AverageSpeed;
ssn:isPropertyFor :FoI_ 1],
[ a ces:VehicleCount;
ssn:isPropertyFor :FoI_2],
[ a ces:EstimatedTime;
ssn:isPropertyFor :FoI_3].
:sampleProfile a ces:EventProfile ;
owls:serviceCategory [ a ces:TrafficReportService ;
owls:serviceCategoryName "traffic report"”“xsd:string].

Listing 2: Traffic sensor service description

@prefix ces: <http://www.insight-centre.org/ces#> .

@prefix owls: <http://www.ai.sri.com/daml/services/owl-s/> .
<http://purl.oclc.org/NET/ssnx/ssn> .
<http://www.w3.0rg/2001/XMLSchema> .

@prefix ssn:
@prefix xsd:
:sampleR

t a ssn: , ces:EventReq t;

owls:presents :requestProfile ;
ssn:observes [ a ces:EstimatedTime;
ssn:isPropertyFor :FoI_3].
:requestProfile a ces:EventProfile ;
owls:serviceCategory [ a ces:TrafficReportService ;
owls:serviceCategoryName "traffic report"”“xsd:string].

Listing 3: Traffic sensor service request

@prefix ces: <http://www.insight-centre.org/ces#> .

@prefix owls: <http://www.ai.sri.com/daml/services/owl-s/> .
@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema> .

:SampleEventRequest a ces:EventRequest;
owls:presents :SampleEventProfile.

:SampleEventProfile a owls:EventProfile;
ces:hasPattern [ a ces:And, rdf:Bag;
rdf:_1 :locationRequest;
rdf: 2 :seglCongestionRequest;
rdf:_ 2 :seg2CongestionRequest;
rdf:_4 :seg3CongestionRequest;
ces:hasWindow "5"""xsd:integer];
ces:hasConstraint [ a ces:NFPConstraint;
ces:onProperty ces:Availability;
ces:hasExpression
[ emvo:greaterThan "0.9"""xsd:double]],
[ 2 ces:NFPConstraint;
ces:onProperty ces:Accuracy;
ces:hasExpression
[ emvo:greaterThan "0.9"""xsd:double]].

Listing 4: Complex event service request

function correlating observed properties with their feature-
of-interests. Similarly, a sensor service request is denoted

Sp = (tT’7q7‘7P’I’>FOI’I"7 fmpref» C)

. Compared to sq, s, do not specify service groundings, ¢,
represents the constraints over QoS metrics, pref represents
the QoS weight vector specifying users’ preferences on QoS
metrics and C'is a set of functional constraints on the values
of P,. sq is considered a match for s, iff all of the following
three conditions are true:

e t, subsumes t,,

e (g satifies ¢, and

e Vp1 € P.,3py € P; = T(p1) subsumes ps A
fr(p1) = fa(p2), where T'(p) gives the most specific
type of p in a property taxonomy:.

Listing 2 shows a snippet of a traffic sensor descrip-
tion in Turtle syntax. The traffic sensor monitors the es-
timated travel time, vehicle count and average vehicle
speed on a road segment (annotated as observed prop-
erties). As a sensor service, it presents a service profile
(:sampleProfile) that describes the service category
(ces:TrafficReportService) for discovery and sup-
ports a service grounding (:sampleGrounding) for in-
vocation. Listing 3 shows a snippet of a sensor service
request matched by the traffic sensor service. Compared
to Listing 2, the request does not contain a grounding.
The property ces:EstimatedTime is requested on the
feature-of-interest : FoI_3. Also, the requested service type
(ces:TrafficReportService) is an exact match for the
service type in Listing 2, making the service described in
Listing 2 a matching service candidate for the request. When
the discovery component finds all candidate services suit-
able for the request, a Simple-Additive-Weighting algorithm
[55] is used to rank the service candidates based on qq, ¢
and pref.

Alternatively to the above discovery approach imple-
mented by a middleware that parses the requests and
service descriptions, a user can also perform some basic
discovery function using Simple Protocol and RDF Query
Language (SPARQL)’ . Listing 5 shows a sample SPARQL
query that identifies sensor services by querying the proper-
ties they measure. The query results shall contain the service
in Listing 2, if the ces:AverageSpeed is annotated as a
sub-class of ces: Speed.

prefix ces: <http://www.insight-centre.org/ces#>
prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn>

SELECT ?sensorService
WHERE { ?sensorService ssn:observes ces:Speed. }

Listing 5: Simple discovery via SPARQL

3.4.2 Sensors Streams Integration

Sensor stream discovery deals only with primitive event
service discovery. To discover and integrate (composite)
sensor streams for complex event service requests, the event
patterns specified in the complex event service requests/de-
scriptions need to be considered.

We insert the rule in Listing 6 into the Complex Event
Pattern Ontology, to allow reasoners to entail sub-pattern re-
lationships. Notice that rdfs :member is the super-property
for the container membership property (ie., rdf:_1,
rdf:_2 ...)in RDF Schema version 1.1.

In the context of integrated sensor stream discovery and
composition, the definition of sensor stream description is
extended to denote composite sensor stream descriptions

9. http:/ /www.w3.org/TR/rdf-sparql-protocol
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[Rulel: (?x rdfs:member ?y) —-> (?x ces:hasSubPattern ?y)]

Listing 6: Entail sub-patterns via RDF containers.

Sa = (epa, Qd, G), where epy consists of a set of (primitive
or composite) sensor stream descriptions, and a set of event
operators including Sequence, Repetition, And, Or, Selection,
Filter and Window, ¢, is the aggregated QoS metrics for Sy
and G is the grounding for the composite sensor stream.
Similarly, a complex event service request is denoted as
Sy = (epr, Qr, pref), where ep, is a canonical event pattern
consisting of a set of primitive sensor service requests and a
set of event operators, (), describes the QoS constraints for
the requested complex event service and pref specifies the
weights on QoS metrics.

An S, is a match for S, iff epq is semantically equivalent to
ep, and @) satisfies (). When no matches are found during
the discovery process for S,, it is necessary to compose
S, with a set of primitive or composite sensor streams
which are reusable to S,.. Informally, these (composite) sensor
streams describe part of the semantics of ep, and can be
reused to create a composition plan, which contains an event
pattern with concrete service bindings. The composition
plan can be used as a part of the event service description
for the composed event service. The discovery or com-
position results can be ranked w.r.t the QoS metrics and
preferences in the same way as sensor stream discovery.
We refer readers to [53], [55] for detailed definitions of
concepts related to event patterns as well as algorithms
to perform an efficient pattern-based and QoS-aware event
service discovery and composition. Listing 4 shows a snip-
pet of a sample complex event service request with an
event pattern and some NFP constraints. The requested
pattern is a conjunctive (ces : And) correlation between four
requested primitive events (e.g., :locationRequest,
:seglCongestionRequest, etc.). The QoS constraints
in the request ask for the ces:Availability and
ces:Accuracy to be above 90%.

Leveraging the sub-pattern property in CES ontology,
one can query the provenance relations (within the same
EventProfile) specified in composition plans (as well as
other event patterns) using the query specified in Listing 7,
with OWL reasoners (augmented with the rule in Listing 6).
In order to track provenance relations among different event
profiles, additional rules in Listing 8 must be used.

prefix ces: <http://www.insight-centre.org/ces#>
prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn>

SELECT ?subpattern

WHERE { :SampleService owls:presents ?sampleProfile.
?sampleProfile ces:hasPattern ?pattern.
?pattern ces:hasSubPattern ?subPattern. }

Listing 7: Tracking pattern provenance via SPARQL

10

[Rule2: (?epl ces:hasSubPattern ?s)
(?s owls:presents ?p)
(?p ces:hasPattern ?ep2)

-> (?epl ces:hasSubPattern ?ep2)]

Listing 8: Entail sub-patterns among different event
services.

4 EVALUATIONS

To evaluate the system, we examine each component using
the dataset that has been published by the city of Aarhus.
It contains various sensor data including 449 pairs of traffic
sensors, and one weather sensor. We use these real sensors
as the basis of our experiment dataset. We also simulate 449
air pollution sensors, each one is hypothetically deployed
next to a traffic sensor to report the Air Pollution Index at
that location. In addition to the ODAA datasets, we also use
the Here Traffic'” dataset provided by Nokia!! for analysis
of Qol. The evaluations are organised in three parts as
follows:

o Data Aggregation: we evaluate the performance of the
SAX algorithm on time series traffic data obtained
from the city of Aarhus. We examine the performance
difference between the virtualised/annotated raw
data observations and the results obtained with SAX
using various segmentation sizes. We evaluate our
system based on two main criteria: (7) data reduction
and (%) data reconstruction error rate.

e Quality Analysis: the evaluations involve two parts:
(7) single data stream and (i7) multiple dependent
data stream. In the first part, we provided a com-
prehensive technical analysis of the integrity of a
single data stream, and further evaluated our system
with a multiple dependent data approach comparing
ODAA data streams against the Here Traffic dataset
to analyse the incidents that occurred in the city of
Aarhus.

o Semantic discovery and integration of data streams: we
create different user requests about traffic monitoring
on different routes in Aarhus city and use the discov-
ery and composition algorithms to find the optimal
combination of sensors to fulfil the requests. We test
the performance of the sensor discovery and quality-
aware composition algorithms in terms of execution
time and the quality of composition results. After
transforming these composition results into complex
event processing queries, we test the performance of
evaluating the queries based on raw and aggregated
data streams.

4.1 Smart City Traffic Management Scenario

The city of Aarhus has deployed a set of traffic sensors
on the streets. These sensors are paired as start nodes and
end nodes. Each pair is capable of monitoring the average
vehicle speed v and vehicle count n on a street segment
(from the start node to the end node). Combined with the

10. https:/ /www.here.com/
11. http:/ /nokia.com
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distance d between the two sensors, the estimated travel
time ¢ = d/v and congestion level ¢ = n/d can be easily
derived. In addition to traffic sensors, there are also sensors
such as weather sensors and air pollution sensors deployed
in the city, and a user can plan his/her travel taking different
physical measurements into consideration. For example,
some may be travelling on a tight schedule so they need the
route with lowest estimated travel time, while some others
maybe cycling and they need routes with less cars and better
air quality. Despite the functional requirements, different
users may have different non-functional requirements as
well.

4.2 Data Aggregation

Prior to presenting the evaluation of the data discovery
and integration, we present evaluation of our approach
for data aggregation. To examine the performance of the
aggregation method, we applied four different segmenta-
tion sizes, namely 30 mins (S30m), 1 hour (S1h), 2 hours
(S2h), and 4 hours (S4h) to divide dataset into frames with
alphabet size of 5. We measured the average reconstruction
rate using Euclidean distance measured between original
and reconstructed data, and examined whether or not there
was a significant difference by using Analysis of Variance
(ANOVA) test. Afterwards, we calculated the data size and
analysed the effects on the RDF representations of the raw
and aggregated sensor observations. The evaluations were
performed on a Personal Computer (PC) running Ubtuntu
14.04 operating system with an Intel Core i5-3470 3.2GHz
processor and 8GB RAM memory. The performance of the
system based on different segmentation sizes is reported in
Figure 5.

Results show that the lowest data reconstruction error
was obtained for the S30m, where average speed was in
range of 11.2 < A S30m < 12.9, and vehicle count was in
range of 2.4 < A 530m < 3.4. For the S1h, there was an
increase in reconstruction error rate (17.7 < A S30m < 19.5
for average speed, and 4.0 < A S30m < 5.0 for vehicle
count). Compared to S30m, it is worth pointing out that
there was a (highly significant) difference between S30m
and S1h (p < .05). Subsequently, highly significant differ-
ences were found between S1h and S2h (p < .001), and
S2h and S4h (p < .001) in terms of error rate. Moreover, the
error rate continued to increase in parallel to the number of
segment sizes. For, 2h, the error rate was between 27.2 < A
S2h < 29.0 for average speed, and 6.6 < A S2h < 7.6
for vehicle count, and was highest for S4h, 39.7 < A S4h
< 41.3 for average speed, and 9.9 < A S4h < 10.9 for
vehicle count.

On the contrary, the increase in segmentation size had a
different effect on the data size. Although the quality of the
aggregated data reduced with the increasing size of segmen-
tation, there was (highly significant) data reduction for the
annotated data streams. While the annotated raw data was
initially between 60.6M B < A RawData < 60.9M B, with
the segmentation of S30m data size (significantly) dropped
to 3.3BMB < A S30m < 3.5MB (p < .001). There were
also (highly significant) differences for all other parameters
(p < .001). As a result, the data size was reduced to
1.8MB < A S1h < 2.1M B for the S1h, 9IMB < A S2hm
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< 1.2M B for the S2h, 5MB < A S4hm < .7M B for the
S4h. Overall, data size was reduced in range of 94.24% to
99.8% depending on segmentation size.

Consequently, we found that segmentation size has a
(highly significant) impact on the data size and the quality
of the data reconstruction for time series data. However,
since the change in segmentation size causes opposite effect
on the data size and reconstruction error rate results, the
selection of the right parameters plays an important role
as a trade off. However, it is worth to point out that our
system has to operate in real-time, and our aim is not only to
obtain good performance in terms of minimum error in re-
construction rate and data size, but also to execute complex
event processing on top of the obtained outputs once the
data streams are aggregated. Therefore, it was interesting to
see that although there was significant difference between
segmentation size, there was no significant difference of the
data aggregation results on the complex event processing as
we will detail in Figure 13(b) in section 4.4.

4.3 Quality of Information - Analysis

This section presents experimental results regarding the
quality of sensor observations in the city of Aarhus (Den-
mark). The evaluation includes both single data and mul-
tiple data stream sources describing the city’s traffic flow.
In the evaluation we took into account subcategories of the
two main categories (Accuracy and Timeliness) in the Qol
description. Rated values mentioned in this section refer
to the output of the reward and punishment algorithm
introduced in section 2. The following evaluations were
performed on a PC with a Core2 Duo CPU 2.80GHz and
4GB memory running an Ubuntu 14.04 operating system.

4.3.1 Quality Evaluation of Single Data Streams

In the experiments, we used the following subset of Qol
metrics, which are introduced in Table 2 and calculated as
follows in the context of Aarhus traffic data:

Completeness (Accuracy): Each observation within the
data stream is composed of a set of features. An observation
is considered complete if all features are present and contain
valid values. The validity of a feature has to be defined
depending on the context. For example, is an empty string
a valid attribute or the absence of it? The Aarhus traffic sensor
network in our experiment used a web service as a bridge
to provide access to the sensor network. Direct access to
the sensor nodes was not possible. Since the web service
always delivered the last observations, completeness in our
experiment was always 100%, unless the web service itself
was not reachable. The omitted observations only affected
the Frequency metric.

Frequency (Timeliness): We calculated just over 4 mil-
lion frequency Qol annotations for 1 month of traffic data
streams. Figure 6 shows the distribution of Qol values
annotated during the experiment. As shown in the Figure,
about 75% have been rated with 0.95 or higher and almost
95% have been rated 0.8 or higher. Figure 7 shows that about
50 of the 449 sensor nodes have an average frequency Qol
value of 0.9 or less, but still over 0.85. About 290 sensor
nodes more than half of the sensor nodes observed during
the experiment, could reach an average frequency Qol of
0.95 or higher.
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Fig. 5: Summary of the evaluation results for the average reconstruction rate of SAX over different segment sizes depicted
in 5(a), and the data size of the aggregated data with various segmentation sizes after RDF serialisation in 5(b). The bars
refer to the following evaluation metrics: euclidean distance between original and reconstructed data and average data
size in MB based on segmentation with every 30 minutes (S30m), segmentation with every hour (S1h), segmentation with
every two hours (52h), segmentation with every 4 hours data (S4h).
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Fig. 7: Average for the Qol metric and how many sensor
nodes could reach at least this average.

Correctness (Accuracy): It is a well-known fact that in
the meteorology community, it is very challenging to mea-
sure real world physical values. Many error sources, such as
noise, drift and aging of the sensing equipment, influence
the measurements in a random and unpredictable way.

Depending on the available information, different strategies
to compensate for those influences can be applied. Inves-
tigating a single sensor observation limits the validation to
check for possible and probable value ranges. A series of ob-
servations of a single sensor allows the system to check if the
sensor got stuck at a certain value or to detect outliers (such
as sudden spikes). In case of multiple available sensors, a
common strategy is to use redundant sensors, measuring
the same or a correlated value and to perform validations
between both sensors. In our experiment the three nearest
neighbouring sensors are used to evaluate the correctness
of each observation. Figure 8 depicts the distribution of
annotated Qol values for the Correctness metric.
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Qol value

Fig. 8: Distribution of Qol values for the Qol metric Correct-
ness.

4.3.2 Quality Evaluation of Multiple Dependent Data
Streams

The evaluation of single data streams enables a compre-
hensive technical analysis of the integrity of the stream,
whereby the analysis of the individual data values cannot
be assured if there are no directly comparable data streams
available. The utilisation of corresponding high level in-
formation (events) published by another issuer through a
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distinct data stream enables discovery of consistent and
contradictory information. To evaluate the average speed and
vehicle count data streams, which are published via ODAA
platform, the traffic incident information!? for congestion
and closed roads has been investigated to get a confirmation
of reported traffic events. Therefore, the timespan of the
incident is considered as a period, where the traffic flow
should change. The incident data set describes the start time
trstart and the end time %7.,q of the congestion incident,
which defines the incident period p; = [trstart, trena) With
the duration d; of the incident. To evaluate the dependency
between the streams, time series of the average speed
is inVeSﬁgatEd for PBefore = [tlstart - dlncidentatlstart)
before and for PAfter = (tlenda trend + dlncident) after
the congestion period prpcident. To remove daily repeating
traffic patterns and analyse the trend of the time series
independently of the seasonal components, the seasonal
components were removed. The quartiles @1, @2 and @3
(the 25th, 50th (median) and 75th percentiles) of p; are
now compared to ppefore and D fer (see Figure 9). If the
majority of quartiles leads to an increase of the average
speed from ppefore to pr and a decrease from pr to pafier
we detect a correlation in the detected events of our data
streams which increases their reputation and consolidates
their Correctness level. The evaluation of the comparison of
25 distinct traffic incidents against the ODAA data shows
only a 76% confirmation of the traffic incident reports using
the raw data stream. By taking into account the results of
the Frequency Qol analysis (see section 4.3.1) missing data
can be identified as a cause of this low confirmation rate. By
ignoring ODAA data streams that had noticeable faults for
single stream quality analysis, the confirmation of reported
events increases to 83%.

4.4 Complex Event Service Composition and Query
Processing

In this section we evaluate the performance of the event
service composition algorithms using service descriptions
annotated with CES ontology and quality ontology used in
the semantic annotation. We also test the complex event pro-
cessing based on primitive sensor observations as well as the
summarised observations produced by the data aggregation
component described in Section 3.2. In the following we first
present the use case scenario designed for the experiments,
followed by a decision of the datasets used and finally the
results and discussion on the results.

4.4.1 Performances of QoS-aware Complex Event Service
Composition

To test the performance of the system we create three user
requests on the average vehicle speed and vehicle counts
of the routes in Aarhus, as shown in Figure 10. Q1 is a
short path of 1.5 kilometres, ()2 is a medium path of 6.5
kilometres and @3 is a long path of 12.1 kilometres. In
the following we test the performance of the sensor stream
discovery and integration algorithms with regard to these
queries. All experiments are carried out on a MacBook Pro
with a 2.53 GHz duo core CPU and 4 GB 1067 MHz memory,
prototypes are developed using JDK 1.7.

12. Nokia Here traffic
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The discovery and composition algorithm finds 2, 5 and
10 traffic sensors relevant for (1,2 and ()3 respectively.
To test the algorithm on a larger scale, we further increase
the size of the sensor repositories by creating N functional
equivalent dummy sensors with random NFPs for each
sensor in Ry (i.e., the original sensor repository with 899
sensors), resulting in 9 different sensor repositories, as listed
in Table 3.

The results in Figure 11(a) indicate that the composition
time of a Brute-Force (BF) enumeration grows exponentially
with regard to the complexity of the query (number of
sensors involved) and to the number of sensors in the
repository. When we apply the Genetic Algorithms!® (GA)
over ()3 on Ry, we save approximately 80% of the execution
time. However, for Q1 and ()2, the solution space is too
small for the GA evolution. The results in Figure 11(b)
shows that the composition time in GA approach for (2
and @3 over R3 to Rg. The results indicate that the GA
composition time grows almost linearly with regard to the
size of the repository. To further analyse the performance of
the GA algorithm we calculate the aggregated QoS utility
for the composition results derived by GA. The detailed
calculation of the utility is described in [55], and higher
utility means better a composition plan according to user-
defined QoS constraints and preferences. Figure 12(a) shows
the QoS utility derived for Q)2 over R3 to Rg. The QoS
utility derived by GA is compared to the maximum and
minimum utility derived from brute-force enumeration. To
better understand the effectiveness of GA we calculate a g-
score: 4

g-score = _ U™ Umin (5)
Umaz — Umin
where u is the QoS utility for the GA results, %y,q,; and
Upmin, are the maximum and minimum QoS utility of the
repository, respectively.

Figure 12(b) shows the g-score of Q2 over R3 to Rg. The
results indicate that GA (with the aforementioned parame-
ters) can produce 66% to 99% optimal QoS utility for Q2.
The results also suggest that GA gives worse results over
larger repositories, because the larger the repository, the
less likely the best results will be generated. However, this
does not mean GA is more suitable for small repositories.
To explore whether using GA is cost-effective, we observe
the execution time of GA and BF for Q2 over R3 to Ry and
calculate a cost-effective score c-score:

c-score — g-score X tpy ©)
tga
where 4, and ?,; are the execution time of GA and BF
algorithms, respectively. In this equation we take the g-score
as the gain and the time ratio of ¢ 4, and ¢,y as the cost and
hence calculate the cost-effectiveness.

Results in 12(b) show that the c-score increases when
GA is applied to larger repositories, despite the fact that
the g-score decreases. This is because, the time save by GA
(i.e., the cost reduced) is greatly increased even though it
is slightly more difficult to get good composition results
in larger repositories using GA. For Rz and R4 the c-score
is below 1, suggesting GA less cost-effective than BF over

13. GA parameters: crossover rate = 95%, mutation rate = 5%, initial
population size = 200, selection policy: Roulette Wheel + Elitism



JOURNAL OF IATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 14

- 80 - - -
. - -
- . - -
-
- . b4
-
.
100 - - 60—
. H]
-
H
H

50 -

Vehicle Count (cars/15min)

Average Vehicle Speed (km/h)
'y
o
1

04 T T

v v v v v v v v v v
Sep 01 Sep 03 Sep 05 Sep 07 Sep 09 Sep 01 Sep 03 Sep 05 Sep 07 Sep 09
Measurement Date Measurement Date

Measurement Period: - after incident E before incidentE during incident

Fig. 9: Comparing Average Speed Before, During, and after a traffic incident

P o Aaros v

AARHUS N Randersvej Esg Rils Skov

ausons

02

Randersvej 348 ;

t

g Katr,
Tinepi, .
Y8y > = 12 min
ATRINEBJERG every 15 min
Mgy,

chmsTaiicne
ore AARHUS C
v B Aarhus

2)Den Gamle By

Junivej

ARoS (@
£5km ABRAND_ sieharaeeh o

2 - o1 TROJBOR ansy Al
- e Brabrand 5o ey
&= 5 min [ CHRISTIANSBJERG C ol
G 1.8km Pseve T L g
o - ” MBLLEVANGEN o1 o P Y
g taviru| 4 D %
aﬂr_% . i ‘/ NRGI Arena ~
2 ok o1 I o Forstbotanisk
5 vej ©2 Aarhus e &
2 VIBY J
= &
Vestre Ringgade 150 5 : 7 R
gg: T &) Kystvejen 17 “ !
= Ringvej Syd O

(@ Q1 (b) Q2 Q8

Fig. 10: Different route queries in Aarhus, captured from Google Maps

Ry Ro R3 Ry Rs5 Rg Ry Rg Rog
N 1 2 3 4 5 6 7 8 9
total size | 1798 | 2697 | 3596 | 4495 | 5394 | 6293 | 7192 | 8091 | 8990

TABLE 3: Simulated sensor repositories
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Fig. 11: Performance of Genetic Algorithms: Execution Time

these two repositories. However, as the repository size gets Rg9 GA is 5 times as cost-effective as BE.
bigger, the c-score increased to above 5, indicating that on
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4.4.2 Performances of Complex Event Processing over
Primitive and Aggregated Observations

Once we have the event service composition plans, we
transform them into stream query and deploy the queries on
stream engines to detect complex events using algorithms
described in [56]. In this section we test the performance of
complex event processing when using raw and aggregated
data streams. The stream engine used is C-SPARQL [57].
Listing 9 shows a snippet of the C-SPARQL query trans-
formed from Q3.

We collected the traffic data (i.e., raw and aggregated) for
the 10 sensors involved in )3 over one day and replay them.
The replayed streams are fed to the C-SPARQL engine. The
original traffic data streams from ODAA create 1 report con-
taining 1 observation for average speed and 1 observation
for vehicle count every 5 minutes, an aggregated traffic data
is abstracted out of 6, 12, 24 and 48 ODAA traffic reports,
i.e., updated every 30, 60, 120 and 240 minutes (i.e., same
segmentation sizes as in Section 3.2). In our experiments,
we test the amount of messages consumed and produced

REGISTER QUERY test AS
PREFIX ...
SELECT DISTINCT ?obIdl ?avgSpdl ?obId2 ?vehicleCntl ...
FROM STREAM <...#sensor 540> [RANGE 2s step 1ls] ...
WHERE {
{?0bIdl rdf:type ?ob. ?obIdl ssn:observedBy sensorRepo:sensor_540.
?0bIdl ssn:observedProperty <.../citytraffic#AvgSpeed>.
?obIdl sao:hasValue ?avgSpdl. ...}
-}

Listing 9: C-SPARQL query for Q3

by the C-SPARQL engine as well as the processing delay.
To see how the C-SPARQL engine performs with higher
throughput, we accelerate the update frequency 150 times.
Under this accelerated rate the raw and aggregated data
reports every 2 to 96 seconds, respectively. As a result, the
input rate of the C-SPARQL engine varies from 40 to 0.83
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triples per second in our experiments'*. Figure 13(a) shows
the amount of inputs and outputs and Figure 13(b) shows
the average processing delay over time.

From the results in Figure 13(a) we can see that using
aggregated data over 30 minutes reduces 80% of the data
consumed, and 63% of the results produced compared to
using raw data, and the 1/O traffic decreases linearly to
the segmentation size. The results in Figure 13(b) show
the processing delay decreases over the experiment time
(C-SPARQL engine warming-up), and for raw data and
aggregated datasets, the delay decreased to less than 1000
ms within 125 seconds of experiment time. The results also
show that using aggregated data with larger segmentation
size has slower decrease rate. If we extend the experiment
until all processing delays are stabilised, the difference of
delays are small, i.e., they all converged to about 600 ms
(+/- 50ms). However when we further accelerate the raw
data stream frequency to 1 report per second (i.e., 80 triples
per second, relatively high for the large query with many
joins in Listing 9), the C-SPARQL engine becomes unstable
and the processing delay increases to up to 4000 ms after a
while and then the engine stopped giving query results.

5 DISCUSSION AND CONCLUSION

In this paper we examined large-scale stream processing
including data aggregation, quality analysis, as well as
semantic data discovery, integration, and complex event
processing issues in the domain of smart city applications.
We showed how techniques such as SAX can be used to
reduce the size of data and presented different techniques
for accessing and processing semantically annotated data
streams.

5.1 Data aggregation/reduction without loosing essen-
tial information

Many time-series analysis approaches have been introduced
within the last decades. The key issues are to keep good
quality synopsis of data and to provide lower bounding
support for the reduced data. SAX algorithm provides a con-
siderable data reduction with accurate correlation between
the original time series and the symbolic representation,
while supporting lower bounding principle. Using SAX
algorithm in our experiments, we obtained significantly
reduced data for each sensor observation, which possess an
average data size of 60.75MB, reducing the content of data in
range of 94.24% and 99.18% depending on the segmentation
size. On the other hand, it was also interesting to see how
the change in segmentation size is significantly affected by
the quality of time series data in an unfavourable way,
which caused an overall error rate in range of 11.2km/h and
41.3km/h for average speed, and 4.0 and 10.9 number of
vehicles. Overall, the results lead to a conclusion that S30m,
which provided the minimum error and no large difference
on the complex event processing is an ideal segmentation
size for our framework.

14. Every observation is annotated with 4 triples for streaming, less
than those annotated in listing 1 because some triples there are only
useful for historical analysis.
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5.2 Quality data leads to intelligent decisions

The Qol provided by the data streams is determined in
an objective and application independent kind of way. A
normalised Qol value enables comparability and eases the
stream selection. Distinct measurable Qol metrics like the
frequency are evaluated for every observation and com-
pared against the initial annotated metric. This allows a
continuous observation of the performance of the sensors
over their lifetime and ensures reliable execution of the
application using them.

The usage of an event ontology, which is describing the
effects of incidents, will enable the modeling of the mutual
impact of various data streams. This information can further
be used to evaluate the correctness of sensor observations
and events.

5.3 On-demand data discovery, federation and com-
plex event processing

In the smart city environment, smart city applications facil-
itate its users by allowing to submit real time queries which
can only be answered by complex event processing over
various data streams. Considering the huge number of data
streams availability within smart city infrastructure, auto-
mated discovery and composition of relevant data streams
for complex event processing is a taunting task. CityPulse
framework enables CEP engines to perform complex event
processing while catering for non-functional properties (e.g.
completeness, timeliness and accuracy etc.) of the data
streams contributing within the composition plan.

Using the brute force enumeration over available data
streams for discovery and composition results in the expo-
nential growth of composition time, which is not scalable
for real-time smart city applications. However, application
of genetic algorithm over a large repository of data streams
resulted in better performance for cost effectiveness without
much compromise over the optimality. Results shown in this
paper are conducted under a specific setting for the tuning
GA parameters. However, the performance of GA can vary
on different settings over a number of parameters, such as
initial population size, selection policy and mutation rate.
There is always a trade-off between the processing time and
quality of the results produced by GA and finding the best
settings to fine tune GA parameters is heavily dependent
over application domain. In the context of the smart city
applications, real-time applications can decrease the initial
population size to reduce the processing time with a little
compromise over the quality of the results. Moreover, effec-
tiveness of the GA is better realised over a large dataset of
data stream repository (as depicted in Figure 12(b)), which
meets the requirement of large-scale stream federation and
processing for smart city applications.

In summary, the data abstraction/aggregation was
found to have two effects on real-time stream processing:
1) data aggregation can significantly decrease the I/O traffic
of the stream engine and 2) data aggregation can reduce the
stream rate so that the stream engine can process more com-
plicated queries without becoming unstable, and although
slower streaming rate results in slower warming-up period,
when the warming-up phase ends the stabilised delay is
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similar for the same query, regardlessly of the streaming
rate.

5.4 Future work

In future work we’ll further investigate data aggregation
process to obtain an adaptive segmentation size, where the
system will proceed aggregation solely when there is an
event. In addition, due to the fact that it is possible to have
time series data, which is not obeying to Gaussian distribu-
tion and this can worsen the efficiency of the reduction, we
will investigate ways to compensate it with different data
distributions. We will also work on event discovery and
analysis in large-scale distributed smart city data streams.
Reusing the developed techniques and models in different
use-case scenarios and applications will be also explored in
our future work.
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