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Practical Considerations for Acoustic Source
Localization in the IoT Era: Platforms, Energy
Efficiency and Performance

Jose A. Belloch*, Member, IEEE, José M. Badia, Francisco D. Igual, and Maximo Cobos, Senior Member, IEEE

Abstract—The rapid development of the Internet of Things
(IoT) has posed important changes in the way emerging acoustic
signal processing applications are conceived. While traditional
acoustic processing applications have been developed taking into
account high-throughput computing platforms equipped with
expensive multichannel audio interfaces, the IoT paradigm is
demanding the use of more flexible and energy-efficient systems.
In this context, algorithms for source localization and ranging
in wireless acoustic sensor networks can be considered an
enabling technology for many IoT-based environments including
security, industrial and health-care applications. This paper is
aimed at evaluating important aspects dealing with the practical
deployment of IoT systems for acoustic source localization.
Recent Systems-On-Chip (SoC) composed of low-power multicore
processors, combined with a small graphics accelerator (or GPU),
yield a notable increment of the computational capacity needed
in intensive signal processing algorithms while partially retaining
the appealing low power consumption of embedded systems.
Different algorithms and implementations over several state-
of-the-art platforms are discussed, analyzing important aspects
such as the trade-offs between performance, energy efficiency
and exploitation of parallelism by taking into account real-time
constraints.

Index Terms—wireless acoustic sensor networks, source local-
ization, acoustic signal processing, parallel architectures, parallel
processing, heterogeneous (hybrid) systems, energy efficiency.

I. INTRODUCTION

Sound in general, and speech in particular, constitutes a
natural and intuitive way for the development of human-
machine interfaces in emerging IoT scenarios [1]. This is one
of the reasons why networks of wireless computing devices
incorporating microphones (and sometimes loudspeakers), also
known as Wireless Acoustic Sensor Networks (WASNs), are
increasingly attracting the interest of the IoT community [2]-
[5]. In this context, WASNs may be easily integrated into
existing living or industrial environments with well-known
advantages [6]. First, audio is a cheap and complimentary
sensing modality that does not require visual or physical
interaction. Second, acoustic sensing devices can be useful
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in situations when other sensors fail, such as when a sound-
emitting target is in the dark or is occluded. Third, voice is
still the dominant human communication modality and can be
fused with other sensing modalities for an improved overall
performance [7].

The use of location information and its potential for the
development of ambient intelligence applications has signifi-
cantly promoted the design of local positioning systems during
the last decade [8]. The localization and ranging capability in
networks of wireless devices has traditionally been a desirable
property since, besides being easily deployable, the nodes can
be substantially cheaper with respect to traditional sensing
architectures. While most Wireless Sensor Networks (WSNs)
have been typically using the Received Signal Strength (RSS)
or the Time Of Arrival (TOA) of radio signals, the use
of sound in WASNs brings a set of benefits [9]-[12]. For
example, since the localization accuracy depends on both the
signal propagation speed and the precision of the temporal
measurements, acoustic signals may be preferred over radio
signals for their lower propagation speed. Additionally, in
typical IoT-based applications for ambient intelligence, such
as in Ambient Assisted Living (AAL), the system already
relies on application-dependent sensors such as cameras and
microphones [5]. In this context, the location of the user is a
valuable piece of information, since knowing the position of
the user enables the implementation of services that may make
the living environment easier, safer or more comfortable.

From the hardware perspective, mobile platforms for acous-
tic sensing are made up of two key elements: low-power pro-
cessors and acoustic sensors. Audio capturing and processing
is considered a challenging matter, which involves a trade-off
between the complexity of the audio processing task and the
hardware resources. The audio monitoring process introduces
some specific requirements on hardware platforms. On the
one side, audio signals are normally sampled at relatively
high rates, demanding large memories and high computational
capabilities. On the other side, signal processing tasks should
be programmed carefully to deal with the audio sampling
process and to optimize the system resources properly.

A popular approach for sound source localization is the
well-known Steered Response Power (SRP) with PHase Trans-
form (PHAT) algorithm [13], [14]. This method is based
on a grid-search procedure where the output power of a
filter-and-sum beamformer is computed through a grid of
candidate source locations. The power map resulting from
the values computed at all these locations (also known as



Global Coherence Field) will show a peak at the estimated
source position. Since the nodes of a WASN are not usually
synchronized, the usual practice is to compute a power map
at each node of the network using multiple microphones.
Then, the maps are all combined together in a meaningful
way before estimating the final source location. As a result,
each node of the network must perform intensive signal
processing operations, this being an important issue from a
resource management perspective. Fortunately, the SRP-PHAT
method exhibits a massive fine-grain parallelism, with the
same operations performed over many sets of data [15], [16].
Usually, these data sets correspond to the audio samples of
the different audio channels involved in the system. Moreover,
source localization applications may involve different needs in
terms of the number of microphones and spatial resolution.
In this context, the computational complexity of the system
may be affected by the total number of candidate locations
explored by the algorithm (which may depend on the size of
the localization space or the desired spatial resolution) and the
number of microphones.

From the above considerations, it becomes clear that prac-
tical IoT systems incorporating sound source localization
features must be scalable and computationally efficient, posing
important challenges for the platforms selected for such edge
computing tasks. The use of s System-on-Chips (SoC) within
IoT systems is becoming widespread [17], [18]. The emer-
gence of SoC composed of multi-core processors built either
from multicore CPUs or even a small graphics accelerator (or
GPU) contributes a notable increment of the computational
capacity while partially retaining the appealing low-power
consumption of embedded systems.

A primary goal of this paper is to provide insight concerning
the implementation of SRP-based localization algorithms in
IoT-oriented platforms, taking into account the main chal-
lenges arising in terms of real-time performance, energy
consumption and exploitation of parallelism. Obviously, the
complete fulfillment of all design constraints will not be
straightforward. For example, high-accuracy localization in-
volves increasing the computational cost, which makes it
more difficult to achieve real-time performance. Likewise,
using more resources to increase the speed of the algorithms
comes at the expense of larger energy consumption. Therefore,
implementations designed to leverage the different components
and capabilities of the device are a must. In this context,
the paper considers different techniques aimed at reducing
the cost and energy consumption of the algorithm, while
providing sufficient speed to achieve real-time performance.
These include the reduction of the frequency of different
components of the platform, the pre-computation of some
values, the use of the fastest memories of the GPU or arranging
the data to get a coalesced access, among others.

We focus on the evaluation and the practical requirements
for performing sound source localization over three state-of-
the-art multi-core-based SoCs: (1) The ODROID XU3; (2)
the Jetson TX1; and (3) the Raspberry Pi 3. We discuss
different implementations and analyze the trade-offs between
performance and energy efficiency for different distributions
of the computational load on the three proposed SoCs. We
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use well established programming tools, such as OpenMP,
OpenCL and CUDA to obtain portable implementations that
can leverage the parallel capabilities of the CPU and GPU
cores of a wide range of SoCs. Besides, we analyze the
effect of modifying the frequencies of the cores or even
disabling some of them on the time and energy consumption
of the algorithm. As a result of this analysis, we establish
the practical limitations of source localization systems relying
on platforms of this kind, taking into account considerations
such as the size of the system, the final spatial resolution,
the real-time performance capabilities and the resulting energy
consumption. In addition, we compare results with another
recently proposed algorithm specifically designed to reduce
the computational cost of SRP-based localization.

The rest of the paper is structured as follows. Section II
reviews loT application scenarios where sound source localiza-
tion is useful and describes the fundamentals of the two SRP-
based algorithms considered in this paper: the Conventional
SRP-PHAT method (C-SRP) and the Refined Volumetric SRP
method (RV-SRP). Section III summarizes the main features of
the SoCs employed in this work, describing specific implemen-
tation issues in Section I'V. A thorough performance evaluation
is conducted in Section V. Finally, Section VI provides a few
concluding remarks.

II. ACOUSTIC SOURCE LOCALIZATION IN IOT
A. Sound source Localization in loT scenarios

Sound source localization has already been applied to
different scenarios within the paradigm of IoT, such as au-
tomatic surveillance, environmental monitoring, elderly care,
smart homes or industrial environments. In most of these
environments, energy efficiency is required due to the fact that
an electricity connection is not always available [19].

For pervasive IoT acoustic surveillance, it is necessary to
detect and localize abnormal acoustic events in a distributed
collaborative manner [20]. In fact, we can find in the literature
research works aimed at preventing hazardous situations such
as might be indicated by the sound of human screams [21],
[22] or other kinds of sounds such as gunshots, explosions,
machine sounds or children voices, among others [23].

In the industry, there also exists a wide range of applications
that require to perform acoustic source localization [24].
Currently, smart factories making use of distributed sensors are
gaining momentum. In this context, source localization allows
the detection of machine break-downs such as in [25]. In
[26], the authors propose a system that can detect the acoustic
signature of power tools, and the effectiveness of the system
being used as an early warning system to detect misuse of
machinery is demonstrated.

Smart farms can also benefit from acoustic-based IoT sys-
tems. As an example, in [27] the authors implement sound
source localization in farms in order to detect sick animals
in commercial piggeries, since sick animals emit characteris-
tically unusual sounds.

Another interesting [oT scenario is that related to ambi-
ent assisted living [5]. Systems oriented to the monitoring
of homes where elderly or disabled people live have been
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receiving a lot of attention in recent years. The first ap-
proaches designed to detect events of this kind were carried
out in [28], [29] where emergency falling detection systems
were considered. The authors of [30] incorporate other high
performance computing features to acoustic sensor networks
by designing a real-time audio event detection for surveillance
remote monitoring.

It is important to highlight that such systems do not only
require powerful embedded systems, but they also should be
designed to make an efficient usage of energy resources. In
applications of this kind, edge computing may play a key
role, since it makes it possible to reduce the response time
when an emergency occurs: the most important part of the
computation is carried out on the device, so there is not
need to send the information to a central node and wait to
a response as it happens in a cloud-computing environment
[31]. Thus, edge computing reduces the response time by
limiting communication between nodes and makes it possible
to develop applications as the ones considered above. In this
paper we analyze the most important aspects that need to
be considered in a computational-demanding IoT scenario
centered on acoustic source localization, seeking for maximum
computational performance, real-time and energy-efficient so-
lutions.

B. Source localization networks

A typical WASN for sound source localization assumes
a moving acoustic source and a collection of fixed anchor
nodes placed at known (or unknown) positions. In common
IoT applications, the source usually consists of an unknown
speech source or an acoustic event. Since the source and
the nodes are not synchronized, the use of Time-Of-Arrival
(TOA) information is rarely employed, motivating the use of
Time-Differences Of Arrival (TDOAs) between synchronized
sensors at each node. Therefore, typical WASN nodes incorpo-
rate a set of synchronized microphones following a particular
geometry from which TDOA estimates can be obtained. Note,
however, that the microphone signals from different nodes may
not be synchronized.

A popular approach for inferring the location of the sound
source relies on the computation of Steered-Response Power
(SRP) maps [32]. In a typical setup, each node of the WASN
would compute an SRP power map, sending it to a sink node
that merges the spatial likelihood information gathered by each
node. In order to minimize signal transmissions and allow
for an increased battery life in the nodes, sending the signals
captured by the microphones to a central node for computing
SRP power maps is generally avoided. As a result, the nodes
are in charge of performing the required signal processing,
sending only the power maps once these have been computed.
However, an important aspect of SRP-based localization is
that algorithms are relatively expensive from a computational
point of view and, thus, powerful edge platforms capable of
managing costly signal processing operations over multiple
microphone channels become necessary.

Figure 1 shows a general WASN with a set of wireless
nodes and an emitting sound source. It is assumed that the

(1)
74 Tl(l)
)

(&)
713

Fig. 1. WASN with three nodes and three microphones per node.

network consists of M nodes and that each node incorporates
S microphones. In the example shown in Figure 1, M = 3
and S = 3. The nodes are assumed to be located at positions

Am = [Qems Qy.m» Gzom)T> m = 1,..., M, while the micro-
phone locations are denoted as m\™ = [2{™) y{™ (™7,
l =1,...,8, where the superscript (™ identifies the node

at which the microphone is located. The source position is
denoted as x; = [z, ys, 2s]7, while a general point in space
is x = [z, y, 2]7. Note that all these location vectors are
referenced to the same absolute coordinate system. The time
instant at which the source signal arrives to a given micro-
phone, i.e. the TOA, is denoted as Tl(m). TDOAs are denoted
by T,Sn), and correspond to the observed TOA differences
between pairs of microphones (kl). For the sake of clarity in
the notation, throughout the rest of the paper we will consider
pairs of microphones within the same node, so we will omit
the superscript (™) of the sensor.

C. Conventional SRP-PHAT algorithm (C-SRP)

Consider the output from a microphone [, m,(¢), in a system
composed of S microphones. The power of a beamformer
steered to a spatial location x = [z,v,2]7 can be calculated
in terms of the Generalized Cross-Correlation (GCC) of the
different microphone pairs of the system. Given the pair of
microphones & and [, with k& # [, the GCC between my(t)
and my(t) can be written as [33]

A 1 T * jwT
Rkl(T) = ﬂ/ Mk(w)Ml (W)\I’lj(w)e] dw, (1)

where M;(w) is the DTFT of m,;(t), * is the conjugate operator
and ¥;;(w) is a suitable weighting function. One of the most
common choices is to use the PHAse Transform (PHAT)
weighting function, i.e.

1

Yisl) = R @)

DiBiase [13] demonstrated that the SRP at a spatial location
x € R? calculated over a time interval of 7' samples can be
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Fig. 2.

efficiently computed in terms of GCCs:

Z Z Ry (i (x

k 1i=k+1

SRP)

+ZRkk 2)

where 7x;(x) is the time difference of arrival (TDOA) that
would produce a sound source located at x with a propagation
speed ¢, i.e.

[ — | — [|x — my ||

3)

Tkl(x) = -

The last summation term in Eq. (2) is usually ignored, since
it is a power offset independent of the steering location. When
GCCs are computed with PHAT, the resulting SRP is known
as SRP-PHAT. In practice, the method is implemented by
discretizing the location space region V using a search grid G
consisting of candidate source locations in V and computing
the functional of Eq.(2) at each grid position. The estimated
source location is the one providing the maximum functional
value:

igC'SRP) = arg max J(SRP) (x). 4

xeg

Figure 2 shows a 2D example of a localization system in a
room of dimension 5 x 6 m, with four nodes located at the mid-
points of the walls. Each node incorporates 3 microphones.
The power maps computed by each node are represented in
(a). It can be clearly observed that the power concentrates in
some directions. When all the power maps are combined in
(b), the overlaid SRP map shows a peak on the true source
location (red circle).

D. Refined Volumetric SRP (RV-SRP)

The Conventional SRP-PHAT algorithm (C-SRP) previously
described requires dense grids for achieving high-accuracy
location estimates. This may be prohibitive in real-time ap-
plications with many microphones. To deal with this issue,
the modified SRP method was first proposed as a robust
alternative considering the volume surrounding each point
of the search grid, which enables the use of coarser grids
and, consequently, reduces considerably the computational
cost [34]. Following a similar rationale, the refined volumetric
SRP (RV-SRP) method has been recently proposed as an
alternative for achieving high-accuracy location estimates with

Node 3
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Node 4

Overlaid SRP

x [m]

(b)

An examle of SRP-based localization using four nodes. (a) SRP power maps computed by each node. (b) Combined SRP matrix.

reduced cost, which defines a two-step procedure [35]. First,
the entire search space is reduced to a volume V, chosen as
the volume that maximizes the objective function

pmax
Tk, vV

s min
lcl

(V)R (7)), ()

S S
-
k=11l=k

where Xj; = 1 when there exists at least one point of the
grid x € V such that its associated TDOA 7y, (x) is equal
to 7, and the limits T,gl“{}, Tgry are given by the minimum
and maximum TDOA within a volume V. Otherwise, X}; is
zero. In the second step, the C-SRP is applied inside the new
search space V. Note that the RV-SRP method needs to be
initialized by considering a fine grid from which lag limits
are pre-computed, although a functional is only computed in
the second step over those points contained within the winning
volume.

E. Sequential implementation

The C-SRP and RV-SRP may be implemented following a
sequential approach. In fact, the second step of RV-SRP is
equivalent to a C-SRP evaluated over a reduced search space.

The SRP-PHAT algorithm takes as input sample buffers
of size L corresponding to S microphones. The main steps
carried out by the algorithm are the following:

1) For each of the S microphones weight the L samples
by a Hamming window vector.

2) For each of the S microphones perform an L-point FFT
resulting in S vectors, each containing L frequency bins.

3) Compute the GCC matrix of size Q) x L, being () the
number of microphone pairs.

4) For each of the @ rows of GCC compute an inverse
L —FFT.

5) Compute a three-dimensional SRP matrix. Each element
of the matrix corresponds to a point of a 3D spatial grid
and its value depends on the TDOA resulting from the
grid point to one pair of microphones.

6) Obtain the position of the maximum SRP value corre-
sponding to the estimated sound source location.

A more detailed version of the algorithm, including an
analysis of the cost of each step can be found in [16].
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III. SOCs FOR IOT

We evaluate the SRP-PHAT algorithm on three different
SoCs that are representative of the state-of-the-art in het-
erogeneous low-power architectures. All of them implement
the ARM Cortex-A microarchitecture, with support of the
ARMV7 (32-bit) and ARMv8 (64-bit) Instruction Set Archi-
tectures (ISAs). Although all of them are considered to be
low power architectures, they substantially differ in terms of
heterogeneity, use of accelerators or amount of memory. Thus,
this selection illustrates a range of solutions available in the
market and can be applied to different scenarios depending on
the specific computation or power consumption requirements
of the target application.

A. ODROID XU3

The ODROID XU3 is a board that integrates the Samsung
Exynos 5422 SoC based on an octa-core ARM Cortex CPU
featuring a big.LITTLE paradigm. The SoC integrates four
fast ARM Cortex A15 and four energy-efficient ARM Cortex
A7 in the same die, together with an ARM Mali-T628 MP6
GPU. The board includes 2 Gbytes LPDDR3.

B. Nvidia Jetson TXI

The Nvidia Jetson TX1 is a board that features a SoC
based on a quad-core ARM Cortex-A57 CPU with 4 Gbytes
LPDDR4 and a high-performance 256-core Nvidia Maxwell
GPU. Designed with computer vision and deep learning in
mind, it exhibits a plethora of connectivity interfaces, in-
cluding 802.11ac WiFi, Bluetooth 4.0, Gigabit Ethernet and
PCIe Gen2. The board draws up to 15 Watts TDP when
the processing module is fully used. It includes 4 Gbytes of
LPDDRA4.

C. Raspberry Pi 3

The Raspberry Pi 3 is the latest release of the Raspberry Pi
series. The board integrates a Broadcom BCM2837 SoC with
a quad-core ARM Cortex A53 CPU and a small Broadcom
VideoCore IV GPU. The system is equipped with 1 Gbyte
LPDDR2 memory and wired and wireless interconnection
interfaces.

D. Power monitoring infrastructure

The energy measurements in this paper require an en-
vironment that yields detailed and reproducible values. In
order to obtain comparable energy measurements across all
boards, we decided to measure the power consumption of the
complete boards (that is, measuring at the DC entrance). While
the Jetson TX1 and the ODROID XU3 include an isolated
energy counter for the SoC, the lack of this mechanism in
the Raspberry Pi 3 invalidates their usage if a fair compar-
ison is desired. In our case, we have adapted the pmlib
framework [36] to interact with the Smart Power device [37]
in order to monitor the instantaneous power draw for the
complete execution. For the Jetson TXI1, we measure the
same value leveraging internal power sensors. In all cases, we
report application energy consumption numbers by subtracting
the observed idle power of the corresponding board to that
observed during the application execution.

IV. IMPLEMENTATION ISSUES

Each of the six main steps of the the C-SRP algorithm
allows us to exploit data parallelism. Specifically, in step 1)
every sample can be weighted in parallel, while in steps 3)
and 5) every element of matrices GCC and SRP respectively,
can be computed in parallel. Regarding steps 2) and 4), there
exist several efficient parallel implementations of the FFT
included in well-know libraries. Finally, the computation of
the maximum in step 5) can be performed by means of a
parallel reduction schema.

We have used different programming technologies to lever-
age the resources of the parallel architectures trying to obtain
the best performances both in terms of time and energy
consumption. We have chosen well-known tools that allow us
to obtain portable algorithms that can be executed in a wide
range of parallel architectures, from low-power SoC platforms
to high performance parallel computers. Specifically we have
implemented a parallel OpenMP version of the algorithm to
run on the CPU cores [16]. It is quite straightforward to use
parallel pragmas to parallelize some of the loops of each of
the steps of the algorithm or to use the reduction clause
to obtain the position of the maximum SRP value. We have
compared different loop scheduling strategies and chosen the
best in each case. Steps 2) and 4) have been parallelized using
the multi-threading capabilities of the FFTW library [38].

Some SoC platforms include a GPU and provide the possi-
bility of using CUDA, OpenCL or both technologies to run the
SRP-PHAT algorithm. Therefore, we have also implemented
parallel versions of the algorithm that use both programming
tools [15], [16], [39].

Algorithm 1 summarizes the main steps of the parallel
implementation using OpenCL. The version using CUDA is
very similar. Input parameter B is a vector containing the
S input sample buffers of size L, vector H contains the
Hamming window and p the position of the microphones. We
have implemented five kernels to solve steps 1), 3), 5) and 6)
of the sequential version. The two calls to c1FFT functions
in lines 4 and 6 correspond to the routine included in the
OpenCL FFT library [40]. In the CUDA version we use the
routine included in the library [41]. The algorithm minimizes
the transfer of information between the host CPU and the GPU
device. It involves an initial transfer of some input vectors
from host to GPU and the final transfer of the sound source
position pmax from the GPU to the host. All the kernels
produce and reuse intermediate results in the global memory
of the device and leverage its local and private memories when
possible.

The implementation of the kernels executed by each work-
item to approach steps 1), 3) and 5) of the sequential algorithm
are summarized in algorithms 2, 3 and 4 respectively. Kernel
kRedMax uses a multi-step parallel tree reduction schema,
such as the one describe in [42], to obtain the maximum value
of matrix SRP. Finally, in kernel kPosMax the work-item
containing that maximum value returns its position.

We have implemented different versions of the kernels
trying to reduce the memory access cost and reuse the data
on each work-item. For example, we have analyzed the ef-
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Algorithm 1 Parallel OpenCL SRP-PHAT algorithm.

Algorithm 2 Hamming window application kernel.

1: function SRP-PHAT(B, H, p, L, S)
2: Transfer CPU — GPU: B, H, p
RB = kHamming(B, H, L, S)
RFB <« cIFFT(RB, “forward”)
GCC = kGCC(RFB, L, S)
RGCC = cIFFT(GCC, “backward”)
SRP = kSRP(RGCC, p, L, S)
max = kRedMax(SRP)

pmax = kPosMax(SRP, max)
10: Transfer CPU <+ GPU: pmax
11: return pmax

12: end function

R A

fect of precomputing the distances from every grid point to
every microphone or to every pair of microphones instead
of computing them on each iteration of the algorithm. For
example, those distances are computed in lines 8 and 11 in
the version of the kernel included in algorithm 4. However,
our experimental results show that it is faster to precompute
all the inter-microphone time delays (see line 12) only once
at the beginning of the localization process.

The main drawback of the previous strategy is its spatial
cost, because we need to store an integer distance from every
point of the grid to every pair of microphones. If we increase
the spatial resolution or the number of microphones those
values might not fit into the memory of the CPU or GPU,
even more when dealing with low power devices with small
memories. A possible solution that could alleviate that problem
is to precompute only the distances from every point to every
microphone and use them to compute the interdistances during
the localization process.

In order to reduce the memory access cost we have arranged
the data so that the work-items perform, when possible, a
coalesced access to the matrices and vectors. For example in
kernel kHamming (algorithm 2) work-item ¢ reads the ¢ — th
sample of each microphone. As matrix B stores consecutively
those samples, we achieve a coalesced access to the global
memory of the GPU. Notice also that every work-item uses
one element of the Hamming window and in line 3 of the
algorithm we copy it from the global memory to much faster
private memory, which usually involves registers of the GPU.

We have also implemented versions of some of the kernels
where each work-item performs computations with different
granularities. For example, in kernel kHamming each work-
item could compute one of the elements of matrix GCC.
However, it is faster to increase the granularity by computing
all the elements of one row on one work-item, as it is shown
in algorithm 2.

Finally, another aspect that needs to be taken into account
in order to optimize the CUDA and OpenCL codes and adapt
them to every device is the size of the thread blocks that
execute each kernel. The experimental results shown in this
paper are always obtained with the thread block sizes that
give the minimum time on the corresponding GPU device.

1: function KHAMMING(B, H, L, S)
2: 1 = global index of the work-item

3 pH = HJ[i] // copy to private memory

4 for f <— 1 to S do // for each microphone
5 RBJi] = ( B[i] * pH, 0.0)

6: 1 +=L

7 end for

8 return RB

9: end function

V. EXPERIMENTAL PLATFORMS AND TESTBED

We have performed our experiments in the three well-known
low-power platforms described in Section III.

All the experiments have been conducted using a varying
number of microphones (from 6 to 24) over synthetic record-
ings simulated by means of the image-source method. In the
following subsections we will mostly show results using 12

Algorithm 3 GCC matrix computation kernel.

1: function KGCC(RFB, L, S)

2: 1 = global index of the work-item

3 pa = 0 // pair index

4 for ml < 1 to S do

5 for m2 < ml+1 to S do
6: /I Complex conjugate product
7
8
9

¢ = RFB[ml x L+ i] « RFB[m2 * L + 1]
angle = atan2(c)
: GCClpa* L+1] = ( cos(angle), sin(angle) )
10: pat++

11: end for
12: end for

13: return GCC
14: end function

Algorithm 4 SRP matrix computation kernel.
1: function KSRP(RGCC, p, L, S)
2: (4,7, k) = global 3D index of the work-item

3 x = position of the grid point (3, j, k)
4 pa = 0 // pair index

5 r=0.0

6: for m1 <~ 1to S do

7 zl = p[ml]

8 dl = ||z — x1]]

9: for m2 < ml+1 to S do

10: x2 = p[m2]

11: d2 = ||z — 22|

12: delay = (d1 — d2)/c /I integer division
13: r += RGCClpa * L + delay]
14: pa++

15: end for

16: end for

17: SRP[i,j, k] =r
18: return SRP
19: end function
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Fig. 3. Execution times of the different versions of the SRP method on a
Jetson TX1 platform. The horizontal line shows the real-time threshold.

microphones because all the parallel algorithms allow us to
perform the localization in real time on the three experimental
platforms using that number of microphones. The algorithms
have been tested with sample buffers of size L = 4096 for
each microphone. For a sample frequency fs = 44.1 KHz, if
we want to locate the source in real time, the processing time
of the algorithm must be less than ¢, = 92.88 ms.

A. C-SRP vs. RV-SRP

Firstly we compare two strategies aimed at reducing the
temporal cost of SRP-PHAT localization. On the one hand,
we use the low-complexity RV-SRP algorithm described in
Section II-D On the other hand, we implement several high-
performance parallel versions of the C-SRP algorithm. The
objective of this comparison is to evaluate the gain obtained
from a proper resource management scheme versus the one
derived from a low-complexity algorithmic approach. Specif-
ically, Figure 3 compares the results obtained using 6 an
12 microphones on a Jetson TX1 platform. The OpenMP
results are obtained leveraging the four cores of the CPU,
while the CUDA version is executed on the 256 cores of the
Maxwell GPU. The RV-SRP version uses initially a coarse
grain volumetric grid with a resolution of 0.1 m and refines
the results on a smaller volume with a finer resolution of
0.02 m The sequential and parallel versions of the C-SRP
algorithm use the same fine grain resolution, but on all the
search space. If we are dealing with a sequential platform,
the RV-SRP algorithm is an excellent alternative to the C-
SRP, as it clearly reduces its execution time. This reduction
is larger as we increase the number of microphones and so
the cost of computing the SRP value on every grid point.
However, the parallel versions of the C-SRP outperform the
lower complexity sequential RV-SRP algorithm. For example,
using 12 microphones the CUDA implementation is around
16 times faster than the sequential implementation of the
same algorithm and around 10 times faster than the RV-SRP
algorithm.

Regarding the energy consumption of the different algo-

6 12
Number of microphones

Fig. 4. Energy consumption of the different versions of the SRP method on
a Jetson TX1 platform.
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Fig. 5. Execution times of the different versions of the algorithm on the
ODROID-XU3 platform varying the grid resolution. Sequential versions are
executed on one core of each type (A7, A15) and OpenMP versions on the four
cores of each type. OpenCL version is executed on the fastest device provided
by the Mali GPU and uses one of the A15 cores as host. The horizontal line
shows the real-time threshold.

rithms, the RV-SRP version is also more efficient than the
conventional version (see Figure 4). However, the most energy
efficient implementation is again the one implemented using
CUDA and leveraging the GPU of the platform.

B. Results with the Odroid-XU3

In the following sections we will analyze the behaviour
of the sequential and parallel versions of the SRP-PHAT
algorithm, both in terms of time and energy, in the three
experimental platforms.

Figure 5 shows that the sequential version of the algorithm
can only perform the localization in real time with low
resolution grids (r >= 0.1 m) and using the fastest kind
of core (Cortex-A15). However the parallel versions of the
algorithm allow us to locate the source with medium resolution
grids. The best results are obtained with the OpenMP version
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using the fastest core, but the OpenCL version obtains quite
similar results as we increase the resolution.

The following three figures allow us to analyze the effect
of modifying the frequencies of some of the components of
the architecture on the energy consumption of the parallel
algorithms. We are always using a grid resolution of » = 0.1
m. Figure 6 shows the energy consumed by the platform in
mJ when we execute the OpenMP version of the algorithm
on its two types of CPU cores. The power dissipated by both
kinds of cores slowly increases with their frequency and the
number of cores. However, in terms of energy consumption
the behavior of both types of cores is quite different. In the
case of the A7 cores the algorithm consumes more energy
at the lowest frequencies and using one core. We obtain the
best consumption in the few cases when we can perform the
localization in real time. On the contrary, in the case of the A15
cores, the energy consumption increases with the frequency
and the best results are obtained at low frequencies (< 1000
MHz) and using 3 or 4 cores.

Finally, Figure 8 allows us to compare the energy con-
sumption of the algorithm in the cases where less energy is
consumed by the CPU or the GPU to perform the localization
in real time. The OpenMP version is clearly less power

consuming than the OpenCL version and in both cases it is
better to use the low-power A7 cores. The best option is to
execute the OpenMP version of the algorithm on 3 or 4 Cortex-
A7 CPU cores at high frequencies.

C. Results with the Jetson TXI

The Jetson-TX1 platform allows us to leverage its four CPU
cores using OpenMP and also its GPU using CUDA to perform
the localization. Both parallel versions clearly improve the
sequential execution time and allow us to use finer grids in real
time (see figure 9). The CUDA version clearly outperforms the
OpenMP version on this platform.

Figures 10 and 11 allow us to analyze and compare the
energy consumption of the Jetson-TX1 platform using its CPU
and GPU cores at their different frequencies. We can see that
the CPU cores are much more power-hungry than the GPU
even in the less expensive case in terms of energy consumption
of the OpenMP algorithm. This behavior is mainly due to
the faster execution time of the CUDA algorithm, because
the power dissipated by the platform in both cases is quite
similar. The energy consumption of the CUDA version is
quite stable disregarding the CPU and GPU frequencies and
only increases when we combine the lowest GPU frequency
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Fig. 9. Execution times of the different versions of the algorithm on the
Jetson-TX1 platform varying the grid resolution.

with high CPU frequencies and vice versa. In the case of the
OpenMP version, increasing the number of cores and reducing
the CPU frequencies is beneficial for the energy consumption.

D. Results with the Raspberry Pi 3

If we use OpenMP to leverage the four cores of the
Raspberry Pi 3, we can perform the localization in real time,
which cannot be achieved using the sequential algorithm. In
this case we can locate the source using grid resolutions larger
than 0.05, as we can see in Figure 12.

On the other hand, the energy consumption of the algorithm
decreases with the number of cores and their frequencies.
However, by using more than one core it is possible to solve
the problem in real time, and the lowest energy consumption
is obtained by reducing the core frequencies, as we can see in
Figure 13.
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Fig. 10. Energy consumed by the Jetson-TX1 platform using OpenMP and
CUDA versions of the algorithm. Values in brackets show the number of cores
or GPU frequencies with a minimum consumption on each scenario. Lines
only include the cases where the localization can be done in real time.

E. Platforms comparison

If we compare the execution times of the fastest algorithms
in each of the three experimental platforms, Figure 14 shows
that we can use 12 microphones to perform the localization of
a sound source using grids with resolutions larger than 0.05
m in all of them. However, the fastest option is clearly to
use CUDA to leverage the GPU included in the Jetson-TX1
platform.

If we want to perform the localization while reducing the
energy consumption, the best option is also to use the GPU
included in the Jetson TX1. The values shown in Figure 15
are always obtained with the best parallel algorithm, number
of cores and frequency of the components on each of the
platforms that allows us to perform the localization in real
time.

VI. CONCLUSIONS

This paper has shown how to exploit the computational
capabilities of recent low-power SoCs to efficiently solve the
problem of sound source localization in real time. We have
used well-know parallel programming tools, such as OpenMP,
CUDA and OpenCL to implement several portable versions of
the C-SRP algorithm. This kind of tools allows us to leverage
the parallel capabilities of the CPUs and GPUs of the platforms
to obtain efficient implementations both in terms of time and
energy consumption.

Although low-complexity algorithms such as the RV-SRP
can offer great computational advantages over sequential
implementations, the use of parallel versions exploiting the
computational resources of such platforms has been shown
to be a key aspect for achieving high-performance real-time
systems.

The implementations have been evaluated on three recent
SoCs with different features in terms of model of cores,
type and amount of memory or accelerator: Raspberry Pi 3,
Odroid XU3 and Jetson TX1. Experimental results show that
leveraging the computational resources of the three platforms
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allow us to locate the sound source in real time using up to
12 microphones on a 3D grid with a resolution larger than
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0.05. We have also exploited the possibility of controlling
the frequencies of the CPU and GPU cores offered by the
platforms, and even disabling some of those cores, to reduce
the energy consumption of the algorithm. Taking into account
the programming tool, number and type of core and frequen-
cies, the best option depends on the platform. For example,
the fastest results in the Jetson TX1 are obtained using the
CUDA version with the GPU and the CPU at their maximum
frequencies. However, the energy consumption is better if
we reduce the frequency of both the GPU and the CPU to
intermediate values.

All in all, if we want to locate a sound source using
one of the three platforms compared, the fastest and lowest
energy consuming option is to use CUDA to leverage the GPU
included in the Jetson TX1. Moreover, we have shown that
appropriately leveraging the resources provided by this kind
of low-power platform it is possible to deploy a precise and
robust system for acoustic source localization in real time. We
hope that our implementations and evaluation can be useful
on the design of emerging [oT systems.

As for future work, we intend to parallelize the RV-SRP
algorithm using the same techniques that with the C-SRP
algorithm and to compare their performance both in terms of
time and energy consumption.
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