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Abstract—Recently, the unmanned aerial vehicles (UAVs) have
been widely used in real-time sensing applications over cellular
networks, which sense the conditions of the tasks and trans-
mit the real-time sensory data to the base station (BS). The
performance of a UAV is determined by the performance of
both its sensing and transmission processes, which are influenced
by the trajectory of the UAV. However, it is challenging for
UAVs to design their trajectories efficiently, since they work in a
dynamic environment. To tackle this challenge, in this paper,
we adopt the reinforcement learning framework to solve the
UAV trajectory design problem in a decentralized manner. To
coordinate multiple UAVs performing the real-time sensing tasks,
we first propose a sense-and-send protocol, and analyze the
probability for successful valid data transmission using nested
Markov chains. Then, we formulate the decentralized trajectory
design problem and propose an enhanced multi-UAV Q-learning
algorithm to solve this problem. Simulation results show that the
proposed enhanced multi-UAV Q-learning algorithm converges
faster and achieves higher utilities for the UAVs in the real-time
task-sensing scenarios.

Index Terms—unmanned aerial vehicle, sense-and-send proto-
col, reinforcement learning, trajectory design.

I. INTRODUCTION

In the upcoming 5G network, the use of UAVs to perform

sensing has been of particular interests, due to their high

mobility, flexible deployment, and low operational cost [1].

Specially, the UAVs have been wildly applied to execute crit-

ical sensing missions, such as traffic monitoring [2], precision

agriculture [3], and forest fire surveillance [4]. In these UAV

sensing applications, the sensory data collected by the UAVs

needs to be transmitted to the base station (BS) immediately

for further real-time data processing. This poses a significant

challenge for the UAVs to sense the task and send the collected

sensory data simultaneously with a satisfactory performance.

In order to enable the real-time sensing applications, the

cellular network controlled UAV transmission is considered

as one promising solution [5], [6], in which the uplink QoS is

guaranteed compared to that in ad-hoc sensing networks [7].

However, it remains a challenge for the UAVs to determine

their trajectories in such cellular UAV networks. When the

UAV is far from the task, it risks in obtaining invalid sensing

data, while if it is far from the BS, the low uplink transmission

quality may lead to difficulties in transmitting the sensory

data to the BS. Therefore, the UAVs need to take both the

sensing accuracy and the uplink transmission quality into

consideration in designing their trajectories. Moreover, it is
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even more challenging when the UAVs belong to different

entities and are uncooperative. Since the spectrum resource is

scarce, the UAVs performing different sensing tasks have the

incentive to compete for the limited uplink channel resources.

In this regard, the UAVs have to consider the movement of

other UAVs, which makes them work in a dynamic environ-

ment. Therefore, a decentralized trajectory design approach is

necessary for the UAVs real-time sensing problem, in which

the location of the task and the BS and the behaviors of the

other UAVs have to be taken in to consideration.

To tackle these challenges, in this paper, we adopt the

reinforcement learning framework to solve the UAV trajectory

design problem in a decentralized manner. In specific, we con-

sider the scenario where multiple UAVs in a cellular network

perform different real-time sensing tasks and transmit the sen-

sory data the BS. To coordinate the UAVs, we first propose a

sense-and-send protocol, and solve the successful transmission

probability in the protocol by using nested Markov chain.

We then formulate the decentralized trajectory design problem

based on the reinforcement learning framework. Under the

framework, we propose an enhanced multi-UAV Q-learning

algorithm to solve the decentralized trajectory design problem.

In literature, most works focused on either the sensing or

the transmission part in UAV networks, instead of considering

UAV sensing and transmission jointly. For example, authors in

[8]–[11] focused on the sensing part. In [8], the autonomous

path planning problem was discussed for a team of UAVs

equipped with vision-based sensing system to search for a

stationary target. In [9], an architecture was proposed to

deal with the cooperation and control of multiple UAVs with

sensing and actuation capabilities for the deployment of loads.

In [10], the optimal cooperative estimation problem of both the

position and velocity of a ground moving target is considered

by using a team of UAVs. In [11], a mobile air quality

monitoring system boarded on the UAV was designed to sense

the real-time air quality and estimate the air quality index maps

at given location.

On the other hand, authors in [12], [13] focused on the

transmission part in UAV networks. In [12], the joint trajectory

and power optimization problem was formulated to minimize

the outage probability in the network, in which the UAV

relayed the transmission of mobile devices. In [13], UAVs

were used as aerial BSs which assisted the BS in providing

connectivity within the cellular network, and an optimization

problem was formulated to maximize the network’s revenue.

In [14], both the sensing and transmission are taken into

consideration, and an iterative trajectory, sensing, and schedul-

ing algorithm was proposed to schedule UAVs’ trajectories in

http://arxiv.org/abs/1809.02934v1


2

a centralized manner, in which the task completion time was

minimized. Nevertheless, the decentralized trajectory design

problem remains to be lack of discussion, which is important

since in practical scenarios the UAVs may belong to different

entities, and thus having the incentives to maximize their own

utilities.

In this paper, the main contributions can be summarized as

follows.

• We propose a sense-and-send protocol to coordinate

UAVs performing real-time sensing tasks, and solve the

probability for successful valid sensory data transmission

in the protocol by using nested Markov chains.

• We adopt the reinforcement learning framework for the

UAV trajectory design problem, based on which an en-

hanced multi-UAV Q-learning algorithm is proposed to

solve the problem in a decentralized manner.

• Simulation results show that the enhanced multi-UAV Q-

learning algorithm converges faster and to higher rewards

of UAVs compared to both single-agent and opponent

modeling Q-learning algorithms.

The rest of this paper is organized as follows. In Section II,

the system model is described. In Section III, we propose the

sense-and-send protocol to coordinate the UAVs performing

real-time sensing tasks. We analyze the performance of the

proposed sense-and-send protocol in Section IV, and solve the

successful transmission probability by using nested Markov

chains. Following that, the reinforcement learning framework

and the enhanced multi-UAV Q-learning algorithm are given

in Section V, together with the analyses of complexity, con-

vergence, and scalability. The simulation results are presented

in Section VI. Finally, the conclusions are drawn in Section

VII.

II. SYSTEM MODEL

As illustrated in Fig. 1, we consider a single cell orthogonal

frequency-division multiple access (OFDMA) network which

consists of N UAVs to perform real-time sensing tasks.

Setting the horizontal location of the BS to be the origin

of coordinates, the BS and UAVs can be specified by 3D

cartesian coordinates, i.e., the i-th UAV can be denoted as

si = (xi, yi, hi), and the BS can be denoted as (0, 0, H0) with

H0 being its height. The UAV i performs its real-time sensing

task i, the location of which is denoted as (Xi, Yi, 0). To

perform real-time sensing task, each UAV continuously senses

the condition of its task, and sends the collected sensory data to

the BS immediately. In this regard, the sensing process and the

transmission process jointly determine the UAVs’ performance

on the real-time sensing tasks. The sensing and transmission

models for the UAV are described in the following.

A. UAV Sensing

To evaluate the sensing quality of the UAV, we utilize the

probabilistic sensing model as introduced in [15], [16], where

the successful sensing probability is an exponential function

of the distance between the UAV and its task. Supposing that

Fig. 1. Illustration on the single-cell UAV network, in which UAVs perform
real-time sensing tasks.

UAV i senses task i for a second, the probability for it to sense

the condition of its task successfully can be expressed as

Prs,i = e−λli , (1)

in which λ is the parameter evaluating the sensing performance

and li denotes the distance between UAV i and its sensing task

i.
It is worth noticing that UAV i cannot figure out whether

the sensing is successful or not from its collected sensory data,

due to its limited on-board data processing ability. Therefore,

UAV i needs to send the sensory data to the BS, and leaves

for the BS to decide whether the sensory data is valid or not.

Nevertheless, UAV i can evaluate its sensing performance by

calculating the successful sensing probability based on (1).

B. UAV Transmission

In the UAV transmission, the UAVs transmit the sensory

data to the BS over orthogonal subchannels (SCs) to avoid

interference. We adopt the 3GPP channel model for evaluating

the urban macro cellular support for UAVs [17], [18].

Denoting the transmit power of UAVs as Pu, the received

signal-to-noise ratio (SNR) at the BS of UAV i can be

expressed as

γi =
Pu‖Hi‖

N010PLa,i/10
, (2)

in which PLa,i denotes the air-to-ground pathloss, N0 denotes

the power of noise at the receiver of the BS, and Hi is the

small-scale fading coefficient. Specifically, the pathloss PLa,i

and small-scale fading Hi should be calculated in two cases

separately, i.e., line-of-sight (LoS) case and non LoS (NLoS)

case. The probability for the channel UAV i-BS to contain a

LoS component is denoted as PrLos,i, and can be calculated

as

PrLoS,i =

{

1, ri ≤ rc,
rc
ri

+ e−ri/p0+rc/p0 , ri > rc,
, (3)

in which ri =
√

x2
i + y2i , p0 = 233.98 log(hi) − 0.95, and

rc = max{294.05 log10(hi)− 432.94, 18}.
When the channel contains a LoS component, the pathloss

from UAV i to the BS can be calculated as PLa,i = PLLoS,i =
30.9 + (22.25 − 0.5 log10(hi)) log(di) + 20 log10(fc), where

fc is the carrier frequency and di is the distance between
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Fig. 2. Illustration on the sense-and-send protocol.

the BS and UAV i. In the LoS case, the small-scale fading

Hi obeys Rice distribution with scale parameter Ω = 1 and

shape parameter K[dB] = 4.217 log10(hi) + 5.787. On the

other hand, when the channel contains none LoS components,

the pathloss from UAV i to the BS can be calculated as

PLa,i = PLNLoS, = 32.4+(43.2−7.6 log10(hi))×log10(di)+
20 log10(fc), and the small-scale fading Hi obeys Rayleigh

distribution with zero means and unit variance.

To achieve a successful transmission, the SNR at the BS

needs to be higher than the decoding threshold γth, otherwise,

the uplink transmission is failed. Therefore, each UAV can

evaluate its probability of successful uplink transmission by

calculating the probability for the SNR at BS to be larger than

γth. The successful uplink transmission probability PrTx,i for

UAV i can be calculated as

PrTx,i =

PrLos,i(1−Fri(χLoS,i))+(1−PrLoS,i)(1−Fra(χNLoS,i)),
(4)

in which χNLoS,i = N010
0.1PLNLoS,iγth/Pu, χLoS,i =

N010
0.1PLLoS,iγth/Pu, Fri(x) = 1−Q1(

√
2K,x

√

2(K + 1))
is the cumulative distribution function (CDF) of the Rice

distribution with Ω = 1 [19], and Fra(x) = 1 − e−x2/2 is

the CDF of the Rayleigh distribution with unit variance. Here

Q1(x) denotes the Marcum Q-function of order 1 [20].

III. SENSE-AND-SEND PROTOCOL

In this section, we propose a sense-and-send protocol to

coordinate the UAVs performing the sensing tasks. We first

introduce the sense-and-send cycle, which consists of the bea-

coning phase, the sensing phase and the transmission phase.

After that, we describe the uplink SC allocation mechanism

of the BS.

A. Sense-and-Send Cycle

In this paper, we propose that the UAVs perform the

sensing tasks in a synchronized iterative manner. Specifically,

the sensing process is divided into cycles indexed by k. In

each cycle, each UAV senses its task and then reports the

collected sensory data to the BS for data processing. In order to

synchronize the transmissions of the UAVs, we further divide

each cycle into frames, which serves as the basic time unit

for SC allocation. In specific, we assume that the collected

sensory data of each UAV in a cycle can be converted into a

single data frame with the same length, and the duration of

the transmission and acknowledgement of that data frame is

denoted as a frame. Based on that, we denote the number of

frames that contained in each cycle as Tc.

The cycle consists of three separated phases, i.e., the

beaconing phase, sensing phase and the transmission phase,

which contain Tb, Ts and Tu frames, respectively. The duration

of the beaconing phase and sensing phase is considered to be

fixed and determined by the time necessary in transmitting

beacon frames and collecting sensory data. On the other hand,

the duration of the transmission phase is decided by the BS

considering the network conditions. As illustrated in Fig. 2, we

consider that the sensing and transmission phases are separated

to avoid the possible interference between them.1

In the beaconing phase, each UAV sends the its location to

the BS on its beacon through the control channel, which can

be obtained by the UAV from the GPS positioning. Collecting

the beacon frames sent by the UAVs, the BS then broadcasts

to inform the UAVs of the general network settings as well as

the locations of all the UAVs. By this means, UAVs obtain the

locations of other UAVs in the beginning of each cycle. Based

on the acquired information, each UAV then decides its flying

trajectory in the cycle and informs the BS by transmitting

another beacon.

In the sensing phase, each UAV senses the task for Ts

frames continuously, during which it collects the sensory data.

In each frame of the transmission phase, the UAVs attempt to

transmit the collected sensory data to the BS. In specific, there

are four possible situations for each UAV which are described

as follows.

• No SC Assigned: In this case, UAV i is not assigned any

uplink SCs by the BS, and therefore cannot transmit its

collected sensory data to the BS. It will wait for the BS

to assign a SC to it to transmit sensory data.

• Failed Uplink Transmission: In this case, UAV i is as-

signed an uplink SC by the BS, however the transmission

is unsuccessful due to the low SNR at the BS. Therefore,

UAV i attempts to send the sensory data again to the BS

in the next frame.

• Successful Uplink Transmission: In this case, UAV i
is assigned an uplink SC by the BS, and it succeeds in

sending its collected sensory data to the BS.

• Idle Frame: In this case, UAV i has successfully sent its

sensory data in the former frames, and will keep idle in

the rest of the cycle until the beginning of the next cycle.

Note that in the model we have assumed that the transmis-

sion of sensory data occupies a single frame. Nevertheless, it

1 For example, the UAV’s transmission will interfere with its sensing if the
UAV tries to sense the electromagnetic signal in the nearby frequency band
of its transmission.
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can be extended to the case where the sensory data transmis-

sion takes n frames straightforwardly. In that case, the channel

scheduling unit becomes n frames instead of a single frame.

B. Uplink Subchannel Allocation Mechanism

Since the uplink SC resources are usually scarce, thus

in each frame of the transmission phase, there may exist

more UAVs requesting to transmit their sensory data than the

number of available uplink SCs. To deal with this problem, the

BS adopts the following SC allocation mechanism to allocate

the uplink SCs to the UAVs.

In each frame, the BS allocates the C available uplink

SCs to the UAVs with uplink requirements, in order to

maximize the sum of successful transmission probabilities

of uplink UAVs. Based on the matching algorithm in [21],

it is equivalent that the BS allocates the C available SCs

to the first C UAVs with the highest successful transmis-

sion probabilities in the frame. The successful transmission

probabilities of UAVs can be calculated by the BS based on

(4), using the information on the trajectories of the UAVs

collected in the beaconing phase. Moreover, denoting the

transmission state of the UAVs in the k-th cycle as the vector

I
(k)(t), I

(k)(t) = (I
(k)
1 (t), ..., I

(k)
N (t)). Here, I

(k)
i (t) = 0

if UAV i does not succeed in transmitting its sensory data

to the BS at the beginning of the t-th frame, otherwise,

I
(k)
i (t) = 1. Based on the above notations, the uplink SC

allocation can be expressed by the channel allocation vector

ν
(k)(t) = (ν

(k)
1 (t), ..., ν

(k)
N (t)), in which the elements can be

expressed as follows.

ν
(k)
i (t) =

{

1, P r
(k)
Tx,i(t)I

(k)
i (t) ≥ (Pr

k
Tx(t)I

(k)(t))C ,

0, o.w.
.

(5)

Here, ν
(k)
i (t) is the channel allocation indicator for UAV

i, i.e., ν
(k)
i (t) = 1 only if an uplink SC is allocated to

UAV i in the t-th frame, Pr
(k)
Tx,i(t) denotes the successful

transmission probability of UAV i in frame t of k-th cycle,

and (Pr
(k)
Tx (t)I

(k)(t))C denotes the C-th largest successful

transmission probabilities among the UAVs who have not

succeeded in uploading sensory data before the t-th frame.

Since the location of UAV i determines UAV i’s distance to

the BS, it influences the successful uplink transmission proba-

bility. As the UAVs which have larger successful transmission

probabilities are more likely to be allocated SCs, the UAVs

have the motivation to compete with each other by selecting

trajectories where they have higher probabilities to be allocated

SCs. Consequently, the UAVs need to design their trajectories

with the consideration of their distance to the BS and the task,

as well as the trajectories of other UAVs.

IV. SENSE-AND-SEND PROTOCOL ANALYSIS

In this section, we analyze the performance of the pro-

posed sense-and-send protocol by calculating the probability

of successful valid sensory data transmission, which plays an

important role in solving the UAV trajectory design problem.

We first specify the state transition of UAVs in the sensing

task by using nested bi-level Markov chains. The outer Markov
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Fig. 3. Illustration on outer Markov chain of UAV sensing.

chain depicts the state transition of UAV sensing, and the inner

Markov chain depicts the state transition of UAV transmission,

which will be described in the following parts, respectively.

A. Outer Markov Chain of UAV Sensing

In the outer Markov chain, the state transition takes place

among different cycles. As shown in Fig. 3, for each UAV,

it has two states in each cycle, i.e., state Hf to denote that

the sensing is failed, and state Hs to denote that the sensing

is successful. Supposing the successful sensing probability of

UAV i in the k-th cycle is p
(k)
s,i , UAV i transits to the Hs

state with probability pks,i and transits to the Hf state with

probability (1 − p
(k)
s,i ) after the k-th cycle. The value at the

right side of the transition probability denotes the number of

valid sensory data that have been transmitted successfully to

the BS in the cycle.

Besides, we denote the probability for UAV i to successfully

transmit the sensory data to the BS as p
(k)
u,i . Therefore, UAV

i successfully transmits valid sensory data to the BS with the

probability p
(k)
s,i p

(k)
u,i , and with probability p

(k)
s,i (1 − p

(k)
u,i ), no

valid sensory data is transmitted to the BS though the sensing

is successful in the k-th cycle. The probability p
(k)
u,i can be

analyzed by the inner Markov chain of UAV transmission in

the next subsection, and p
(k)
s,i can be calculated as follows.

Since the change of UAVs’ locations during each frame

is small, we assume that the location of each UAV is fixed

within each frame. Therefore, the location of UAV i in the k-

th cycle can be expressed as a function of the frame index t,

i.e., s
(k)
i (t) = (x

(k)
i (t), y

(k)
i (t), h

(k)
i (t)), t ∈ [1, Tc]. Similarly,

the distance between UAV i and its task can be expressed as

l
(k)
i (t), and the distance between the UAV and the BS can

be expressed as d
(k)
i (t). Moreover, we assume that the UAVs

move with uniform speed and fixed direction in each cycle

after the beginning of the sensing phase. Therefore, at the t-th
frame of the k-th cycle, the location of UAV i is

s
(k)
i (t) = s

(k)
i (Tb) +

t

Tc
(s

(k+1)
i (1)− s

(k)
i (Tb)), t ∈ [Tb, Tc].

(6)

Since each UAV senses for the first Ts frames in the k-th

cycle, the successful sensing probability of UAV i in the cycle

can be calculated as

p
(k)
s,i =

Ts+Tb
∏

t=Tb+1

(Pr
(k)
s,i (t))

tf =

Ts+Tb
∏

t=Tb+1

e−λtf l
(k)
i

(t). (7)

in which tf denotes the duration of a frame.
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Fig. 4. Illustration on inner Markov chain of UAV 1’s transmission given
C = 1, N = 3, Tu = 3.

B. Inner Markov Chain of UAV Transmission

For simplicity, we omit the superscript k indicating the

index of the cycle. Since the general state transition diagram

is rather complicated, we illustrate the inner Markov chain by

giving an example where the number of available uplink SC

C = 1, the number of UAVs N = 3 and the number of uplink

transmission frames Tu = 3.

Taking UAV 1 as an example, the state transition diagram

is given in Fig. 4. The state of the UAVs in frame t can be

represented as the transmission state vector I(t) as defined in

Section III-B. Initially t = Tb+Ts+1, the transmission state is

I(Tb+Ts+1) = {0, 0, 0}, which indicates that UAVs 1, 2, and

3 have not succeeded in uplink transmission at the beginning

of the transmission phase, and all of them are competing for

the uplink SCs. In the next frame, the transmission state will

transit to the Successful Tx state for UAV 1, if the sensory

data of UAV 1 has been successfully transmitted to the BS.

The probability for this transition equals to PrTx,1(Tb+Ts+
1)ν1(Tb + Ts + 1), i.e., the probability for successful uplink

transmission if a SC is allocated to UAV 1, otherwise, it equals

to zero.

However, if UAV 1 does not succeed in uplink transmission,

the transmission transits into other states, which is decided by

whether other UAVs succeed in uplink transmission, e.g., it

transits to I(Tb+Ts+2) = (0, 0, 1) if UAV 3 succeeds in the

first transmission frame. Note that when other UAVs succeed

in transmitting sensory data in the previous frames, UAV 1

will face less competitors in the following frames, and thus,

it have a larger probability to transmit successfully. Finally,

when t = Tc, i.e., the last transmission frame in the cycle,

UAV 1 will enter the Failed Tx state if it does not transmit the

sensory data successfully, which means that the sensory data

in this cycle is failed to be uploaded. Therefore, to obtain the

pu,i in the outer Markov chain, it is equivalent to calculate

the absorbing probability of successful Tx state in the inner

Markov chain.

From the above example, it can be observed that the

following general recursive equation holds for UAV i when

t ∈ [Tb + Ts + 1, Tc],

Pru,i{t|I(t)} = PrTx,i(t)νi(t)

+
∑

I(t+1),
Ii(t+1)=0

Pr{I(t + 1)|I(t)}Pru,i{t+ 1|I(t+ 1)}, (8)

in which Pr{I(t + 1)|I(t)} denotes the probability for the

transmission state vector of the (t+1)-th frame to be I(t+1)
given that of the t-th frame to be I(t), and Pru,i{t|I(t)}
denotes the probability for UAV i to transmit sensory data

successfully after the t-th frame in the current cycle, given

the transmission state I(t)(Ii(t) = 0).
Since the successful uplink transmission probabilities of

the UAVs are independent, we have Pr{I(t + 1)|I(t)} =
∏N

i=1 Pr{Ii(t + 1)|Ii(t)}, in which Pr{Ii(t + 1)|Ii(t)} can

be calculated as follows.


















Pr{Ii(t+ 1) = 0|Ii(t) = 0} = 1− PrTx,i(t),

P r{Ii(t+ 1) = 1|Ii(t) = 0} = PrTx,i(t),

P r{It(t+ 1) = 0|Ii(t) = 1} = 0,

P r{It(t+ 1) = 1|Ii(t) = 1} = 1.

(9)

Here, the first two equations hold due to that the successful

transmission probability in the t-th frame is PrTx,i(t). The

third and forth equations indicate that the UAVs keep idle

in the rest of frames once they have successfully sent their

sensory data to the BS.

Based on equation (8), the recursive algorithm can be used

to solve Pru,i{t|I(t)}, which is described in Alg. 1. There-

fore, the successful transmission probability can be obtained

by pu,i = Pru,i{Tb + Ts + 1|I(Tb + Ts + 1)}. In summary,

the successful valid sensory data transmission probability for

UAV i in the k-th cycle can be calculated as

p
(k)
sTx,i = p

(k)
s,i p

(k)
u,i . (10)

C. Analysis on Spectrum Efficiency

In this paper, we evaluate the spectrum efficiency by the av-

erage number of valid sensory data transmissions per second,

which is denoted as Nvd. The value of Nvd is influenced by

many aspects, such as the distance between the BS and the

tasks, the number of available SCs, the number of UAVs in

the network, and the duration of the transmission phase.

In this paper, we analyze the influence of the duration of

transmission phase Tu on Nvd in a simplified case. Assuming

all the UAVs are equivalent, i.e., they have the same probabil-

ities for successful uplink transmission in a frame, the same

probabilities for successful sensing and the same probability

to be assigned sub-channels. Based on the above assumptions,

the following proposition can be derived.

Proposition 1: (Optimal duration of transmission phase)

When the UAVs are equivalent, and have the probability for

successful sensing ps, the probability for successful uplink

transmission pu, then Nvd first increases then decreases with

the increment of Tu, and the optimal T ∗
u can be calculated as

T ∗
u =

N

C ln(1− pu)
(1 +W−1(−

(1− pu)
CTu
N

e
))− Tb − Ts,

(11)
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Algorithm 1 Algorithm for successful transmission probabil-

ity in a cycle.

Input: Frame index (t); Channel state vector at current frame

(I(t));Length of beaconing phase (Tb); Length of sensing

phase (Ts); Length of transmission phase (Tu); Location

of UAVs in each frame ((xi(t
′), yi(t

′), hi(t
′)), ∀t′ = Tb+

Ts + 1, ..., Tc, i = 1, ..., N ); Number of channels (C).

Output: Pru,i{t|I(t)}, i = 1, ..., N ;

1: if t = Ts + 1 then

2: Set I(t) := 0, Pru,i{t|I(t)} := 0, i = 1, ..., N ;

3: else if t > Tb + Ts + Tu then

4: return Pru,i{t|I(t)} = 0, i = 1, ..., N .

5: end if

6: Calculate the successful uplink transmission probabilities

PrTx,i(t) of each UAV i in current frame t based on (4).

7: Determine the SC allocation indicator ν(t) based on (5).

8: for Ii(t) = 0 do

9: Pru,i{t|I(t)} := PrTx,i(t)νi(t).
10: end for

11: for all I(t + 1) with Pr{I(t + 1)|I(t)} > 0 do

12: Solve Pru,i{t+1|I(t+1)} by calling Alg. 1, in which

t := t + 1 and I(t) := I(t + 1) and other parameters

hold.

13: Pru,i{t|I(t)} :=Pru,i{t|I(t)}
+ Pr{I(t + 1)|I(t)}Pru,i{t+ 1|I(t+ 1)}.

14: end for

15: return Prt,i{t|I(t)}, i = 1, ..., N .

in which W−1(·) denotes the lower branch of Lambert-W

function [22].

Proof: See Appendix A. �

The above proposition in special case sheds light on the

relation between spectrum efficiency and duration of transmis-

sion phase in general cases. In general cases where the UAVs

are not equivalent, the spectrum efficiency also first increases

then decreases with the duration of transmission phase. This

is because when Tu = 0, Nvd = 0, and when Tu → ∞,

Nvd → 0.

V. DECENTRALIZED TRAJECTORY DESIGN

In this section, we first describe the decentralized trajectory

design problem of UAVs, and then formulate a reinforcement

learning framework for the UAVs to determine their trajec-

tories. After that, we describe the single-agent and multi-

agent reinforcement learning algorithms under the framework,

and proposed an enhanced multi-UAV Q-learning algorithm to

solve the UAV trajectory design problem.

A. UAV Trajectory Design Problem

Before the formulation of the trajectory design problem,

we first set up a model for the UAV trajectory. In this paper,

we focus on the cylindrical region with the maximum height

hmax and the radius of the cross section Rmax which satisfies

Rmax = max{Ri

∣

∣Ri =
√

X2
i + Y 2

i , ∀i ∈ [1, N ]}, since it is

inefficient for the UAVs to move further than the farthest task.

Fig. 5. Illustration on the set of available spatial points that the UAV i can
reach in the next cycle.

Moreover, we assume that the space is divided into a finite

set of discrete spatial points Sp, which is arranged in a square

lattice pattern as shown in Fig. 5.

To obtain the trajectories of the UAVs, we assume that the

UAVs can select their flying directions at the beginning of

each cycle. For example, UAV i locates at the spatial point

s
(k)
i = (x

(k)
i , y

(k)
i , h

(k)
i ) ∈ Sp at the beginning of the k-th

cycle, and decides which spatial point it will move to next,

which is equivalent to determining its flying direction in this

cycle. After the UAV has selected its flying direction, it will

move along the direction towards the destination point with a

uniform speed in this cycle.

The available spatial points that UAV i can reach is within

the maximum distance it can fly in a cycle, which is denoted

as D. Assuming that the distance between two adjacent spatial

points is ∆ = D/
√
3, and thus, the available spatial point UAV

i can fly to in the k + 1 cycle is within a cube centered at

(x
(k)
i , y

(k)
i , h

(k)
i ) with the length of side 2∆, as illustrated in

Fig 5. It can be seen that there are at most 27 available flying

directions can be selected by the UAVs in each cycle. We

denote the set of all the vectors from the center to the available

spatial points in the cube as the available action set A of the

UAVs. However, it is worth noticing that when the UAV is

at the marginal location (e.g., flying at the minimum height),

there are less available actions to be selected. To handle the

differences among the available action sets at different spatial

points, we denote the available action set at the spatial point

s as A(s).
In this paper, we consider the reward of each UAV to be

the number of successful valid sensory data transmissions

in the previous cycles. Therefore, the UAVs have incentive

to maximize the total amount of successful valid sensory

data transmission by designing their trajectories. Besides, we

assume that the UAVs have discounting valuation on the

successfully transmitted valid sensory data. For the UAVs in

the k-th cycle, the successfully valid sensory data transmitted

in the k′-th cycle is worth only ρ|k
′−k| (ρ ∈ [0, 1)) the

successful valid sensory data transmitted in the current cycle,

due to the timeliness requirements of real-time sensing tasks.

Therefore, at the beginning of k-th cycle, the expected sum

of discounted rewards of UAV i can be denoted as G
(k)
i =

∑∞
n=0 ρ

nR
(k+n)
i , where R

(k)
i = 1 if valid sensory data is

successfully transmitted to the BS by UAV i in the k-th cycle,

otherwise, R
(k)
i = 0. Based on the above assumptions, the
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UAV trajectory design problem can be formulated as

max
a
(k)
i

∈A

∞
∑

n=0

ρnR
(k+n)
i , (12)

s.t. s
(k)
i + a

(k)
i ∈ Sp, (12a)

B. Reinforcement Learning Framework

Generally, the UAV trajectory design problem (12) is hard

to solve since the rewards of the UAVs in the future cycles

are influenced by the trajectories of all UAVs, which are

determined in a decentralized manner and hard to model.

Fortunately, the reinforcement learning is able to deal with

the problem of agent programming in environment with defi-

cient understanding, which removes the burden of developing

accurate models and solving the optimization with respect to

those models.

For this reason, we adopt the reinforcement learning to solve

the UAV trajectory design problem in this paper. To begin

with, we formulate a reinforcement learning framework for

the problem. With the help of [23], the reinforcement learning

framework can be given as follows, in which the superscript

k is omitted for simplicity.

Definition 1: A reinforcement learning framework for

UAV trajectory design problem is described by a tuple <
S1, ...,SN ,A1, ...,AN , T , pR,1, ..., pR,N , ρ >, where

• S1, ...,SN are finite state spaces of all the possible loca-

tions of the N UAVs, and the state space of UAV i equals

to the finite spatial space, i.e., Si = Sp, ∀i ∈ [1, N ].
• A1, ...,AN are the corresponding finite sets of actions

available to each agents. The set Ai consists of all the

available action of UAV i, i.e., Ai = A, ∀i ∈ [1, N ].
• T :

∏N
i=1 Si ×

∏N
i=1Ai → (Sp)N is the state transition

function. It equals to the locations of the UAVs in the next

cycle for the given location profile and action profile of

the UAVs in the current cycle.

• pR,1, ..., pR,N :
∏N

i=1 Si ×
∏N

i=1Ai → Π(0, 1)N , i =
1, ..., N represents a reward function for each UAV. In

specific, it maps the UAVs’ location profile and action

profile of the current cycle to the probability for UAV

i (i,= 1, ..., N ) to get unit reward from performing

successful valid sensory data transmission.

• ρ ∈ [0, 1) is the discount factor, which indicates UAVs’

evaluation of the rewards that obtained in the future (or

in the past).

In the framework, the UAVs are informed of the rewards

in the last cycle by the BS. Specifically, we assume that the

BS informs each UAV whether the sensory data transmitted

in the previous cycle (if exists) is valid sensory data at the

beginning of the next cycle. For each UAV, it considers its

reward in the k-th cycle to be 1 if the BS informs that the valid

sensory data has been received by the BS successfully at the

beginning of the (k + 1)-th cycle. The probability for UAV i
to obtain one reward after the cycle is equal to the probability

for it to transmit valid sensory data to the BS successfully

in the cycle, i.e., pR,i = psTx,i. Since the probability of

successful valid sensory data transmission is influenced by

both the successful sensing probability and the successful

Algorithm 2 Single-agent Q-learning Algorithm for UAV

Trajectory Design of UAV i.

Input: Learning ratio sequence ({αk} ∈ (0, 1]); Exploration

ratio ({ǫk} > 0);

1: Initialize Qi(si, ai) := 0, ∀si ∈ Sp, ai ∈ Ai(si),
πi(si, ai) :=

1
|A(si)|

.

2: for each cycle k do

3: With probability ǫ(k), choose action ai from the strategy

at the state πi(si), or with probability 1−ǫ(k), randomly

choose an available action for exploration;

4: Perform the action ai in the k-th cycle;

5: Observe the transited state s′i and the reward Ri;

6: Select action a′i in the transited state s′i according to

the strategy in state s′i, i.e., πi(s
′
i);

7: Update the Q-function for the former state-action pair,

i.e., Qi(si, ai) := Qi(si, ai) + αk(Ri + ρQ(s′i, a
′
i) −

Qi(si, ai));
8: Update the strategy at state si as πi(si) :=

argmaxm Qi(si,m);
9: Update the state si := s′i for the next cycle;

10: end for

transmission probability, the UAV’s trajectory learning process

is associated with the sensing and transmission processes

through the obtained reward in each cycle.

Under the reinforcement learning framework for the UAV

trajectory design, the following two kinds of reinforcement

learning algorithms can be adopted, which are single-agent

Q-learning algorithm and multi-agent Q-learning algorithm.

1) Single-agent Q-learning Algorithm: One of the most ba-

sic reinforcement learning algorithm is single-agent Q-learning

algorithm [24]. It is a form of model-free reinforcement

learning and provides a simple way for the agent to learn how

to act optimally. The algorithm learns the optimal state-action

value function Q∗, which then defines the optimal policy. In

its simplest form, the agent maintains a table containing its

current estimates of Q∗(s, a). It observes the current state s
and selects the action a that maximizes Q(s, a) with some

exploration strategies. Q-learning has been studied extensively

in single-agent tasks where only one agent is acting alone in

an unchanging environment.

In the UAV trajectory design problem, multiple UAVs take

actions at the same time. When each UAV adopts the single-

agent Q-learning algorithm, it assumes that the other agents

are part of the environment. Therefore, in the UAV trajectory

design problem, the single-agent Q-learning algorithm can be

adopted as follows. For UAV i, upon receiving a reward Ri

after the end of the cycle and observing the next state s′i, it

updates its table of Q-values according to the following rule,

Qi(si, ai)← Qi(si, ai)+α(Ri+ρ max
a′

i
∈A(si)

Qi(si, ai)), (13)

where α ∈ (0, 1) is the learning rate. With the help of [25], the

single-agent Q-learning algorithm for UAV trajectory design

of UAV i can be summarized in Alg. 2.

2) Multi-agent Q-learning Algorithm: Although single-

agent Q-learning algorithm has many favorable properties
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such as small state space and easy implementation, it lacks

of consideration on the states and the strategic behaviors of

other agents. Therefore, we adopt a multi-agent Q-learning

algorithm called opponent modeling Q-learning to solve the

UAV trajectory design problem, which enables the agent to

adapt to other agents’ behaviors.

Opponent modeling Q-learning is an effective multi-agent

reinforcement learning algorithm [26], [27], in which explicit

models of the other agents are learned as stationary dis-

tributions over their actions. These distributions, combined

with learned joint state-action values from standard temporal

differencing, are used to select an action in each cycle.

Specifically, at the beginning of the cycle, UAV i selects

an action ai to maximize the expected discounted reward

according to the observed frequency distribution of other

agents’ action in the current state s, i.e.,

ai = πi(s) = argmax
a′′

i

∑

∑
a′′

−i

Φ(s,a′′
−i)

n(s)
Qi(s, (a

′′
i ,a

′′
−i))

(14)

in which the location profile s = (s1, ..., sN ) observed by

agent i is adopted as state, πi(s) denotes the strategy of UAV

i in state s, Φ(s,a′′
−i) denotes the number of times for the

agents other than agent i to select action profile a
′′
−i in the

state s, and n(s) is the total number of times the state s has

been visited.

After the agent i observes the transited state s
′, the action

profile (ai,a−i), and the reward in the previous cycle after

performing the action ai, it will update its table of Q-value as

follows.

Qi(s, (ai,a−i))=(1−α)Qi(s, (ai,a−i)) +α(Ri + ρVi(s
′)),

(15)

in which Vi(s
′) = maxa′′

i

∑

a′′

−i

Φ(s′,a′′

−i)

n(s′) Q(s, (a′′i ,a
′′
−i)) in-

dicating that agent i considers the action taken in the new

state to maximize the expected discounted reward based on the

empirical action profile distribution. With the help of [27], the

multi-agent Q-learning algorithm for UAV trajectory design

can be summarized in Alg. 3.

C. Enhanced Multi-agent Q-learning Algorithm for UAV Tra-

jectory Design

In the opponent modeling multi-agent reinforcement learn-

ing algorithm, UAVs face need to tackle too many state-

action pairs, resulting in a slow convergence speed. Therefore,

we enhance the opponent modeling Q-learning algorithm in

the UAV trajectory design problem by reducing the available

action set and adopting an model-based reward representation.

These two enhancing approaches are elaborated as follows,

and the proposed enhanced multi-UAV Q-learning algorithm

is given in Alg. 4.

1) Available Action Set Reduction: It can be observed that

although the UAVs are possible to reach all the location

points in the finite location space Sp, it makes no sense for

the UAVs to move away from the vertical plane passing the

BS and their tasks, i.e. the BS-task plane, which descreases

the successful sensing probability as well as the successful

transmitting probability. Therefore, we confine the available

Algorithm 3 Opponent Modeling Q-learning Algorithm for

UAV Trajectory Design of UAV i.

Input: Learning ratio sequence ({α(k)} ∈ (0, 1]); Explo-

ration ratio sequence ({ǫ(k)} > 0);

1: Initialize Qi(s, (ai,a−i)) := 0, ∀s ∈ ∏N
i Si, ai ∈

Ai(si),a−i ∈
∏N

j 6=iAjπi(s, ai) :=
1

|A(s)| .

2: for each cycle k do

3: With probability ǫ(k), choose action ai from the strategy

at the state πi(s), or with probability 1−ǫ(k), randomly

choose an available action for exploration;

4: Perform the action ai in the k-th cycle;

5: Observe the transited state s
′ and the reward Ri;

6: Select action a′i in the transited state s
′ according to

the strategy in state s
′ according to (14);

7: Update the Q-function for the former state-action pair

according to (15);

8: Update the strategy at state s to the action that maxi-

mizes the expected discounted reward according to (14);

9: Update the state s := s
′ for the next cycle;

10: end for

action set of the UAV to the actions which does not increase

the horizontal distance between it and the BS-task plane,

which is shown in Fig. 6 (the arrows).

Ideally, the UAVs should be in the BS-task plane and only

move within the plane. However, since the location space is

discrete, the UAV cannot only move within the BS-task plane

in general, and needs to deviate from the plane in order to

reach different locations near the plane. Therefore, we mitigate

the constraint by allowing the UAV to move to the location

from which the distance to the BS-task plane is within ∆, as

the spots shown in Fig. 6. The reduced available action set of

UAV i at state si = (xi, yi, hi) can be defined as follows.

Definition 2 (Reduced available action set of UAV i):
Suppose UAV i is at the state si = (xi, yi, hi), denote the

location of its task as Si = (Xi, Yi, 0), and denote the location

of BS as S0 = (0, 0, H0), the action a = (ax, ay, ah) in

the reduced available action set A+
i (si) satisfies the following

conditions.

1) Dist(si + a;Si, S0) ≤ Dist(si;Si, S0) or Dist(si +
a;Si, S0) ≤ ∆;

2) xi + ax ∈ [min(xi, Si, 0),max(xi, Si, 0)],
yi + ay ∈ [min(yi, Yi, 0),max(yi, Yi, 0)], and

hi + ah ∈ [hmin, hmax].

Here Dist(s;Si, S0) denotes the horizontal distance between

the location s to the vertical plane passing through Si and S0.

In Def. 2, condition 1) limits the actions to those leading

the UAV to a location near the BS-task plane, and condition

2) stops the UAV from moving away from the cross region

between the location of its task and the BS.

Moreover, instead of initializing Q-function for all the

possible state-action pair at the beginning, we propose that the

UAVs initialize the Q-function only when the state is actually

reached, and the actions are in the reduced available action

set of the current state. In this way, the state sets of UAVs are
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Algorithm 4 Enhanced Multi-UAV Q-learning Algorithm for

Trajectory Design of UAV i.

Input: Learning ratio sequence ({α(k)} ∈ (0, 1]); Explo-

ration ratio ({ǫ(k)} > 0);

1: for each cycle k do

2: Obtain the available action set A+
j (sj), ∀j ∈ [1, N ] for

the current state s according to Def. 2.

3: if state s has not been reached before then

4: Initialize Qi(s,a) := psTx,i(s,a), ∀s ∈
∏N

i Si, a ∈
∏N

j=1A+
j (sj), πi(s, ai) :=

1
|A+

i
(s)|

.

5: end if

6: With probability ǫ(k), choose action ai from the strategy

at the state πi(s), or with probability 1−ǫ(k), randomly

choose an available action for exploration;

7: Perform the action ai in the k-th cycle;

8: Observe the transited state s
′ and the action profile a

in the previous state;

9: Select action a′i in the transited state s
′ according to

the strategy in state s
′ according to (14);

10: Calculate the successful valid sensory data transmission

probability in the previous state transition p
(k)
sTx,i(s,a)

and consider it as the reward R̂i.

11: Update the Q-function for the former state-action pair

according to (15), substituting Ri with R̂i;

12: Update the strategy at state s to the action that maxi-

mizes the expected discounted reward according to (14);

13: Update the state s := s
′ for the next cycle;

14: end for

Fig. 6. Illustration on the constrained available action set of UAV i.

reduced to some smaller sets, which makes the reinforcement

learning more effective and converge faster.

2) Model-based Reward Representation: In both the single-

agent Q-learning algorithm and the opponent modeling Q-

learning algorithm, the UAVs update their Q-values based

on the information provided by the BS, which indicates the

validity of the latest transmitted sensory data. Nevertheless,

since the UAVs can only observe the reward to be either 1

or 0, the Q-functions converge slowly and the performance of

the algorithms is likely to be poor.

Therefore, in this paper, we propose the UAVs update

their Q-functions based on the probability of successful valid

sensory data transmission obtained in Section IV. In other

words, UAV i calculates the probability psTx,i after observing

the state-action profile (s, (ai,a−i)) in the previous cycle

according to (10), and considers it as the reward Ri for the

k-th cycle.

Moreover, to make the reinforcement learning algorithm

converge more quickly, in the initialization of the enhanced

multi-UAV Q-learning algorithm, we propose that UAV i
initializes its Qi(s, (ai,a−i)) with the calculated psTx,i for

the state-action pair. In this way, the update of the Q-function

is more accurate and the reinforcement learning algorithm is

expected to have higher convergence speed.

Remark (Signaling in UAVs’ learning algorithms) In the

above mentioned reinforcement learning algorithms, UAVs

need to know the locations of themselves in the beginning

of each cycle, and the rewards in the last cycle associated

with their actions taken. Besides, for multi-agent Q-learning

algorithm and the proposed enhanced multi-UAV Q-learning

algorithm, UAVs also need to know the locations of other

UAVs before determine their flying directions in each cycle.

This information gathering can be done in beaconing phase

of the cycle as described in Section III-A, in which the BS

can include the rewards of UAVs in the last cycle in the

broadcasting frame.

D. Analysis of Reinforcement Learning Algorithms

In the final part of this section, we analyze the convergence,

the complexity, and the scalability of the proposed reinforce-

ment learning algorithms.

1) Convergence Analysis: For the convergence of the rein-

forcement learning algorithms, it has been proved in [28] that

under certain conditions, single agent Q-learning algorithm is

guaranteed to converge to the optimal Q∗. In consequence, the

policy π of the agent converges to the optimal policy π∗. It

can be summarized in the following Theorem 1.

Theorem 1: (Convergence of Q-learning Algorithm) The

Q-learning algorithm given by

Q(k+1)(s(k),a(k)) =
(

1− α(k)
)

Q(k)(s(k), a(k)) (16)

+ α(k)[R(s(k), a(k)) + γmax
a′

Q(s(k+1), a′)]

converges to the optimal Q∗ values if

1) The state and action spaces are finite.

2)
∑

k α
(k) =∞ and

∑

k(α
(k))2 <∞.

3) The variance of R(s, a) is bounded.

Therefore, in the multi-agent reinforcement learning cases,

if other agents play, or converge to stationary strategies, the

single-agent reinforcement learning algorithm also converges

to an optimal response.

However, it is generally hard to prove convergence with

other players that are simultaneously learning. This is because

that when agent is learning the value of its actions in the

presence of other agents, it is a non-stationary environment.

Thus, the convergence of Q-values is not guaranteed. The the-

oretical convergence of the Q-learning in multi-agent cases are

guaranteed only in few situations such as iterated dominance

solvable games and team games [25]. Like single-agent Q-

learning algorithm, the convergence of opponent modeling Q-

learning is not generally guaranteed, except for in the setting
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of iterated dominance solvable games and team matrix game

[27].

Therefore, in this paper, we adopt α(k) = 1/k2/3 in [29]

which satisfies the conditions for convergent in single-agent

Q-learning, and analyze the convergence of the reinforcement

learning in the multi-agent case through simulation results

which will be provided in Section VI.
2) Complexity Analysis: For the single-agent Q-learning

algorithm, the computational complexity in each iteration is

O(1), since the UAV does not consider the other UAVs in the

learning process. For the multi-agent Q-learning algorithm, the

computational complexity in each iteration is O(2N ), due to

the calculation of the expected discounted reward in (14).

As for the proposed enhanced multi-UAV Q-learning al-

gorithm, each UAV needs to calculate the probability for

successful valid data transmission based on Alg. 1. It can be

seen that the recursive Alg. 1 runs for at most 2CTu times

and is of complexity O(N), which is smaller than O(2N ).
Therefore the complexity of the proposed enhanced algorithm

is also O(2N ), due to the expectation over the joint action

space.

Although the computational complexity of the enhanced

multi-UAV Q-learning algorithm in each iteration is in the

same order with opponent modeling Q-learning algorithm, it

reduces the computational complexity significantly and speeds

up the convergence by the following means.

(1) Due to the available action set reduction, the available

action set of each UAV is at least reduced to one-half its

original size. This makes the joint action space to be 2N

times smaller.

(2) The reduced available action set leads to a much smaller

state space of each UAV. For example, for UAV i and

its task at (Xi, Yi, 0), the original size of its state space

can be estimated as πR2
max(hmax − hmin)/∆

3, and the

size of its state space after available action set reduction

is 2(Xi + Yi)(hmax − hmin)/∆
2, which is 2∆/(πRmax)

smaller than the original one.

(3) The proposed algorithm adopts model-based reward rep-

resentation, which makes the Q-value updating in the

enhanced multi-UAV Q-learning algorithm to be more

precise, and saves the number of iterations needed to

estimate the accurate Q-values of the state-action pairs.

3) Scalability Analysis: With the growth of the number of

UAVs, the state spaces of UAVs in the multi-agent Q-learning

algorithm and the enhanced multi-UAV Q-learning algorithm

grow exponentially. Besides, it can be seen that the enhanced

multi-UAV Q-learning algorithm still has exponential compu-

tational complexity in each iteration, and thus, it is not suitable

for large-scale UAV networks.

To adapt the algorithms for large-scale UAV networks,

the reinforcement learning methods need to be combined

with function approximation in order to estimate Q-values

efficiently. The function approximation takes examples from

a desired function, Q-function in the case of reinforcement

learning, and generalizes from them to construct an approx-

imation of the entire function. In this regard, it can be used

to efficiently estimate the Q-values of the state-action pairs in

the entire state space when the state space is large.

TABLE I
SIMULATION PARAMETERS

Parameter Value

BS height H 25 m

Number of UAVs N 3

Noise power N0 -85 dBm

BS decoding threshold γth 10 dB

UAV sensing parameter λ 10−3/s

UAV transmit power Pu 10 dBm

Duration of frame tf 0.1 s

Distance between adjacent spatial points ∆ 25 m

UAVs’ minimum flying height hmin 50 m

UAVs’ maximum flying height hmax 150 m

Discounted ratio ρ 0.9

Duration of beaconing phase in frames Tb 3

Duration of sensing phase in frames Ts 5

Duration of transmission phase in frames Tu 5

Fig. 7. Successful valid sensory data transmission probability versus the
location in the task-BS surface.

VI. SIMULATION RESULTS

In order to evaluate the performance of the proposed rein-

forcement learning algorithms for the UAV trajectory design

problem, simulation results are presented in this section.

Specifically, we use MATLAB to build a frame-level sim-

ulation of the UAV sense-and-send protocol, based on the

system model described in Section II and the parameters

in Tab. I. Besides, the learning ratio in the algorithm is

set to be α(k) = 1/k2/3 in order to satisfy the converge

condition in Theorem 1. The exploration ratio is set to be

ǫ(k) = 0.8e−0.03k, which approaches 0 when k →∞.

Fig. 7 shows UAV 1’s successful valid sensory data trans-

mission probability versus UAV 1’s height and its distance

to the BS, given that the other two UAVs are located

at their initial locations, task 1 is located at (500, 0, 0),
and the locations of UAV 2 and UAV 3 are fixed at

(−125, 125, 75), (−125,−125, 75), respectively. It can be

seen that the optimal point at which UAV 1 has the maxi-

mum successful valid sensory data transmission probability is

located in the region between BS and task 1. This is because

when the UAV approaches the BS (task), the successful
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Fig. 8. UAVs’ average reward per cycle versus number of cycles of different
reinforcement learning algorithms.

sensing (transmission) probability drops since it moves far

away from the task (BS). Besides, it can be seen from the

transmission model in Section II-B that when the height of

the UAV increases, the LoS probability for the transmission

channel will increase, and thus, the successful uplink transmis-

sion probability of the UAV increases. Therefore, the optimal

point for UAV 1 to sense-and-send is above rather than on the

BS-task line, where UAV 1 can be closer to both the BS and

its task.

Fig. 8 and Fig. 9 show the average reward per cycle

and the average total discounted reward of the UAVs ver-

sus the number of cycles in different reinforcement learn-

ing algorithm, in which tasks 1, 2 and 3 are located at

(500, 0, 0), (−250
√
2, 250

√
2, 0) and (−250

√
2,−250

√
2, 0),

respectively. It can be seen that compared to the single-agent

Q-learning algorithm, the proposed algorithm converges to

a higher average reward for the UAVs. This is because the

enhanced multi-UAV Q-learning algorithm takes the states of

all the UAVs into consideration, which makes the estimation

for Q-function of each UAV more precise. Besides, it can also

be seen that compared to the opponent modeling Q-learning

algorithm, the proposed algorithm converges faster, due to the

available action set reduction and the reward representation.

Moreover, in Fig. 10, we can observe that for different dis-

tances between the tasks and the BS, the proposed algorithm

converges to a higher average discounted reward for UAVs

after 1000 cycles compared to two other algorithms. It can

be seen that the average discounted reward in the algorithms

decreases with the increment of the distance between the BS

and the tasks. Nevertheless, the decrement in the proposed

algorithm is less than those in the other algorithms. This

indicates that the proposed algorithm is more robust to the

variance of the tasks’ location.

Fig. 11 shows the average number of successful valid

sensory data transmissions per second of the proposed algo-

rithm versus the duration of the transmission phase Tu, under

different conditions of the distance between the tasks and the
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Fig. 9. UAVs’ average discounted reward versus number of cycles of different
reinforcement learning algorithms.
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Fig. 10. UAVs’ average discounted reward versus distance between tasks and
BS in different reinforcement learning algorithms.
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Fig. 12. Average number of successful valid sensory data transmissions per
second versus duration of transmission phase Tu under different number of
UAVs. Distance between the BS and the tasks = 800 m.

BS. It can be seen that the average number of successful

valid sensory data transmissions per second first increases

and then decreases with the increment of Tu. When Tu is

small, the successful uplink transmission probability increases

rapidly with the increment of Tu. However, when Tu is large,

the successful uplink transmission probability is already high

and increases slightly when Tu becomes larger. Therefore, the

average number of successful valid sensory data transmissions

per second drops due to the increment of cycles’ duration.

Fig. 12 shows the average number of successful valid

sensory data transmissions per second versus Tu with different

number of UAVs. It can be seen that when the number of UAVs

increases, the average number of successful valid sensory

data transmissions per second decreases. This is because the

competition among the UAVs for the limited SCs becomes

more intensive. Besides, when the number of UAVs increases,

the optimal duration of the transmission phase becomes longer.

This indicates that the BS needs to choose the optimal Tu

according to the number of UAVs in order to improve the

spectrum efficiency.

VII. CONCLUSION

In this paper, we have adopted the reinforcement learning

framework to solve the trajectory design problem in a decen-

tralized manner for the UAV to perform different real-time

sensing task. We have proposed a sense-and-send protocol to

coordinate multiple UAVs performing real-time sensing tasks.

To evaluate the performance of the protocol, we have proposed

a recursive algorithm to solve the successful valid sensory

data transmission probability in the protocol. Besides, under

the reinforcement learning framework, we have proposed an

enhanced multi-UAV Q-learning algorithm to solve the decen-

tralized trajectory problem. The simulation results showed that

the proposed algorithm converges faster and achieves higher

rewards for the UAVs. It was also shown in simulation that our

proposed algorithm was more robust to the increment of tasks’

distance, comparing to single-agent and opponent modeling

Q-learning algorithms. Moreover, the simulation also showed

that the BS needs to increase the duration of the transmission

phase to improve the spectrum efficiency when the number of

UAVs increases.

APPENDIX A

PROOF OF PROPOSITION 1

Denoting the UAVs’ probability for successful uplink trans-

mission as pu and their probability for successful sensing as

ps, the average number of valid sensory data transmissions per

second can be calculated as

Nvd = N · ps(1 − (1− pu)
CTu
N )

(Tb + Ts + Tu)tf
,

in which tf is the duration of single frame in seconds.

The partial derivative of Nvd with respect to Tu can be

calculated as

∂Nvd

∂Tu
=

psF (Tu)

tf (Tb + Ts + Tu)2

in which F (Tu) = p
CTu
N

f (N−C(Tb+Ts+Tu) ln pf )−N , and

pf = 1−pu. Taking partial derivative of F (Tu) with regard to

Tu, it can be derived that ∂F (Tu)/∂Tu = −C2p
CTu/N
f (Ts +

Tb + Tu) ln pf/N < 0. Besides, when Tu → ∞, F (Tu) →
−N and Nvd → 0, and when Tu = 0, Nvd = 0. Therefore,

∂F (Tu)/∂Tu < 0 indicates that there is a unique maximum

point for Nvd when Tu ∈ (0,∞).
The maximum of Nvd is reached when F (T ∗

u ) = 0, in

which T ∗
u can be solved as

T ∗
u =

N

C ln pf
(1 +W−1(−

p
CTu
N

f

e
))− Tb − Ts,

where W−1(·) denotes the lower branch of Lambert-W func-

tion [22]. �
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