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Abstract - The Internet-of-Things (IoT) empowered technical 

revolution in manufacturing industry allows pervasive sensing and 

ubiquitous data access through the lifecycle of products. Although 

great efforts have been devoted to bridge the gap between 

industrial operations and information technologies, it still faces 

technical challenges to unobtrusively monitor the entire lifecycle 

of products via a boundary-less information flow for Product 

Lifecycle Management (PLM) in highly adaptive manufacturing. 

This investigation presents an IoT sensing and networking 

framework for seamless data integration and ubiquitous access in 

smart manufacturing, focusing on product identification, data 

modeling, inter-phase data integration and ubiquitous data access. 

The highlights of this investigation are: (1) Radio Frequency 

Identification (RFID) and virtual Universal Unique Identifier 

(UUID) dual identifier online item-specific data integration, (2) 

RFID based online product object localization and unique 

identification, (3) object-centric manufacturing process modeling 

for inter-phase data integration, and (4) RFID/QR code encoding 

method for ubiquitous data sharing between product trading 

lifecycle phases. Finally, the implementation of presented methods 

in EU PickNPack food manufacturing production line is reported, 

and the practice has proved the feasibility and advantages. 

 
Index Terms-Smart manufacturing, IoT, PLM, UUID, RFID. 

I. INTRODUCTION 

he increasing convergence of IoT technologies with the 
manufacturing industry has created new opportunities for 
smart manufacturing [1-3]. The pervasive sensing 

techniques provide means for comprehensive monitoring of 
industrial operations, and ubiquitous Machine-to-Machine 
(M2M) communications leverage collaborative automations 
between machines [4]. This new industrial computing paradigm 
featuring pervasive sensing, ubiquitous data access, inter-
machine understanding, data analysis and optimization has 
gained interests in both industry and academia, which is marked 
with Industrial IoT (IIoT), Industry 4.0, Industrial Internet, 
Smart Manufacturing, Cyber-Physical Systems (CPS), etc. [5,6] 

This IoT-enabled new computing paradigm can potentially 
combine the raw material supply, production operations and 
product trading, and forge a closed Product Data Management 
(PDM) loop, where information from any phase is recorded to 
affect processes and decision-making in other phases. The 
interoperability introduced by IoT technologies therefore 
promise a technical solution which could streamline the flow of 
information about products and related processes throughout 
the products’ lifecycles such that the right information in the 
right context at the right time can be made available [7]. 

Therefore, the concerned entities could improve production 
development at all phases of product lifecycle. The collected 
data can be used for further analysis and the analytical insights 
can be applied to optimize the products and production 
processes [8]. The concept of Closed-Loop PLM (CLPLM) 
could benefit the stakeholders in the manufacturing, including 
raw material suppliers, manufacturers, logistics and supply 
chain. A wide spectrum of sensor technologies and Information 
and Communication Technologies (ICT) in the IoT scope are 
applied to revolutionize the manufacturing industry with focus 
on sensor networks, M2M communications, production process 
modeling, Manufacturing Reference Architectures (MRA), and 
data analytics [9,10]. A number of heuristic investigations are 
conducted to optimize the sensing, communication, and data 
management at network, software and system levels. 

Since PLM combines the industrial processes through the 
product lifecycle in IoT-enabled manufacturing, each ‘Thing’ 
including raw materials, machine parts, product components, 
and finished products are expected to be uniquely identifiable 
by the functional machines and the data is available to all 
interested machines in the information framework [11]. 
However, traditional process-centric data management 
solutions are constrained by automatic and unobtrusive 
identification techniques and strategies for automatic 
operations when identification labels are not applied. It faces 
huge technical challenge to uniquely identify products through 
their entire lifecycles and provide a complete information flow 
between machines, sectors and enterprises [12]. In other words, 
a seamless information integration context for smart 
manufacturing is not technically ready. 

This investigation aims to determine the underlying 
challenges for lifecycle data integration and sharing in multiple-
phase smart manufacturing, bridge the technological gap with 
IoT techniques and object-centric methods, and gain system 
level interoperability for seamless and efficient data integration 
through the lifecycle of products. For this purpose, this 
investigation combines the efforts of the following aspects: (1) 
RFID and virtual UUID dual identifier for online item-specific 
product data integration; (2) RFID based online product 
localization and identification for seamless data integration; (3) 
object-centric manufacturing process model for inter-phase 
data integration; and (4) RFID/QR code encoding method for 
ubiquitous data sharing between product trading phases. Finally, 
the implementation of the presented methods in PickNPack 
food manufacturing line is reported, and the practice proves the 
feasibility and advantages.  

The remainder of this article is structured as follows: A 
review of the enabling technologies and related studies are 
introduced in Section II. The IoT-based PLM framework and 
the corresponding technical solutions are presented in Section 
III. Then, the implementation of the proposed solutions in 
PickNPack food manufacturing line is presented in Section IV. 
Finally, discussions are given in Section V and conclusions are 
drawn in Section VI.  
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II. PLM IN IOT-BASED SMART MANUFACTURING 

To gain the system level interoperability between all entities 

producing, storing, and consuming production information in a 

manufacturing system, a wide spectrum of enabling 

technologies is involved. This section briefly introduces the 

PLM process in IoT-enabled manufacturing industry, and then 

illustrates the building blocks and some related investigations.  

A. PLM in IoT-based Manufacturing 

With IoT technologies, the physical devices, material and 

product items in manufacturing, logistics, and supply chain are 

expected to be uniquely identified and the corresponding data 

be integrated and shared in an open information framework.  

As shown in Fig. 1, with the pervasive sensing technologies, 

network infrastructure and data sharing architecture, the 

manufacturing phases such as design and manufacturing as the 

Beginning-of-Life (BoL), use and maintenance as the Middle-

of-Life (MoL), and recycling and disposal as the End-of-Life 

(EoL) can be observed and the collected data can be stored in a 

data repository [11,13]. The collected data can be used in real 

time for online decision-making in manufacturing, or for 

authorized business partners to access the data to optimize their 

products and production procedures.  

B.  Building Blocks for PLM in IoT-based Manufacturing 

IoT-based manufacturing is usually supported by multiple 

levels of applied technologies, including hardware, software, 

communications, service platforms, and data science. With 

respect to IoT-enabled manufacturing industry, the building 

blocks can be classified into four levels: pervasive sensing 

techniques, machine connectivity and messaging, production 

management architecture, data analysis and optimization. The 

interests of this investigation are the former three levels of 

technologies to build the information framework for production 

monitoring, data integration and interoperable data sharing. 

1) Pervasive sensing techniques 

The pervasive sensing techniques are the key building blocks 

for IoT applications. The sensors and embedded electronics 

interface the physical world with information systems by 

sensing and monitoring the physical variables and operations.  

In order to seamlessly integrate the data produced through 

the production process, some sensory technologies are applied 

to identify the products and connect the industrial processes. 

The mainstream product identification techniques are RFID, 

QR code and Barcode. According to the features in information 

capacity, reading speed, reading distance, directivity, multiple 

reading, reusability, security, and cost, etc., RFID outperforms 

visual identification solutions, especially in none-line-of-sight 

reading. In addition, mechanical encoder and laser trigger are 

also widely used for the synchronization of mechanical 

operations. In addition, RFID also offers the functionality of 

environment or product quality sensing by coupling sensors to 

RFID tracking [14]. Since the sensing technologies build the 

intermediary interfaces between physical operations and 

information systems, they play a critical role in the seamless 

data integration of IoT-based smart manufacturing systems.  

2) Machine connectivity and messaging 

The machine connectivity and networking technologies build 

the connections between functional machines, which promise 

optimized execution of manufacturing strategies by enabling 

interactive collaborations between machines. 

Flexible machine presence and discovery, ubiquitous M2M 

communication, and inter-machine understanding are 

underlying enablers to take advantage of the sensing techniques 

and put highly adaptive manufacturing into practice. In order to 

gain the flexibility of interactions between connected machines, 

many M2M messaging protocols, middleware, and APIs are 

developed by Standard Development Organizations (SDOs) 

[15], such as Message Queuing Telemetry Transport (MQTT), 

Constrained Application Protocol (CoAP), Advanced 

Messaging Queue Protocol (AMQP), Extensible Messaging 

and Presence Protocol (XMPP), Data Distribution Service 

(DDS), Zero-MQ (ZMQ), MTConnect, and Open Platform 

Communications-Unified Architecture (OPC-UA). They are 

based on different technologies and for different applications 

scenarios. The selection of M2M messaging techniques should 

be based on the in-depth understanding of the messaging 

technologies and the object IoT system. 

3) Manufacturing management service architecture 

IoT-based business models and Manufacturing Reference 

Architectures (MRAs) based on Service Oriented Architecture 

(SOA), RESTful and Cloud Computing are also a key support 

for manufacturing management [16]. An appropriate service 

architecture can potentially benefit manufacturing systems in 

resource scheduling, optimal machine collaborations, 

manufacturing strategy optimization, and exploration of the 

capability of manufacturing systems. The exemplar MRAs are 

ETSI M2M service architecture, SMLC smart manufacturing 

platform, OneM2M harmonized reference architecture, and 

Microsoft DiRA, etc. [11] The common targets of the MRAs 

are openness, interoperability, inter-module collaborations and 

optimization of the information flow and industrial operations. 

The techniques for product object identification, the models 

for inter-phase data integration and methods for ubiquitous data 

access are regarded as the key parameters of PLM in smart 

manufacturing. The integration of the IoT techniques with the 

manufacturing industry and the above-mentioned enabling 

techniques have provided sufficient technical support. 

C. Related Work 

PLM is a concept with multiple interpretations, and the most 

common definitions seem to be about how to manage 

information related to the design and manufacturing of products 

and their variations, which represents a rather computer-aided 

technologies oriented view of PLM [17]. The further 

interpretations like sustainable PLM and intelligent products 

attempt to extend PLM also to the usage, refurbishing, disposal 

and other lifecycle phases that product instances go through 

BoL -

Design and manufacturing

MoL -

Use and maintenance

EoL -

Recycling and disposal

Data sharing

IoT pervasive sensing and communication network

Items:

[{ID,Data},...]

Items:

[{ID,Data},...]

Items:[{ID,Data},...]

Industrial 
operations

Quality/
performance

Industrial 
operations

 
Fig. 1. PLM in IoT-based Manufacturing 
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[18]. From conceptual and functional points of view, [7] 

describes PLM as a knowledge management system which 

supports the entire product value chain, which integrates people, 

information and processes across the extended enterprise 

through a common body of knowledge. PLM closes different 

knowledge loops throughout product lifecycle by enabling 

reuse of lifecycle knowledge in the development phase. The 

definitions reflect that the manufacturing industry tends to see 

PLM beyond traditional PDM in today’s digital manufacturing. 

This is due to IoT techniques which establish a set of tools and 

technologies that provide a shared platform for collaborations 

among product stakeholders and streamline the flow of 

information along all phases of product lifecycle. 

Uniquely identifying the product objects through their 

lifecycles is a critical step for PLM. The requirements of unique 

identifier of products for PLM is highlighted in [19] with 

analysis and comparison of the main approaches including EPC 

network, DIALOG, and WWAI. An RFID based framework for 

Product Lifecycle Information Management (PLIM) is 

presented with case studies to support decision making in 

different lifecycle phases of automotive industry [13]. In order 

to improve the flexibility of manufacturing, an Object-Oriented 

RFID (OORFID) mechanism is proposed by taking advantages 

of the efficient utilization of RFID memory, and is introduced 

into IoT manufacturing systems [20]. 

Innovations in system architecture and communication 

protocols with emerging ICTs to deal with the heterogeneity of 

technologies and complexity of systems is a widely investigated 

topic. The lack of generic and standardized interfaces for 

creating the needed information between devices is highlighted 

in [11], and the proposed design principles and a Quantum 

Lifecycle Management (QLM) interface standard is presented 

to fulfill the requirements. An M2M messaging mechanism for 

ubiquitous data access and event notification of IIoT 

applications is presented with experimental studies in [21], 

which showed certain flexibility in machine presence, 

discovery and ubiquitous M2M messaging for collaborative 

automations. With respect to software, a flexible information 

model and configurable software platform for IoT-based PLM 

is presented in [22] to cover the whole product lifecycle in order 

to integrate heterogeneous and distributed product information 

within and across organizations. To cover the full range of the 

products’ lifecycle, a typology of standards relevant to PLM 

support that addresses the hierarchy of existing and evolving 

standards and their usage, and a suite of standards to support the 

exchange of product, process, operations and supply chain 

information are identified in [23]. In addition, a product 

information-modeling framework is described in [24] to 

support full range of PLM information needs based on the Core 

Product Model (CPM), Open Assembly Model (OAM), 

Design-Analysis Integration Model (DAIM) and Product 

Family Evolution Model (PFEM). These abstract models are 

with specific semantics about a particular domain to be 

embedded within the usage of the models for the domain. 

According to the related work, the concept of PLM and its 

benefits in combining all lifecycle phases of manufacturing for 

product development has attracted interests in many studies. 

Due to the complexity of product lifecycle processes and 

communication barriers, the unique identification and unified 

management of distributed and heterogeneous product data that 

cover all the lifecycle phases are still challenging tasks. Most 

studies focus on the system architecture design and data 

modeling for supply chain data management [25]. It lacks in-

depth investigations to design from a system perspective to 

bridge the gap between the on-manufacturing-line mechanical 

operations and the information technologies. Therefore, to build 

a loose coupled interoperable information flows between 

concerned entities with IoT sensing and messaging techniques 

covering the entire lifecycle of products especially on-

manufacturing-line procedures and inter-phase connects is a 

critical task for PLM in today’s manufacturing industry. 

D. Problem Statement 

Product data collection and management has been widely 

used in the manufacturing industry. However, the challenges 

facing IoT-enabled highly adaptive manufacturing systems to 

uniquely identify the whole lifecycle of products, especially for 

pre-label unmanned automations, and provide a through 

lifecycle boundary-less information flow have not been 

adequately addressed. The related investigations focus on the 

information modeling, while critical techniques and systematic 

strategies have not been reported. The major technical 

challenges are: (1) item-specific identification and data 

integration of on-manufacturing-line phases and offline 

logistics phases, (2) online real-time moving object 

identification and localization for data integration of highly 

adaptive operations, (3) manufacturing process modeling for 

inter-phase data integration and sharing between trading 

partners, and (4) efficient and flexible data dissemination for 

ubiquitous data sharing in the trading phases.  

E. The Scope of this Investigation 

This investigation aims to gain system level interoperability 

in smart manufacturing for PLM by taking advantage of IoT 

sensing and networking techniques and object-centric methods, 

focusing on lifecycle product identification, process modeling, 

data integration and sharing. The techniques for product 

identification to combine the lifecycle phases, the 

manufacturing process models for inter-phase data integration, 

and the data dissemination methods for data sharing are the 

focal research topics. The proposed solutions are implemented 

in PickNPack food manufacturing line for online data 

integration, ubiquitous data access for machine collaborations, 

and inter-phase data integration between source material 

supplier, manufacturer and product supply chain. The practice 

of IoT-enabled product lifecycle data integration and ubiquitous 

data access in PickNPack manufacturing line is reported to 

prove the feasibility of the proposed technical solutions. 

III. IOT-BASED PLM FRAMEWORK 

To deal with the addressed technical issues, this section 

describes a technical framework for PLM of IoT-based 

manufacturing. The corresponding technical solutions for 

product identification and data integration in IoT-enabled 

highly adaptive manufacturing context are illustrated. 

A. IoT-based PLM System Architecture 

The mission of this system architecture is to provide a 

platform to integrate the real-world lifecycle phases in a data 
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collection and management framework with pervasive sensing 

techniques, process models and a data repository in the cloud.  

To this end, a suggested cloud based system architecture is 

as shown in Fig. 2. With IoT pervasive sensing technologies 

such as RFID, QR code and barcode, the product objects can be 

labeled and identified with their IDs. The industrial operations 

on the product objects and the data generated in the operations 

are recorded and sent to the data cloud, and the transitions 

between industrial processes are recorded as well. For the 

manufacturer, the data of source materials can be accessed from 

the data cloud with their ID using IoT terminals. It processes 

the raw materials and save the collected data to the data cloud 

during the manufacturing. The finished products are labeled 

with IDs for the market to read and access the product data from 

the data cloud. Therefore, with the IDs and IoT pervasive 

monitoring, all collected data are available to the source 

supplier, manufacturer and market for further use. The end 

users may also be allowed to access the interested information.  

This technical framework could potentially allow the data 

collection and sharing between the authorized business partners 

through the entire product lifecycle. The collected data could 

benefit the industrial operations and the system optimization. 

B. RFID Unique Product Localization and Identification 

For highly adaptive manufacturing systems, industrial 

operations are fulfilled by the smart machines automatically. A 

key prerequisite is to allow the machines to identify the product 

items in their workspaces. For RFID labelled products, it raises 

challenges to uniquely identify an item due to the multiple tag 

reading property of Ultra High Frequency (UHF) RFID.  

In this investigation, the Received Signal Strength Indicator 

(RSSI) of RFID reading is utilized as the means for unique 

identification of product items. In theory, the RSSI reading is 

proportional to the biquadrate of the reciprocal of distance. The 

free-space propagation model can be expressed as follows: 

43

22

)4( d

G
PP t

tr



                              (1) 

In (1), Pt and Pr represent the emission power and received 

power of RFID reader, Gt is the gain of reader antenna, λ is the 

carrier wavelength, σ is the Radar Cross Section (RCS) of tag, 

and d is the distance between reader and tag. In reality, Gt, λ 

and σ are fix values for a set of RFID reader system and a 

specific type of tags. Thus, the distance d between the reader 

and tags can be calculated by measuring Pr, which is usually 

expressed by RSSI (PR) defined as the ratio between the 

received power and reference power P (normally, P=1mW): 

)(lg10 dBm
P

P
P r

R                            (2) 

Suppose the reader antenna is in a fixed position, and let (xi, 

yi, zi) denote the position of tag i, the RSSI can be presented by: 

),,()( iiiR zyxfiP                                       (3) 

Normally, when the product items are moving forward in the 

manufacturing line, the yi and zi are fixed. Therefore, 

),()( 00 zzyyxfiP iR                             (4) 

),),(( 00

1 zyiPfx Ri

                                 (5) 

Since the industrial environment may introduce multi-path 

effect to the RF propagation, the linearity of the above 

relationship is not as good as ideal free-space environment. As 

RFID reader always recognize all the ambient RFID tags, it is 

an important step to filter the tags to determine the one that is 

located in the workspace of a machine. By installing RFID 

antennas in fixed positions in the feed-in tunnels of input/output 

crates, Algorithm 1, a threshold-based RFID unique detection 

method using a PR-x pattern, is employed for the identification 

of moving RFID objects. By comparing the RSSIs of the n 

RFIDs with the threshold, the one with the minimum distance 

in a defined error interval is considered the RFID which has just 

passed by the antenna. This radiation pattern based RFID filter 

provides a cost-effective solution to simultaneously identify 

and localize the moving input/output crates among the ambient 

RFID objects in real time. The real pattern that fits the practical 

industrial scene can be obtained conveniently using priori 

experimental data, and the pattern matching is more light-

weight compared to peer RFID localization approaches. 

 

 
Fig. 2. A Reference PLM System Architecture 
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C. RFID and UUID Dual Identifier Online Data Integration 

 For on-manufacturing-line industrial operations, the RFID 

tags can only be labeled on the products at a certain stage. The 

pre-RFID stages also need to identify the product items to build 

a connection with the later stages. Thus, a virtual UUID is 

applied for pre-RFID stage identification and integration. 

As shown in Fig. 3, suppose the outside frame is the 

manufacturing line and small boxes inside are product items 

moving on the line through the workspaces of different 

machines. In the coordinate system, the X-direction locations 

of each machine [XMi1,XMi2] is fixed. The position of a product 

item on the line can be measured with a precise encoder 

machine, which broadcasts the virtual UUIDs, the dimension of 

newly created product batch and the X-direction displacement.  

To determine the product items in their workspace, each 

machine builds a buffer (BUF[0,…,m-1]) to accommodate the 

UUIDs and sizes of unprocessed items and calculate with 

Algorithm 2 to obtain the UUIDs. In Algorithm 2, the encoder 

data of new batches, each include 3 food packages, is put into a 

data buffer. The software continuously calculates the left and 

right edges of the front batch. If the left and right edges are both 

in the machine workspace, the product batch is considered the 

one in the workspace. The processed product items will be 

removed from the buffer. With this method, each machine can 

determine the virtual UUIDs of the product items in its 

workspace and register the data of manufacturing operations for 

integration before RFIDs are applied. Once an RFID is placed 

on a product item, the RFID applicator calculates the encoder 

position and determine the UUID of the item which is in its 

workspace and link it with the RFID to integrate the online 

generated data. The encoder position based virtual UUIDs 

allow the smart machines to determine the product IDs for data 

registration in the early manufacturing stages before product 

labels are applied. The encoder position technique and virtual 

UUID-RFID dual-identifier technique have creatively bridged 

the gap between pre- and post-RFID manufacturing stages for 

product data integration. The combination of virtual UUIDs and 

physical RFIDs is a novel solution empowered by IoT 

techniques for on-manufacturing-line data integration of smart 

robotics based manufacturing applications. 

D. An Object-centric Model for Data Integration and Sharing 

To allow the product items and components to be identifiable 

through the lifecycle of production is a prerequisite of PLM, 

and the suitable models to describe the product data and 

operations are crucial technique issues. This section presents an 

object-centric modeling method for inter-phase data integration. 

1) Object-centric product data modeling  

To seamlessly combine the industrial processes, a product at 

any production phase is defined as an object. The objects can 

be integrated or processed to new objects at the later phases of 

production. As shown in Fig. 4, each object has an object ID, 

trade ID, class attributes, and the features of objects are defined 

by the class of objects. It also has the properties of previous and 

next phases object IDs to integrate with its previous and next 

phases. Therefore, the features of the objects at all production 

phases can be accessed through the links between object IDs, 

and the automatic generation of the links between objects can 

be achieved using the IoT sensing technologies like RFID.  

2) Process Modeling for Inter-phase Data Integration 

With the object-centric model and ID techniques, the data of 

a product item at all of its lifecycle phases could be integrated. 

As shown in Fig. 5, suppose there are n phases in the 

manufacturing lifecycle, when the operations of object i at 

phase i is completed, machines of phase (i+1) can obtain the 

data of phase i (pi) by recognizing the trade ID (TIDi) and object 

ID (OIDi). Therefore, the data of n phases of a finished product 

can be accessed by the link of IDs, which can be expressed as:  

)(Pr1 ii TIDfeviousTIDoTID 
                         (6) 

)(Pr1 ii OIDfeviousOIDoOID 
                      (7) 

),()( iii OIDTIDDFeatureofIpFeature                  (8) 

 


n

i ii OIDTIDDFeatureofIproductFeature
1

),()(       (9) 
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Y Mi1 Mi2
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Product 
item RFID tagInput Output

 
Fig. 3. UUID-RFID Dual Identifier Identification and Integration 
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Fig. 4. An Object-centric Model of Product Data  
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For some on-manufacturing-line phases, it is not practical to 

place an RFID label or a QR code on the product items. Timing 

or mechanical encoding based virtual UUID could be used to 

identify the objects for data integration. When it is applicable 

to place a label, the label ID can be linked to the UUID to access 

the generated data, which is as shown in Fig. 5, the sub-phases 

1 to j of phase i. This is a well-suited solution for smart 

manufacturing, where industrial operations are carried out by 

collaborative automations of some interactive machines.  

E. RFID Encoding Method for Data Integration and Sharing 

RFID and QR code are the most suitable candidates for 

object identification, which have already been used in industry, 

logistics, and retail, etc. UHF RFID outperforms the other 

candidates in reading range, speed, data capacity, security, and 

therefore has gained wide acceptance. The Electronic Product 

Code (EPC) RFID standard developed by EPC Global in 

cooperation with Auto-ID Laboratories provides more details 

for object identification [26]. Normal EPC Class 1 Gen 2 tags 

have a 96-bit General Identification Number (GIN-96), which 

contains a header, an EPC manager, an object class and a serial 

number. Further schemes define more powerful codes, such as 

SGTIN-96, SSCC-96, and SGLN-96, where company prefix, 

item reference, etc. can be encoded.  

In order to gain interoperable data access from trading 

partners in the manufacturing chain, a GIN-96 based data 

sharing method is designed as shown in Fig. 6. The trade ID and 

object ID are encoded in the object class and serial number 

sections of GIN-96 digits. The trade ID encoded in the object 

class section, which can be a company ID, a Global Location 

Number (GLN) of a trade partner, or a Global Trade Item 

Number (GTIN) of a product type, is linked to data access URL 

of the object saved in local database or the data cloud. With the 

data links and object IDs, the data of product objects can be 

accessed from the trade partners’ data systems. This method 

simplifies the data sharing between trade partners by getting the 

link and object ID automatically via RFID reading. In addition 

to RFID, QR code can also encode the company ID and item ID 

for data sharing. 

Focusing on the interoperable data integration and sharing in 

all production phases for lifecycle data management, this 

section has covered the key technical issues including product 

unique identification, online and offline data integration, object 

data and process modeling and flexible data sharing. The 

reference system architecture and technical solutions presented 

in this section are well-suited for IoT-enabled manufacturing.  

IV. IMPLEMENTATIONS IN PICKNPACK PRACTICE  

To prove the feasibility of the proposed solutions discussed in 

Section III, this section presents the practice of the proposed 

technical solutions in PickNPack digital food manufacturing 

production line as a proof of concept demonstration.  

A. The PickNPack Food Manufacturing System 

PickNPack is a EU funded project which aims to integrate 

the emerging Information and Communication Technologies 

(ICT) and the state-of-the-art industrial devices such as robots, 

sensors, and controllers to build a flexible food manufacturing 

production line. For this rich sensing and communication 

system, data collection, data analysis, and data based 

optimization are the central concerns. This data-centric 

manufacturing flexibility is developed from the connected 

smart devices and the integration of IoT technologies for 

flexible data exchange and collaborative automations. The 

underlying ICT technologies have built a through-the-line 

information flow for product data management. 

1) The structure of PickNPack manufacturing line 

The structure of the PickNPack line is as shown in Fig. 7. A 

modularized design is applied to simplify the coupling of 

messages and events. There are 8 functional modules in the line:  

 Thermoformer - a machine to produce shape and size 

adjustable food packages with plastic film.  

 Pickrobot (input) - a robot to pick up raw food materials from 

input crates and place them in empty food packages. 

 Quality Assessment and Sensing (QAS) - a sensor system to 

measure food quality with five different kinds of sensors, 

including RGB, 3D, hyperspectral, microwave, and X-ray. 

Thermoformer Pickrobot QAS Printing Sealing&cutting Packrobot

Input

O
u
tp

u
t

Empty package

Package filled with food Product item with printed labels

Sealed and cut product items

Raw 

materials

Finished 

Products

Quality measured product items 

RFID labelled Product items

RFID 
applicator

Legend

 
Fig. 7. Schematic Diagram of PickNPack Food Manufacturing Line 
 

TABLE I 

THE HARDWARE COMPONENTS OF RFID TRACEABILITY SYSTEM 

Device Type Device Model Quantity 

RFID Reader Alien ALR-9900+ 1 
Antenna Mobile Mark PN6-915 4 

Handheld reader Alien ALH-9001 1 

RFID tag Alien ALN-9629 / 
RFID applicator Label-Aire 3114NV Tamp-Blow 1 

PC controller Dell XPS 8500 Desktop 1 

 

Header EPC Manager Object Class Serial Number

8

SSCC

 batch/lot number
Item ID

GLN/

96 bit ID

GTIN/

http://www.datalink.com/datarequest?

tradeID=xxxx&objectID=yyyy

Data Cloud
28 24 36

TradePartner
 Company_ID

 Name

 Contact

 Address

 Postcode

 Datalink

...

Company ID

Fig. 6. ID Format Design for Data Integration and Sharing 
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 Printing - a label printer to print the particular information of 

the food products on the labels in real time. 

 Laser sealing & cutting - a laser system to seal the printed 

labels on the packages and cut them into separate items.  

 Packrobot (output) - a robot to pick up the separated finished 

products and place them in output crates. 

 Traceability - an RFID based process monitoring system for 

online data collection and sharing, and offline traceability. 

 Cleaning - a robot module automatically flushing water to 

clean the whole system.  

All the modules are connected to a local area network with 

Internet access. The product and production information is 

collected automatically by the machine modules using online 

virtual UUID for data integration. The RFID traceability system 

then integrates the online and offline phases by monitoring the 

input and output crates and RFID labelling of RFID applicator.  

2) RFID traceability system setup 

 The RFID traceability system is set up to monitor the input 

and output crates and the product items RFID labelling, which 

consists of RFID reader, RFID antennas, RFID applicator, 

handheld RFID reader and PC controller as listed in TABLE 1. 

The ALR-9900+ fixed reader is connected to a desktop 

running a custom-developed software to handle the data 

streaming of RFID readings. The software of both the desktop 

and the handheld reader are connected to the database for data 

storage and retrieval. A specific database model is developed to 

accommodate the product information and production process. 

As shown in Fig. 8, the antennas are installed as follows:  

 Antenna1-in Pickrobot to detect RFID labelled input crates.  

 Antenna2-in RFID applicator to detect the RFID placing.  

 Antenna3-in Packrobot to detect RFID labelled output crates.  

 Antenna4-for information tracing and item registration, etc.  

Through the M2M messaging protocols, the RFID system 

can talk to the Pickrobot and Packrobot to notify them the crates’ 

IDs in their workspaces. It can also receive the encoder position 

and calculate the UUIDs of product items that the RFID tags 

are placed on by the applicator.  

B. RSSI-based Object Localization and Identification 

For PickNPack manufacturing line, the product objects, such 

as product items, input crates and output crates need to be 

identified when they are moving or when they are among a 

couple of adjacent objects. To uniquely identify the RFID 

labelled objects with RFID readings, the pattern of RSSI 

reading of the moving product objects on the line is determined 

with the installed RFID devices, which is as shown in Fig. 9. 

Fig. 9(1) presents the RSSI reading of a tag moving away the 

antenna from 5cm to 125cm, and Fig 9(2) describes the RSSI 

reading of an RFID labelled object moving on a conveyor belt 

in X-axis from -35 to 35cm away from the antenna with Y-axis 

at 10cm, 20cm and 30cm. In the Figures, the wide colored line 

is the mean value and the light blue span is the error interval. 

The RFID labelled objects are recognized at the position where 

the antenna is placed (X=0) when they are moving toward X-

axis. The RSSI thresholds for Y-axis distance at 10, 20, and 

30cm are obtained using priori data which are indicated in 

Fig.9(2). With this experimental RSSI pattern, the RFID objects 

can be identified with Algorithm 1. With this method, the input 

Pickrobot can identify the input crate among plenty RFID 

objects when it goes to its workspace through the tunnel to 

integrate the source material information. The output Packrobot 

can identify the output crate among plenty RFID objects when 

it goes to its workspace through a tunnel to integrate the 

outgoing information of finished products for data integration. 
Since the RSSI values vary with the reader radiation power, 

gain of antenna, RCS of tags and the influence of the ambient 

environment, the RSSI pattern should be recalibrated for 

specific antennas, tags categories and new installations. In 

PickNPack line, the motion track of input and output crates are 

shielded with metal covers to improve the quality of signals. 

C. RFID/UUID based Online and Offline Data Integration  

As described in Section III, the machines on the PickNPack 

line identifies the product items using UUIDs by calculating the 

encoder position which is circulated to the machines by the 

Thermoformer in the beginning of the line. Each machine on 

the line can timely identify the product item in its workspace 

and integrate the data generated in its operations with UUID.  

As shown in Fig. 8, the integration of the online integrated 

data with offline data is achieved by combining the RFID with 

UUID in three intersections: input crates with raw food 

materials at Pickrobot, RFID labelling at RFID applicator, and 

output crates with finished products at Packrobot.  

1) For the Pickrobot module, it is notified the valid raw 

material input crate identified by Antenna 1 of the RFID 

system. It also calculates the encoder information and 

identifies the UUID of the food package in its workspace. 

 
Fig. 9. Pattern of RSSI Reading in the RFID Moving Direction 

Fig. 8. RFID Traceability System Setup 
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When picking up raw food materials from the input crate 

and placing it into the empty package in its workspace, the 

Pickrobot registers the input crate RFID as the pre-phase 

object ID (source material RFID) property of the package. 

The item’s UUID is linked with its raw material RFID. 

2) For the RFID applicator, it calculates the encoder 

information and determines the UUID of the product item 

in its workspace. It then places an RFID tag on the product 

item and registers the RFID recognized by the Antenna 2 

as the object ID (item RFID) property of the product item. 

The online UUID is linked with the product item RFID. 

3) For the Packrobot module, it is notified the RFID of the 

valid output crate in its workspace recognized by Antenna 

3. It calculates the encoder information and identifies the 

UUID of the product item in its workspace. When picking 

up the finished product item in its workspace and placing 

it in the output crate, it registers the output crate RFID as 

the next-phase object ID of the product item.  

With the above method, the data generated by the functional 

modules can be collected and integrated with UUID. The 

combination of UUIDs with input crate and output crate RFIDs 

integrates the online generated data with the source material 

information and outgoing information. By combining the 

UUIDs and RFIDs with RFID applicator, the online generated 

data can be easily accessed with a machine readable approach. 

D. RFID Enabled Inter-Phase Data Integration and Sharing 

A critical step for lifecycle manufacturing data management 
is the data integration and sharing between different enterprises, 
including the source material provider, manufacturer and sales. 
The PickNPack line implements the inter-phase data integration 
and ubiquitous data access with the proposed process model and 
RFID/QR code encoding method as shown in Fig. 5 and Fig. 6. 

When the source material batches are received by the 
manufacturer, they undergo a subdivision process which 
divides the batches with RFID labelled input crates. The input 
crate then registers the batch ID (RFID or QR code) as its 
previous-phase ID, consisting of the supplier ID and batch ID. 
The source materials in the input crates are made into product 
items on the manufacturing line. When finished product items 
are picked up and placed into the output crates, the items are 
then assembled to a logistic unit registering the unit ID as the 
next-phase ID (RFID or QR code), consisting of the outgoing 
company ID and unit ID. Since the trading partners have data 
link and permission of the other partners’ data repository. The 
source provider, manufacturer and market can access the 
product information from their previous and next trading 
partners. The inter-phase data integration can be presented with 
Fig. 10. With the designed ID encoding format and phase 
integration method, a lifecycle data collection and sharing 
framework is therefore achieved. For a product item, the source 
information, production information and outgoing information 
can be accessed conveniently via RFID or QR code reading.  

With the presented techniques, the PickNPack 
manufacturing line has achieved a lifecycle data collection, data 
integration and data sharing framework with the smart 
machines and IoT techniques. The interface of the PickNPack 
traceability software shown in Fig. 11 gives some data collected 
in a test of the system, which can demonstrate the 
functionalities achieved, including (1) modeling of the 
manufacturing industrial processes, (2) observation the state of 
peer machines on the manufacturing line, (3) collection of the 

 
Fig.11. Interface of the PickNPack Information Traceability Software  
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manufacturer’s production batches, (4) collection of source 
information and registered product IDs of a production batch, 
(5) collection of the product data generated on the 
manufacturing line. Since the RFIDs of product items are 
combined with the corresponding UUIDs, the online generated 
data and offline data of the product items are integrated. The 
PickNPack manufacturing line was successfully demonstrated 
in Wageningen, Netherlands, and Holbeach, the UK, and the 
system on the demonstration site is as shown in Fig. 12. 

V. DISCUSSION 

IoT-based PLM, as a new manufacturing data management 
paradigm, is an important concept for future rich sensing smart 
manufacturing applications. This investigation provides a proof 
of concept demonstration of exploring IoT sensing and 
networking techniques to bridge the technical gap and build a 
boundary-less information flow for data integration and 
ubiquitous access through the entire manufacturing lifecycle.  

The process modeling and information flow design for RFID 
based data management has been a widely studied area in the 
manufacturing industry. This investigation focuses on the 
exploration of IoT sensing and networking techniques and 
object-centric methods to build connectivity between on-
manufacturing-line robot operation phases and offline logistics 
phases. TABLE II gives the key product identification and data 
integration techniques covering the PickNPack manufacturing 
phases and the corresponding functionalities achieved. 
Compared to some peer RFID based data management 
solutions which mainly focus on supply chain logistics 
information collection and distribution, the primary advantage 
of the presented solution lies in the dual identifier technique and 
object-centric methods which make it well-suited for the data 
registration and ubiquitous data access of smart machine based 
highly adaptive manufacturing applications, especially the pre-
label unmanned manufacturing operations performed by smart 
machines. This allows the automatic and unobtrusive 
integration of raw material information, product information 
and outgoing information with minimized human involvement, 
which is challenging for the manufacturing operations when 
product labels are not applied. 

The proposed technical solutions are proved to be feasible to 
deal with the technical challenges in smart manufacturing: (1) 
the RSSI pattern based unique identification technique can 
determine a moving RFID labelled item in multiple recognized 
items in real time, (2) the RFID and UUID dual identifier 
method can integrate the on-manufacturing-line pre-RFID 
stages with offline stages, (3) the object-centric model 
integrates the manufacturing phases with previous and next 
phases by registering their object IDs as properties, (4) the 
RFID and QR code encoding method allows to encode the data 
access information in the IDs for ubiquitous data sharing 
between trading partners. The implementations in PickNPack 
practice has demonstrated the feasibility and advantages.  

 The lifecycle data management requires the maintenance of 
a live information flow for the smart manufacturing machines, 
robotics, IoT sensing and computing terminals through all 
lifecycle phases. Therefore, the efficiency and reliability of 
network connection, messaging protocols and potential 
communication barriers are the main challenges to the success 
of the PLM information flow. In addition, since entities in the 
PLM are both data generators and data consumers, IoT 
collected data should be visible to authorized stakeholders in an 
interoperable way. The security and authentication for data 
access, data collection and data sharing are also critical issues.  

VI. CONCLUSIONS 

This investigation provides a systematic PLM technical 

framework for smart manufacturing with IoT sensing and 

networking technologies and object-centric methods focusing 

on the product unique identification, dual-identifier online and 

offline data integration, object-centric modeling for inter-phase 

data integration and ubiquitous data access. The proposed 

solutions are a timely update for the data integration of 

emerging IoT-based smart manufacturing, which have 

demonstrated the feasibility and potentiality of IoT pervasive 

sensing and networking techniques in enhancing the data 

management and interactive automations of smart 

manufacturing. The designs and implementations are a 

successful practice to introduce IoT sensing and computing 

techniques to innovate practical manufacturing applications.  

The proposed techniques have contributed to a boundary-less 

information flow with IoT sensing techniques covering on-

manufacturing-line robotics operations before and after RFID 

labelling and offline phases data access between trading 

partners. The RSSI pattern based RFID filter provides a cost-

effective solution to simultaneously identify and localize the 

moving RFID objects in real time, which can be conveniently 

customized to fit the practical industrial scenes using priori 

experimental data. The encoder position based virtual UUID 

and RFID dual-identifier identification technique allows item-

specific identification and data integration of pre- and post-

RFID operations. The object-centric modeling then enables the 

inter-phase data integration with previous and next trading 

partners through the product lifecycle. The product objects then 

carry the information to the following lifecycle phases using the 

proposed RFID and QR code encoding method. The presented 

techniques and practices might be of interest to manufacturing 

researchers and practitioners for the innovation of their 

applications. 

 
Fig.12. PickNPack Production Line in the Demonstration Site 

 

TABLE II 

A SUMMARY OF PICKNPACK DATA INTEGRATION TECHNIQUES 

Functionalities Techniques 

Pre-label identification/integration Encoder position and virtual UUID 

Pre- and post- RFID integration Encoder position and RFID applicator 

Inter-phase integration RFID and object-centric model 

Outgoing logistics data integration RFID and object-centric model 
Data sharing for trading phases RFID encoding and object-centric model 
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