
IEEE 1

Availability-aware Service Placement Policy in
Fog Computing Based on Graph Partitions

Isaac Lera, Carlos Guerrero, and Carlos Juiz, Senior Member, IEEE

Abstract—This paper presents a policy for service placement of fog applications inspired on complex networks and graph theory. We
propose a twofold partition process based on communities for the partition of the fog devices and based on transitive closures for the
application services partition. The allocation of the services is performed sequentially by, firstly, mapping applications to device
communities and, secondly, mapping service transitive closures to fog devices in the community. The underlying idea is to place as
many inter-related services as possible in the most nearby devices to the users. The optimization objectives are the availability of the
applications and the Quality of Service (QoS) of the system, measured as the number of requests that are executed before the
application deadlines. We compared our solution with an Integer Linear Programming approach, and the simulation results showed that
our proposal obtains higher QoS and availability when fails in the nodes are considered.

Index Terms—Fog computing, Service placement, Service availability, Performance optimization, Complex network communities,
Graph transitive closures.

✦

1 INTRODUCTION

FOG computing has emerged as a suitable solution for
the increase of application execution time and network

usage that Internet of Things applications based on cloud
services generate. This paradigm establishes that the in-
network devices are provided with computational and stor-
age capacities, and it enables them to allocate or execute
services of the IoT applications that are commonly executed
in the cloud provider [1]. By this, the application services are
placed closer to the users (or IoT) devices and, consequently,
the network latency between users and services and the net-
work usage are reduced. Nevertheless, the limited capacities
of the in-network devices, also known as fog devices in this
domain, make the definition of management policies even
more necessary than in other distributed system such as
cloud computing.

The objective of our work is to study an application
service placement policy to maximize service availability
in case of failures. The placement consist on the selection
of the most suitable fog devices to map service instances.
We consider that the IoT applications are defined as a set
of interrelated services that are initially and permanently
deployed on the cloud provider, but that they can be
horizontally scaled by creating new stateless instances in
the fog devices. We also consider that the users of our
domain are unalterable connected to a same gateway or
access point, i.e., we consider that our users are IoT devices
such as sensors or actuators, instead of considering mobility
patterns, as for example in the case of mobile users.

We propose a two phases policy that is addressed to
optimize the service availability, in terms of reachability
of the services from the IoT devices, and the deadline
satisfaction ratios, in terms of the percentage of requests
that obtain the application responses before their deadlines.

• The authors are with the Computer Science Department, Balearic Islands
University, Palma, SPAIN, E07122.
Corresponding author: Carlos Guerrero E-mail: carlos.guerrero@uib.es

In the first phase, the policy maps applications (the com-
plete set of interrelated services) to a set of well-connected
devices to guarantee the availability of the application for
the users connected to that set. We propose to use the
community structure of the fog devices for the generation
of the partitions of those devices. Once that an application
is mapped to a fog community, a second allocation process is
performed, by mapping the services of the application to the
fog devices in the community. This second phase addresses
the optimization of the response time by prioritizing the
allocation of interrelated services in the same fog device. We
propose to partition the services of an application by using
the transitive closure of a service to determine the services
to be placed together in the same device.

Fog service placement problem has been addressed in
previous researches, even considering community-based ap-
proaches [2], but we address some features that have not
been previously considered, and the novel contributions of
our approach are:
• The combination of the use of complex network com-

munities for the device partition and service transitive
closures for the application partition, that has not been
used simultaneously in previous studies.

• The optimization of both the application deadline sat-
isfaction, considered in some previous studies, and
the application availability, not included in previous
studies, and their evolution along the simulation.

• An experimental validation that includes dynamic fails
of the infrastructure along the simulation.

2 RELATED WORK

The problem of the optimization of service placement in a
fog architecture has been previously addressed from several
different prespectives, by considering algorithm propos-
als such as genetic algorithms [3], [4], Montecarlo meth-
ods [5], distributed solutions [6], Petri Nets [7], Markov

ar
X

iv
:2

40
1.

12
69

0v
1

 [
cs

.N
I]

 2
3

Ja
n

20
24

IEEE 2

processes [8], and being linear programming one of the most
common solutions [9], [10], [11], [12], [13], [14].

Nevertheless, there is still room for improvement and
some research challenges have not been still covered. For
example, most of the previous solutions have included the
optimization of response time, power consumption, cost, or
network usage. But to the best of our knowledge, they have
not studied the availability and the influence of failures in
the infrastructure.

The use of the community relationship of the devices
of a distributed system for the optimization of the resource
management was initially proposed by Filiposka et al. [15],
and they applied it in the optimization of the allocation
of virtual machines in a datacenter to optimize the hop
distances between related virtual machines. In the field
of fog computing, the use of other topological features of
graphs and complex network was proposed at a later stage,
such as centrality indexes for the static definition of fog
colonies [16] or the placement of data in fog devices [17].

The idea of organizing the complex structure of a fog
architecture have been applied in several studies, where
the authors defined these static infrastructure organizations
as fog colonies [4], micro-clouds [18], Foglets [19], or fog
domains [20]. For example, Skarlat et al. [4] defined a
twofold distributed placement policy that first considered
if a service should be allocated in a fog colony or migrated
to the neighbor colony. Once that the colony was chosen, the
control node of the colony decided the device that allocated
the service. In all those studies, the partition of the fog
devices was static and unique for all the applications.

On the contrary, Filiposka, Mishev and Gilly proposed
a virtual partition of the devices that is specific for each
application and it is dynamically established by the con-
ditions of the system. They implemented an evolution of
the proposal in [15] for the case of allocation of virtual
machines (VM) into fog devices [2]. They considered that
the fog services where encapsulated in one VM and they
proposed a two phases optimization process, where in the
first step the VM is mapped to a device community, and in
the second step, the VM is allocated in any of the devices in
the community with a traditional optimization technique.
This is probably the most similar work to our proposal in
terms of the optimization algorithm, but with a different
optimization objective. Their objective was to propose a run-
time algorithm for the migration of the VM as mobile user
of the applications move through different access points to
reduce the average service delay.

The main differences of the work of Filiposka et al.
with our proposal are: first, we study the suitability of
the community relationships to improve service availability
instead of the migration of VMs due to the user mobility;
second, we consider a more complex structure of the ap-
plications because we defined them as a set of interrelated
services that can be allocated in different devices, while they
defined the applications as a single encapsulating element,
the VM; third, we also study the use of a graph partitioning
approach, the transitive closure of the services, for the allo-
cation of the services inside the communities to also benefit
the placement of the most interrelated services in the same
devices to reduce the network delays between interrelated
services.

Dcloud

D1 D2

Dn-3 Dn-2 DnDn-1

Cl
ie
nt

la
ye
r

.

Fo
g
la
ye
r

Cl
ou

d	
la
ye
r

C C
.	.	.

C C
.	.	.

C C
.	.	.

C C
.	.	.

S1
S2

S3
S4

S1

S1
S1

S3

S4
S4 S4 S4

S2
S3

Dn-m S2S4

Fig. 1. Fog computing architecture.

3 PROBLEM STATEMENT

A general fog computing architecture is represented in Fig. 1
where three layers can be identified: cloud layer, fog layer
and client layer. Three types of devices can be differentiated:
a device for the cloud provider of the cloud layer; the
gateways, that are the access points for the clients; the fog
devices, the network devices between the cloud provider
and the gateways. All the devices have resources to allocate
and execute services.

The fog infrastructure can be modeled as a graph where
the nodes are the devices and the edges the direct network
links between devices. We identify those devices as Di,
considering two special cases for the cloud provider (Dcloud

i)
and the gateways (Dgtw

i). The devices are defined by the
available capacity of their resources ARDi

, that is a vector
which contains the capacities of each physical component.
For the sake of simplicity, we have considered a scalar
value, but it could easily be extended by including as many
elements as necessary. We suppose unlimited resources for
the specific case of the cloud provider, ARDcloud

i
= ∞. The

devices are also defined by the processing speed IPTDi
,

measured in term of instructions per unit of time. The
network links are identified by the two connected nodes
NLDi,Dj

, and we consider that it is a bidirectional com-
munication, NLDi,Dj

= NLDj ,Di
. The network links are

defined by the propagation delay, PRNLDi,Dj
, and the

network bandwidth, BWNLDi,Dj
. Thus, the network delay,

NDNLDi,Dj
, for the transmission of a packet between two

connected devices is calculated as:

NDNLDi,Dj
= PRNLDi,Dj

+
size

BWNLDi,Dj

(1)

where size is the size of the packet to be transmitted.
The applications in our problem domain follow a mi-

croservice based development pattern, that is increasingly
being used in IoT applications [21], [22], [23]. This type of
applications are modeled as a set of small and stateless
services that interoperate between them to accomplish a
complex task [24]. Thus, the services can be easily scale up,
by downloading the encapsulating element and executing
it, or scale down, by just stopping and removing instances
of the service. We assume that there is at least one instance
of each service running in the cloud provider (Dcloud

i).
We model each application APPx as a directed graph,

where the nodes are the services and the edges are the
request messages between the services. We identify the
services as Su and they are defined by the resource con-
sumption generated in the device that allocates the service,

IEEE 3

CRSu
. As in the case of the available resources in a device,

the resource consumption is generally defined as a vector
which measures the consumption of each physical compo-
nent, but we have considered a scalar value for a simpler
definition of the problem. Services are executed when a
request message is received. We classify the services in two
types depending on the origin of the service request: the
entry-point service Sep

u , the origins of the request messages
that arrive to those services are users USa or IoT devices
(sensors typically) IDb; the intra-services Sintra

u , that are
only requested by other services. An intra-service can be
requested for several different services and the entry-point
service can be requested for several users or IoT devices.
But, we suppose that there is only one entry-point service
for each application.

The task performed by a service is different depending
on the requester, so the execution generated by a request not
only depends on the service but also on the requester, i.e. the
request message. The request messages are identified by the
origin and target services, MSSu,Sv

, and they are modeled
as unidirectional edges, MSSu,Sv

̸= MSSv,Su
. The requests

generated by the users or the IoT services, i.e. the requests
to the entry-point services, are only identified by the target
entry-point service MS∅,Su

.
The request messages are defined by the size of the re-

quest message SZMSSu,Sv
, that determines the transmission

time of the service request, and the execution load that the
target service will generate in the device, defined by the
number of instructions to be executed, EIMSSu,Sv

.
We assume that there is at least one instance of each

service in the cloud provider. But those services can be
horizontally scaled by deploying new instances in the fog
devices. By this, the workload can be distributed between
instances and the network delay from the user to te service is
reduced. We define a placement matrix, P , of size |Su|×|Di|,
number of services per number of fog devices, where a
element pui is equal 1 if service Su is deployed in device
Di, and 0 otherwise.

The placement of the services are constrained by the
device resource capacity. The resources consumed by the
allocated services should not exceed the available resources
in the device:

|Su|∑
u=1

(pui × CRSu
) ≤ ARDi

, ∀ Di (2)

Our optimization objectives are to increase the applica-
tion deadline satisfaction ratio, and the application avail-
ability as the devices or the network links fail.

We define the deadline satisfaction ratio as the per-
centage of application requests that are processed before
the application deadline. Consequently, the applications in
the system, APPx, need to be defined by their deadlines,
DLAPPx

. The user perceived response time, RTRQn
USa,APPx

,
is the metric that measures the time between a specific
application request is sent by the user (RQn

USa,APPx
) and

all the application services finish their execution. It includes
the network delay of the request between services and the
response times (execution and waiting time) of the services.

The equation for the deadline satisfaction ratio is:

deadline(USa, APPx) =
|RTRQn

USa,APPx
< DLAPPx |

|RQn
USa,APPx

|
(3)

where |RQn
USa,APPx

| is the number of times that a a request
for APPx is sent from user USa, and |RTRQn

USa,APPx
<

DLAPPx | is the number of those requests that satisfied
the application deadline. This metric can be generalized by
considering the request to an application from any user,
deadline(APPx), or the ratio for all the applications and
users in the system, deadline(system).

Our second objective, the application availability, is de-
fined as the ratio of users that are able to reach all the
services of the applications they request for a given point
in time. In a hypothetic case, where any of the elements in
the system fails, the service availability would be 1.0. But
the devices or the network links can fall down, breaking
the shortest paths between the users and the application
services. At best, this only would generate an increase in
the network delay due to the requests would be routed by a
longer path, damaging the deadline satisfaction ratios. But it
could even result in making the user impossible to reach all
the application services, damaging the service availability
ratio. The equation for the service availability ratios is:

availability(APPx) =
|USa, g.t. ∃ path USa to APPx|
|USa, g.t. USa requests APPx|

(4)
In summary, our domain problem is addressed to find

P, pui ∀ Su, Di by minimizing deadline(USa, APPx)∧(1−
availability(APPx)) ∀ USa, APPx subject to the constraint
in Eq.(2).

4 TWO PHASES PARTITION-BASED OPTIMIZATION
PROPOSAL

Our optimization algorithm is based on a two phases
placement process with a first mapping of applications in
fog communities and a second phase which allocates the
services of an application in the devices of a fog community.
We partition the fog devices using the community rela-
tionship of the complex network that models the network
infrastructure of the system. The application services are
partitioned considering the transitive closures of the nodes
that represent the services in the application graph.

We study if the community relationships of the fog
devices is a good indicator to detect device sets that guar-
antee the availability of the services and the reachability
of the devices when device and network links failures are
considered. Additionally, we also study if the transitive
closure of a service is a good indicator to decide the services
that are allocated in the same device to avoid network
communications overheads.

4.1 Community-based Fog Devices Partition

The first phase of our optimization algorithm deals with
the mapping between applications (a set of interrelated ser-
vices) and a device partitioning. We propose to partition the
devices with the use of the community relatioship between
them. This phase of our optimization algorithm is based

IEEE 4

on the previous work of Filiposka, Mishev and Gilly, where
they studied and validated community-based algorithms for
placement optimization in cloud computing [15] and in fog
computing [2].

The community structure is a topological feature of
graphs that determines the sets of nodes which are better
connected between them than with the rest of the network.
The most popular community detection method is the one
proposed by Girvan and Newman [25], which detects com-
munities by progressively removing edges from the original
graph. The algorithm removes the edges with the highest
betweenness centrality, at each step. Betweenness centrality
of an edge is the sum of the fraction of the shortest paths
that pass through the edge. Therefore, a community, that is
organized with two regions that are mainly communicated
by only one edge, is split into two new communities in each
algorithm iteration.

Under the conditions of our domain problem, a device
community can be understood as a set of devices that are
well connected between them, with alternatives communi-
cation paths, and that the shortest paths between devices
are evenly distributed between the topology. Consequently,
a fail in an edge inside the community will have a lower
influence in the communication paths between devices than
a fail in the edges that connect the communities. This lower
influence means that the fails inside the communities will
not generate isolated regions in the topology neither an
important increase in the communication delays.

The Girvan-Newman method iteratively determines the
communities and the dendrogram, the tree structure of the
communities, can be built. We characterized those com-
munities with its depth in the dendrogram. We define
this depth as the iteration in which the community was
obtained. The higher the depth value is, the better com-
municated the device community is. Consequently, from
the point of view of the availability, it is better to place
the applications in device communities with higher depth
values, since the devices inside those communities are better
communicated between them than the devices in communi-
ties with lower depths values [26].

For example, consider the fog infrastructure in Fig. 2.
The network link NLDc,Df

is the one with the highest
edge betweenness centrality since it is passed through the
highest number of shortest paths. If we iterate the Girvan-
Newman method over this example, communities 2 and 3
have higher depth values than community 1 since they are
obtained when NLDc,Df

is removed in the next iteration of
the community generation algorithm. Consider also that we
deploy an application with services Si and Sj in community
1, allocating Si in Da and Sj in Dh, and that the user
that requests the application is connected to device Db.
Under those conditions, a fail in NLDc,Df

would make
impossible to finish the execution of the application since
their services are unreachable. On the contrary, if we deploy
the application in community 2, any fail in a edge would
not make impossible to execute the application. Finally
consider that a second user is connected to device Dh. The
best alternative, from the point of view of the availability,
would be to horizontally scale up by deploying the same
application twice in both communities 2 and 3, than only
once in any of them.

Da

Dd

Dc

Db

De

Dh

Dg

Df

NLDcDf

Community 1
Community 2 Community 3

Fig. 2. Example of fog device communities.

This example shows that, in an unrealistic situation with
unlimited resources in all the devices, the best option would
be to deploy an instance of the application for each client
that requests it and this deployment would be placed in
the community with the highest depth value that includes
the device where the client is connected to. But this cannot
be performed due to the limited resources in the devices
of a community. Moreover, if we note that the higher the
depth value of the community, the smaller the number of
devices in the community, i.e., the communities with the
highest values are the ones formed by only one device.
Consequently, it is necessary to prioritize the allocation of
the applications in the communities. We propose to use a
greedy algorithm for this priorization, more concretely, the
First-Fit Decreasing algorithm [27].

Our optimization algorithm deals, in this first step, with
the placement of applications in device communities using
a First-Fit Decreasing approach. The priority criteria for
ordering the applications is their execution deadlines, by
prioritizing the applications with shortest deadlines. The
algorithm starts checking the allocation of the application
from the device communities with highest depth to the
ones with the lowest, and the application is allocated in
the first community with enough resources to allocate all
the services of the application. If after checking all the
communities, the application has not been allocated, this
will be available only in the cloud provider. The process
for the same application is repeated as many times as the
number of users in the system that request this application.
Algorithm 1 shows the pseudo-code of our proposal. The
algorithm goes through the applications (in ascending dead-
line order), the users that request them and the communities
(in descending depth order), trying to allocate the services
of the application in the devices in the community.

In this first step, we map the applications in commu-
nities, but the map of services remains to be defined. We
separate the process in two steps because we mainly focus
the first one (mapping applications to communities) on
increasing the application availability, and the second one
(mapping services of an application to devices in a de-
vice community) on the application deadlines. This second
step is performed by the function placeServicesInDevices(),
in line 15, and its details are explained in Section 4.2 and
Algorithm 2.

Our algorithm checks if an application has been previ-
ously placed in a community (line 11), and if not, it delegates
the decision to place the application to the community to the
algorithm which ckecks if the application services fit into the
device community (Algorithm 2).

IEEE 5

Algorithm 1 Device community-based application alloca-
tion
1: C← calculate device communities
2: IC← order communities C by descending depth
3: A← order applications by ascending deadline
4: appPlacement← ∅
5: for app in A do
6: U← get users requesting application app
7: for user in U do
8: dev← get device where user is connected
9: for infCom in IC do

10: if dev ∈ infCom then
11: if infCom ∈ appPlacement[app] then
12: ””application app already placed in community infCom””
13: break
14: else
15: if placeServicesInDevices(app,infCom) then
16: appPlacement[app].append(infCom)
17: update resource usages in infCom
18: ””placed application app in community infCom””
19: break

4.2 Transitive Closure-based Application Partition

Once that the mapping of a given application into a candi-
date community of devices is performed by the first phase of
the optimization algorithm, the second phase deals with the
allocation of the services of the application into the devices
in the community. We first partition the applications into
sets of services, and it is checked if each of those service
sets can be placed in just one device. If not, smaller sets are
considered. The partition of the service into sets is based on
our previous work [6], where we studied and validated the
use of a distributed placement algorithm where the service
sets are created by considering the transitive closure of the
services in the application graph.

The transitive closure of a directed graph indicates the
nodes that are reachable for each of the nodes in the graph.
If a vertex j is reachable by a vertex i means that there is a
path from i to j. The reachability matrix of a graph is called
the transitive closure of the gragh, and the set of reachable
nodes for a given node is called the transitive closure of a
node [28].

Under the conditions of our domain problem, the tran-
sitive closure of a node can be understood as the set of
services that are requested for the execution of the given
service, i.e., the outgoing requests generated by a service
when it receives an incoming request. If we are interested
in reducing the response time of the application execution,
the services of the transitive closure should be allocated
in the same device to reduce the communication delays
between them, since the network delay is 0.0 for request
messages inside the same device. Moreover, the best case is
when all the services of an application are allocated in the
same device, but this is limited by the resource constraint
(Equation 2).

We also propose a First-Fit algorithm for this second
phase (Algorithm 2), which orders the sets of services from
the ones with the biggest sizes (only one transitive closure
with all the services) to the smallest sets of services (the
transitive closures with only one node or with the loops in
the service flow), and tries to place those sets of services into
a same device. The devices are ordered by a fitness value
which is the theoretical user perceived response time. This
value is obtained by adding the network latency between
the device and the user and the execution time of all the

1

3
2

4

5

Iter.	1

6

7

8

1

3
2

4

5

6

7

8

1

3
2

4

5

6

7

8

1

3
2

4

5

6

7

8

Iter.	2 Iter.	3 Iter.	4

Fig. 3. Example of service transitive closures.

Algorithm 2 Transitive closure-based service allocation
1: function PLACESERVICESINDEVICES
2: TC← generate transitive closure partitions for app
3: D← order devices in infCom by reponse time
4: SP← ∅ /* Services already placed*/
5: servPlacement← ∅
6: for dev in D do
7: for appPartition in TC do
8: for closure in appPartition do
9: if (closure not in SP) and (closure fits in dev) then

10: SP = SP ∪ closure
11: for service in closure do
12: servPlacement[service] = dev
13: update resource usages in dev
14: if SP == app then
15: return True, servPlacement
16: return False, ∅

services in the device. This prioritize the devices that are
both closer to the users and faster in the execution. By
this, the second step of the algorithm optimizes the user
perceived response time, and, consequently, improves the
deadline satisfaction ratio.

Initially, Algorithm 2 goes through the devices ordered
by the fitness value, and tries to allocate as much services
as possible in the devices with the highest values. For the
first device, it first tries to allocate all the services of the
application. If they do not fit, the service set is split in several
sets, one for each entry-point service and one additional set
for the transitive closures of each of its neighbor services of
the entry-point one, and it checks if any of those new sets
fits in the first device. This is recursively repeated for each
transitive closure set that contains services not previously
allocated. Fig. 3 shows an example of how the transitive
closure of the services is generated along the iterations of
the algorithm that partition the services of the application.

Once that all the service sets have been evaluated to
be placed in the first device, this process is sequentially
repeated for all the devices for the unallocated services. If
after considering all the devices, there are still unallocated
services, the mapping of the application in the current
device community is rejected. Consequently, the first phase
of the algorithm has to consider a greater community for the
placement.

5 EXPERIMENTAL EVALUATION

We defined random characteristics for the elements of our
simulation experiments. We modeled the parameters of the
elements in the domain with uniform distributions and the
minimum and maximum values are shown in Table 1.

The service applications were generated randomly fol-
lowing a growing network (GN) graph structure. GN graphs
are built by adding nodes one at a time with a link to
one previously added node. The network infrastructure was
created as a random Barabasi-Albert network with 100 fog

IEEE 6

TABLE 1
Values of the parameters for the experiment characterization

Parameter min.–max.

Network
Propagation time (ms) PRNLDi,Dj

5

Bandwidth (bytes/ms) BWNLDi,Dj
75000

Fog device
Resources (res. units) ARDi

10–25
Speed (Intrs/ms) IPTDi

100–1000
Application

Deadline (ms) DLAPPx 300–50000
Services (number) 2–10

Resources (res. units) CRSu 1–6
Execution (Intrs/req) EIMSSu,Sv

20000–60000

Message size (bytes) SZMSSu,Sv
1500000–4500000

IoT device
Request rate (1/ms) 1/1000–1/200
Popularity (prob.) 0.25

devices. Betweenness centrality index is a topological metric
that measures the number of shortest path that goes through
a device. The gateway devices were selected from the nodes
placed in the edges of the network, i.e., the nodes with
the smallest betweenness centrality indices. Betweenness
centrality index is a topological metric that measures the
number of shortest path that goes through a device. We
selected the 25% of devices with the lowest centrality value
to behave as gateways (25 gateways). The number and the
applications requested from the IoT devices connected to the
gateways were determined with a popularity distribution
modeled with an uniform distribution.

The random experimental scenario finally resulted on
20 applications with 106 services, that totally needed 360
resource units and the fog devices were able to offer up
to 1874 resources units. 70 IoT devices (or users) were
deployed and they generated an application request each
1/557 ms in average.

We compared the results of our proposal with the ones
obtained from the implementation of an integer linear pro-
gramming (ILP) service allocation optimizer. As we mention
in Section 2, ILP solutions are the most numerous in fog
service placement optimization.

The experiments were executed using the YAFS sim-
ulator that we had previously developed for other re-
search works. This simulator is able to include graph-based
network topologies and pluggable fog service placement
policies, apart from other features that, to the best of our
knowledge, are not provided by other fog simulators, such
as node failures, or dynamic service placement and routing.
The simulator is open source and it can be downloaded from
its code repository [29].

The experiment results are presented and analyzed in
two separated sections. Section 5.1 includes the analysis of
the results obtained with the YAFS simulator. Those results
compare the user perceived response time and the availabil-
ity of the applications for the IoT devices. In Section 5.2, it
is presented an analysis of the service placement obtained
with both optimization policies (our proposal and the ILP

one).

5.1 Simulation Results

A first simulation scenario included fails in the fog devices
to study the availability of the services when the nodes
are getting down. The simulation included random and
permanent fails in the nodes, starting with all the devices
(100 nodes) alive, and finishing the simulation with fails in
all of them. The fails were generated uniformly along the
simulation. The results of this simulation are presented in
Fig. 4 and shows the QoS in terms of the total number of
requests that are executed satisfying the application dead-
line. The reason because a request does not satisfied the
deadline can be both due to the response time is higher
than the deadline or due to none device with the services of
the requested application are reachable from the IoT device
due to all the paths between them have failed devices. Three
data series are represented in Fig. 4: one for the total number
of requests that are sent from the IoT devices (labeled with
Total num. of requests), one for the number of requests that
are executed before the deadline when the placement of
our solution is considered (labeled with Partition); and the
number of requests that satisfied the deadline with the ILP
policy (labeled with ILP).

It is observed that our approach results in a higher
number of satisfied requests, mainly during the first half of
the simulation (up to 50 failed devices). In the second part of
the simulation, improvements in the QoS are also observed
but these are less significant in regard with the ILP.

For the sake of a deeper analysis of the availability, it
has been also measured in terms of the number of IoT
devices that are able to request their applications thank to
that all the services they need are reachable with network
paths without failed devices. This is represented in Fig. 5,
where the y-axis are the number of IoT devices that are
able to request their applications, and the x-axis the number
of devices that have failed. The figure also includes the
hypothetic and impossible case, due to the resource limit
constraint, of allocating all the services in the gateways
(labeled as All in gtws.). This is the best case and is useful to
compare the solutions with the best upper bound. These
results confirm that our proposal is able to increase the
availability of the system when fails happen in the fog
devices.

A second simulation scenario did not included fails in
the fog devices and was used to study the user perceived
response time of the applications. These response times
were measured as the time between the user request was
generated in the IoT device and all the application services
finished. The results were measured independently for each
pair application-IoT device. They are summarized in Fig. 6.
Each plot in the figure represents the response times of
an application, an each item in the x-axis corresponds to
one gateway that has an IoT device (or user) that request
the application. The results of our solution are labeled as
Partition and the results of the ILP approach are labeled as
ILP.

It is observed that the placement obtained with our
proposal does not reduce the response time for all the
applications, but it is shorter for 13 of the 20 applications.

IEEE 7

0 250 500 750 1000 1250 1500 1750 2000
Simulation time

0

20

40

60

80

100

Qo
S

sa
tis

fa
ct

io
n

 (n
um

. o
f r

eq
ue

st
s)

Total num. of requests
Partition
ILP

Fig. 4. Evolution of the QoS with regard to the fail of fog devices, in terms of the number of requests which satisfy application deadlines
(|RTRQn

USa,APPx
< DLAPPx |) compared with the total number of requests (|RQn

USa,APPx
|).

0 20 40 60 80 100
Num. of failed fog devices

0
10
20
30
40
50
60
70

Io
T

de
vi

ce
s w

ith
 a

va
ila

bl
e

se
rv

ice

Partition
ILP
All in gtws.

Fig. 5. Number of IoT devices that get services in regard with the number
of failed fog devices (availability(APPx)).

Additionally, we can observed that in some applications an
important damage of the response time is obtained. This is
explained because both policies prioritize applications with
shorter deadlines in front of the ones with longer deadlines.
Nevertheless, there are less of these extreme cases, and
with shorter times, when our policy is used: our policy
only damages application 15 with a time of around 1000
ms, in front of four applications up to 400 s with the ILP
policy (around 400000 ms for application 1, 300000 ms for
application 8, 200000 ms for application 12, and 70000 for
application 2).

In summary, our service placement policy shows a better
behavior in terms of availability of the services that also
results on a better QoS in the system. On the contrary, the
response time of some applications results damaged but this
behavior is also observed with the ILP policy, generating
even worse response times.

5.2 Placement Results

This section is devoted to compare the placement of the
services obtained from the execution of our algorithm with
regard to the ILP one. This analysis is included to give a brief
idea of how the services are spread across the fog devices.

Firstly, Fig. 7a shows that the placement of the services
differs a lot between both placement policies. A mark in
the plot of the figure indicates that a given service (y-axes)
is placed in a given device (x-axes). Taking into account
that the services of the same application have consecutive
identifiers, it is also observed that in the case of our policy

(Partition), there are more cases of devices that allocate
several services of the same application (consecutive marks
in the same device).

Fig. 7b represent the resource usage of the fog devices.
The y-axis represents the percentage of resources that are
used by the services allocated in a given device and the
x-axis are the devices ordered by these percentages in as-
cending order. By the analysis of the figure, we can observe
that in the placement of our solution, there are almost
the double of nodes that do not allocate any service (the
resource usage is 0.0), and there is not any device that is
fully used (resource usage of 1.0), with regard to the case
of the ILP where almost 40 devices have a 100% usage of
the resources. The first interpretation of these results is that
the scale level of our solution is smaller than the ILP one,
in fact, we calculated that our policy deployed 357 (and
1161 resource units) instances of the services and the ILP
deployed 374 (and 1203 resource units), around 5% more
services (3.6% more resources). Consequently, our solution
is able to obtain better QoS and availability with a lower
use of the fog resources (smaller number of instances). The
second interpretation is that the services are more evenly
distributed, since the workload of the devices is smaller,
avoiding the saturation of the devices and keeping the
system in a more flexible state in order to allocate new
service instances.

Finally, Fig. 7c shows the relationship between the ser-
vice placement and the hop distance between the allocated
service and the IoT device that requests it. A point in the
scatter plot indicates how many IoT devices has a given
distance with a service of the application they request.
For example, in the case of our policy, there are around
100 services that are allocated in the gateways where the
IoT devices are connected (a hop distance of 0.0). On the
contrary, the ILP policy allocates more than 160 services in
the gateways, the point (0,160) in the plot. We observe that
the services are distributed more evenly and placed further
from the gateways (higher distances) for the case our policy.
Consequently, the ILP is able to place the services closer
to the IoT devices. Despite this, our policy shows a better
general behavior also in terms of application response time.

IEEE 8

20
0

200000

400000

App 1

33 88 93 97
0

20000

40000

60000

App 2

3

200

300

400

500

App 3

38

200

300

400

App 4

14 55 65 71 97 98
100

150

200

App 5

10
145.5

146.0

146.5

147.0

Re
sp

on
se

 ti
m

e
(m

s) App 6

32 46 62 83 98

200

300

App 7

52 55 64 71 83

500

1000

1500
App 8

24 46

150

200

250

App 9

16

500

600

700

800

App 10

38 71

400

600

800

App 11

46 61 67 88 96

1000

2000

App 12

14 55 58 81 96

200

250

App 13

24 55 61 64 67 88

200

300

400

500
App 14

526477818387969798

200

400

600

800

App 15

24 32 55 62 65 93
200

300

400

500

600

App 16

61 65 88 98

300

400

App 17

62 88 98

IoT devices (Gateways id.)
125

150

175

200

App 18

52 61

500

1000

1500

App 19

Partition ILP

9

400

600

800

1000
App 20

Fig. 6. User perceived response times of the applications for each user (or IoT device) in the system (RTRQn
USa,APPx

).

0 10 20 30 40 50 60 70 80 90 100
Device id.

0
10
20
30
40
50
60
70
80
90

100

Se
rv

ice
 id

.

Partition ILP

(a) Allocation of the services in the fog de-
vices (P, pui ∀ Su, Di).

Devices
0.0

0.2

0.4

0.6

0.8

1.0

Re
so

ur
ce

 u
sa

ge
 (%

) Partition
ILP

(b) Resource usage of the fog devices
(
∑|Su|

u=1 (pui × CRSu) , ∀Di).

0 50 100 150 200
Hop distance

0
20
40
60
80

100
120
140
160

Nu
m

. o
f I

oT
 d

ev
ice

s Partition
ILP

(c) Service allocation in terms of hop dis-
tance with the IoT devices.

Fig. 7. Comparison of the services placement between our partition-based algorithm and the ILP optimizer.

6 CONCLUSION

We have proposed an algorithm for service placement in
fog devices based on the partition of the fog devices (into
communities) and the services of the applications (into
transitive closures) for the optimization of the QoS of the
system and the service availability for the users (or IoT
devices).

Two simulation scenarios have been executed, one in-
cluding fails in the fog devices and another one without
fails, to measure the response time of the applications, the
service availability and the number of request that were
served satisfying the application deadlines. The service
placement obtained with our policy resulted in a higher
QoS and service availability, with regard to the placement

of an ILP-based algorithm. In the case of the user perceived
response time, our policy obtained better times for 13 of the
total 20 applications. Both policies showed a high degrada-
tion of service for some applications, but in the case of the
ILP, this degradation happened in more applications and
resulting in longer response times.

As future works, the use of complex networks and
graph theory for the optimization of other parameters of
the systems, such as service cost, network usage, migration
cost, and service provider cost could be studied. By the
own nature of the proposed policy, the optimization of
these other metrics probably would need to be combined
with other type of heuristics to obtain suitable results, and
consequently, further research is necessary.

IEEE 9

ACKNOWLEDGMENTS

This research was supported by the Spanish Government
(Agencia Estatal de Investigación) and the European Com-
mission (Fondo Europeo de Desarrollo Regional) through
grant number TIN2017-88547-P (MINECO/AEI/FEDER,
UE).

REFERENCES

[1] O. Consortium et al., “Openfog reference architecture for fog
computing,” Tech. Rep., February, Tech. Rep., 2017.

[2] S. Filiposka, A. Mishev, and K. Gilly, “Community-based alloca-
tion and migration strategies for fog computing,” in 2018 IEEE
Wireless Communications and Networking Conference (WCNC), April
2018, pp. 1–6.

[3] Z. Wen, R. Yang, P. Garraghan, T. Lin, J. Xu, and M. Rovatsos,
“Fog orchestration for internet of things services,” IEEE Internet
Computing, vol. 21, no. 2, pp. 16–24, Mar 2017.

[4] O. Skarlat, M. Nardelli, S. Schulte, M. Borkowski, and P. Leitner,
“Optimized iot service placement in the fog,” Service Oriented
Computing and Applications, Oct 2017. [Online]. Available:
https://doi.org/10.1007/s11761-017-0219-8

[5] A. Brogi and S. Forti, “Qos-aware deployment of iot applications
through the fog,” IEEE Internet of Things Journal, vol. 4, no. 5, pp.
1185–1192, Oct 2017.

[6] C. Guerrero, I. Lera, and C. Juiz, “A lightweight decentralized
service placement policy for performance optimization in
fog computing,” Journal of Ambient Intelligence and Humanized
Computing, Jun 2018. [Online]. Available: https://doi.org/10.
1007/s12652-018-0914-0

[7] L. Ni, J. Zhang, C. Jiang, C. Yan, and K. Yu, “Resource allocation
strategy in fog computing based on priced timed petri nets,” IEEE
Internet of Things Journal, vol. 4, no. 5, pp. 1216–1228, Oct 2017.

[8] R. Urgaonkar, S. Wang, T. He, M. Zafer, K. Chan, and
K. K. Leung, “Dynamic service migration and workload
scheduling in edge-clouds,” Performance Evaluation, vol. 91,
no. Supplement C, pp. 205 – 228, 2015, special Issue:
Performance 2015. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0166531615000619

[9] L. Gu, D. Zeng, S. Guo, A. Barnawi, and Y. Xiang, “Cost efficient
resource management in fog computing supported medical cyber-
physical system,” IEEE Transactions on Emerging Topics in Comput-
ing, vol. 5, no. 1, pp. 108–119, Jan 2017.

[10] K. Velasquez, D. P. Abreu, M. Curado, and E. Monteiro, “Service
placement for latency reduction in the internet of things,” Annals
of Telecommunications, vol. 72, no. 1, pp. 105–115, Feb 2017.
[Online]. Available: https://doi.org/10.1007/s12243-016-0524-9

[11] Z. Huang, K.-J. Lin, S.-Y. Yu, and J. Y. jen Hsu, “Co-locating
services in iot systems to minimize the communication energy
cost,” Journal of Innovation in Digital Ecosystems, vol. 1, no. 1, pp.
47 – 57, 2014. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S2352664515000061

[12] L. Yang, J. Cao, G. Liang, and X. Han, “Cost aware service
placement and load dispatching in mobile cloud systems,” IEEE
Transactions on Computers, vol. 65, no. 5, pp. 1440–1452, May 2016.

[13] V. B. C. Souza, W. Ramı́rez, X. Masip-Bruin, E. Marı́n-Tordera,
G. Ren, and G. Tashakor, “Handling service allocation in com-
bined fog-cloud scenarios,” in 2016 IEEE International Conference
on Communications (ICC), May 2016, pp. 1–5.

[14] D. Zeng, L. Gu, S. Guo, Z. Cheng, and S. Yu, “Joint optimization
of task scheduling and image placement in fog computing sup-
ported software-defined embedded system,” IEEE Transactions on
Computers, vol. 65, no. 12, pp. 3702–3712, Dec 2016.

[15] S. Filiposka, A. Mishev, and C. Juiz, “Community-based
vm placement framework,” The Journal of Supercomputing,
vol. 71, no. 12, pp. 4504–4528, Dec 2015. [Online]. Available:
https://doi.org/10.1007/s11227-015-1546-1

[16] C. Guerrero, I. Lera, and C. Juiz, “On the influence of fog colonies
partitioning in fog application makespan,” in 2019 IEEE 6th Inter-
national Conference on Future Internet of Things and Cloud (FiCloud),
August 2018.

[17] I. Lera, C. Guerrero, and C. Juiz, “Comparing centrality indices
for network usage optimization of data placement policies in fog
devices,” in 2018 Third International Conference on Fog and Mobile
Edge Computing (FMEC), April 2018, pp. 115–122.

[18] Y. Elkhatib, B. Porter, H. B. Ribeiro, M. F. Zhani, J. Qadir, and
E. Rivière, “On using micro-clouds to deliver the fog,” IEEE
Internet Computing, vol. 21, no. 2, pp. 8–15, Mar 2017.

[19] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, Fog Computing:
A Platform for Internet of Things and Analytics. Cham: Springer
International Publishing, 2014, pp. 169–186.

[20] A. Yousefpour, G. Ishigaki, R. Gour, and J. P. Jue, “On reducing iot
service delay via fog offloading,” IEEE Internet of Things Journal,
vol. PP, no. 99, pp. 1–1, 2018.

[21] M. Vogler, J. M. Schleicher, C. Inzinger, and S. Dustdar, “A
scalable framework for provisioning large-scale iot deployments,”
ACM Trans. Internet Technol., vol. 16, no. 2, pp. 11:1–11:20, Mar.
2016. [Online]. Available: http://doi.acm.org/10.1145/2850416

[22] A. Krylovskiy, M. Jahn, and E. Patti, “Designing a smart city
internet of things platform with microservice architecture,” in 2015
3rd International Conference on Future Internet of Things and Cloud,
Aug 2015, pp. 25–30.

[23] E. Saurez, K. Hong, D. Lillethun, U. Ramachandran, and
B. Ottenwälder, “Incremental deployment and migration of
geo-distributed situation awareness applications in the fog,”
in Proceedings of the 10th ACM International Conference on
Distributed and Event-based Systems, ser. DEBS ’16. New
York, NY, USA: ACM, 2016, pp. 258–269. [Online]. Available:
http://doi.acm.org/10.1145/2933267.2933317

[24] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices archi-
tecture enables devops: Migration to a cloud-native architecture,”
IEEE Software, vol. 33, no. 3, pp. 42–52, May 2016.

[25] M. E. J. Newman and M. Girvan, “Finding and evaluating
community structure in networks,” Phys. Rev. E, vol. 69, no. 2, p.
026113, Feb. 2004. [Online]. Available: http://link.aps.org/doi/
10.1103/PhysRevE.69.026113

[26] S. Fortunato, V. Latora, and M. Marchiori, “Method to find
community structures based on information centrality,” Phys.
Rev. E, vol. 70, p. 056104, Nov 2004. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevE.70.056104

[27] A. Alahmadi, A. Alnowiser, M. M. Zhu, D. Che, and P. Ghodous,
“Enhanced first-fit decreasing algorithm for energy-aware job
scheduling in cloud,” in 2014 International Conference on Compu-
tational Science and Computational Intelligence, vol. 2, March 2014,
pp. 69–74.

[28] H. S. Warren Jr, “A modification of warshall’s algorithm for the
transitive closure of binary relations,” Communications of the ACM,
vol. 18, no. 4, pp. 218–220, 1975.

[29] I. Lera and C. Guerrero, “Yafs, yet another fog simulator,” https:
//github.com/acsicuib/YAFS, accessed: 2018-02-03.

Isaac Lera received his Ph.D. degree in Com-
puter Engineering at the Balearic Islands Uni-
versity in 2012. He is an assistant professor of
Computer Architecture and Technology at the
Computer Science Department of the University
of the Balearic Islands. His research lines are
semantic web, open data, system performance,
educational innovation and human mobility. He
has authored in several journals and interna-
tional conferences.
Carlos Guerrero received his Ph.D. degree in
Computer Engineering at the Balearic Islands
University in 2012. He is an assistant professor
of Computer Architecture and Technology at the
Computer Science Department of the University
of the Balearic Islands. His research interests in-
clude web performance, resource management,
web engineering, and cloud computing. He has
authored around 40 papers in international con-
ferences and journals.
Carlos Juiz received his Ph.D. degree in Com-
puter Engineering at the Balearic Islands Uni-
versity in 2001. He is an associate professor
of Computer Architecture and Technology at the
Computer Science Department of the University
of the Balearic Islands. His research interests
include performance engineering, cloud comput-
ing and IT governance. He has authored around
150 papers in different international conferences
and journals.

https://doi.org/10.1007/s11761-017-0219-8
https://doi.org/10.1007/s12652-018-0914-0
https://doi.org/10.1007/s12652-018-0914-0
http://www.sciencedirect.com/science/article/pii/S0166531615000619
http://www.sciencedirect.com/science/article/pii/S0166531615000619
https://doi.org/10.1007/s12243-016-0524-9
http://www.sciencedirect.com/science/article/pii/S2352664515000061
http://www.sciencedirect.com/science/article/pii/S2352664515000061
https://doi.org/10.1007/s11227-015-1546-1
http://doi.acm.org/10.1145/2850416
http://doi.acm.org/10.1145/2933267.2933317
http://link.aps.org/doi/10.1103/PhysRevE.69.026113
http://link.aps.org/doi/10.1103/PhysRevE.69.026113
https://link.aps.org/doi/10.1103/PhysRevE.70.056104
https://github.com/acsicuib/YAFS
https://github.com/acsicuib/YAFS

	Introduction
	Related Work
	Problem Statement
	Two Phases Partition-based Optimization Proposal
	Community-based Fog Devices Partition
	Transitive Closure-based Application Partition

	Experimental Evaluation
	Simulation Results
	Placement Results

	Conclusion
	References
	Biographies
	Isaac Lera
	Carlos Guerrero
	Carlos Juiz

