
SUBMITTED , VOL. XX, NO. X, XX 20XX 1

Analyzing and Disentangling Interleaved
Interrupt-driven IoT Programs

Yuxia Sun, Member, IEEE, Song Guo, Senior Member, IEEE,
Shing-Chi Cheung, Senior Member, IEEE, and Yong Tang, Member, IEEE

Abstract—In the Internet of Things (IoT) community,
Wireless Sensor Network (WSN) is a key technique to enable
ubiquitous sensing of environments and provide reliable
services to applications. WSN programs, typically interrupt-
driven, implement the functionalities via the collaboration
of Interrupt Procedure Instances (IPIs, namely executions
of interrupt processing logic). However, due to the com-
plicated concurrency model of WSN programs, the IPIs
are interleaved intricately and the program behaviours are
hard to predicate from the source codes. Thus, to improve
the software quality of WSN programs, it is significant to
disentangle the interleaved executions and develop various
IPI-based program analysis techniques, including offline
and online ones. As the common foundation of those tech-
niques, a generic efficient and real-time algorithm to identify
IPIs is urgently desired. However, the existing instance-
identification approach cannot satisfy the desires. In this
paper, we first formally define the concept of IPI. Next,
we propose a generic IPI-identification algorithm, and prove
its correctness, real-time and efficiency. We also conduct
comparison experiments to illustrate that our algorithm is
more efficient than the existing one in terms of both time
and space. As the theoretical analyses and empirical studies
exhibit, our algorithm provides the groundwork for IPI-
based analyses of WSN programs in IoT environment.

Index Terms—Interrupt Procedure Instance (IPI), instance
identification, Wireless Sensor Network (WSN) program,
program analysis

I. INTRODUCTION

W IRELESS Sensor Networks (WSNs), as essential
components in the Internet of Things (IoT) ecosys-

tem, have been increasingly employed for various ap-
plications. They help human beings enhance percep-
tion [1], improve health [2], conserve environments [3]
and so on [4]. To provide instant responses and save
energy, programs running on WSN nodes are typi-
cally interrupt-driven with little energy consumption.
The interrupt-driven concurrency mechanism of WSN

This work was supported by the National Natural Science Foun-
dation (Grant Nos. 61402197 and 61772211) of China, and Guang-
dong Province Science and Technology Plan Project (Grant No.
2017A040405030) in China.

Yuxia Sun is with the Department of Computer Science, Jinan Uni-
versity, Guangzhou 510632, China. Email: tyxsun@email.jnu.edu.cn.

S. Guo is with the Department of Computing, The Hong
Kong Polytechnic, Hung Hom, Kowloon, Hong Kong SAR. Email:
song.guo@polyu.edu.hk.

S. C. Cheung is with the Department of Computer Science, Hong
Kong University of Science and Technology, Clear Water Bay, Hong
Kong. Email: sccheung@cs.ust.hk.

Y. Tang is with South China Normal University, Guangzhou 510631
Email: ytang@scnu.edu.cn.

programs involves both interrupt preemption and task
scheduling, causing the interrupt-induced executions of
the programs intricate. For example, in TinyOS programs
(a group of mainstream WSN programs), an interrupt
processing logic (called an interrupt-procedure) con-
sists of one interrupt handler which is to be immedi-
ately performed and several interrupt-processing tasks
whose executions are deferred. Because the executions
of interrupt procedures, called the Interrupt Procedure
Instances (IPIs), are interleaved in a complicated and
unpredictable way, unexpected or even wrong instance
interleaving is always inevitable during the executions
of WSN programs. As a result, although the source
programs seem short and simple, the program behaviors
are difficult to predict, hard to test, and thus error-prone.

In recent years, researchers have reported various
software faults in WSN programs [5], [6], [7], [8]. Ac-
cording to industrial remarks, the issues of software
reliability have hampered the application of WSNs [9].
Obviously, the software quality of WSNs has become
critical concerns in the IoT community. However, an-
alyzing and testing WSN programs is challenging, in
that the development paradigm and tools are different
from the traditional ones, and the interleaved program
behaviors are too intricate to foresee from the codes
using static analyses [10]. In contrast to static analy-
ses, dynamic analyses can precisely examine the actual
program-behavior information obtained during program
executions. Because WSN program behaviours consist
of collaborative IPIs, IPI-based program analyses are
indispensable dynamic analysis techniques. IPI-based
analyses of WSN programs can be classified into on-
line analyses and offline analyses: both collect program-
behavior information at run-time; the former analyzes
at run-time, while the latter analyzes after the program
terminates [11]. For conventional programs, online anal-
yses has been shown efficacious to uncover time-related
issues such as concurrency bugs [12], [13], violations
to temporal sequencing constraints [14], performance
issues [15], and so forth. Due to the ability to timely
generate analysis results, IPI-based online analyses also
have the potentials to reveal time-related issues for WSN
programs. In conclusion, to relieve the quality issues in
WSN programs, it is significant to develop various IPI-
based analysis techniques, including online and offline
ones. Therefore, as the common foundation of all IPI-
based analysis techniques (e.g. IPI-based profiling and

ar
X

iv
:1

81
0.

05
78

9v
1

 [
cs

.S
E

]
 1

3
O

ct
 2

01
8

SUBMITTED , VOL. XX, NO. X, XX 20XX 2

testing) of WSN programs, a generic IPI-identification
algorithm is urgently desired.

In this paper, we aim to propose a generic algorithm
to identify IPIs of TinyOS programs, which can sup-
port both online and offline analyses. Our research is
enlightened by the pioneering work, namely Sentomist
[16] and T-Morph [17], of testing TinyOS programs
based on event-procedure-instances. Sentomist and T-
Morph utilize an instance-identification algorithm with
an implicit assumption that all task-posting operations
of the tested program are atomic. In other words, event-
procedure-instances are IPIs that involve no failed task-
postings. However, most WSN applications allow a task-
posting operation to be interrupted in the middle of
its execution. Thus, it is necessary to relax the above
atomicity assumption of the existing techniques and
develop a more generic instance-identification algorithm.

Because Sentomist and T-Morph aim to support offline
analysis, the issues of efficiency and real-time are not
the major concerns of their instance-identification ap-
proach. In our study, we find it important to develop an
efficient instance-identification algorithm to support dy-
namic analyses of WSN applications. This is because for
dynamic online-analyses, efficient instance-identification
is the foundation to enable efficient instance-based anal-
yses. Even for dynamic offline-analyses, the collection
of instance-based program behaviors also desires for
efficient instance-identification to support efficient online
collection. WSN applications are typically long-running
programs, and thus always require long-running testing.
The space and time overheads of conventional inefficient
instance-identification will rise rapidly and ceaselessly
with the running time, and thus disable long-running
testing based on instances.

Moreover, we also find it necessary to propose a
real-time instance-identification approach for dynamic
analyses of WSN applications for the following obser-
vations: The instance-identification defective approach
[16], [17] cannot determine all instance points at real-
time, but having to postpone the determination of some
instance-points, e.g., end-points, to the future. As a
result, whenever a possible end-point of an instance
is found, a program profiler must mark this point,
keep associating the runtime-information to the instance
which has possibly already been ended, and roll back
to this point in the future when finding that this point
is a real end-point. Such marking and rollbacks bring
tight coupling between the information-collection logic
of a dynamic analysis and the instance-identification
logic, causing the dynamic analysis excessively compli-
cated and error-prone. In addition, delayed instance-
identification discourages instance-based online analyses
from timely producing analysis results. Consequently,
due to its defective instance-identification, a delayed
profiling and testing approach for WSN programs cannot
find concurrency bugs among instances in real-time or
detect violations to real-time properties of instances.

In this paper, to overcome the limitations of the

existing instance-identification approach, we develop a
novel instance-identification algorithm to facilitate IPI-
based analyses of TinyOS programs. Firstly, our IPI-
identification algorithm is generic without assuming
atomic task-posting operations and without requiring
IPI-based information-collection to know the algorithms
internal logic. Secondly, the IPI-identification algorithm
has low overheads on time and space, and thus en-
able efficient IPI-based analyses. Thirdly, the algorithm
identifies each IPI point of the program at real-time
(i.e. immediately after the point occurs), which enables
real-time collection of IPI-based program behaviors and
makes online analyses possible. We prove the correct-
ness, efficiency and real-time of our IPI-identification
algorithm. Furthermore, we implement the prototype of
our IPI-identification algorithm, and empirically com-
pare its efficiency to the existing approach.

In summary, this paper makes the following contribu-
tions:

(1) Present a formal definition of Interrupt Procedure In-
stance (IPI) for WSN programs. The implication of IPI is
clarified and illustrated.

(2) Propose a generic algorithm for identifying IPIs of
WSN programs. The algorithm relaxes the assumption of
atomic tasking-posting operations, and decouples its in-
ternal logic from the logics of various IPI-based analyses.

(3) Prove the correctness, efficiency and real-time of the IPI-
identification algorithm theoretically. The algorithm can be
the common foundation of various IPI-based analyses of
WSN programs, e.g., IPI-based profiling and testing.

(4) Implement a prototype of our IPI-identification algo-
rithm, and conduct comparison experiments to illustrate that
our instance-identification approach excels the existing one on
the running overheads of the analyzed program.

We organize the rest of the paper as follows. Section II
outlines the fundamentals of TinyOS programming rele-
vant to this paper and then presents the formal definition
of IPIs. Our IPI-identification algorithm is depicted in
Section III. Section IV proves the correctness and real-
time of our IPI-identification algorithm, and analyzes its
time and space complexity. We experimentally compare
the time and space costs of our algorithm to those of the
existing instance-identification algorithm in Section V.
Section VI reviews related work and Section VII provides
further discussions and summarizes this paper.

II. INTERRUPT PROCEDURE INSTANCES

A. Fundamentals of WSN Programming

The concurrency model of such WSN operating sys-
tems as TinyOS is featured by the preemption execution
of interrupt handlers and the delayed execution of tasks.
TinyOS [18], written in nesC [19], is one of the main-
stream operating system for WSN programming [20].

In TinyOS programs, a module could be in the
form of a nesC event, a nesC command, a C function,
an interrupt handler, or a task [21]. The nesC tools

SUBMITTED , VOL. XX, NO. X, XX 20XX 3

preprocess nesC code into C code, and then com-
pile the C code into the target machine code [22].
In a nesC module m, a task t() and its task post-
ing statement post(t) are compiled into two C func-
tions: taskName$runTask() and taskName$postTask(), re-
spectively, where taskName denotes m$t. The function
taskName$postTask() calls the OS scheduler’s postTask
function, namely schedulerBasicP$TaskBasic$postTask(),
to push the task to the OS task queue. If the task is
successfully pushed, it will be scheduled in a FIFO
manner by the TinyOS scheduler by calling the function
taskName$runTask().

B. Definitions
Next, we formally define interrupt procedure in-

stances. Let IH be the interrupt handler of an interrupt
i.

Definition 1. The interrupt-procedure of IH consists of the
static codes of three nesC modules – IH, the callees of
IH(or i), and the tasks of IH – where

(1) A callee of IH is a function that is called by IH, a
callee of IH, or a task of IH.

(2) A task of IH is a task that is posted by IH, a callee
of IH, or a task of IH.

Definition 2. An interrupt-procedure-instance (abbr. IPI)
of IH(or i) is one execution of the interrupt procedure of
IH. The callees of the instance are the callees of IH that are
executed in the instance. The tasks of the instance are the
tasks of IH that are executed (i.e., successfully posted)
in the instance.

Definition 1 is recursive. Note that when a task is
successfully posted by a callee of an instance of IH, it also
becomes a part of the instance. Therefore, we introduce
”the callees of IH” in Definition 1. Note also that a task
posting is not necessarily successful because the OS task
queue is a shared resource. For instance, in TinyOS2, a
post will fail if the task is already in the task queue and
has not started to execute [21]. Thus, in Definition 2, we
consider only the successfully posted tasks.

To illustrate the above definitions, we introduce nota-
tions for some execution points of IPIs in Table I. Column
1 and 2 show the execution-points’ types and their
features, respectively. Intuitively, an IPI consists of an IH-
running part and several (i.e., zero or more) task-running
parts. The IH-running part, starting at the instance’s
IHEntry point and ending at its IHExit point, form an
IHEntry-IHExit pair. A task-running part, starting at the
task’s RunTaskEntry point and ending at its RunTaskExit
point, form a RunTaskEntry-RunTaskExit pair. Because
tasks are scheduled in a FIFO manner, a RunTaskEntry-
RunTaskExit pair will never contain other such pairs.
Due to interrupt preemption, one instance’s IHEntry-
IHExit pair may embed into another instance’s IHEntry-
IHExit pair or RunTaskEntry-RunTaskExit pair.

TABLE I: Execution Point types of IPIs
Execution-point type Description

IHEntry Entry of an interrupt handler

IHExit Exit of an interrupt handler

RunTaskEntry
Entry of a taskName$runTask(), where
taskName is a complete task name in
post-compiling format

RunTaskExit
Exit of a taskName$runTask(), where
taskName is a complete task name in
post-compiling format

PostTaskEntry Entry of a taskName$postTask()

PostOk Point indicating a successful task posting
to the system task queue

PostFail Point indicating a failed task posting to
the system task queue

Figure 1(a) illustrates an IPI, called IPI1, by black thick
lines ended with solid circles. IPI1 starts at IHEntry1,
pauses because of the preemption execution of another
instance named IPI2 (denoted by grey thick lines ended
with solid diamonds), resumes after the preemption exe-
cution, pauses at IHExit1 due to the completed execution
of IPI1’s interrupt handler, resumes at RunTaskEntry1
due to the system task scheduling, and ends at Run-
TaskExit1 with no pending tasks (i.e., the tasks that have
been successfully posted to the OS task-queue but not
yet scheduled to run). IPI1 posts two tasks: (1) the
task posted at PostTaskEntry1 is successfully posted to
the OS task-queue at PostOk1, and scheduled to run
at RunTaskEntry1; (2) the task posted at PostTaskEntry1a
is unsuccessfully posted at PostFail1a. The execution
points of the same task are connected using continuous
dotted lines in the figure, to show their corresponding
relationship. For example, PostTaskEntry1 and PostOk1
are the corresponding points of RunTaskEntry1. Figure
1(b) shows another case of IPI1 when its task-posting
procedure is interrupted by IPI2. Because IPI2’task is
successfully posted prior to IPI1’s task (namely PostOk2
occurs before PostOk1), IPI2’task is also executed prior
to IPI1’s task (namely RunTaskEntry2 happens before
RunTaskEntry1).

Intuitively, an IPI starts at its IHEntry point. If an
instance has no successfully posted tasks, the instance
ends at its IHExit point; otherwise, it pauses at its IHExit
point (or at its RunTaskExit points except the last one),
resumes at its RunTaskEntry points, and ends at its last
RunTaskExit point. If an instance is preempted by an-
other one, the former instance pauses at the preempting
instance’s IHEntry point, and resumes at the preempting
instance’s IHExit point.

III. IPI-IDENTIFICATION ALGORITHM

In this section, we will propose a novel IPI-
identification algorithm to overcome the limitations of
the existing instance-identification technique described
in Section I. We will firstly present the key execution
points to identify instances, and then elaborate the

SUBMITTED , VOL. XX, NO. X, XX 20XX 4

RunTask

Exit2

IHEntry2

RunTask

Exit2

PostTask

Entry2

IHExit2

Post

Fail1a

PostTask

Entry1a

 IHEntry1 PostTask

Entry1

PostTask

Entry2

IHExit2 Post

Ok1

RunTask

Exit1

RunTask

Entry1

IHExit1 RunTask

Entry2

Post

Ok2

PostTask

Entry1a

Post

Fail1a

PostTask

Entry1

IHExit1 RunTask

Entry1

RunTask

Exit1

Post

Ok1

 IHEntry1 RunTask

Entry2

Post

Ok2

IHEntry2 RunTask

Exit2
(a）

(b）

RunTask

Exit2

IHEntry2

RunTask

Exit2

PostTask

Entry2

IHExit2

Post

Fail1a

PostTask

Entry1a

 IHEntry1 PostTask

Entry1

PostTask

Entry2

IHExit2 Post

Ok1

RunTask

Exit1

RunTask

Entry1

IHExit1 RunTask

Entry2

Post

Ok2

PostTask

Entry1a

Post

Fail1a

PostTask

Entry1

IHExit1 RunTask

Entry1

RunTask

Exit1

Post

Ok1

 IHEntry1 RunTask

Entry2

Post

Ok2

IHEntry2 RunTask

Exit2
(a）

(b）

Fig. 1: Examples of Interleaving IPIs

instance-identification algorithm with theoretical analy-
sis, and finally compare our algorithm to the existing
one on time and space overheads with experiments.

A. Key Execution Points

Our IPI-identification algorithm monitors the program
execution at instruction-level and traces five types of key
execution points, namely IHEntry, IHExit, RunTaskEntry,
RunTaskExit, and PostOk points. The first four points are
used to trace the switches among instances (as explained
in the rest of this subsection); the PostOk points are
utilized to identify each RunTaskEntry point’s instance
and each instance’s end-point (as detailed in Subsection
III-B)

During a run of a TinyOS program, such system op-
erations as system initialization and system scheduling
between task-executions are not driven by interrupts.
Thus, the operations do not belong to any IPI, and can
be regarded to belong to a specific Non-interrupt-instance.
Accordingly, when a program is launched and performs
initialization, its execution belongs to the Non-interrupt-
instance.

After the initialization, a program’s execution might
switch instances in the following four scenarios:

(1) At an IHEntry point: The currently executed in-
struction is the entrance instruction of an interrupt han-
dler, which means that an interrupt just occurred and
the program just started to execute the corresponding IPI
(i.e., the IHEntry point’s instance). Thus, at an IHEntry
point, the program’s execution switches to the IHEntry
point’s instance.

(2) At an IHExit point: The currently executed instruc-
tion is the exit instruction of an interrupt handler, and
the next executed instruction will be the one preempted
by the interrupt handler. Thus, at the immediate succes-
sor of an IHExit point, the program’s execution switches
to the instance preempted by the interrupt handler, and
here the instance might be the Non-interrupt-instance or
another IPI.

(3) At a RunTaskEntry point: The program
starts to execute the task’s function, namely
taskName$runTaskEntry(). Thus, the program’s execution
switches to the instance of the RunTaskEntry point,
namely the task’s instance.

(4) At a RunTaskExit point: The currently executed
instruction is the exit instruction of the task’s func-
tion taskName$runTaskEntry(), and the next executed
instruction will be an instruction in the system’s task-
scheduling function. Thus, at the immediate successor of
a RunTaskExit point, the program’s execution switches
to the Non-interrupt-instance.

Next, we will prove that the above four scenarios
contain all the possible cases for instance switches.

Theorem 1. During the execution of a TinyOS program,
instance switches only occur in one of the following execution
points: IHEntry points, immediate successor points of IHExit
points, RunTaskEntry points, and immediate successor points
of RunTaskExit points.

Proof. When a running TinyOS program switches in-
stances, it switches into either an IPI or the Non-
interrupt-instance, detailed as follows:

(1) The program-execution switches into an IPI only in
one of the following three cases: (a) An interrupt occurs,
and the program starts to execute the IPI’s interrupt-
handler; (b) A task-scheduling occurs, and the program
starts to execute a task function of the IPI; (c) The execu-
tion of an interrupt-handler that previously preempted
an IPI is ended, and the program continues to execute
the IPI. In the above three cases, instance switches
occur at the following three types of execution points,
respectively: IHEntry points, RunTaskEntry points, and
immediate successor points of IHExit points.

(2) The program-execution switches into the Non-
interrupt-instance only in one of the following two cases:
(a) The execution of the interrupt-handler that previ-
ously preempted the Non-interrupt-instance is ended,
and the program continues to execute the Non-interrupt-
instance. (b) The execution of a task function of an IPI

SUBMITTED , VOL. XX, NO. X, XX 20XX 5

is ended, and the program continues to execute the
Non-interrupt-instance. In the above two cases, instance
switches occur at the following two types of execu-
tion points, respectively: immediate successor points of
IHExit points and immediate successor points of Run-
TaskExit points.

Based on the above (1) and (2), Theorem 1 is proved.

B. Algorithm

Algorithm 1 shows our IPI-identification algorithm.
It fires after each instruction i is executed. The algo-
rithm inputs the instruction i, and outputs i’s instance
(i.e.,curInst) as well as i’s position in its instance (i.e.,
curPos) at line 28. It reports three types of instruction
positions, namely START, END and INTERM, indicating
that the instruction is a start point, an endpoint or an
intermediate point in its instance (line 2).

Algorithm 1 primarily utilizes the following data
structure:

(1) The algorithm uses an INST 〈id, type〉 structure
(line 1) to store an instance’s information, where both
id and type fields are non-zero. It uses a global instNum
to count and number all the instances (lines 8, 12 and
13). It also uses a special INST value 〈0,0〉 to denote
a Non-interrupt-instance. Thus, for an instruction that
is not part of any instance, the algorithm sets its INST
value with 〈0,0〉 (lines 7 and 26). The algorithm uses the
POSTYPE type (line 2) to define local curPos. It sets the
default value of curPos as INTERIM (line 4); resets the
value with STRAT when i is an IHEntry point (line 14),
or to END when i is an instance endpoint (lines 16-17,
24-25).

(2) Because the execution of a tested program switches
from an IHExit point (or a RunTaskExit point) into the
instance of the point’s immediate successor, our algo-
rithm utilizes a local instAfterExit to denote the instance’s
information and initializes instAfterExit to NULL (line 3).
When i is an IHExit point (or a RunTaskExit point), the
algorithm sets instAfterExit with the instance information
of the immediate successor of i (lines 18, 26), and updates
curInst with instAfterExit after outputting the instance
information of i (lines 28-30).

(3) Because the IH parts of multiple IPIs might be in
multi-level nesting, our algorithm introduces a global
INST stack, pInst S, to trace the information of each
instance preempted by interrupts. At each IHEntry point,
it pushes the pre-updated curInst value into pInst S
(lines 10-11), which denotes the instance preempted by
the IH. At each IHExit point, it pops the INST value
from pInst S, and updates instAfterExit with the value
(lines 15, 18). This value represents the instance of the
immediate successor of the IHExit point (as Lemma 1
exhibits in Section IV).

(4) Because TinyOS uses a system task-queue to sched-
ule the successfully posted tasks, our algorithm also
introduces a global INST queue, okInst Q, to trace the

instance of each successfully posted task. At each PostOk
point, it adds the curInst value to okInst Q (lines 19-20),
and the value represents the PostOk point’s instance,
namely the instance of the pending task successfully
posted at the PostOk point. At each RunTaskEntry point,
the algorithm removes the first value from okInst Q
(lines 21-22). The removed value denotes the running
task’s instance, namely the RunTaskEntry point’s in-
stance (as Lemma 2 reveals in Section IV).

Next, we depict how Algorithm 1 traces the instance
switches by setting the global curInst. When the tested
program starts to run, the algorithm initializes curInst
with 〈0,0〉 (line 7), denoting current instance is No-
interrupt-instance. The algorithm updates the value of
curInst at the following key execution-points:

(1) When i is an IHEntry point, the algorithm creates
an INST value using the interrupt number of IH and
the current instance number to denote i’s instance, and
updates curInst with the value (line 13).

(2) When i is an IHExit point, the algorithm pops
an INST value from pInst S, sets instAfterExit to the
value (line18), and updates curInst with the value after
outputting i’s instance curInst (lines 28-30).

(3) When i is a RunTaskExit point, the algorithm
sets instAfterExit to Non-interrupt-instance (line 26), and
updates curInst with the value after outputting curInst
(lines 28-30).

(4) When i is a RunTaskEntry point, the algorithm re-
moves the first value from okInst Q, and updates curInst
with the value (line 22).

Finally, we address how Algorithm 1 finds out an
instance-endpoint by setting the local curPos. The algo-
rithm initializes curPos with default INTERM (line 4),
indicating the instruction i is neither a start-point nor an
end-point of its instance. When i is an IHEntry point, it
sets curPos with START (line 14). When i is an IHExit
or RunTaskExit point, the algorithm checks whether or
not the INST value of the point’s instance is in okInst Q;
if not, sets curPos to END (lines 15-17, 23-25), and the
point is the end-point of its instance (as Lemma 3 shows
in Section IV).

IV. ALGORITHM ANALYSIS

In this section, we will theoretically analyze the cor-
rectness, real-time and efficiency of our IPI-identification
algorithm.

Lemma 1. Lemma 1. When Algorithm 1 is processing an
IHExit execution point, the popped INST value from the stack
pInst S is the instance information of the immediate successor
of the IHExit point.

Proof. (1) At and only at each IHEntry point of the
tested program, TinyOS pushes the interrupted site of
the instruction preempted by the IH into the system
stack, and at the same time Algorithm 1 pushes the
instance information of the instruction to the algorithm
stack pInst S; (2) At and only at each IHExit point of the

SUBMITTED , VOL. XX, NO. X, XX 20XX 6

Algorithm 1: InstanceIdentify (i)
/** Data structure:
INST: 〈id, type〉 — an event-procedure instance, where non-zero integer id is the instance id; non-zero integer

type is the instance type, which is interrupt number of the instance’s triggering interrupt.
enum POSTYPE START, END, INTERM — an instruction’s position type in its instance, indicating that the
instruction is a start point, an endpoint, or an intermediate point of its instance.

**/
Global: curInst: INST /* i’s instance, initialized as 〈0,0〉 */

instNum: instance counter /* initialized as 0 */
pInst S: preempted instances by IHs, stack of INST /* initialized as NULL */
okInst Q: pending tasks’ instances, queue of INST /* initialized as NULL */

Local: instA f terExit: INST /* next instruction’s instance that is different from i’s instance*/
curPos: POSTYPE /* i’s position type in its instance */

Input: i: current instruction that is being executed
Output: curInst,curPos

1 begin
2 instA f terExit ← NULL /* NULL means instAfterExit is not set yet*/
3 curPos ← INTERM /* i’s default position type in its instance */
4 curInst ← 〈0,0〉; /* i is of the non-interrupt-handling instance */
5 instNum ← 0;
6 pInst S ← NULL; okInst Q ← NULL;
7 switch i’stype is: do
8 case IHEntry: do
9 pInst S.push(curInst); /* save current instance to pInst S */

10 increase instNum by 1;
11 curInst ← 〈instNum, IH’s interrupt number 〉; /* create a new instance */
12 curPos ← START; /* i is the start point of its instance */
13 end
14 case IHExit: do
15 if (¬ okInst Q.contains(curInst)) then
16 curPos ← END; /* i is the endpoint of its instance */
17 end
18 instA f terExit ← pInst S.pop(); /* next instance is the preempted instance retrieved */
19 end
20 case PostOk: do /* i is a successful task-posting point */
21 okInst Q.add (curInst); /* save PostOk’s instance, also the task’s instance */
22 end
23 case RunTaskEntry: do
24 curInst ← okInst Q.remove(); /* get the task’s instance */
25 end
26 case RunTaskExit: do
27 if (¬ okInst Q.contains(curInst)) then
28 curPos ← END; /* i is the endpoint of the current instance */
29 end
30 instA f terExit ← 〈0,0〉; /* next instruction is of the non-interrupt-handling

instance */
31 end
32 end
33 output curInst, curPos; /* i’s instance, and i’s position type in its instance */
34 if (i’s type==IHExit ‖ i’s type==RunTaskExit) then /* instance-switch occurs, from i’s instance */
35 curInst ← instA f terExit; /* update current instance with next instance */
36 end
37 end

tested program, TinyOS pops the system stack, and at the
same time Algorithm 1 pops the algorithm stack pInst S.

Obviously, the above two stacks synchronize on all the
stack push and pop operations, and the top elements of

SUBMITTED , VOL. XX, NO. X, XX 20XX 7

the two stacks denote a same instruction all the time. For
this reason, when Algorithm 1 is processing an IHExit
execution point, the popped INST value from the stack
pInst S is the instance information of the instruction
preempted by the IH, namely the instance information
of the immediate successor of the IHExit point.

Lemma 2. When Algorithm 1 is processing a RunTaskEntry
execution point, the removed INST value from the queue
okInst Q is the instance information of the immediate suc-
cessor of the RunTaskEntry point.

Proof. (1) At and only at each PostOk point of the tested
program, TinyOS adds the entry address of the success-
fully posted task at the point to the system task queue,
and simultaneously, Algorithm 1 adds the instance infor-
mation of the task to the algorithm queue okInst Q; (2)
At and only at each RunTaskEntry point of the tested
program, TinyOS dequeues the system queue and the
removed element is the entry address of the currently
running task, and simultaneously, Algorithm 1 dequeues
the algorithm queue okInst Q. Evidently, the above two
queues act in the same pace on all the enqueueing and
dequeueing operations, and the head elements of two
queues represent a same task all the time. Thus, when
Algorihtm 1 is processing a RunTaskEntry execution
point, the dequeued INST value from the queue okInst Q
is the instance information of the currently running task,
namely the instance information of the RunTaskEntry
point.

Lemma 3. When a tested TinyOS program is executing
an IHExit or RunTaskExit point, if the queue okInst Q of
Algorihtm 1 does not contain the point’s instance information,
the point is the endpoint of the instance.

Proof. During the tested program is running, both Al-
gorithm 1’s queue okInst Q and the TinyOS task queue
are initialized to null, and then act in the same pace
on all the enqueueing and dequeueing operation (as
proved in Lemma 2). → There is a one-to-one mapping
between the instance information of the tasks in okInst Q
and the entry addresses of the tasks in TinyOS task
queue.→ If at some moment, a given instance has no
instance information in okInst Q, then the instance has
no pending tasks at that moment.→ At an IHExit or
RunTaskExit execution point of the tested program, if
the instance of the point has no instance information in
okInst Q, then the instance has no pending tasks, and
hence the IHExit or RunTaskExit point is the instance’s
endpoint.

Corollary 1. The IPI-identification of Algorithm 1 is correct
and real-time.

Proof. (1) By taking Theorem 1, Lemma 1 and Lemma2
together, the following conclusion can be drawn: Al-
gorithm 1 traces all the instance switches and gets the
instance information on each switch correctly; According
to Lemma3, Algorithm 1 identifies the start point and
endpoint of each instance correctly. Therefore, Algorithm

1 is correct. (2) For each executed instruction i, immedi-
ately before the next instruction is executed, Algorithm
1 can output i’s instance information and the type of i’s
position in its instance. Therefore, Algorithm 1 is real-
time.

Corollary 2. Both the space complexity and the time com-
plexity of Algorithm 1 are constant O(1).

Proof. (1) Algorithm 1 utilizes a counter instNum, three
variables (namely curInst, newNextInst, and curPos), a
stack pInst S and a queue okInst Q. The maximum stack
depth is the maximum interrupt-nesting depth, which is
a small constant in practice. The maximum size of the
queue is the maximum size of the OS task queue. For
example, in TinyOS1, the maximum size of the OS task-
queue is 8, and in TinyOS2, although no size limitation
(so as to avoid queue overflow), the maximum size is
still a small constant in practice. Therefore, the space
overhead of Algorithm 1 is Θ(1).

(2) For each executed instruction, Algorithm 1 gets
its execution-point type with a constant time, and pro-
cesses the following five types of points: IHEntry, IHExit,
RunTaskEntry, RunTaskExit and PostOk. At each point
above, our algorithm performs the following actions: one
counter increment (line 12), one stack-push (stack-pop,
enqueueing, dequeueing) operation (line 11, 18, 20 or
22), several assignments (lines 3-4, 7-9, 13-14, 17-18, 22,
25-26, and 30), several logic operations (lines 16, 24, and
29), and one queue searching operation (line 16 or 24).
Because the maximum queue size is a small constant
as described above, the maximum time overhead for
processing each point is a constant. Therefore, the time
complexity of our instance identification process is O(n),
where n is the total number of the executed instructions,
and n increases with the running time. Suppose that t
is the running time of the tested program, and that the
program can execute up to N instructions per unit time,
then O(n) = O(t*N) = O(t). Because the time for running
a program once is limited, namely t<C (C is a large
constant), O(n) = O(t) = O(C) = O(1). Therefore, the time
overhead of Algorithm 1 is O(1).

V. EXPERIMENTAL STUDY

In this section, we will empirically study the follow
question on efficiency:

RQ: In practice, does our instance-identification ap-
proach excels the existing approach on the running
overheads of the analyzed program?

A. Experimental Setup
We implemented our instance-identification tool in

Java by utilizing the probe mechanism of Avrora [23],
a cycle-accurate instruction-level simulator for sensor
network. The probe fires when each instruction of the
program-under-analysis is executed by the Avrora inter-
preter. The tool for implementing the existing instance-
identification technique (called the old tool) is obtained

SUBMITTED , VOL. XX, NO. X, XX 20XX 8

by merely keeping the code of Sentomist (or T-Morph)
tool [24] for instance identification.

We performed all the experiments on top of Avrora
1.7.113 [25] with a simulated Mica2 platform and AT-
Mega128 microcontroller. The underlying operation sys-
tem is TinyOS 2.1. We installed TinyOS on the platform
of Cygwin [26] and Windows XP. We ran our experi-
ments on a desktop computer with a 2.7 GHz Intel dual-
core processor and 1GB RAM.

TABLE II: Subject programs and running settings
Subject RunGroup Sampling period Node Monitored

No. (ms)

Sub1 R1 100 Source node
R2 20 Source node

Sub2 R3 100 Source node
R4 20 Source node

Sub3 R5 Default of Avrora Source node

Sub4 R6 100 Intermediate node
R7 20 Intermediate node

Sub5 R8 Set by TestCTP Benign node
R9 Set by TestCTP Buggy node

Table II lists the subject programs and their run set-
tings in the experiments. The subjects are five variants
of three typical WSN applications, namely Osilloscope,
TestBlink and TestCTP [24], [27]. They cover three typ-
ical interrupts, namely ADC (Analog to Digital Con-
version), SPI (Serial Peripheral Interface), and TIMER
interrupts, respectively. Osilloscope is a sensor data col-
lection program using single-hop packet transmissions.
TestBlink implements multihop packet transmissions.
TestCTP transports sensor readings using a routing pro-
tocol called Collection Tree Protocol (CTP) [28]. Column
1 denotes the subject’s name. Sub1-3 are three variants
of Osilloscope. Sub4 is a variety of TestBlink. Sub5 is the
TestCTP application in the Sentomist release package.

We monitored the running overheads of each subject
on a single node, where different executions of a subject
involve distinct running time and/or distinct source
node’s sampling periods. The overheads might go up
with increasing running time. Column 2 reports nine
test-run groups for the subjects, and each group Ri (1
≤ i≤ 9) consists of four test runs with four running time
(measured in seconds): 10, 50, 100, and 150, respectively.
Thus, Column 2 contains 9*4=36 test runs in all. The
overheads on a node might also be affected by the source
node’s sampling period. Column 3 reports the source
node’s sampling period (measured in millisecond) in each
test run group. For each subject whose sampling period
is alterable (i.e. Sub1-2 and Sub4), we ran the subject
twice with two sampling periods: one is longer and
the other is shorter, respectively. The sampling period
of Sub3 is determined by Avrora, and that of TestCTP
is set by the implementation of TestCTP. Therefore, for
Sub3 and Sub5, we utilized the default sampling period.
Column 4 reports the monitored node in each test run
group. In Sub5, there is a bug of stopping packet-
sending. When the bug occurs, the number of concerned
instances on the buggy node might stop increasing, and
this might influence the overhead’s increment with the

0

50

100

150

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

10 50 100 150

Ours

the Old

Running time of tested programs /Second

M
e
m

o
ry

 u
s
a
g

e
 f
o

r
in

s
ta

n
c
e
-i

d
e
n

ti
fi

c
a
ti

o
n

/M
B

(a) Space overhead

0

40

80

120

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

10 50 100 150

Ours

the Old

Running time of tested programs /Second

T
im

e
 f

o
r

in
s
ta

n
c
e-

id
e
n

ti
fi

c
a
ti

o
n

/S
e
c
o

n
d

(b) Time overhead

Fig. 2: Overheads of two instance-identification tools

running time. To observe the overheads of Sub5 with
and without that possible influence, respectively, we
monitored a benign node in R8 as well as the buggy
node in R9.

B. Experimental Results

We applied our tool and the old tool of instance-
identification, respectively, to all the test runs listed in Ta-
ble II, and measured each tool’s run-time overheads for
instance-identification. The results are shown in Figure
2, where solid green lines represent our tool’s overheads
and dot red lines denote the old tool’s overheads. In
Figure 2(a), each line dot denotes space cost for instance
identification, and the dot’s height expresses the memory
usage in MB. In Figure 2(b), each line dot indicates
time overhead for instance identification, and the height
expresses the execution time in seconds. Each test run
occupies a position along the horizontal axis, and 36

SUBMITTED , VOL. XX, NO. X, XX 20XX 9

test runs are classified into four groups based on four
running time (i.e., 10, 50, 100, and 150 seconds). We make
the following observation from the graphs in Figure 2:
using our tool, both space cost and time overhead for all
test runs are small constants; in contrast, using the old
tool, space cost for all test runs and time overhead for
some test runs go up with increasing running time.

VI. RELATED WORK

A. Instance-based Testing of WSN programs

By analyzing diverse run-time information of interrupt
procedure instances in different ways, various instance-
based profiling and testing techniques can be developed
for WSN programs. Sentomist [16] and T-Morph [17] are
the pioneering instance-based testing approaches. Sen-
tomist aims to find transient bugs in TinyOS programs. It
online collects the instruction-coverage information dur-
ing instance-intervals with vectors, and offline detects
the outlier instance by vector mining. T-Morph detects
bugs but not limited to transient ones. It online collects
function-invocation sequences of instances, and offline
analyzes the suspicious patterns among the sequences
by tree mining.

Instances are triggered by interrupts. To generate ran-
dom interrupts, Regehr [REGEHR 2005] proposes a ran-
dom testing strategy. By utilizing this strategy, instance-
based testing can permute the interleavings of instances.
Like other dynamic testing of WSN programs, instance-
based testing on real hardware is always difficult. This
is because instrumentation may impact programs’ be-
haviors, and hardware’s internal states are always un-
accessible by developers [29], [30]. WSN simulation
allows more detailed inspection of program execution
before deployment. Instruction-level simulators, such
as Avrora [23] (AVR platform) and COOJA/MSPSim
[31] (MSP430 platform), can simulate motes running on
different operating systems. Other popular code-level
simulators include TOSSIM [32], ATEMU [33], and so on.
Although simulators can only simulate limited amount
of hardware behaviors, they can be the most flexible
way to analyze WSN programs dynamically. For exam-
ple, Avrora contains a flexible framework for running
and analyzing programs without changing the programs
themselves, therefore instance-based testing tools can be
conveniently constructed based on Avrora, as the tools
of Sentomist and T-Morph show.

B. Dynamic Analysis and Verification of IoT Programs

As IoT becomes increasingly pervasive, we need more
and broader software engineering support to improve
the quality of WSN-based IoT programs [34]. In re-
cent years, apart from instance-based analysis, other
dynamic analysis techniques have been developed for
WSN applications: For example, Sundaram et al. pro-
pose an efficient approach to intra-procedural and inter-
procedural control-flow tracing [35]; Dylog [36] provides

a dynamic event-logging facility for networked embed-
ded programs to support efficient and accurate analy-
sis. Based on various runtime data logs, some testing
techniques have been proposed for WSN programs: For
instance, D2 [37] employs function count profiling and
PCA (Principal Component Analysis) to reveal network
anomalies; Khan et al. applies discriminative sequence
mining to uncover interactive bugs [38]. There has been
some work in runtime checking of WSN applications:
For instance, nesCheck [39] check errors violating mem-
ory safety and KleeNet [40] uses symbolic analysis to
find bugs.

VII. CONCLUSION AND FUTURE WORK

To relieve the quality issues of interrupt-driven WSN
programs, it is essential to develop various profiling and
testing techniques based on the program behaviours of
IPIs. In this paper, we proffer the formal definition of
IPI and expound its meanings. To support IPI-based
analyses of TinyOS programs, we construct an IPI-
identification algorithm, and theoretically prove its cor-
rectness, efficiency and real-time. We also conduct com-
parison experiments to illustrate that the our instance-
identification approach has lower running overheads
than the existing one. In conclusion, we contribute a
generic, efficient and realtime IPI-identification algo-
rithm, building the firm base for IPI-based analyses of
WSN program in IoT environment.

Based on our IPI-identification algorithm, multifarious
IPI-based profiling and testing techniques can be pro-
posed for WSN programs. In the near future, we will
study IPI-based bug patterns, and develop an IPI-based
testing technique with the patterns for WSN-based IoT
programs.

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers for their
insightful comments.

REFERENCES

[1] T. Homewood, C. Norström, and P. Gunningberg, “Demo
abstract–skitracker: measuring skiing performance using a body-
area network,” in Proc. the 12th international conference on Informa-
tion processing in sensor networks. ACM, 2013, pp. 319–320.

[2] D.-J. Kim and B. Prabhakaran, “Motion fault detection and iso-
lation in body sensor networks,” Pervasive and Mobile Computing,
vol. 7, no. 6, pp. 727–745, 2011.

[3] M. V. Ramesh, “Design, development, and deployment of a wire-
less sensor network for detection of landslides,” Ad Hoc Networks,
vol. 13, pp. 2–18, 2014.

[4] P. A. A. Shah, M. Habib, T. Sajjad, M. Umar, and M. Babar, “Ap-
plications and challenges faced by internet of things-a survey,” in
International Conference on Future Intelligent Vehicular Technologies.
Springer, 2016, pp. 182–188.

[5] G. Barrenetxea, F. Ingelrest, G. Schaefer, M. Vetterli, O. Couach,
and M. Parlange, “Sensorscope: Out-of-the-box environmental
monitoring,” in Proc. the 7th international conference on Information
processing in sensor networks. IEEE Computer Society, 2008, pp.
332–343.

[6] D. Raposo, A. Rodrigues, J. S. Silva, and F. Boavida, “A taxonomy
of faults for wireless sensor networks,” Journal of Network and
Systems Management, vol. 25, no. 3, pp. 591–611, 2017.

SUBMITTED , VOL. XX, NO. X, XX 20XX 10

[7] A. Schoofs, G. M. O’Hare, and A. G. Ruzzelli, “Debugging low-
power and lossy wireless networks: A survey,” IEEE Communica-
tions Surveys & Tutorials, vol. 14, no. 2, pp. 311–321, 2012.

[8] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and M. Welsh,
“Fidelity and yield in a volcano monitoring sensor network,” in
Proc. the 7th symposium on Operating systems design and implemen-
tation. USENIX Association, 2006, pp. 381–396.

[9] “Internet of things: wireless sensor networks,” [Online]. Available:
http://www.iec.ch/whitepaper/pdf/iecWP-internetofthings-LR-
en.pdf. [Accessed: 31-July-2014].

[10] X. Larrucea, A. Combelles, J. Favaro, and K. Taneja, “Software
engineering for the internet of things,” IEEE Software, vol. 34,
no. 1, pp. 24–28, 2017.

[11] M. Dwyer, A. Kinneer, and S. Elbaum, “Adaptive online program
analysis,” in the 29th international conference on Software Engineering
(ICSE09). IEEE, 2007, pp. 220–229.

[12] S. Park, R. Vuduc, and M. J. Harrold, “Unicorn: a unified approach
for localizing nondeadlock concurrency bugs,” Software Testing,
Verification and Reliability, vol. 25, no. 3, pp. 167–190, 2015.

[13] J. Roemer, K. Gen, and M. D. Bond, “High-coverage, unbounded
sound predictive race detection,” in Proc. the 39th ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI18. ACM, 2018, pp. 374–389.

[14] M. Camilli, A. Gargantini, P. Scandurra, and C. Bellettini, “Event-
based runtime verification of temporal properties using time basic
petri nets,” in Proc. NASA Formal Methods Symposium, Springer,
Cham, 2017, pp. 115–130.

[15] J. Li, Y. Chen, H. Liu, S. Lu, Y. Zhang, H. S. Gunawi, X. Gu,
X. Lu, and L. D., “Pcatch: automatically detecting performance
cascading bugs in cloud systems,” in Proc. the Thirteenth EuroSys
Conference (EuroSys18), no. 7. ACM, 2018.

[16] Y. Zhou, X. Chen, M. R. Lyu, and J. Liu, “Sentomist: Unveiling
transient sensor network bugs via symptom mining,” in Dis-
tributed Computing Systems (ICDCS), 2010 IEEE 30th International
Conference on. IEEE, 2010, pp. 784–794.

[17] Y. Zhou, C. X.Y., M. Lyu, and J. Liu, “T-morph: Revealing buggy
behaviors of tinyos applications via rule mining and visualiza-
tion,,” accepted by ACM SIGSOFT 20th International Symposium
on the Foun-dations of Software Engineering (FSE12). [Online].
Available: http://www.hkcloud.net/Sengraphy/. [Accessed: 1-
March-2012].

[18] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse,
A. Woo, D. Gay, J. Hill, M. Welsh, E. Brewer et al., “Tinyos: An
operating system for sensor networks,” in Ambient intelligence.
Springer, 2005, pp. 115–148.

[19] D. Gay, P. Levis, R. Von Behren, M. Welsh, E. Brewer, and
D. Culler, “The nesc language: A holistic approach to networked
embedded systems,” Acm Sigplan Notices, vol. 49, no. 4, pp. 41–51,
2014.

[20] R. Sugihara and R. K. Gupta, “Programming models for sen-
sor networks: A survey,” ACM Transactions on Sensor Networks
(TOSN), vol. 4, no. 2, p. 8, 2008.

[21] P. Levis and D. Gay, TinyOS programming. Cambridge University
Press, 2009.

[22] “Creating a new platform for tinyos 2.x.” [Online]. Avail-
able: http://www.tinyos.net/tinyos-2.x/doc/html/tep131.html.
[Accessed:1-May-2017].

[23] B. L. Titzer and J. Palsberg, “Nonintrusive precision instrumen-
tation of microcontroller software,” in ACM SIGPLAN Notices,
vol. 40, no. 7. ACM, 2005, pp. 59–68.

[24] “Source code release package of sentomist pro-
totype tool (version 0.44).” [Online]. Available:
http://www.hkcloud.net/Sentomist/files/sentomist 0.44.zip.
[Accessed: 31-May-2010].

[25] “Avrora cvs repository.” [Online]. Available:
http://avrora.cvs.sourceforge.net. [Accessed: 31-May-2017].

[26] “Home of the cygwin project.” [Online]. Available:
http://www.cygwin.com. [Accessed: 1-Oct-2014].

[27] “Tinyos cvs repository.” [Online]. Available:
http://tinyos.cvs.sourceforge.net/viewvc/tinyos/tinyos-2.x/.
[Accessed: 1-July-2010].

[28] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis,
“Collection tree protocol,” in Proc. the 7th ACM conference on
embedded networked sensor systems. ACM, 2009, pp. 1–14.

[29] T. Kamph, “Dynamic invariant detection for sensor network
applications,” 2010.

[30] F. Yu, “A survey of wireless sensor network simulation tools,”
[Online]. Available: http://www1.cse.wustl.edu/ jain/cse567-
11/ftp/sensor/index.html, [Accessed: 1-Dec-2017].

[31] J. Eriksson, F. Österlind, N. Finne, N. Tsiftes, A. Dunkels, T. Voigt,
R. Sauter, and P. J. Marrón, “Cooja/mspsim: interoperability
testing for wireless sensor networks,” in Proc. the 2nd International
Conference on Simulation Tools and Techniques. ICST (Institute for
Computer Sciences, Social-Informatics and Telecommunications
Engineering), 2009, p. 27.

[32] P. Levis, N. Lee, M. Welsh, and D. Culler, “Tossim: Accurate
and scalable simulation of entire tinyos applications,” in Proc. the
1st international conference on Embedded networked sensor systems.
ACM, 2003, pp. 126–137.

[33] J. Polley, D. Blazakis, J. McGee, D. Rusk, and J. S. Baras, “Atemu:
a fine-grained sensor network simulator,” in Sensor and Ad Hoc
Communications and Networks, 2004. IEEE SECON 2004. 2004 First
Annual IEEE Communications Society Conference on. IEEE, 2004,
pp. 145–152.

[34] P. Eugster, V. Sundaram, and X. Zhang, “Debugging the internet
of things: The case of wireless sensor networks,” IEEE Software,
vol. 32, no. 1, pp. 38–49, 2015.

[35] V. Sundaram, P. Eugster, X. Zhang, and V. Addanki, “Diagnostic
tracing for wireless sensor networks,” ACM Transactions on Sensor
Networks (TOSN), vol. 9, no. 4, p. 38, 2013.

[36] W. Dong, L. Luo, and C. Huang, “Dynamic logging with dylog
in networked embedded systems,” ACM Transactions on Embedded
Computing Systems (TECS), vol. 15, no. 1, p. 5, 2016.

[37] W. Dong, C. Chen, J. Bu, X. Liu, and Y. Liu, “D2: Anomaly
detection and diagnosis in networked embedded systems by
program profiling and symptom mining,” in Real-Time Systems
Symposium (RTSS), 2013 IEEE 34th. IEEE, 2013, pp. 202–211.

[38] M. M. H. Khan, H. K. Le, H. Ahmadi, T. F. Abdelzaher, and J. Han,
“Troubleshooting interactive complexity bugs in wireless sensor
networks using data mining techniques,” ACM Transactions on
Sensor Networks (TOSN), vol. 10, no. 2, p. 31, 2014.

[39] D. Midi, M. Payer, and E. Bertino, “Memory safety for embedded
devices with nescheck,” in Proc. the 2017 ACM on Asia Conference
on Computer and Communications Security. ACM, 2017, pp. 127–
139.

[40] R. Sasnauskas, O. Landsiedel, M. H. Alizai, C. Weise,
S. Kowalewski, and K. Wehrle, “Kleenet: discovering insidious
interaction bugs in wireless sensor networks before deployment,”
in Proc. the 9th ACM/IEEE International Conference on Information
Processing in Sensor Networks. ACM, 2010, pp. 186–196.

Yuxia Sun received her B.S. degree from
Huazhong University of Science and Technol-
ogy, and the Ph.D. degree from Sun Yat-sen
University, both from Department of Computer
Science. She is currently an Associate Professor
in the Department of Computer Science at Jinan
University. She was a Research Associate at
the Hong Kong Polytechnic University and at
the University of Hong Kong, and a Research
Scholar in the College of Computing at Georgia
Institute of Technology. Her research focuses on

software engineering, software safety and system safety.

SUBMITTED , VOL. XX, NO. X, XX 20XX 11

Song Guo is a Full Professor at Department
of Computing, The Hong Kong Polytechnic
University. He received his Ph.D. in computer
science from University of Ottawa and was a
professor with the University of Aizu from 2007
to 2016. His research interests are mainly in
the areas of big data, cloud computing and
networking, and distributed systems with over
400 papers published in major conferences and
journals. His work was recognized by the 2016
Annual Best of Computing: Notable Books and

Articles in Computing in ACM Computing Reviews. He is the recipient
of the 2017 IEEE Systems Journal Annual Best Paper Award and other
five Best Paper Awards from IEEE/ACM conferences. Prof. Guo was an
Associate Editor of IEEE Transactions on Parallel and Distributed Sys-
tems 2011-2015 and an IEEE ComSoc Distinguished Lecturer 2016-2017.
He is now on the editorial boards of IEEE Transactions on Emerging
Topics in Computing, IEEE Transactions on Sustainable Computing,
IEEE Transactions on Green Communications and Networking, and
IEEE Communications. Prof. Guo also served as General, TPC and
Symposium Chair for numerous IEEE conferences. He currently is the
Director of ComSoc Membership Services and Member of ComSoc
Board of Governors. Prof. Guo has also served as General, TPC and
Symposium Chair for numerous IEEE conferences.

Shing-Chi Cheung received his doctoral de-
gree in Computing from the Imperial College
London. In 1994, he joined The Hong Kong
University of Science and Technology, where
he is a full professor of Computer Science and
Engineering. He participates actively in pro-
gram and organizing committees of major inter-
national software engineering conferences. He
was the General Chair of the 22nd ACM SIG-
SOFT International Symposium on the Foun-
dations of Software Engineering (FSE 2014).

He was a director of the Hong Kong R & D Center for Logistics
& Supply Chain Management Enabling Technologies. His research
interests include program analysis, testing and debugging, big data
software, cloud computing, internet of things, and mining software
repository.

Yong Tang got his BS and MSc degrees from
Wuhan University in 1985 and 1990 respec-
tively, and PhD degree from University of Sci-
ence and Technology of China in 2001, all
in computer science. He is now a Professor
and Dean of the School of Computer Science
at South China Normal University(SCNU). He
serves as the Director of Services Computing
Engineering Research Center of Guangdong
Province. He was vice Dean of School of Infor-
mation of Science and Technology at Sun Yat-

Sen University, before he joined SCNU in 2009. He has published more
than 200 papers and books. As a supervisor he has had more than 40
PhD students and Post Doc researchers since 2003 and more than 100
Master students since 1996. He is a Distinguished Member and the
vice director of Technical Committee on Collaborative Computing of
China Computer Federation (CCF). He has also served as general or
program committee cochair of more than 10 conferences.

	I Introduction
	II Interrupt Procedure Instances
	II-A Fundamentals of WSN Programming
	II-B Definitions

	III IPI-identification Algorithm
	III-A Key Execution Points
	III-B Algorithm

	IV Algorithm Analysis
	V Experimental Study
	V-A Experimental Setup
	V-B Experimental Results

	VI Related Work
	VI-A Instance-based Testing of WSN programs
	VI-B Dynamic Analysis and Verification of IoT Programs

	VII Conclusion and Future Work
	References
	Biographies
	Yuxia Sun
	Song Guo
	Shing-Chi Cheung
	Yong Tang

