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Abstract—In this paper, we investigate optimal schemes to
manage time scheduling of multiple modules including spectrum
sensing, radio frequency (RF) energy harvesting (RFH) and
ambient backscatter communication (ABCom) by maximizing
data transmission rate in Internet of Things (IoT) networks. We
first detect ambient RF signals with high signal power as the RF
resource of RFH and ABCom by using spectrum sensing with
energy detection techniques. Specifically, compressive sensing
is adopted to detect the wideband RF signals with improving
spectrum sensing efficiency at the same time. We formulate a
joint optimization problem to manage time scheduling parameter
and power allocation ratio. In addition, we propose to find the
threshold of spectrum sensing for ABCom communications by
analyzing the outage probability of backscatter communications.
Numerical results demonstrate that the optimal schemes using
spectrum sensing are achieved with better transmission rates.
The designed time scheduling scheme with compressive sensing is
confirmed to be more efficient, and the superiorities become more
obvious with the increase of network operation time. Moreover,
the optimal scheduling parameters and power allocation ratios
are obtained. Simulations illustrate that the threshold of spectrum
sensing for backscatter communications is obtained by analyzing
the outage probability of backscatter communications.

Index Terms—Ambient Backscatter Communication (ABCom),
Internet of Things (IoT), Radio Frequency energy Harvesting
(RFH), Compressive Spectrum Sensing.

I. INTRODUCTION

THE internet of things (IoT) is an intelligent network of
different kinds of networks, which can connect various

devices, smart sensors and actuators to the internet and enable
information exchange and sharing among all IoT nodes [1]. It
connects a large number of nodes which are distributed in large
areas within a complicated and heterogeneous environment to
provide different applications, such as smart home [1] and
smart city (air quality index monitoring [2]). Therefore, energy
supply for such a large number of IoT nodes becomes a critical
challenge, which indicating that these nodes have to achieve
energy usage in a self-sustainable way. Energy harvesting is
emerging as a promising way to provide IoT nodes with con-
tinuous energy. Many research studies have confirmed that en-
ergy harvesting is a useful way to solve the problem of energy-
limited batteries in wireless networks [3], especially wireless
energy harvesting [4] which uses ambient radio frequency (RF)
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signals to achieve power supplying in IoT networks [5]. On
the other hand, low power communication technologies have
drawn some attention because they can extend the battery
life of nodes by consuming less energy. For instance, low-
power wide-area networks (LPWANs) which include LoRa,
Sigfox and narrow band (NB)-IoT are regarded as promising
communication technologies in IoT networks [6]–[8]. Specif-
ically, ambient backscatter communication (ABCom), which
is achieved by modulating ambient RF signals, is becoming
popular due to its characteristic of low power consumption.
ABCom doesn’t contain energy-consumed circuits since it
doesn’t need the conventional transmitter circuit [9].

RF energy harvesting (RFH) and ABCom have drawn much
attention since they consider readily available RF signals,
such as signals from television (TV)/radio broadcasts, mobile
base stations and handheld radios [10] as available RF signal
resources. The ambient RF resources can be classified into
static and dynamic ambient RF resources. TV signals are
static RF resources since their power is relatively stable over
time. They are promising energy resources with their high
transmission power (up to 10kW) [11]. In [12], the researchers
designed a novel broadband Yagi-Uda antenna to harvest am-
bient RF power from DTV (Digital TV) broadcasting signals.
A RFH wireless sensor network prototype was designed by
harvesting signals from TV tower in [13]. Although static RF
resources can provide predictable RF energy, there could be
long-term and short-term fluctuations due to service schedule
[14]. Dynamic ambient RF resources (e.g., WiFi access point)
are produced by RF transmitters that work periodically or
change transmit power over time. Therefore, making use of
ambient RF sources has to search for available opportunities
intelligently in a certain frequency range.

We first introduce the concept of spectrum sensing in this
paper to detect the ambient RF resources, e.g., TV signals,
by using energy detection techniques. Spectrum sensing was
first proposed to detect the signals sent by primary users in a
licensed spectrum in cognitive networks [15], which provides
more reliable and real-time results for spectrum occupancy.
It is categorized into two types according to the bandwidth
of the spectrum interest: narrowband and wideband spectrum
sensing. The narrowband spectrum sensing algorithm contains
energy detection, matched filtering and cyclostationary feature
detection [16]. Energy detection is most commonly researched
due to its easy implementation and low computational com-
plexity [17]. But for exploiting the wideband spectrum, such
as ultra high frequency (UHF) TV band, wideband spectrum
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sensing should be employed since narrowband spectrum sens-
ing cannot be directly used due to its single binary decision
making [18]. Alternatively, compressive sensing (CS) theory,
first proposed to be applied to wideband spectrum sensing
by Tian and Giannakis [19], could be used. Furthermore, a
cognitive radio enabled TD-LTE test-bed has been proposed in
[20], authors use compressive sensing to detect TV white space
to achieve dynamic spectrum management. [21] proposed a
blind joint sub-Nyquist sensing scheme to jointly sample the
spectrum by utilizing the surround IoT devices in IoT networks
based on CS theory. CS uses a small number of measurements
to reconstruct the received signals, and is popular due to
low cost and high efficiency. To investigate channel energy
statistics, a learning algorithm is proposed to explore the
assumptive statistical model of channel energy for compressive
spectrum sensing [22].

ABCom is emerging as a potential way to transmit informa-
tion by reflecting an incident RF wave due to its characteristics
of low power (tens of uW) and low complexity (without
energy hungry circuits) [23]. Furthermore, ambient backscatter
communication is used more to communicate with wireless
devices nearby since it uses legacies of RF signals (TV, FM
and WiFi signals) [24]. Leveraging the ambient RF signals
contributes to a self-sustainable IoT network, that is, one
which can use the RF signals to power the device and transmit
information by using the backscatter technique simultaneously
[25]. A communication system that enables two devices to
communicate by leveraging existing TV signals was designed
in reference [26]. A general framework for evaluating the
ultimate achievable rates of a point-to-point backscatter com-
munication network was studied in [27].

However, none of the existing work considers the dynamics
of ambient RF signals which are important for performing
energy harvesting and ambient backscatter communications. In
this paper, we detect ambient RF sources with high power by
using spectrum sensing techniques, so that energy harvesting
and ABCom can be performed at the IoT node with the filtered
RF resources. This makes the random energy arriving process
become a deterministic process, and helps to find the best
incident RF signal for ABCom. The major contributions of
this paper are:

1) We detect the transmitted signals instead of vacant chan-
nels by using compressive spectrum sensing techniques.

2) We propose time scheduling schemes for multiple mod-
ules of IoT node by formulating the transmission rate
maximization problem of ABCom process.

3) We analyze the performance of detection threshold of
spectrum sensing for ABCom by analyzing the outage
probability of ABCom with considering the channel
suffering from path loss, shadowing and fading.

4) The optimal values of time scheduling parameters and
power allocation ratios, and the maximum data trans-
mission rates are obtained. The better transmission rate
performance by detecting the RF signals with compres-
sive spectrum sensing techniques is verified.

This paper is organized as follows. The network model is
presented in section II. The optimal time scheduling schemes
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Fig. 1. The network model.

Fig. 2. The block diagram of different modules at the IoT node.

are proposed in section III. The detection threshold of spec-
trum sensing for ABCom is analyzed in section IV. Numerical
results corresponding to our analysis are discussed in section
V. Section VI draws the conclusions and future work.

II. SYSTEM MODEL

As shown in Fig. 1, we consider an IoT network, which
contains a lot of IoT nodes which are powered by ambient
RF sources. All the IoT sensor nodes transmit data to the
gateway by performing ambient backscatter communications
using ambient RF resources. In this paper, multiple modules
are considered to be deployed to each IoT node, which helps
them achieve energy self-sustainable and make the best use
of the received ambient RF sources. The modules include RF
energy harvester to harvest RF signals, spectrum sensing to
detect ambient RF signals and ABCom to transmit data to the
gateway. Certainly, backscatter receivers are equipped at the
end of the gateway to receive the data from all the IoT nodes.

To enable the multiple modules work efficiently at IoT
node, a time scheduling scheme is required to ensure the
work process of each module. The work process of all the
modules at an IoT node is proposed as shown in Fig. 2. The
detailed process is formulated as: 1) the spectrum sensing
module detects the ambient RF signals with high signal power;
2) the detected RF signals are then used to perform RF
energy harvesting or ambient backscatter communications;
3) the energy harvester harvests the RF signals and then
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converts them into direct current (DC); 4) the backscatter
device modulates data packets by using the detected high
power RF signals, which is achieved by adjusting the variable
impedance using the micro-controller. The energy harvested
by the RF energy harvester is used to power all the other
modules, and we assume that the consumption energy by the
RF energy harvester is negligible. Thus, the energy causal
condition should be satisfied, and it can be expressed as:

EH ≥ ES + EB + ED, (1)

where EH , ES , EB and ED indicate the harvested energy, the
energy consumed by the spectrum sensing module, the con-
sumption energy of ABCom module and the energy consumed
by the sensing module, respectively. Assuming all the modules
work in the same time block, then how to manage the time
scheduling of different modules is a challenging problem. So
in this paper, the optimal time scheduling scheme is designed
to solve this problem with IoT nodes achieving energy self-
sustainable.

III. PROPOSED OPTIMAL TIME SCHEDULING SCHEME

In this section, the optimal scheme is designed to manage
the time scheduling of different modules for each IoT node.
We adopt a harvested-then-forward strategy to harvest energy
firstly, and then use the harvested energy to transmit data.
For detecting single frequency signals, the detected RF signals
(100%) only can be either used for RFH or modulated (100%)
by the ABCom module. However, ambient RF sources are
generally wideband signals, to detect all the ambient RF
signals transmitted in the wideband spectrum, compressive
sensing technique is used. As a result, we can detect multiple
signals from wideband frequency, and then the detected signals
are used to perform RF energy harvesting (partial signals) and
ABCom (the rest signals) simultaneously.

In [13], the TV signals transmitted in the occupied primary
channels can be harvested by the RF energy harvester, which
is one of the important RF energy resources. In this paper,
we consider TV signals as ambient RF resources, with fre-
quency ranging from 470 to 790 MHz. The energy detection
technique, which is a classic method to detect the occupancy
of primary channels by comparing the signal power of the
received signals at the second user to a pre-defined power
threshold. The detection threshold is set as the minimum
value that can be harvested successfully by the RF energy
harvester, while for ABCom, the detection threshold is set
as a larger value to reduce the outage probability of data
transmission. Furthermore, we analyze the value range of
the pre-defined detection threshold of spectrum sensing for
ABCom by analyzing the outage probability of ABCom.

Assuming the TV signal received at the IoT node is y (t),
which is presented as

y (t) = x (t)h+ wt, (2)

where x (t) is the received TV signal at the IoT node, h is
the channel gain and wt is the noise. Then the power of the

Fig. 3. The time scheduling structure.

received signal is calculated as

PR =
1

Ns

Ns∑
n=1

|y [n]|2, (3)

where Ns is the number of samples, n is the index of discrete
samples.

A. Optimal Time Scheduling Scheme

Fig. 3 shows the proposed time scheduling structure of
multiple modules for each IoT node, where only one single
frequency signal is detected. T is the period of the time block,
τ is the duration of ABCom, while µ is the duration of RF
energy harvesting. The time duration of spectrum sensing is
denoted by κ. Since spectrum sensing is used to detect single
frequency signals, it has to detect TV signals every time before
RF energy harvesting or ABCom.

Furthermore, each part of the energy causal condition in
formula (1) is given respectively. The harvested energy by the
RF energy harvester is given as

En
H = µTPn

H = µTηPn
R, (4)

where η is the energy harvesting efficiency and Pn
R is the

received signal power at the IoT node.
The consumption energy of the spectrum sensing module is

presented as
En

S = esNsNn, (5)

where Nn is the number of signals detected during spectrum
sensing, and es denotes the power consumed by each sample.

Assuming the pre-defined detection threshold for energy
harvesting is λh, the RF energy harvester starts to harvest
energy only when the detected signal power Pn

R ≥ λh. And
if the pre-defined detection threshold for ABCom module is
assumed as λb, then it performs backscatter communications
only when the detected signal power Pn

R ≥ λb. Supposing the
sampling rate of each signal is the same, denoted by fs, so
the total number of signals detected by the spectrum sensing
module during 2κT is Nn = 2κTfs/Ns. Thus, the energy
consumed by spectrum sensing during one time block T is
changed as

En
S = es2κTfs. (6)

The consumption energy of the ABCom module is mainly
used to power the circuit of modulating data packets, so it is
expressed as

En
B = τTPC , (7)

where PC denotes the circuit power of the ABCom module.
For simplicity, the consumption energy of sensing data ED is
set as a constant.
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To design the optimal time scheduling scheme, we formu-
late the transmission rate maximization problem, where our
objective function is the transmission rate of ABCom, which
is presented as

Rn(τ) = τTBwlog2(1 +
Pn
U

Wn
), (8)

where Pn
U is the received signal power of the backscatter

receiver at the data server, Wn is the noise power. Since
modulated signals by the backscatter module will experience
path loss before arriving at the backscatter receiver, Pn

U is
written as Pn

U = βPn
RL(d1). Pn

R is the received signal
power after detecting by the spectrum sensing module, β is
the reflection coefficient of backscatter communications. In
addition, it also suffers from path loss from the TV tower to
the IoT node, which is denoted as Pn

R = PoL(d2), Po is the
power of TV signal at the transmitter. L(d) = Bd−ς is the
power-law path loss exponent. The path loss function depends
on the distance d, a frequency dependent constant B and an
environment dependent path-loss exponent ς ≥ 2.

Then the optimization problem is formulated as:

OP1 max
τ

Rn(τ),

s.t. 0 < τ, κ, µ < 1,
τ + 2κ+ µ = 1,

En
H ≥ En

S + En
B + ED,

(9)

where ED = PDT , PD is the power of the data sensing
module. By substituting formulas (4), (6) and (7) into the
optimization problem OP1, we can get the OP2 as follows:

OP2 max
τ

Rn(τ),

s.t. 0 < τ, κ, µ < 1,
τ = 1− 2κ− µ,

τ ≤ µηPn
R−es2κfs−PD

PC
.

(10)

In the optimization problem OP2, we can see that Rn(τ) is
a monotonically increasing function with τ . In the ideal case,
τ is as close as possible to 1, that is, κ and µ are close to 0.
However, the time of RF energy harvesting is not negligible
since it only harvests a small amount of power. Then if we
let κ = 0, then µ = 1 − τ . Therefore, we can get the
maximum transmission rate R∗

n(τ) when τ =
ηPn

R−PD

ηPn
R+PC

. In
practice, spectrum sensing process should be considered, that
is, κ ̸= 0. Therefore, to solve this optimization problem with
multiple variables, a grid search algorithm is used as shown
in Algorithm 1.

The complexity of our proposed algorithm mainly comes
from the search grid space, let Nκ and Nµ present the grid
space of κ and µ, respectively. Therefore, the complexity of
our proposed time scheduling scheme is O(Nκ ×Nµ).

B. Time Scheduling Scheme with Compressive Sensing

In this section, compressive sensing is considered to detect
wideband signals from the TV spectrum. In this case, we can
obtain more than one TV signals from different channels at
the same time.

Algorithm 1 Optimal Time Scheduling Scheme with Grid
Search Algorithm
Input

Initial parameters κ and µ stepn,
1: repeat
2: κ← κ+ step, µ← µ+ step,
3: τ = 1− κ− µ,
4: Obtain the transmitted TV signals with the signal power

satisfy Pn
R ≥ λb using to transmit data, while Pn

H ≥ λh

are used to harvest energy,
5: if µPn

H = 2κesfs + τPC + PD then
6: Calculate transmission rate R(τ).
7: end if
8: until κ ≥ 1, µ ≥ 1
9: return κ∗, µ∗ and R∗(τ)

1) Compressive Sensing: Compressive sensing technique is
efficiently used to acquire and reconstruct a signal, which re-
quires the signal is sparse in some domain. Then the sparsity of
a signal is exploited to recover it from far fewer samples than
required by the Shannon-Nyquist sampling theorem through
some optimization methods. The TV wideband spectrum in
the UK has abundant spectrum resources with each channel
bandwidth is 8 MHz, and most of the channels are rarely used.
We consider this wideband TV signal as sparse signal, which
is indicated by S = (s1, s2, ..., sM ). Assuming there are K
active channels occupied during sensing period, the utilisation
ratio is defined as ξ, then K = ξ ·M . Therefore, applying
compressive sensing to the TV wideband spectrum sensing,
we can obtain the information of TV signals transmitted in
the active occupied channels.

Assuming the received signal y(t) shown in formula (2) at
the IoT node is wideband signal. Moreover, we assume the
received signal is sparse in the frequency domain and it is
expressed as yf = xfhf + wf , where yf , xf and wf are the
discrete Fourier transform (DFT) of y(t), x(t) and w(t). Also,
xf is sparse because the spectrum is underutilised. Through
applying compressive sensing technique at the IoT node, the
collected compressed measurements can be presented as

c = ΦF−1yf = ΦF−1(xf + wf ), (11)

where the measurement matrix Φ ∈ CK×M is used to
collect the compressed measurements c ∈ CK×1, with the
compressive ratio ξ = K

M . And F−1 is inverse DFT matrix
which is used as the sparsifying matrix. The sub-Nyquist
sampling technology is adopted when the compressive sensing
is implemented at the IoT node, the sampling rates are reduced
then. To detect the occupancy of the active channels, the
received signal should be recovered from the compressed
measurements, it can be achieved by solving the following
l1 norm minimization problem:

x̂f = arg min ∥x̂f∥ , s.t.
∥∥ΦF−1x̂f − c

∥∥2
2
≤ ε, (12)

where ε is the noise tolerance. Further, energy detection
method is performed at the IoT node to determine the oc-
cupancy of the active channels, the pre-defined threshold is
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Fig. 4. The time scheduling structure with compressive sensing.

given by

λ = σ2
d ∗ (1 +

Q−1 (Pf )√
M/2

), (13)

where Pf is the probability of false alarm. So if the power
density of each considered channel satisfies Px̂f

> λ, then
there is TV signal transmitted in this channel, otherwise the
channel is vacant.

2) Time Scheduling Scheme: The received power at the IoT
node is split into two parts, one is used to backscatter infor-
mation, another part is harvested by the RF energy harvester,
as shown in Fig. 2. This means that energy harvesting and
backscatter communication are performed simultaneously after
compressive sensing. And the predefined detection threshold
of energy detection is set as the bigger value of the two
processes as defined in the previous time scheduling scheme.
In this case, the time scheduling structure is designed as shown
in Fig. 4. T is the period of the time block. α denotes the time
duration of compressive sensing, while 1−α indicates the time
duration of energy harvesting and the ABCom.

Similarly, the harvested energy is used to power the com-
pressive sensing module, the ABCom module and the sensor
module. Here, only one part of the received power, which
is indicated by power allocation ratio ι, is used for energy
harvesting, then the harvested energy is formulated as

Ew
H = (1− α)TηιPx̂f

, (14)

where Px̂f
is the power of the signals recovered from com-

pressive sensing.
The consumption energy of the compressive sensing module

is expressed as
Ew

S = esfsMαT, (15)

where es is the consumption energy of each sample, fs is the
sample rate of each signal.

The energy consumed by the ABCom module is presented
as

Ew
B = (1− α)TPC . (16)

In this case, the transmission rate of the backscatter com-
munications is relevant to time scheduling of each module
and the power allocation ratio between energy harvesting and
backscatter communications, then it is represented as

Rw(α, ι) = (1− α)TBlog2(1 +
β(1− ι)Px̂f

L(d2)

Ww
), (17)

where (1− ι)Pw
R indicates the part of received power used for

backscatter communications. L(d2) is the power-law path loss
between the IoT node and the backscatter receiver.

Algorithm 2 Optimal Time Scheduling Scheme with Com-
pressive Sensing by Grid Search
Input

Initial parameters α and ι, stepw
1: Obtain the transmitted wideband TV signals with the total

signal power as Px̂f
using compressive sensing algorithm,

Orthogonal Matching Pursuit (OMP).
2: repeat
3: α← α+ stepw, ι← ι+ stepw
4: if (1− α)ιPx̂f

≥ esfsMα+ (1− α)PC + PD then
5: Calculate transmission rate R(α, ι)
6: end if
7: until α ≥ 1, ι ≥ 1
8: return α∗, ι∗ and R∗(α, ι)

Therefore, we formulate a joint optimization problem to
optimize α and ι, which is given as

OP3 max
α,ι

Rw(α, ι),

s.t. 0 < α, ι < 1,
Ew

H ≥ Ew
S + Ew

B + Ew
D.

(18)

Similarly, where ED is the energy consumed by the sensor
sensing data. Substituting formulas (14), (15) and (16) into
this optimization problem, it is reformulated as

OP4 max
α,ι

Rw(α, ι),

s.t. 0 < α, ι < 1,
(1− α)ηιPw

R ≥ esfsMα+ (1− α)PC + PD.

(19)

Likewise, the compressive sensing takes up as less time as
possible in the ideal case, that is, α = 0. Then the joint
optimization problem is simplified as the transmission rate
only varies with the power allocation ratio ι. In addition, the
transmission rate is monotonically decreasing with ι, so the
optimal transmission rate R∗

w(ι) is obtained with ι = PC+PD

ηPx̂f

.
However, in practice, the time scheduled for compressive
sensing cannot be negligible, then we use grid search to solve
this optimization problem. The solution for this optimization
problem using grid search algorithm is shown in Algorithm 2.

The complexity of the compressive sensing is determined
by the number of samples M to be recovered to present the
spectrum of interest, and it is from the signal recovery process
by solving (12) and denoted by O(M3). The complexity of our
proposed algorithm mainly comes from the search grid space,
let Nα and Nι present the grid space of α and ι, respectively.
Therefore, the complexity of our proposed time scheduling
scheme is O(M3 +Nα ×Nι).

IV. OPTIMAL DECTION THRESHOLD FOR ABCOM

In Section III, we have designed an optimal time scheduling
schemes of multiple modules at an IoT node. In the optimal
scheme, spectrum sensing technique is first used to detect the
transmitted TV signals instead of the vacant frequencies. The
signals are detected by changing the detection threshold of
energy detection technique, which then are used to perform
energy harvesting and ABCom. The pre-defined detection
threshold for energy harvesting is set as the minimum value
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that can be harvested by the RF energy harvester. But for
ABCom, the pre-defined detection threshold is decided by the
interferences of other IoT nodes and the channel condition
between backscatter device and the receiver. Therefore, we
discuss the upper and lower bound of the pre-defined detection
threshold of spectrum sensing for ABCom in this section.

As shown in Fig. 1, the IoT network contains many IoT
nodes distributed around the gateway (which is considered as
the local data server). If these nodes transmit data with high
transmission power, they will cause interferences to each other.
This means the transmit power of each IoT node should be
no more than the maximum power. Thus, the upper bound of
the pre-defined detection threshold is existed. It is obtained by
maximizing the transmission rate of ABCom. For simplicity,
we assume the transmit power of each IoT node is the same,
then the transmission rate is presented as

Rb = Blog2(1 +
Plhb

W0+
J∑

j=1,j ̸=l

Pjgj

)

= Blog2(1 +
Plhb

W0+(K−1)Pl

J∑
j=1,j ̸=l

gj

),
(20)

where W0 is the noise power of the receiver, and Pl = Pj is
the transmission power of IoT node. hb is the channel gain
from backscatter module to the receiver, gj is the channel
gain from the rest IoT nodes to the IoT node l. And as shown
in formula (20), the transmission rate Rb is monotonically
increasing with the transmit power Pl. Generally, the upper
bound of the transmit power is limited by battery capacity
of the IoT node. In this paper, since the backscatter module
transmits data by reflecting the transmitted TV signals, the
upper bound of transmit power is decided by the maximum
power of the TV signals detected by the spectrum sensing
module.

Furthermore, we discuss the lower bound of the pre-defined
detection threshold which ensures successful data transmission
from the backscatter module to the receiver. In reality, the
channel between them suffers from large-scale fading (includ-
ing path loss and shadowing) and small-scale fading (like
Rayleigh and Nakagami-m fading). In this paper, we consider
all the fading characteristics of the channel to find the pre-
defined detection threshold of spectrum sensing for ABCom,
that is, the transmit power of the IoT node is analyzed.

Firstly, we use the simplified path loss model to illustrate
the influences of the communication distance on the transmit
power, it is expressed as

Pt =
P b
R

Bd−ς
≥ Pth

Bd−ς
, (21)

where Pth is the threshold of the received power at the
receiver. Then we can use formula (21) to model the path
loss of the signals before they arrived the receiver. Then it is
easy to obtain the minimum transmit power according to the
received power since which should be larger than a minimum
threshold to make sure the successful data transmission.

Then, we consider finding Pth by analyzing the outage
probability of the channel with composite Nakagami-m fading
and log-normal shadowing. This is to analyze the effects of

shadowing and fading in the channel on the received power.
Firstly, the definition of the outage probability is presented as

Pout = Pr(γ < γth) =

∫ γth

0

pγ(γ)dγ , (22)

where γ is the instantaneous signal-noise ratio (SNR) and γth
is the minimum SNR that must be satisfied at the receiver. The
composite probability density function (PDF) with Nakagami-
m fading and log-normal shadowing of SNR is presented as
[28]

pγ(γ) =
∫∞
0

mmγm−1

ΩmΓ(m) exp(−mγ
Ω )

×{ 10/ ln 10√
2πσ2Ω

exp[− (10log10Ω−µ)
2σ2 ]}dΩ, γ ≥ 0,

(23)

where Ω is the average power which is treated as a random
variable, and m is the parameter of Nakagami-m fading.
σ(dB) and ζ(dB) are the mean and standard deviation of
10log10Ω, respectively. Then the outage probability is obtained
as

Pout =
∫ γth

0

∫∞
0

mmγm−1

ΩmΓ(m) exp(−mγ
Ω )

×{ 10/ ln 10√
2πσ2Ω

exp[− (10log10Ω−µ)
2σ2 ]}dΩdγ.

(24)

In formula (22), the instantaneous SNR γ is presented as

γ = ρ2Es

N0
=

ρ2P b
RTs

W0/B
=

ρ2P b
R

W0
(a), (25)

the SNR threshold γth is

γth =
ρ2Pth

W0
(b), (26)

where ρ2 is the fading power, Es indicates the energy per sym-
bol and N0(W/Hz) is the one-sided power spectral density
at the receiver. P b

R is the received signal power and W0 is the
noise power at the receiver. Ts is the period of the signal and
Bs is the bandwidth of the noise, and it satisfies Bs =

1
Ts

, so
we can get the final expression in formula (25-a).

By substituting formula (25-a) into (24), we can get the
outage probability varying with the received signal power P b

R

which is the signal power before experiencing fading. Thus,
the threshold of this power can be obtained by analyzing the
outage probability shown in formula (24), that is, the threshold
of Pth in formula (21) is obtained. Finally, to calculate the
threshold of the transmission power, we can analyze the
formula (21) since the value range of the received power Pth

is known now.

V. NUMERICAL RESULTS

In this section, simulations are performed for optimal time
scheduling schemes proposed in Section II. For compari-
son, the relevant simulation parameters are set as the same,
T = 10s, the consumption energy of the sensor is PD =
−30dBm, and the circuit power of backscatter module is
PC = −40dBm. The consumption energy of each sample
is es = −33dBm. The path-loss exponent for both commu-
nication links is ς = 2. The sampling rate of each signal is
fs = 1000Hz, and the noise power at the backscatter receiver
is given as Wn = Wm = W0 = −40dBm. Simulations are
performed to find the detection threshold of spectrum sensing
for ABCom.
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Fig. 5. The transmission rate with spectrum sensing, κ is the duration of
spectrum sensing, and µ indicates the duration of energy harvesting.

A. Optimal Scheme with Spectrum Sensing

In this section, we detect the signals from a single frequency
which is set as 562MHz. By solving the optimization problem
OP1, the optimal transmission rate of ABCom is obtained
with optimal time shceduling parameters, which is shown in
Fig. 5. In contrast, Fig. 6 plots the transmission rate of ABCom
without adopting the energy detection technique. In this case, it
means that the energy harvesting efficiency η and the reflection
coefficient β of ABCom are smaller than 1, which we set
as 0.5. This is because the received signals that don’t satisfy
the energy harvesting or ABCom condition will be eliminated.
The optimal values of transmission rates and the corresponding
optimal time scheduling parameters are given in Table 1(a).

Comparing Fig. 5 to Fig. 6, we can see that the trans-
mission rate is improved. This is because we use a pre-
defined detection threshold to filter the received signals for
energy harvesting and ABCom. So in this case, η and β are
equal to 1, which means all the filtered signals arrived in the
energy harvesting module and the backscatter module can be
harvested and modulated successfully. We also illustrate the
optimal value ranges of time sheduling parameters κ and µ in
these two scenarios.

B. Optimal Scheme with Compressive Sensing

To improve the spectrum sensing efficiency, compressive
sensing is used to detect the wideband TV signals. There are
40 channels ranging from 470 to 790 MHz, so the maximum
number of signals transmitted in the wideband spectrum is
40. But most of the channels are rarely used, so the wideband
signal is sparse, and the sparsity is set as ξ = 75%. We use
the classical recovery algorithm Orthogonal Matching Pursuit
(OMP) to recover the original wideband signal from the sparse
measurements.

For comparison, leveraging this wideband signal without
compressive sensing is also performed. Similarly, the energy
harvesting efficiency η and the reflection coefficient β are
set as 0.5 in this scenario. In this scheme, both the time
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Fig. 6. The transmission rate without spectrum sensing, κ is the duration of
spectrum sensing, and µ indicates the duration of energy harvesting.
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Fig. 7. The transmission rate with compressive sensing, α is the time
scheduling parameter, while ι is the power ratio parameter.

scheduling parameter and the power allocation ratio affect
the transmission rate. The obtained optimal values of both
parameters and the corresponding transmission rates in both
scenarios are given in Table 1(b).

Comparing Fig. 7 to Fig. 8, we can see that the transmission
rate with compressive sensing is improved. Likewise, this is

TABLE I
OPTIMAL VALUES OF BOTH SCHEMES

(a) Optimal values with spectrum sensing
Rn(bps) κ µ τ

with spectrum sensing 395 0.11 0.11 0.78
without spectrum sensing 224 0.11 0.21 0.68

(b) Optimal values with compressive sensing
Rw(bps) α ι

with compressive sensing 3864 0.11 0.11
without compressive sensing 2694 0.21 0.11
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Fig. 8. The transmission rate without compressive sensing, α is the time
scheduling parameter, while ι is the power ratio parameter.

because all the RF signals arrived in the energy harvesting
module and the backscatter module are filtered by using the en-
ergy detection technique. The performance of the transmission
rate is obviously improved with compressive sensing, which
is shown in Fig. 5 and Fig. 7. The reason is that the wideband
multi-frequency signal can be detected at the same time with
compressive sensing, which increases the incident power of
energy harvesting and ABCom.

In addition, as shown in Fig. 9, we can easily see that
the optimal scheme with spectrum sensing technique has
higher transmission rate, and by using compressive sensing,
the performance is improved obviously. Fig. 9 also illustrates
that the superiority of the scheme using spectrum sensing
becomes more obvious with the increase of the network oper-
ation time, and the superiority of the time scheduling scheme
with compressive sensing has the same trend. Therefore, we
can learn that the time scheduling scheme with compressive
sensing sacrifices the complexity which is analyzed in Section
IV to get better performance of transmission rate than the
scheme with spectrum sensing.

C. Detection Threshold for ABCom

In this section, simulations are performed to obtain the
detection threshold of spectrum sensing module for ABCom. It
is calculated by the reverse derive method, firstly, we analyze
the outage probability of ABCom suffering composite log-
normal shadowing and Nakagami-m fading through formula
(24). Then by analyzing the outage probability of ABCom
using path loss model through formula (21), we can obtain
the detection threshold of spectrum sensing for ABCom. The
simulation parameters are set as: the shadowing scenario is set
as average shadowing, where ζ = −0.115 and σ = 0.161, and
the channel fading amplitude ρ = 0.7 [29].

As shown in Fig. 10, the outage probability is increas-
ing with the increasing of the SNR threshold γth at the
receiver. According to the definition of the outage probability,
it has higher possibility to suffer outage with higher SNR
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Fig. 9. The transmission rate with increasing network operation time under
different time scheduling schemes.
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Fig. 10. Outage probability Pout vs SNR threshold γth with different fading
parameters m.

requirements. And in formula (25), the SNR threshold γth
and the received power Pth are in linear relation, so the
outage probability varying with Pth is easily plotted in Fig.11.
It shows that the Pout decreases with the received power
Pth increasing under different Nakagami-m fading parameters.
And with the increasing of the fading parameter m, the Pout is
decreased. This is because the Nakagami-m fading converges
to a non-fading AWGN channel with m increasing to +∞.

Afterwards, by analyzing the path loss model between
the transmission power and the received power shown in
formula (21), we obtain the outage probability varying with
the transmit power as shown in Fig. 12, that is, the detection
threshold of spectrum sensing for ABCom can be determined
by controlling the outage probability. And Fig. 13 illustrates
the analogous performance of Pout with Pth over different
distances between the backscatter module and the receiver. It
is obvious that the communication link tends to be interrupted
with the increasing of the communication distance.
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fading parameters m.
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VI. CONCLUSION

In this paper, the optimal time scheduling scheme based on
compressive spectrum sensing technique has been proposed
to manage time scheduling of spectrum sensing module, the
energy harvesting module and the ABCom module at an
IoT node. By maximizing the transmission rate of ABCom,
optimal time scheduling parameters and the optimal power
allocation ratio have been obtained. Simulations demonstrated
that larger transmission rates have been achieved when using
spectrum sensing techniques, while compressive sensing has
achieved even better performance. The superiorities become
more obvious when increasing the network operation time.
Finally, we obtained the detection threshold of spectrum sens-
ing for enabling ABCom by analyzing the outage probability
of ABCom.
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Fig. 13. Outage probability Pout vs transmission power Pt with different
distances d.
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