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Abstract—We consider a scenario where an UAV-mounted
flying base station is providing data communication services to
a number of radio nodes spread over the ground. We focus on
the problem of resource-constrained UAV trajectory design with
(i) optimal channel parameters learning and (ii) optimal data
throughput as key objectives, respectively. While the problem of
throughput optimized trajectories has been addressed in prior
works, the formulation of an optimized trajectory to efficiently
discover the propagation parameters has not yet been addressed.
When it comes to the communication phase, the advantage
of this work comes from the exploitation of a 3D city map.
Unfortunately, the communication trajectory design based on
the raw map data leads to an intractable optimization problem.
To solve this issue, we introduce a map compression method
that allows us to tackle the problem with standard optimization
tools. The trajectory optimization is then combined with a node
scheduling algorithm. The advantages of the learning-optimized
trajectory and of the map compression method are illustrated in
the context of intelligent IoT data harvesting.

Index Terms—UAV, drone, trajectory design, scheduling, learn-
ing, Internet of Things, 3D map.

I. INTRODUCTION

THE use of unmanned aerial vehicles (UAVs) also known
as drones as base stations (BSs) in future wireless com-

munication networks is currently gaining significant attention
for its ability to yield ultra-flexible deployments, in use cases
ranging from disaster recovery scenarios, coverage of flash-
crowd events, and data harvesting in IoT applications [1]–[3].

Several new and fascinating issues arise from the study
of flying BSs in a wireless network. These can be broadly
categorized into placement and path planning problems. While
placement problem deals with finding flexible yet static loca-
tions of the UAV BSs, path planning involves finding UAV
trajectories. In both cases the aim is to optimize metrics like
throughput, network coverage, energy efficiency, etc., [4]–[14].

When it comes to placement or trajectory design problems,
most existing solutions rely on simplified channel attenuation
models which are based on either (deterministically guaran-
teed) line-of-sight (LoS) links [8]–[14], or predictive models
for the probability of occurrence of a LoS link [4]–[7]. In
the latter approach, a global statistical model predicts the LoS
availability as a function of, e.g., UAV altitude and distance to
the user. The advantage of the global statistical LoS model lies
in its simplicity for system analysis. However, it lacks actual
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performance guarantees for either placement or trajectory
design algorithms when used in a real-life navigation scenario.
The key reason for this is that, the local terrain topology
may sharply differ from the predictions drawn from statistical
features. In order to circumvent this problem, the embedding
of actual 3D city map data in the UAV placement algorithms
has been recently proposed [7], [8]. Map-based approaches
help providing a reliable prediction of LoS availability for
any pair of UAV and ground node locations, hence lead to
improved performance guarantees. However, the gain comes
at the expense of computational and memory costs related
to processing of the map data. So far, map-based approaches
have been investigated mainly for static UAV placement [7]–
[9]. In many scenarios, including IoT data harvesting, there
is an interest in flying along a path that brings the UAV-
mounted BS closer to each and every ground node. However,
to the best of our knowledge, none of the previous works have
considered the crucial advantage of exploiting 3D map data in
communication-oriented UAV trajectory design.

Another common assumption in previous works is that
the channel model parameters are assumed to be known
when designing the UAV trajectory. However, in reality these
parameters need to be learned based on the measurements
collected from the ground users. As a result, an important
question arises: What is an efficient way of collecting radio
measurements by the UAV from the ground users in order to
estimate the channel model parameters?

In this work, we consider an instance of IoT data harvesting
scenario where an UAV flies over a city endowed with a num-
ber of scattered ground nodes (e.g. radio-equipped sensors).
We then formulate a resource-constrained UAV trajectory
design problem in order to optimize data throughput from the
ground nodes while capitalizing on 3D map data. Since the
data communication phase critically depends on the knowledge
of radio channel parameters, we also formulate a novel optimal
trajectory design problem from a parameter learning point of
view. Specifically, our contributions are as follows:
• We formulate and solve a learning trajectory optimization

problem in order to minimize the estimation error of
the channel model parameters. The devised trajectory
allows the UAV to exploit the map and quickly learn the
propagation parameters.

• Based on the learned parameters, we formulate a joint
trajectory and node scheduling problem which allows us
to maximize the traffic communicated from each node
to the UAV in a fair manner. An iterative algorithm is
proposed to solve the optimization problem. It is shown
that the algorithm converges at least to a local optimal
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solution. While the algorithm exploits the possibly rich
map data, it does so via a map compression method which
renders the trajectory optimization problem differentiable
and amenable to standard optimization tools, hence mit-
igating a known drawback of map-based approaches.

Note that, the proposed map-compression method allows us to
smooth out the map data while preserving the node location-
dependent channel behavior around that node. The gains
brought by the exploitation of 3D map data are illustrated,
in both channel parameters learning and the communication
problem, in the context of an urban IoT scenario.

This paper is organized as follows: Section II introduces
the system model. In Section III, we formulate and solve
the problem of learning trajectory optimization. In Section
IV, we formulate the joint communication trajectory and node
scheduling optimization problem whose solution is provided
in Section V. Numerical results are presented in Section VI to
validate the performance of the proposed algorithms. Finally,
Section VII concludes the paper with some perspectives.

Notation: Matrices are represented by uppercase bold let-
ters, vectors are represented by lowercase bold letters. The
transpose of matrix A is denoted by AT. The trace and
determinant of matrix A are denoted by tr[A] and det[A],
respectively. The set of integers from m to n, m < n, is
represented by [m, n]. The expectation operator is denoted by
E[.].

II. SYSTEM MODEL
A wireless communication system where an UAV-mounted

flying BS serving K static ground level nodes (IoT sensors,
radio terminals, etc.) in an urban area is considered. The k-th
ground node, k ∈ [1,K], is located at uk = [xk, yk, 0]T ∈ R3.
By no means the ground level node assumption is restrictive,
the proposed algorithms in this work can in principle be
applied to a scenario where the nodes are located in 3D.
The UAV’s mission consists of a learning phase which is of
duration Tl and then followed by a communication phase of
duration Tc. During the learning phase, the UAV estimates the
propagation parameters of the environment by collecting the
radio measurements from the ground users. These estimates
are then exploited in the communication phase to optimally
serve the ground nodes. Note that in this paper, we are
treating the learning and the communication phases that are
separated in time. This allows us to obtain optimal trajectories
for both phases independently, i.e., if one is only interested
in learning or communication scenario this solution serves
the purpose. The joint channel learning and communication
trajectory design is appealing yet a challenging problem and
is left for future work. Whether be it in learning or commu-
nication phase, the time-varying coordinate of the UAV/drone
is denoted by v(t) = [x(t), y(t), z(t)]T ∈ R3, where z(t)
represents the altitude of the drone.

For the ease of exposition, we assume that the time period
Tl and Tc are discretized into Nl and Nc equal-time slots,
respectively. The time slots are chosen sufficiently small such
that the UAV’s location, velocity, and channel gains can be
considered to remain constant in one slot. Hence, the UAV’s
position v(t) is approximated by a sequence

v[n] = [x[n], y[n], z[n]]T, n ∈ [1, Nl] (or) n ∈ [1, Nc]. (1)

We assume that the ground nodes and the drone are
equipped with GPS receivers, hence the coordinates uk,∀k
and v[n], n ∈ [1, Nl] (or) n ∈ [1, Nc] are known.

A. Channel Model

In this section, we describe the channel model that is
used for computing the channel gains between the UAV and
the ground users. The model parameters are estimated in
the learning phase from the collected radio measurements.
Classically, the channel gain between two radio nodes which
are separated by distance d meters is modeled as [15], [16]

γs =
βs
dαs
× ξs, (2)

where αs is the path loss exponent, βs is the average channel
gain at the reference point d = 1 meter, ξs denotes the shad-
owing component, and finally s ∈ {LoS,NLoS} emphasizes
the strong dependence of the propagation parameters on LoS
or non-line-of-sight (NLoS) scenario. Note that (2) represents
the channel gain which is averaged over the small scale fading
of unit variance. The channel gain in dB can be written as

gs = ßs − αsϕ(d) + ηs, (3)

where gs = 10 log10 γs, ßs = 10 log10 βs, ϕ(d) =
10 log10 (d), ηs = 10 log10 ξs, and ηs is modeled as a Gaussian
random variable with N (0, σ2

s).

B. UAV Model

During the mission, drone’s position evolves according to

v[n+ 1] = v[n] +

 cos (φ[n]) cos (ψ[n])
sin (φ[n]) cos (ψ[n])

sin (ψ[n])

 ρ[n] , (4a)

hmin ≤z[n] ≤ hmax, ∀n ∈ [1, Nl − 1] (or) n ∈ [1, Nc − 1],
(4b)

where in the n-th time slot, 0 ≤ ρ[n] ≤ ρmax represents
the distance traveled by the drone, 0 ≤ φ[n] ≤ 2π and
−π2 ≤ ψ[n] ≤ π

2 represent the heading and elevation angles,
respectively. The maximum distance traveled in a time slot is
denoted by ρmax and it depends on the maximum velocity.
The constraint (4b) reflects the fact that the drone always flies
at an altitude higher than hmin and lower than hmax, with
hmin being the height of the tallest building in the city.

III. LEARNING TRAJECTORY DESIGN

In this section, our goal is to find the UAV trajectory, over
which the channel measurements are collected from the ground
nodes, that results in the minimum estimation error of the
channel model parameters. While the problem of learning the
channel parameters from a pre-determined measurement data
set has been addressed in the prior literature [16], [17], the
novelty of our work lies in the concept of optimizing the
flight trajectory itself so as to accelerate the learning process.
The channel measurement collection and learning process are
described next.
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A. Measurement Collection and Channel Learning

In the learning phase, the measurement harvesting is per-
formed over an UAV trajectory that starts at a base position
xb ∈ R3 and ends at a terminal position xt ∈ R3. Mathemat-
ically,

v[1] = xb, v[Nl] = xt. (5)

The base position is typically the take-off base for the UAV
while xt can be selected in different ways, including xt = xb
(loop) or as a location where the communication services are
to begin right after the learning phase. In the n-th time interval,
n ∈ [1, Nl], the measurements collected from the ground nodes
can be written as

gs,n =
[
gs,1, gs,2, · · · , gs,δs,n

]T
,

where gs,i is the channel gain of the i-th measurement,
i ∈ [1, δs,n], and δs,n is the number of measurements obtained
for the propagation segment group s ∈ {LoS,NLoS}. For the
LoS/NLoS classification of the measurements, we leverage
the knowledge of a 3D city map [18]. Based on such map,
we can predict LoS (un)availability on any given UAV-ground
nodes link from a trivial geometry argument: For a given UAV
position, the ground node is considered in LoS to the UAV if
the straight line passing through the UAV’s and the ground
node’s position lies higher than any buildings in between.

Using (3), the i-th measurement can be modeled as
gs,i = aT

s,i ωs + ηs,i, (6)

where as,i = [−ϕ(di), 1]T with di being the distance be-
tween the drone and ground node in the i-th measurement,
ωs = [αs, ßs]

T is the vector of channel parameters, and ηs,i
denotes the shadowing component in the i-th measurement.
The measurements collected in the n-th interval can now be
written as

gs,n = As,n ωs + ηs,n, (7)

where As,n =
[
as,1, · · · ,as,δs,n

]T
, ηs,n =

[ηs,1, · · · , ηs,δs,n ]T. Finally, we stack up the measurements
gathered by the drone up to time step n as

ḡs,n = Ās,n ωs + η̄s,n, (8)

where ḡs,n =
[
gT
s,1, · · · ,gT

s,n

]T
, Ās,n =[

AT
s,1, · · · ,AT

s,n

]T
, and η̄s,n =

[
ηT
s,1, · · · ,ηT

s,n

]T
.

Assuming that the measurements collected over a trajec-
tory are independent, the maximum likelihood estimation of
ωs, s ∈ {LoS,NLoS} based on the measurements collected
up to time step n is given by [16], [18]

ω̂s,n =
(
ĀT
s,n Ās,n

)−1
ĀT
s,n ḡs,n. (9)

By substituting (8) in (9), we obtain

ω̂s,n − ωs =
(
ĀT
s,n Ās,n

)−1
ĀT
s,nη̄s,n. (10)

Since ω̂s,n is unbiased, the mean squared error of the esti-
mated parameters can be obtained as [19]

E ‖ω̂s,n − ωs‖2 = tr [Cov {ω̂s,n}]

= σ2
s tr
[(

ĀT
s,n Ās,n

)−1
]
. (11)

Let
es[n] , tr

[(
ĀT
s,n Ās,n

)−1
]
,

and assuming that σ2
NLoS = κ · σ2

LoS, κ ≥ 1 [20], the total
estimation error in both propagation segments is given by∑

s

E ‖ω̂s,n − ωs‖2 = σ2
LoS (eLoS[Nl] + κ eNLoS[Nl]) . (12)

Note that a full rank Ās,n is assumed in calculating the error
for both LoS and NLoS categories over the course of the
trajectory. If there are not enough measurements in a particular
segment by the end of the trajectory, the estimation error is
assigned as infinity in that segment.

B. Optimization Problem

The optimal learning trajectory that minimizes the estima-
tion error can be formulated as

min
Φ,Ψ,R

eLoS[Nl] + κ eNLoS[Nl] (13a)

s.t. (4), (5) (13b)

where Φ,Ψ, and R are defined as

Φ = {0 ≤ φ[n] < 2π, n ∈ [1, Nl − 1]} ,

Ψ =
{
−π

2
≤ ψ[n] ≤ π

2
, n ∈ [1, Nl − 1]

}
,

R = {0 ≤ ρ[n] ≤ ρmax, n ∈ [1, Nl − 1]} .

As the estimation error depends on the matrix Ās,Nl which
has a very complicated expression in terms of φ[n], ψ[n], and
ρ[n], it is hard to obtain an analytical solution for problem (13)
in general. Therefor, we tackle (13) by discretizing the opti-
mization variables and then employing dynamic programming
(DP) [21] to find the solution. To apply DP, the estimation
error es[Nl] needs to be rewritten as follows

es[Nl] = tr

([ Ās,Nl−1

As,Nl

]T [
Ās,Nl−1

As,Nl

])−1


(a)
= es[Nl − 1]− rs[Nl]

(b)
= es[1]−

Nl∑
n=2

rs[n], (14)

where we denote rs[n] as the amount of improvement in the
estimate within time slot n, and it is given by

rs[n] = tr
[
Hs,n AT

s,n

(
I + As,n Hs,n AT

s,n

)−1
As,n Hs,n

]
,

(15)
Hs,n ,

(
ĀT
s,n−1 Ās,n−1

)−1
, I is the identity matrix, (a)

follows from the matrix inversion lemma, and (b) follows from
the recursive relation. Now (13) can be reformulated as

min
Φ,Ψ,R

Nl∑
n=1

ẽLoS[n] + κ ẽNLoS[n] (16a)

s.t. (4), (5) (16b)

where
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ẽs[n] =

{
es[1] n = 1

−rs[n] n ∈ [2, Nl]
.

C. Dynamic Programming
To solve (16) by DP, we constraint (and thus approximate)

the possible drone locations and the optimization variables to a
limited alphabet and then use Bellman’s recursion to compute
the optimal discrete trajectory. We start by introducing some
notations.
Let v[n], n ∈ [1, Nl] denotes the states and π[n] =
[φ[n], ψ[n], ρ[n]]

T represents the input action at time n ∈
[1, Nl − 1] such that

φ[n] ∈
{

0,
π

4
,
π

2
,

3π

4
, π,

5π

4
,

3π

2
,

7π

4

}
,

ψ[n] ∈
{
−π

2
,−π

4
, 0,

π

4
,
π

2

}
,

ρ[n] ∈
{

0, ah, av, ah
√

2,
√
a2
h + a2

v,
√

2a2
h + a2

v

}
, (17)

where ah and av denote the discretization unit used in dis-
cretizing the city map into a 3D grid (hereafter termed as
path graph) of admissible drone locations. Depending on the
action π[n] in v[n], the state v[n + 1] can be computed by
using (4) and (17). In Fig. 1, a part of the path graph, arbitrary
base position xb, and terminal position xt are illustrated. The
vertices and the edges of the path graph can, respectively, be
interpreted as the admissible states and input actions in each
time slot.

In order not to exceed the flight time constraint Tl, Nl can
be selected as 1

Nl =

⌊
Tl
Te

⌋
,

where b.c denotes the floor function and Te =

√
2a2h+a2v
vmax

is the
minimum required time for taking the longest edge between
two adjacent vertices in the path graph while the drone moves
with maximum speed vmax.

DP in a forward manner is now used to solve for (16) by
taking into account the finite alphabet constraint (17). Thus,
by reformulating (16a) we can associate with our problem the
performance index

Ji(v[i]) = Ω(v[1]) +

i∑
n=2

L[n], (18)

where [2, i] is the time interval of interest and L[n] = ẽLoS[n]+
κ ẽNLoS[n]. Ω(v[1]) stands for the initial cost and given by

Ω(v[1]) =

{
L[1] v[1] = xb

∞ otherwise
.

According to Bellman’s equation, the optimal cost up to
time n+ 1 is equal to

J∗n+1(v[n+ 1]) = min
π[n]
{L[n+ 1] + J∗n(v[n])} , n ∈ [1, Nl − 1],

(19a)
J∗1 (v[1]) = Ω(v[1]), (19b)

1Note that this is a conservative choice. In practice, Nl could be slightly
higher given the UAV may use some of the short edges.

....

...
.

....

....
xt

xb ah
av

ah

Figure 1. A fragment of the 3D path graph, arbitrary base position xb, and
terminal position xt .

where π[n] is the input action vector. Thus, the optimal input
action π∗[n] at time n is the one that achieves the minimum in
(19a). Finally, the optimal policy (trajectory) can be found by
solving (19) for all n ∈ [1, Nl − 1] and by choosing v[Nl] =
xt. Note that the number of computations required to find the
optimal trajectory is given by [21]

V ·Π ·Nl,

where V is the number of admissible states (i.e. the number of
vertices in the path graph), and Π is the number of quantized
admissible input actions.

Note that the error L[n] only depends on the UAV location
through its distance from the ground users and the LoS/NLoS
status. Since we have the knowledge of the 3D map and the
ground nodes’ locations, (19) can be solved offline without
collecting any measurements. Once the optimal trajectory is
calculated, UAV follows this trajectory to collect the measure-
ments and then estimates the channel parameters.

IV. COMMUNICATION TRAJECTORY OPTIMIZATION

Based on the acquired knowledge of the channel parameters
from the learning phase, we are now concerned with the design
of a communication trajectory in an uplink IoT data harvesting
scenario. For the ease of exposition, the communication phase
is designed based on the perfect channel model parameter es-
timates, while the impact of imperfect estimation is addressed
in Section VI-B.

A. Communication System Model

We assume that the ground nodes are served by the drone
in a time-division multiple access (TDMA) manner. Let qk[n]
denotes the scheduling variable, then the TDMA constraints
can be written as

K∑
k=1

qk[n] ≤ 1 , n ∈ [1, Nc], (20)

qk[n] ∈ {0, 1} , n ∈ [1, Nc], k ∈ [1,K], (21)

where qk[n] = 1 indicates that the node k is scheduled in
time slot n. For the scheduled node, the average throughput
is given by
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Ck[n] = E log2

(
1 +

Pγk[n]

σ2

)
, (22)

where γk[n] is the channel gain between the k-th node and the
UAV at time step n, P denotes the up-link transmission power
of the ground node, and the additive white Gaussian noise
power at the receiver is denoted by σ2. Hence, the average
achievable throughput of the k-th ground node over the course
of the communication trajectory is given by

Ck =
1

Nc

Nc∑
n=1

qk[n]Ck[n]. (23)

B. Joint Scheduling and Trajectory Optimization

We consider the problem of efficient data harvesting where
data originates from ground nodes and efficiency is meant in a
max-min sense across the nodes. The problem of maximizing
the minimum average throughput among all ground nodes by
jointly optimizing node scheduling and UAV’s trajectory can
be formulated as

max
X ,z,Q

min
k∈[1,K]

Ck (24a)

s.t. ‖v[n]− v[n− 1]‖ ≤ ρmax , n ∈ [2, Nc], (24b)
v[1] = v[Nc], (24c)
(4b), (20), (21), (24d)

where Q = {qk[n], ∀n, ∀k} is the set of scheduling variables,
and X = {(x[n], y[n]), ∀n} denotes the discretized trajectory
set of length Nc in 2D. We assume that the drone flies at a
fixed altitude z[n] = z, ∀n. The maximum speed constraint
of the UAV is reflected in (24b), where ρmax = vmaxTc/Nc.
(24c) implies a possible loop trajectory constraint2.

Problem (24) is challenging to solve due to the following
issues:
• The scheduling variables qk[n] are binary and include

integer constraints.
• The objective function (24a) is a non-convex with respect

to the drone trajectory variables.
• Since the 3D city map, node locations, and UAV location

at time n are known, then in theory the LoS or NLoS sta-
tus of the link can be finely predicted and, hence, the link
gain γk[n] can be computed from (2) up to the random
shadowing. Unfortunately, such a direct exploitation of
the rich raw map data leads to a highly non-differentiable
problem in (24).

We overcome these difficulties by approximation using the
same framework as [11] by employing the block-coordinate
descent [22] and sequential convex programming [23] tech-
niques. However, the key difference is that we optimize the
drone’s altitude, and also exploit the 3D city map by introduc-
ing a statistical map compression approach that enables us to
take into account the LoS and NLoS predictions.

C. LoS Probability Model Using Map Compression

Statistical map compression approach relies on converting
3D map data to build a reliable node location dependent LoS

2This is by no means a restriction, the starting and the terminal points of
the trajectory can be any arbitrary locations.

probability model. The LoS probability for the link between
the drone located at altitude z and the k-th ground node in the
n-th time slot is given by

pk[n] =
1

1 + exp(−akθk[n] + bk)
, (25)

where θk[n] = arctan(z/rk[n]) denotes the elevation angle
and rk[n] is the ground projected distance between the drone
and the k-th node located at uk in the time slot n, and {ak, bk}
are the model coefficients.

The LoS probability model coefficients {ak, bk} are learned
(i.e. by utilizing logistic regression method [19]) by using a
training data set formed by a set of tentative UAV locations
around the k-th ground node along with the true LoS/NLoS la-
bel obtained from the 3D map. Interestingly, the model in (25)
can be seen as a localized extension of the classical (global)
LoS probability model used in [4], [5]. The key difference
lies in the fact that, a local LoS probability model will give
performance guarantees which a global model cannot.

Using (25), the average channel gain of the link between
the drone and the k-th ground node in the n-th time slot is

E[γk[n]] =

(
d
(A−1)αLoS
k −B

1 + exp(−akθk + bk)
+B

)
βLoS

d
αNLoS
k

, (26)

where B = βNLoS
βLoS

, A = αNLoS
αLoS

≥ 1, and dk[n] =
√
z2 + r2

k[n]
is the distance between the k-th ground node and the drone.
The details of the proof are given in Appendix A.

V. PROPOSED SOLUTION FOR COMMUNICATION
TRAJECTORY OPTIMIZATION

In this section, we first approximate the original optimization
problem in (24) to a map-compressed problem and then
present an iterative algorithm using block coordinate descent
for solving it. Using (26) and the Jensen’s inequality, the
average throughput upper-bound then can be written as

Cup
k =

1

Nc

Nc∑
n=1

qk[n]Cup
k [n] , k ∈ [1,K], (27)

where
Cup
k [n] = log2

(
1 +

P E[γk[n]]

σ2

)
. (28)

We then approximate the original problem in (24) into the
following map-compressed problem:

max
X ,z,Q,µ

µ (29a)

s.t. Cup
k ≥ µ , ∀k, (29b)

0 ≤ qk[n] ≤ 1 , ∀k, ∀n, (29c)
(24b), (24c), (4b), (20), (29d)

where the constraints in (29c) represent the relaxation of the
binary scheduling variable into continuous variables. More-
over, map compression allows us to circumvent the non-
differentiability aspect of the original problem (24) by com-
pressing the 3D map information into a probabilistic LoS
model. However, (29) is still difficult to solve since it is a
joint scheduling and path planning problem and is not convex.
To make this problem more tractable, we split it up into three
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optimization sub-problems and then classically iterate between
them to converge to a final solution. Note that, the iteration
index of the proposed algorithm is denoted by “j”.

A. Scheduling

For a given UAV planar trajectory X and altitude z, the
ground node scheduling can be optimized as

max
Q,µ

µ (30a)

s.t. Cup
k ≥ µ , ∀k, (30b)

(20), (29c).

This problem is a standard Linear Program (LP) and can be
solved by using any optimization tools such as CVX [24].

B. Optimal Horizontal UAV Trajectory

For a given scheduling decision Q, and drone’s altitude z,
we now aim to find the optimal planar trajectory by solving

max
X , µ

µ (31a)

s.t. Cup
k ≥ µ , ∀k, (31b)

(24b), (24c). (31c)

The optimization problem (31) is not convex, since the
constraint (31b) is neither convex nor concave. In general,
there is no efficient method to obtain the optimal solution.
Therefore, we adopt sequential convex programming technique
for solving (31). To this end, the following results are helpful.

Lemma 1. The function h(x, y) , log (1 + f (x) g (y)) is
convex if ĥ(x, y) , log (f (x) g (y)) is convex and f(x) >
0, and g(y) > 0.

Proof. See Appendix B.

Proposition 1. For any constant τ, λ > 0, the function
c(x, y, d) , log

(
1 +

[
( 1

1+x )( 1
y ) + τ

]
1
dλ

)
is convex.

Proof. See Appendix C.

By defining the auxiliary variables fk[n], wk[n], lk[n], and
θk[n], we can rewrite (31) as follows

max
V,X ,µ

µ (32a)

s.t.
1

Nc

Nc∑
n=1

ck (fk[n], wk[n], lk[n]) ≥ µ , ∀k, (32b)

wk[n] =
((
z2 + lk[n]

)(A−1)αLoS/2 −B
)−1

, ∀k, ∀n,
(32c)

fk[n] = exp (−akθk[n] + bk) , ∀k, ∀n, (32d)

lk[n] = r2
k[n] , ∀k, ∀n, (32e)

θk[n] = arctan
(
z/
√
lk[n]

)
, ∀k, ∀n, (32f)

fk[n], wk[n], lk[n], θk[n] ≥ 0 , ∀k, ∀n, (32g)
(24b), (24c), (32h)

where V = {fk[n], wk[n], lk[n], θk[n] | ∀k, ∀n} consists of all
the auxiliary variables and

ck (fk[n], wk[n], lk[n]) ,

log2

(
1 +

(
1

wk[n](1 + fk[n])
+B

)
P βLoS

σ2 (z2 + lk[n])
αNLoS/2

)
.

(33)
Using Proposition 1, it can be easily seen that (33) is
a convex function of variables fk[n], wk[n], and lk[n]. In
constraint (32c), wk[n] can be convex or concave function
depending on the value of B. However, in our case it is
always convex since z ≥ hmin, in a realistic scenario(
z2 + lk[n]

)(A−1)αLoS/2 � B. Moreover, all constraints (32d)
to (32f) comprise convex functions. In order to solve problem
(32), we utilize the sequential convex programming technique
which solves instead the local linear approximation of the
original problem. To form the local linear approximation, we
use the given variables X j , zj in the j-th iteration of the
algorithm to convert the above problem to a standard convex
form. For the ease of exposition, we use ck[n] instead of
ck (fk[n], wk[n], lk[n]). First, let’s start with constraint (32b),
since any convex functions can be lower-bounded by its first
order Taylor expansion, then we can write

1

Nc

Nc∑
n=1

qk[n]ck[n] ≥ 1

Nc

Nc∑
n=1

qk[n]c̃k[n] ≥ µhp,

where c̃k[n] is an affine function and equals to the local first
order Taylor expansion of ck[n] and µhp is a lower bound of
µ. Similarly, We can convert (32c) to (32f) into the standard
convex form by replacing them with their first order Taylor
expansion. We can approximate problem (32) as follows

max
V,X ,µhp

µhp (34a)

s.t.
1

Nc

Nc∑
n=1

qk[n]c̃k[n] ≥ µhp , ∀k, (34b)

fk[n] ≥ f̃k[n] , ∀k, ∀n, (34c)
wk[n] ≥ w̃k[n] , ∀k, ∀n, (34d)

lk[n] ≥ l̃k[n] , ∀k, ∀n, (34e)

θk[n] ≥ θ̃k[n] , ∀k, ∀n, (34f)
(32g), (24b), (24c), (34g)

where the superscript “ ˜ ” denotes the local first order Taylor
expansion. Now, we have a standard convex problem which
can be solved by any convex optimization tools like CVX3.
We denote the generated trajectory by solving (34) as X j+1.

C. Optimal UAV Altitude

Now we proceed to optimize the UAV altitude for a given
horizontal UAV trajectory X and scheduling decision Q.
Similar to the preceding section, first we introduce auxiliary

3Note that to minimize the approximation error, a tight local Taylor
approximation is needed.
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variables h, mk[n], and ok[n] consisting of convex functions
as follows

mk[n] = exp (−ak arctan (z/rk[n]) + bk) , ∀k, ∀n,

ok[n] =
((
h+ r2

k[n]
)(A−1)αLoS/2 −B

)−1

, ∀k, ∀n,

h = z2.

In a similar manner to section V-B, we find the UAV altitude
by using the sequential convex programming with given local
point zj in the j-th iteration and the generated horizontal
trajectory X j+1 in the last section. Finally, the UAV altitude
is optimized as follows

max
W,z, µalt

µalt (35a)

s.t.
1

Nc

Nc∑
n=1

qk[n] c̃k[n] ≥ µalt , ∀k, (35b)

mk[n] ≥ m̃k[n] , ∀k, ∀n, (35c)
ok[n] ≥ õk[n] , ∀k, ∀n, (35d)

h ≥ h̃, (35e)
mk[n], ok[n], h > 0, ∀k, ∀n, (35f)
(4b), (35g)

where c̃k[n] is the first order Taylor expansion of
ck (mk[n], ok[n], h) which is a convex function and is defined
similar to (33), and W = {mk[n], ok[n], h | ∀k, ∀n} comprises
all the auxiliary variables. The superscript “ ˜ ” denotes the
local first order Taylor expansion, and µalt is a lower bound of
µ. We denote the drone altitude which is obtained by solving
(35) as zj+1 to be used in the next iteration.

D. Iterative Algorithm

According to the preceding analysis, now we propose an
iterative algorithm to solve the original optimization problem
(24) by applying the block-coordinate descent method [22]. As
mentioned earlier, we split up our problem into three phases
(or blocks) of ground node scheduling, drone horizontal tra-
jectory design, and flying altitude optimization over variables
{Q,X , z}. In each iteration, we update just one set of variables
at a time, rather than updating all the variables together, by
fixing the other two sets of variables. Then, the output of
each phase is used as an input for the next step. The rigorous
description of this algorithm is summarized in Algorithm 1.

E. Proof of Convergence

In this section we prove the convergence of Algorithm 1 in a
similar manner of [11]. To this end, in the j-th iteration we
denote the µ(Qj ,X j , zj), µhp(Qj ,X j , zj), µalt(Qj ,X j , zj)
as the optimal objective values of problems (30), (34), and
(35) , respectively. From step (2) of Algorithm 1 for the given
solution Qj+1, we have

µ(Qj ,X j , zj) ≤ µ(Qj+1,X j , zj),

Algorithm 1 Iterative algorithm for solving optimization
problem (24).

1) Initialize all variables
{
Qj ,X j , zj

}
, j = 1.

2) Find the optimal solution of the scheduling problem
(30) for given

{
X j , zj

}
. Denote the optimal solution

as Qj+1.

3) Generate the optimal communication trajectory in hori-
zontal plane (X j+1) by solving (34) with given variables{
Qj+1,X j , zj

}
.

4) Solving optimization problem (35) given variables{
Qj+1,X j+1, zj

}
and denote the solution as zj+1.

5) Update j := j + 1.
6) Go to step 2 and repeat until the convergence (i.e. until

observing a small increase in objective value).

since the optimal solution of problem (30) is obtained. More-
over, we can write

µ(Qj+1,X j , zj) (a)
= µhp(Q

j+1,X j , zj)
(b)

≤ µhp(Q
j+1,X j+1, zj)

(c)

≤ µ(Qj+1,X j+1, zj).

Step (a) holds due to µhp(Q
j+1,X j , zj) being a tight local

first order Taylor approximation of problem (32) at the local
points. Step (b) is true, since we can find the optimal solution
of problem (34) with the given variables {Qj+1,X j , zj}, and
(c) holds because µhp(Qj+1,X j+1, zj) is the lower bound of
the objective value µ(Qj+1,X j+1, zj). Then, by proceeding to
step (4) of Algorithm 1 and given variables {Qj+1,X j+1, zj},
we obtain

µ(Qj+1,X j+1, zj)
(d)
= µalt(Q

j+1,X j+1, zj)

(e)

≤ µalt(Q
j+1,X j+1, zj+1)

(f)

≤ µ(Qj+1,X j+1, zj+1).

Step (d) is true since the local first order Taylor approximation
in (35) is tight for the given local variables {Qj+1,X j+1, zj}.
(e) holds since, the optimization problem (35) can be opti-
mally solved, and (f) is true due to µalt(Q

j+1,X j+1, zj+1)
is a lower bound of the objective value µ(Qj+1,X j+1, zj+1).
Finally, we have

µ(Qj ,X j , zj) ≤ µ(Qj+1,X j+1, zj+1).

Which indicates that the objective value of Algorithm 1 after
each iteration is non-decreasing and since it is upper bounded
by a finite value, so the convergence of Algorithm 1 is
guaranteed.

F. Trajectory Initializing

In this section, we propose a simple strategy to initialize
the drone trajectory to be optimized later on by the introduced
Algorithm 1. The initial trajectory is in form of a circle which
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is centered at ctrj = (xtrj, ytrj) and the radius rtrj which is given
by

rtrj =
Lmax

2π
,

where Lmax = Tc · vmax. To determine the ctrj, we use the
notion of the (weighted) center of gravity of the ground nodes
[7]. Moreover, the flying altitude is initialized at hmax.

VI. NUMERICAL RESULTS

We consider a dense urban Manhattan-like area of size
600 × 600 square meters, consisting of a regular street and
buildings. The height of the building is Rayleigh distributed
within the range of 5 to 40 meters [4]. The average building
height is 14 m. True propagation parameters are chosen as
αLoS = 2.27, αNLoS = 3.64, ßLoS = −30 dB, ßNLoS = −40 dB
according to an urban micro scenario in [20]. The variances
of the shadowing component in LoS and NLoS scenarios are
σ2

LoS = 2 and σ2
NLoS = 5, respectively. The transmission power

for ground nodes is chosen as P = 30 dBm, and the noise
power at the receiver is -80 dBm. The UAV has a maximum
speed of vmax = 10 m/s.

A. Learning Trajectory

An illustration of the optimal learning trajectory is presented
in Fig. 2 for K = 3 ground nodes. In this scenario, the UAV
flies from the base position xb(0, 0, 50) towards the terminal
location xt = (300, 300, 50) under the flight time constraint
Tl = 100 s. To discretize the search space over the city for
creating the 3D path graph, we chose ah = 100 m and av = 20
m as defined in section III-C. It is interesting to note that,
the trajectory experiences a wide array of altitudes there by
improving the learning performance of both LoS and NLoS
segments. For the ease of exhibition, we plotted the generated
trajectory in two different figures. Fig. 2-a shows the top view
of the generated trajectory while the elevation of the trajectory
as a function of the flown distance is depicted in Fig. 2-b.

In Fig. 3 the performance of the optimal trajectory in terms
of the mean squared error (MSE) of the learned channel
parameters (αs, ßs; s = {LoS,NLoS}) is shown as a function
of the number of ground nodes. The duration of the learning
phase Tl = 100 s. We perform Monte-Carlo simulations over
random user locations. We also compare the performance of
the optimal trajectory with that of randomly generated arbi-
trary trajectories. For a given realization, arbitrary trajectory
of duration Tl is generated. It is clear that, the channel can
be learned more precisely by taking the optimized learning
trajectory. Also, the learning error is reduced when the number
of ground nodes increases, since the chance of obtaining
measurement from both LoS and NLoS segments increases.

B. Communication Trajectory

In this section, we evaluate the performance of the commu-
nication path planning algorithm. Since the communication
trajectory design depends on the local LoS probability model,
we first need to learn the probability model coefficients in (25).
For this, we employed the logistic regression method on the
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Figure 2. (a) Top view of the optimal learning trajectory using proposed
algorithm. (b) The UAV elevation along the trajectory.

training data set obtained by randomly sampling around each
ground node. The labeling is done with the true LoS status
obtained from the 3D city map. Fig.4 shows the obtained
LoS probabilities for K = 3 ground nodes whose locations
are shown in Fig. 5. We also plot the global LoS probability
which is computed from the characteristics of the 3D map
according to [4]. It is clear that the local probabilities have
the sharper transitions and thus provide more information per
ground node (i.e. if the node is surrounded by the tall buildings
or is in a large open area), while the global probability can be
considered as the average of the local LoS probability of the
nodes in different locations.

In Fig. 5, we show the generated trajectory over the city
buildings for different flight times (Tc). It is clear that by
increasing Tc, the UAV exploits the flight time to improve
the ground node link quality by enlarging the trajectory and
moving towards the ground nodes. It is crucial to note that the
generated trajectory is closer to the ground nodes which has
the less LoS probability (i.e. the ground nodes who are close
to buildings or surrounded by tall skyscrapers). In Fig. 5, the
drone tries to get closer to the ground nodes 1 and 2 since they
are close to the buildings which mostly block the LoS link to
the drone. Moreover, we illustrated the result of the ground
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Figure 3. Comparison of the MSE for different learning trajectories.
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learned form the 3D map for three ground nodes.
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Figure 5. Optimal drone trajectory and ground node scheduling for different
flight times. As the flight time increases, the UAV gets closer to individual
ground nodes.
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Figure 6. (a) Throughput performance versus iteration and (b) drone altitude
evolution versus iteration.

node scheduling during the trajectory with different markers
which are assigned to each node. Namely triangles, squares,
and circles pertain, respectively, to ground nodes 1 to 3. For
example, square markers shown on the trajectory indicate that
the drone is serving the ground node 1 at that time.

We then outline the convergence behavior of Algorithm 1
by assuming K = 3 and Tc = 90 s. The drone altitude and
worst ground node throughput versus iteration are shown in
Fig.6. As we expected, the worst ground node throughput in
each iteration improves and finally converges to a finite value.

In Fig. 7, the performance of the proposed map-based
algorithm in comparison with two other approaches, which are
briefly explained below, versus the flight time by considering
K = 6 ground nodes is shown.

• Probabilistic algorithm
In the probabilistic approach, we consider the same
trajectory design algorithm as proposed in this paper with
the difference that for a link between the drone located at
altitude z and the k-th ground node, the LoS probability
at the time step n is given by

pk[n] =
1

1 + exp (−a θk[n] + b)
,

where parameters {a, b} are computed according to [4]
and based on the characteristics of the 3D map. In other
words, we use a global LoS probability model.

• Deterministic algorithm
In the deterministic algorithm, an optimal trajectory is
generated based on the method introduced in [11] which
considers a single deterministic LoS channel model for
the link between the drone and the ground nodes. In
order to have a fair comparison, we modified this method
by using an average path-loss instead of the pure LoS
channel model. the channel parameters pertaining to the
average path-loss model are learned by fitting one channel
model for the whole measurements gathered from both
LoS and NLoS ground nodes.

We have also investigated the impact of the imperfect esti-
mation of the channel parameters on the performance of the
map-based algorithm. The result of the algorithm using the
learned channel parameters is illustrated in Fig. 7. As it can
be seen, the channel estimation uncertainty stemming from
the learning part has a minor effect on the performance of the
map-based algorithm and in general the map-based algorithm
outperforms the other approaches which is expected since in
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Figure 7. Performance of the map-based algorithm for the learned and true
channel parameters in comparison with the probabilistic approach and the
deterministic Algorithm for 6 ground nodes versus increasing the flight time.
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Figure 8. Performance comparison of the map-based Algorithm and the
probabilistic approach versus the average building height for a fixed flight
time.

the proposed algorithm we utilize more information through
the 3D map.

In Fig. 8 a performance comparison of the proposed map-
based algorithm and the probabilistic approach under a fixed
flight time by increasing the average buildings height is
illustrated. The map-based algorithm provides a better services
to the ground nodes. For both algorithms by increasing the
buildings height, the performance degraded since it is more
likely that the link between the ground nodes and the drone
over the course of the trajectory being NLoS.

VII. CONCLUSION

This work has considered the problem of trajectory design
for an UAV BS that is providing communication services for
a number of ground nodes in the context of an IoT data
harvesting scenario. In contrast to the existing literature, we
assume that the propagation parameters are unknown and

we devise an optimized trajectory for the UAV that allows
it to learn the parameters efficiently. The learning trajectory
optimization relies on the dynamic programming techniques
and the knowledge of the 3D city map. Once the channel pa-
rameters are learned, we have developed throughput-optimized
trajectories such that the amount of data collected from each
of the ground nodes is maximized. We have proposed an
iterative algorithm that leverages the knowledge of the 3D
city map via a novel map-compression method and uses the
block coordinate descent and sequential convex programming
techniques. It is also shown that the proposed algorithm is
guaranteed to converge to at least a locally optimal solution.
The advantages of the learning trajectory optimization and
communication path planning algorithm by utilizing the pro-
posed map compression method are illustrated in an urban IoT
setting.

APPENDIX

A. Proof of the average channel gain

The average channel gain of the link between the drone and
the k-th ground node in the n-th time slot is given by

E[γk[n]] = pk[n]γLoS,k[n] + (1− pk[n])γNLoS,k[n], (36)

where ps,k[n] denotes the LoS probability, γLoS,k[n] and
γNLoS,k[n], respectively, denote the channel gain in LoS and
NLoS propagation segments. Expanding (36) we have

E[γk[n]]
(a)
= pk[n]

βLoS

dαLoS
k [n]

+ (1− pk[n])
βNLoS

dαNLoS
k [n]

(b)
=

(
d

(A−1)αLoS
k −B

1 + exp (−akθk + bk)
+B

)
βLoS

dαNLoS
k

, (37)

where step (a) holds by substituting the values of γLoS,k[n] and
γNLoS,k[n] form (2) into (36), (b) is obtained by substituing
(25), where B = βNLoS

βLoS
, A = αNLoS

αLoS
≥ 1, and dk[n] =√

z2 + r2
k[n] is the distance between the k-th ground node

and the drone. Note that, in order to ease the notation, the
average random shadowing is assumed absorbed into βs in
(37) i.e., βs , βsexp(σ

2
s/2) , s ∈ {LoS,NLoS}.

B. Proof of Lemma 1

By proving that the Hessian of the function h , h(x, y), is a
positive semi-definite (PSD) matrix, we prove the convexity of
h. We start by considering the Hessian of function ĥ , ĥ(x, y)

∇2ĥ =

[
fxxf−f2

x

f2 0

0
gyyg−g2y

g2

]
≥ 0, (38)

where f , f(x), g , g(x), fx , ∂f
∂x , gy , ∂g

∂y , fxx , ∂2f
∂x2 ,

and gyy , ∂2g
∂y2 . Since ĥ is convex, ∇2ĥ is PSD and has non-

negative diagonal elements. Hence, for f > 0, g > 0,

fxx ≥
f2
x

f
, gyy ≥

g2
y

g
. (39)

Also, it can easily be deduced that

fxxg ≥ 0, gyyf ≥ 0. (40)
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The hessian of h , h(x, y) is given by

∇2h =

 g2(fxxf−f2
x)+fxxg

(1+fg)2
fxgy

(1+fg)2

fxgy
(1+fg)2

f2(gyyg−g2y)+gyyf

(1+fg)2

 .
If det(∇2h) ≥ 0 and tr(∇2h) ≥ 0, then ∇2h is PSD [25].
Let us rewrite ∇2h as a summation of two matrices ∇2h =
M1 + M2, where

M1 =

 g2(fxxf−f2
x)

(1+fg)2
0

0
f2(gyyg−g2y)

(1+fg)2

 ,
M2 =

[
fxxg

(1+fg)2
fxgy

(1+fg)2

fxgy
(1+fg)2

gyyf

(1+fg)2

]
.

Since det(∇2h) is a 2× 2 matrix, we can write it as [26],
det(∇2h) = det(M1) + det(M2) + tr(M†

1M2),

where M†
1 is the adjugate of M1. From (38), it can easily be

shown that det(M1) ≥ 0. Also, using (39) we can see that

det(M2) = (1 + fg)
−2 [

(fxxf) (gyyg)− f2
xg

2
y

]
≥ 0.

Finally, from (38) and (40), we have

tr(M†
1M2) = f2

(
gyyg − g2

y

)
fxxg + g2

(
fxxf − f2

x

)
gyyf

≥ 0.

Therefore, we can conclude that det(∇2h) ≥ 0. It remains
to prove that tr

(
∇2h

)
≥ 0. Using (38) and (40), we can see

that the diagonal elements of ∇2h are positive and hence the
tr
(
∇2h

)
≥ 0. Consequently, we can see ∇2h is PSD, which

concludes the proof.

C. Proof of Proposition 1

Let f(x) = 1
1+x , g(y) = 1

y , h(d) = 1/dλ and q(x, y) =

f(x)g(y) + τ, τ ≥ 0. For positive f , f(x) and g , g(y),
since log(f g) is strictly convex, using Lemma 1, we can
infer that log (q(x, y)) is also strictly convex. Finally, from
the above arguments we can easily see that the function

ĉ(x, y, d) = log (q(x, y)h(d)) , k ≥ 0

is also strictly convex.
The Hessian of ĉ(x, y, d) is given by

∇2ĉ =


(qxxq−q2x)

q2
(qxyq−qxqy)

q2 0

(qyxq−qxqy)
q2

(qyyq−q2y)
q2 0

0 0
(hddh−h2

d)
h2

 , (41)

where q , q(x, y) and h , h(d). qx, qxy stand for the partial
derivative of q and are defined as qx = ∂q

∂x , qyx = qxy =
∂2q
∂x∂y . qxx, qyy, hd, hdd also are defined similarly. Since ∇2ĉ
is a positive definite (PD) and symmetric matrix, it has positive
diagonal elements. Hence,

qxx >
q2
x

q
> 0. (42)

Since h > 0, from (42) we have

h qxx > 0. (43)

Moreover, since log (f g) is strictly convex, we can write

fxxf > f2
x , gyyg > g2

y. (44)

Using the above results, we now prove that the function
c(x, y, d) = log (1 + q(x, y)h(d))

is convex. The Hessian of c , c(x, y, d) is

∇2c =
1

(1 + q h)
2 (P + Q) ,

where

P = (q h)
2∇2ĉ,

Q =

 qxxh qxyh qxhd
qyxh qyyh qyhd
qxhd qyhd q hdd

 .
Matrix P is PD since ∇2ĉ is PD and q, h > 0. In order to
show that the Hessian matrix ∇2c is PD, we need to prove
that Q is PD as the sum of two PD matrices is PD. According
to [27], if all upper left n × n determinants of a symmetric
matrix are positive, the matrix is PD. Matrix Q is symmetric,
since qxy and qyx are equal to fx gy .
We start from the upper left 1 × 1 determinants of Q which
equals to qxxh. It follows from (43), that qxxh > 0. Now, we
proceed to show that the determinant of upper left 2×2 matrix
of Q is positive. So, we can write

det (Q2×2)

h2
=
(
qxx qyy − q2

xy

)
(45)

(a)
= (fxxf)(gxxg)− f2

xg
2
y (46)

(b)
> 0, (47)

where Q2×2 denotes the upper left 2× 2 matrix of Q, (a) is
obtained by substituting qxx = fxxg, qyy = gyyf, qxy = fx gy
in (45) and step (b) follows from (44). Then, we compute

det (Q) = h2
d (hm) + hddh (h q p) ,

where m = 2qxyqxqy − qxxq
2
y − qyyq

2
x, p = qxxqyy − q2

xy .
From (44), it can be shown that m < 0. From the convexity
of ĉ(x, y, d) , by computing the determinant of upper left 2×2
matrix of ∇2ĉ and performing some algebraic reductions we
obtain

m+ q p > 0

⇒ h q p > −hm > 0. (48)

Also, since log (h) is strictly convex, we can write

hddh > h2
d. (49)

Therefore, according to (48), (49), it can be seen that
det (Q) > 0. Since all upper left n × n determinants of Q
are positive, we conclude that the matrix Q is PD. Hence,
∇2c is also PD.
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