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Enabling Optimization Based Localization for IoT
Devices

Paul Beuchat, Henrik Hesse, Alexander Domahidi, and John Lygeros

Abstract—In this paper we propose an embedded optimization
approach for the localization of IoT devices making use of range
measurements from ultra-wideband (UWB) signals. Low-cost,
low-power UWB radios provide time-of-arrival measurements
with decimeter accuracy over large distances. UWB-based local-
ization methods have been envisioned to enable feedback control
in IoT applications, particularly, in GPS-denied environments
and large wireless sensor networks. In this work we formulate
the localization task as a non-linear least-squares optimization
problem based on two-way time-of-arrival measurements be-
tween the IoT device and several UWB radios installed in a 3D
environment. For the practical implementation of large-scale IoT
deployments we further assume only approximate knowledge of
the UWB radio locations. We solve the resulting optimization
problem directly on IoT devices equipped with off-the-shelf
microcontrollers using state-of-the-art code generation techniques
for plug-and-play deployment of the non-linear-programming
algorithms. The paper further provides practical implementation
details to improve the localization accuracy for feedback control
in experimental IoT applications. The experimental results finally
show that sub-decimeter localization accuracy can be achieved
using the proposed optimization-based approach, even when the
majority of the UWB radio locations are unknown.

Index Terms—Localization, Ultra-Wideband Ranging, Non-
Linear Embedded Optimization, Internet of Things, Wireless
Sensor Networks

I. INTRODUCTION

ANY applications in the internet of things (IoT), such
as developments in smart cities, houses, mobility, and
engineering, require knowledge of the physical location of
sensors in wireless sensor networks (WSNs). In this context,
ultra-wideband (UWB) communication has been explored as
a low-cost, low-power means to localize sensors [1]. In this
work we aim to localize IoT devices based on the time of
arrival (ToA), or transmission delay, of UWB signals measured
at the receiving sensor. The latest technology of UWB radios
can produce distance estimates from ToA measurements with
decimeter accuracy over a range of hundred meters [2]. We
refer the reader to [3] for a detailed overview of the UWB
technology and [4] for its application in IoT scenarios.
Because of its accuracy, high sampling rate, ability to pen-
etrate obstacles, and very low cost, UWB-based ranging has
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been explored for localization of sensors in cluttered, dynamic
or indoor environments where GPS-based navigation would
fail. Recent applications have focused on indoor tracking of
people [5] and quadrocopters [6], pose estimations of kites
for power generation [7], automation in underground mining
environments [8], industrial warehouses [4], and tracking of
skiers during competition [9].

The availability of IoT devices and their improvement in
computational power are enablers of such robotics applica-
tions. For most of these applications we require knowledge
of sensor positions for feedback control in autonomous IoT
systems. Here, information about the statistics of the localiza-
tion error can be used to improve system performance. In this
context, the work of [5]-[7], [10] employ extended Kalman
filtering approaches to fuse ToA measurements with additional
inertial measurements collected at each sensor.

Historically, localization algorithms have been developed
based purely on range measurements and can be categorized
as non-iterative or iterative methods [3], [8]. The simplest
non-iterative algorithm is trilateration, a direct method, which
computes the 3D location of a moving sensor directly from
distance measurements to four fixed sensors with known
locations. Trilateration, however, neglects the information
from UWB measurements of additional anchors in an over-
determined system which can be addressed by formulating
the problem in a least-squares (LS) fashion. Although non-
iterative methods are typically implemented in embedded sys-
tems due to their computational simplicity, they naturally lack
the localization accuracy of iterative methods as demonstrated
in [9]. Various optimization-based methods have been explored
to the solve the underlying non-linear LS problem in over-
determined localization scenarios. In particular, the Gauss-
Newton (GN) method [11] and Broyden-Fletcher-Goldfarb-
Shanno (BFGS) quasi-Newton method [12] have been demon-
strated for localization of individual sensors in WSNs [8], [9].

In this work we propose an optimization-based method-
ology for the self-localization of an IoT device in indoor
environments. This approach allows a sensor to localize itself
using the ToA measurements from UWB sensors, so-called
anchors, distributed around the (indoor) space. Common ap-
plications of UWB range sensors assume exact knowledge of
anchor locations. However, obtaining accurate 3D coordinate
measurements of all anchors can be prohibitively expensive
and increase the fragility of the system as anchors can be
accidentally moved. In this work we will therefore follow
two approaches for sensor localization, assuming knowledge
of true 3D coordinates of

i) all anchors as assumed in most common localization



IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. YY, MMM 2017

methods in the literature, or
ii) only three anchors used to define a global coordinate
system.

In the second approach the “anchors” are repeatedly localized
as part of the solution methodology which facilitates the prac-
tical implementation of large-scale UWB-based localization
systems and makes the system more cost-effective and robust.

In fact, this paper focuses on embedded optimization
methods for localization using current off-the-shelf IoT mi-
crocontrollers with limited processing power. We use the
FORCES Pro optimization environment [13], [14] to generate
efficient solver code that implements iterative non-linear pro-
gramming (NLP) algorithms for solving constrained non-linear
optimization problems. Despite the limitations in processing
power in IoT devices, the generated code can be ported onto
off-the-shelf IoT microcontrollers in a plug-and-play fashion to
enable the use of more accurate iterative methods for optimal
embedded sensor localization.

In this work we present experimental results for the local-
ization of sensors using the proposed optimization approach.
The results are collected using an off-the-shelf microcontroller
with an ARM 32-bit Cortex M4 180MHz floating point unit
and integrated UWB radios by Decawave [2]. Our system
was the top-ranked tertiary entrant to the Microsoft Indoor
Localization Competition 2017 [15] and can be built at very
low cost considering the demonstrated indoor localization
accuracy in the centimeter range. We focus for the results
on a real-world layout of localization in an average indoor
environment, where the horizontal expanse is much greater
than the vertical expanse. This causes an inherently high
sensitivity in the vertical localization accuracy.

Optimization methods that directly solve the localization
as a LS problem have been previously investigated in the
literature [16], [17]. A range of non-linear solvers have been
proposed to implement the unconstrained optimization on IoT
devices [18]. Optimization-based localization, however, natu-
rally uses constraints to encode additional information, e.g. on
geometry, motion or sensor topology, that are oftentimes read-
ily available in IoT sensor deployment and can in turn improve
localization accuracy. However, implementing a constrained
non-linear solver for sensor localization is significantly more
complex, and existing generic optimization software is not
suited for deployment on IoT devices. In this work we there-
fore propose a framework for embedded sensor localization
that can include linear and non-linear inequality constraints
with only a modest additional burden on the computation time.
Specifically, the type of constraints we consider as being most
relevant for localization are:

i) partial position data of anchors, e.g. upper and lower
bounds on the z-coordinate of each anchor which can
be easily approximated in a typical IoT problem,

ii) bounds on possible sensor positions to include problem-
specific kinematics, or

iii) information on the topology of the localization problem
to define boundaries where the sensor can be located.

The latter can include non-convex boundaries, e.g. on the
outside of a polytope, which can still be formulated and solved

in real-time on IoT devices. We demonstrate the benefits of
constrained optimization using experimental data representa-
tive for typical indoor localization problems.

Main contributions: The main contributions of this work
therefore lie in the development and the experimental im-
plementation of an optimization-based localization framework
that: i) can be implemented in a plug-and-play fashion on
IoT devices to self-localize sensors, ii) provides improved
localization accuracy compared to the state-of-the-art in IoT
devices, and iii) allows for additional information, specific
to the feedback control application at hand, to be included
through inequality constraints.

Notation: Throughout the paper we use the following nota-

tion:
Na number of anchors,

x;,%; € R®  respectively the true, and estimated posi-
tion of sensor ¢ in 3D space,

(xi,9i,2;) respectively the x, y, and z Cartesian
coordinates of sensor position x;,
dij,di;,d;;  respectively the true, measured, and esti-

mated distance between x; and x;.
Letting || - || denote the standard Euclidean norm, it is clear
that dij = ||Xz — Xj| 2, and cfij = ||)A(Z — )A(j”Q. Equality
between vectors is interpreted element-wise.

Structure: The remainder of the paper is structured as
following. We first formulate the problem in Sec. II using
experimental data of a representative indoor sensor localization
problem, then introduce the proposed constrained optimiza-
tion framework in Sec. IIl before illustrating the benefits
of optimization-based localization on IoT devices with the
experimental results in Sec. V.

II. PROBLEM FORMULATION

In this work we aim to localize a sensor, the so-called tag,
using N anchors which are assumed to be fixed in a 3D
field. To localize the tag, we require that at least three of the
anchors are not co-linear, and that a fourth anchor lies out of
the plane defined by the three anchors.

A. UWB Distance Measurements

Sensor localization using UWB radios typically relies on
two different methods, two-way-ranging (TWR) and time-
difference-of-arrival (TDOA) [3]. In a TWR approach, the tag
actively collects UWB distance measurements to all existing
anchors by pinging each anchor individually, as illustrated by
the grey lines in Fig. 1(a). As all timestamps are measured
directly on the tag, this approach ensures that differences in
clock frequency on anchors and the tag are negligible. This,
however, comes with the drawback that the tag is actively
involved in collecting the UWB distance measurement and
the approach cannot scale to large numbers of simultaneous
tag localizations [19].

To overcome the scaling limitation in TWR, tag localization
can be done in a passive fashion, whereby each anchor broad-
casts a beacon with a unique identifier. Knowing the positions
of all anchors, the tag can self-localize itself from the TDOA
of all incoming anchor beacons. Since this approach requires
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(a) Anchors are at various heights and the gray lines show the two-way ranging (b) All but one anchor are in the same plane and the gray lines show the

approach using 12 anchors to localize a tag.

two-way ranging approach for self-localization of the 12 anchors.

Fig. 1. Schematic of two different experimental implementations using 12 anchors (blue) to localize tags (red); dots are the locations of the UWB antennas

on the anchors and tags respectively.

knowledge of all clock differences between anchors and tags,
TDOA suffers from challenging clock drift issues [20].

B. Experimental Implementation

In this work we aim to demonstrate the experimental im-
plementation of an optimization-based approach for tag local-
ization. We have therefore chosen to implement a symmetric
double-sided TWR ranging approach to obtain UWB distance
measurements between anchors and the tag as it compensates
for differences in clock frequencies between each pair [3].
Note that the optimization-based approach we present in this
paper can be readily formulated for localization based on
TDOA measurements. The experimental implementation using
TWR measurements, however, simplifies the exposition.

As illustrated in Fig. 2(a), the TWR is initiated from the tag
(T) by pinging each anchor (A;). After waiting a predefined
time, J(4,), measured in the anchor’s clock, the ping is replied
to the tag. From the time of flight, f, for both ways and
if we knew the delay in the tag’s clock, 5(T), the distance
between the tag and anchor could be calculated directly. In
symmetric double-sided TWR the effect of clock drift is
removed by sending an additional beacon from tag to anchor.
The seemingly redundant additional beacon greatly simplifies
the implementation to obtain UWB measurements, as we can
directly obtain a measure of the difference in clock frequency
and the time of flight, f, by comparing ttoacr) and troa(a,)-

Thus far we have assumed knowledge of all anchor positions
for the tag localization. For the practical implementation we
also focus on the scenario where only a few, at least three,
anchor locations have been measured precisely whereas the
remaining anchors will be repeatedly localized using the
optimization approach discussed in Sec. III. For the so-called
anchor calibration phase, as depicted by gray lines in Fig. 1(b)
for another experimental implementation, we take a round
of additional symmetric double-sided TWR measurements
between all anchors at much larger time intervals compared
to the round tag measurements.

The experimental system was developed using an off-the-
shelf microcontroller board with an ARM 32-bit Cortex M4
180MHz floating point unit. As shown in Fig. 2(b), we
mounted a Decawave DWMI1000 UWB module [2] using
a breakout board. The resulting IoT device can be used

interchangeably as anchor or tag. In this work, the tag initiates
a round of UWB distance measurements between all anchors
and the tag itself. The measurements are stored on the tag and
used to solve the localization problem as outlined in Sec. III.

Each device can exhibit different transmission delays, which
are added to the user-defined delay, §, and is a separate issue
from clock drift. In our implementation we have calibrated
each device following the procedure in [2] to reduce the effect
of transmission delay.

C. UWB Localization Error Statistics

Figure 3(a) shows the statistics of distance errors from
UWB measurements for a pair of IoT devices, i.e. between the
tag and an anchor, for eight different anchor locations. Here,
we exclude effects from non-line-of-sight but the histogram
over 800 distance measurements for each distance indicates
the effect of different locations, mostly due to the change
in orientation, on the error statistics. Hence, for the UWB
devices used in the experiments, we can assume the distance
measurements for each location/pair to come from a narrow
distribution with a mean offset.

Further, if we look at the statistics of the mean over all eight
locations, as shown in Fig. 3(b), we can conclude that the
mean-offset is approximately normally distributed as distance
and relative orientation changes. We have seen the same trend
for all pairs of tag/anchor combinations in our experimental
implementation. These results are therefore in-line with [5],
namely, that we can assume the UWB distance measure-
ments for a specific pair of devices to be corrupted with
Gaussian white noise. Note that, in order to obtain unbiased
measurements over different locations, we have calibrated the
UWB radios to sufficiently remove the effect of individual
transmission delay. The resulting range measurements can then
be modeled as

dij = dij + €, with € ~ N(O, UTWR) , (1)

where oTwg denotes the standard deviation and is indepen-
dent of the distance being measured.

D. Objective of Work

The objective of this work is to optimally estimate the
relative position of an IoT device (tag) for feedback control.
For the optimization-based localization we aim to:
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(a) Symmetric double-sided two-way ranging is used to compensate (b) NUCLEO-F446RE microcontroller board with ARM 32-bit Cortex M4

for clock drift between tag (T) and an anchor (A;) [2].

180MHz floating point unit and integrated UWB radio by Decawave. Breakout

board design was provided by Hexagon Mining.

Fig.

2. Experimental implementation of an optimization-based localization system using off-the-shelf microcontrollers and UWB radios.
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Fig. 3. (a) Experimental results showing the UWB distance errors measured between a tag and an anchor for eight different locations and orientations. Each
histogram (gray) shows the error statistics of 800 two-way-ranging distance measurements for a particular distance between the devices, the red line shows the
normal distribution with mean, v, and standard deviation, o, of the data. (b) Error statistics of the mean-offset of 32 different distance and relative orientations

of the same pair, i.e., the statistics of means from (a).

i) use TWR distance measurements from UWB radios (an-
chors) installed in a 3D indoor environment,
ii) implement the optimization approach on the IoT device
for real-time applications, and
iii) optimally localize the tag with precise knowledge of only
three of the anchor locations.
The latter is relevant for the practical implementation of the
UWRB localization system, where it may be prohibitively costly
to assume exact knowledge of all anchor locations, e.g. by
using laser range meters. Hence, this work will also explore
the optimal localization of all anchors subject to limited
knowledge of some (at least three) anchor locations.

III. OPTIMAL SENSOR SELF-LOCALIZATION

In this section, we propose a non-linear optimization formu-
lation which we have implemented on IoT devices for the self-
localization of a tag using TWR measurements to a number of
anchors with known locations. As it is impractical to measure
all anchor locations in an experimental system, we will first
propose a general optimization formulation for the localization
of all sensors in a network which in the context of this paper
will be the network of anchors.

After the presentation of the different optimization ap-
proaches in this section, we provide practical guidelines
for solving the optimization-based localization problems ef-
ficiently on embedded IoT systems in Sec. IV. Finally, we
also discuss how additional information can be encoded in the
optimization framework through inequality constraints, where
we specifically analyze improvements in estimation of the z-
location. Note that all methods are presented here for 3D
localization, which can be simplified for 2D localization by
setting the third coordinate to zero for all measurements and
removing it from the optimization problem.

When a locally optimal iterative algorithm is used to solve
non-linear optimization problems, an initial guess is required
to start the algorithm. In this work we use trilateration to
compute an initial estimate for the tag and, if required, the
anchor self-localization problem. The trilateration method is
briefly introduced next.

A. Trilateration Method

Assuming that we have TWR distance measurements be-
tween all anchors, we can obtain a first estimate for all Ny
anchors using trilateration following these steps:
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1) assume all measurements to be their true values,

2) use the first four sensors to define the datum coordinate
system, and

3) estimate the position of the remaining sensors based only
on distance measurements to the four datum sensors.

In this way, trilateration ignores the fact that the sensor
location estimate is over-determined by the full set of distance
measurements.

Once we have either estimated or measured the anchor
locations, we can compute the position of the tag, Xy =
(.@T,yAT,fT), as:

T = (CET — 3+ J%Q) / (2J12> )
g = (B — B+ 33+ 33) / (20s) — (@18) /15, (2)
S _:I:Re< J%Tigr@%>

where we again assumed all UWB measurements to be their
true values. In the above equation, Re(-) denotes that the real
part of a number, i.e., if the square root in the expression for
Z7 has a negative argument, then Z; is estimated to be zero.

The optimization-based approach described next can be seen
as a method to refine a localization estimate obtained from
trilateration. The solution quality of the presented algorithms
is affected by the accuracy of the initial guess, and in the nu-
merical results we demonstrate that trilateration is sufficiently
accurate for generating an initial guess.

B. Optimization Formulation for Anchor Self-Calibration

The anchor self-calibration problem can be naturally written
down as an optimization problem with i) the estimated anchor
locations as decision variable, ii) measured distances given as
parameters of the problem, iii) the coordinate system conven-
tions enforced with constraints, and iv) a sensible objective that
is an error function between measured and estimated locations.
The particular choice of objective determines the accuracy and
tractability of the optimization problem.

Here, we propose the most natural objective function which
is the least-squares of distance errors, leading to the optimiza-
tion problem,

NaA Na

~ 2
i i — %2 — diy ) 3a
&ieRB?:l?,...,NA ;; (sz X2 — dij (3a)
subject to:  T1,9Y1, 21, Y2, 22,23 = 0 (3b)
,@2,];372?4 > 0. (3C)

The equality constraints can be directly substituted into the
objective function, resulting in an optimization problem with
3N, — 6 decision variables, and three lower bound inequality
constraints. Under the assumption that the d;; measurements
are zero-mean Gaussian distributed, this is exactly the max-
imum likelihood estimator of the anchor locations, and each
term is weighted by the inverse of its variance.
Writing out the Euclidean norm in (3a),

it is clear that the objective function contains multiple terms
involving the square root function. This is important to note
because the square root function is concave and quasi-convex
on R, and non-differentiable at zero. Passing an argument of
zero to the square root function occurs when two anchors are
co-located, i.e., if X; = X; for ¢ # j. This is not restrictive, as
we can generally assume the true anchor locations to not be
co-located. Note that the implementation of the optimization
formulation on IoT devices, as discussed in Sec. IV, further
allows other objective functions, e.g. minimizing the errors of
the squared distances as proposed for example in [18].

C. Optimization Formulation for Tag Self-Localization

Here, we assume that we know the locations of all anchors,
either by measuring all anchor locations or solving (3) to
estimate the missing locations. We can then simplify the
above anchor localization problem to arrive at an optimization
formulation for the self-localization of the tag only with
1) the estimated tag location as decision variable, and ii) the
measured UWB distances between anchors and the tag given
as parameters of the problem. We again choose the least-
squares of distance errors as a sensible objective function,
leading to the optimization problem,

Na .2
Z ( %1 — X2 — dTi) 4)
i=1

1=

min

XTER3
where we now assume all anchor locations to be true, i.e.
X; = x; for ¢ = 1,..., Ns. This optimization problem has
only 3 decision variables, and constraints can be added specific
to the application at hand.

Similar to the anchor optimization problem in Sec. III-B, we
see that the proposed objective function is non-differentiable
when the tag is co-located with any anchor, i.e., if X7 = x;
for ¢+ = 1,...,Na. This may adversely affect the iterative
NLP algorithms used to solve (4) if at some iteration the
estimated sensor locations are nearly co-located. Such effects
can be readily detected by checking the decision variable at
each iteration.

IV. PRACTICABLE 10T IMPLEMENTATION

Mature software exists for solving generic non-linear opti-
mization problems on common desktop computers [21], [22]
but these packages are usually too large and too inefficient
to be ported to common IoT devices. On the other hand,
writing custom code to implement a specific iterative NLP
algorithm for a narrow class of problems is prohibitively time-
consuming and requires significant optimization expertise.
FORCES Pro [14] has been developed to help bridge this
gap. It allows the user to express the optimization problem
as posed in (3) and (4) with the distance measurements as
parameters. FORCES Pro generates code that uses a primal-
dual interior point method to solve the optimization problem
for any given set of UWB distance measurements and initial
guesses. Because the code is generated for a specific problem,
it requires by far less memory and less computation time
than general-purpose optimization software. All memory is
statically allocated, and the generated code is library-free,
which makes it easy to port it to IoT devices.
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1) Global Optimization-Based Localization: When the ini-
tial guess is sufficiently far from the optimal solution of (3)
or (4), then the optimization algorithm may converge only
to a local optimum. This issue is commonly addressed using
multi-starting [23], where the optimization problem is solved
for a set of initial conditions, and the solution with the best
objective value is taken to be the optimal solution.

2) Iterative Solution Scheme: A range of iterative algo-
rithms have been proposed in the literature for solving non-
linear least-squares problems [12], each with different fea-
tures and complexity. The FORCES Pro NLP solver [13]
is an implementation of a line-search interior-point method
similar to [22] that works with either BFGS or GN Hessian
approximations. Our numerical results demonstrate that both
variants are practical for implementation on an embedded
system. The GN Hessian approximation variant is the natural
choice for solving problems (3) or (4) as it is tailored to least-
squares problems [24]. However, our experimental results in
Sec. V-A indicate that for tag localisation the BFGS Hessian
approximate technique produces more accuracte, reliable, and
faster solutions of (4). For the anchor localization problem (3)
we found the GN approximation to perform up to an order of
magnitude faster, but we did not include this in Sec. V-B for
conciseness and because the anchor self-calibration problem
is performed off-line only when anchors are moved.

A. Practical Extensions for Improved Localization

Additional information can be readily added to the
optimization-based localization approach while still being a
plug-and-play scheme for IoT applications. This is a major
benefit of working with the natural optimization formulation
and then calling on existing software to generate code for
implementing iterative algorithms. Some of these extensions
are described below.

1) Inequality Constraints: Imprecise information is often
available about the relative configuration of a few sensors or
the geometry of the field. This information can be readily
included through additional linear or non-linear inequality con-
straints. For example, anchor 5 is mounted to the ceiling of the
room. This type of information is included as upper and lower
bound inequality constraints on the estimated coordinates of
the respective sensor, or by an ellipsoidal inclusion constraint
enforcing the approximate location. Importantly, the use of an
interior point method to enforce inequality constraints means
that the computation times increase only slightly. See Sec. V-B
for an experimental example.

2) Missing Distance Measurements: When the sensors are
spread over a large volume, it is often not possible to obtain
TWR measurements to each anchor, due to insufficient signal
strength or objects preventing line-of-sight communication.
Both objective functions (3) or (4) can be adjusted for missing
distance measurements by removing the respective terms from
the sum. In this way, the optimization-based localization
methods use all the available information and easily adapt to
changes in the sensor topology.

3) Non-convex inequality constraints: One example that
falls in this class is tag localisation problem with the constraint

that the tag location is outside of a polytope. This is a non-
convex constraint that can be reformulated by augmenting the
problem with additional decision variable.

B. Limitations of UWB-Based Indoor Localization

For real-world situations the expanse of the anchor place-
ment is likely to be large in the horizontal plane (i.e., the
z-y plane) and small in the vertical direction (i.e., the z-
direction). This can mean that even small errors in UWB
distance measurements can lead to large errors in the z-
location estimate. This is demonstrated in Fig. 4 which depicts
a representative scenario for the tag localization results in this
paper. The figure shows two localization systems whereby
Fig. 4(a) corresponds to an example where all anchors (blue
dots) are nearly on a plane and in Fig. 4(b) all anchors are
spread also along the z-direction. The experimental distance
measurements are used in these examples and the objective
function minima (red circles) do therefore not coincide with
the true tag location (red dots). The planar anchor placement
in Fig. 4(a) further leads to two local minima with significantly
larger distance errors compared to Fig. 4(b).

This trend is also indicated by the contour lines of the
least-squares objective function which clearly show that the
objective function gradient is much smaller in the vertical
direction compared to the horizontal directions. We therefore
expect the tag localization error to be greatest in the vertical
direction with the sensitivity of vertical localization much
larger in Fig. 4(a). There further tends to be a convex region
around the minima of the objective function, and the stronger
non-convexities arise in the vicinity of the anchors.

Figure 4 indicates that the z-sensitivity is an inherent limi-
tations of UWB-based indoor localization using only distance
measurements. Most feedback control applications, however,
will pass the UWB-based location estimates through a Kalman
filter that includes model-based information for the particular
device being localized. The Hessian of (3) computed at the
optimal solution describes the sensitivity of the UWB-based
location estimate and hence provides required information for
optimally tuning the Kalman Filter estimate.

The above analysis demonstrated the sensitivity of the
tag localization in the z-direction. The situation is similar
for the anchor localization problem. However, even though
it is impractical to measure all anchor locations, for most
indoor localization applications we can assume the floor to
be level. The z-coordinate of each anchor can then be readily
measured. This extra information is easily incorporated into
the optimization formulation in (3) as either tight constraints
on the z-coordinate, or an additional term in the objective that
is weighted by the inverse of the z-measurement variance.
This greatly improves the overall localization accuracy during
the anchor calibration phase and, indirectly, also the tag
localization accuracy as discussed in Sec. V-B.

V. EXPERIMENTAL RESULTS

In this section, we present the localization results for dis-
tance measurements collected using the UWB device shown in
Fig. 2(b) and the anchor and tag arrangements shown in Fig. 1.
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(a)

(b)

Fig. 4. Visualization of the least-squares objective function for localizing tag (red dot) given ground truth positions of the anchor (blue dot) for two examples
where the horizontal spread of the anchors is much larger than the vertical spread: (a) four anchors are at similar vertical heights resulting in two local minima
of the objective function (red circles) with distance errors of 23 cm and 79 cm respectively to the true tag location, and (b) four anchors are not on a plane
resulting in one minimum (red circle) with distance error of 7 cm. The three contour slices intersect at the true tag location. The ground plane is shown by
the 1 meter grid, the scale is equal for all three coordinate directions, and the contour lines are quadratically spaced and the same value for both figures.

We focus on how the aspects discussed in Sec. II-IV influence
the accuracy and computational requirements of localization.
For all the experimental results, the ground truth position of
the UWB antennas was measured with a Vicon motion capture
system, which is shown to be millimeter accurate [25].

A. Tag Localization with Known Anchor Positions

We first consider the case where the anchor positions are
precisely known. Although it is impractical to measure all
anchor positions for large-scale deployments, the motivation
for analyzing this case is to allow for a clearer comparison and
conclusions to be drawn. Moreover, certain IoT applications
may have the luxury of falling into this category.

Figure 5 shows the tag localization result as the distance
error between the estimated tag location and the true tag
location as computed by eight different methods. The results
are shown separately for the two field arrangements of Fig. 1
with 21 tag positions to be localized in each arrangement. To
investigate how the number of anchors affects the localization
accuracy, we consider three subsets of the anchors: (i) one
anchor in each corner, (ii) an additional anchor along each
edge, (iii) all 12 anchors. The first trend to notice is that,
in general, the localization accuracy is similar with Ny =4
anchors when comparing the two arrangements. However, for
Nj ={8,12} anchors an improvement is observed across all
the methods for the anchor arrangement with varying vertical
heights. This trend is expected from the insight provided by
Fig. 4 that the vertical sensitivity of localization is higher for
the field with all but one anchor in the same plane.

The red circle (()) and red triangle (A) in Fig. 5 are both
trilateration methods as per (2). As trilateration uses only 3
anchors to compute a tag location estimate, and the remaining
anchors to choose between the positive or negative square
root, a different estimate is computed from each combination
of 3 anchors. The difference between the two trilateration

methods is that () computes an estimate from 5 different
combinations of anchors and takes the average as the best
estimate, while (/) uses 50 different combinations of anchors.
Both methods are identical for No = 4. A 3-9 centimeter
localization improvement is observed for Ny = {8,12} with
the additional 45 combinations of used anchors. The orange
cross (<) represents the non-iterative linear least square (LLS)
method that was implemented as a point of comparison for
trilateration. This method uses all anchor position information
to compute a tag location estimate with one pseudo inverse
operation. Further details of this method are found in [26],
referred to as LLS-RS, and in [17] it is was determined to be
the best amongst five LLS variants considered.

Four different tag localization methods based on the uncon-
strained solution of (4) are shown in Fig. 5. The light blue
methods (/) and (<) use the BFGS Hessian approximation
technique, while the blue methods (<) and (>>) use the
GN Hessian approximation technique at each iteration of the
interior-point NLP algorithm. All methods use the trilateration
estimate (()) as an initial guess for the NLP algorithm,
while methods (<) and (>) use multi-starting by generating
nine additional initial guesses as random perturbations in the
neighbourhood of the (()) estimate, solve (4) for each starting
point, and return the solution with the minimum objective
value. The number along the top of Fig. 5 marked with
indicates the number of invalid NLP solutions out of the 21
tag positions to be localized. A solution is considered invalid if
either the imposed maximum of 100 NLP iterations is reached,
or the objective value of the returned solution is greater than
that of the initial guess.

The results in Fig. 5 for the NLP methods indicate that
optimization based localization is a very reliable method for
improving tag localization accuracy of a trilateration estimate.
The BFGS Hessian approximation generally provides higher
reliability and improved accuracy compared to the GN Hessian
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(a) For field shown in Fig. 1(a) with anchors at various heights. (b) For field shown in Fig. 1(b) with all but one anchor in the same plane.
Mean Distance Error [m]
For (a) with Ny = For (b) with Np =
Symbol | Description of localization method 4 8 12 4 8 12
O Trilateration, averaged over 5 anchor combinations 0.387 | 0.214 | 0.215 | 0.294 | 0.238 | 0.259
A Trilateration, averaged over 50 anchor combinations 0.387 | 0.122 | 0.135 | 0.294 | 0.210 | 0.222
Linear Least Squares, method LLS-RS in [26] 0.764 | 0.156 | 0.117 | 0.549 | 0.326 | 0.308
NLP solution of (4), BFGS, () initial guess 0.332 | 0.099 | 0.075 | 0.261 | 0.170 | 0.261
NLP solution of (4), BFGS, () initial guess, 10 multi-start | 0.332 | 0.099 | 0.075 | 0.261 | 0.119 | 0.104
< NLP solution of (4), GN, () initial guess 0.388 | 0.105 | 0.097 | 0.250 | 0.184 | 0.173
> NLP solution of (4), GN, (0 initial guess, 10 multi-start | 0.330 | 0.103 | 0.085 | 0.261 | 0.178 | 0.118
\V4 Semi-definite programming (SDP) method in [27] 0.321 | 0.100 | 0.069 | 0.244 | 0.172 | 0.142

Fig. 5. Experimental results for tag localization with known anchor positions. The figures plot the distance between the estimated and true tag location for
each of the 21 tag positions, with the horizontal lines indicating the mean. } indicates how many times the localization method returned an invalid result. For
the NLP methods an invalid result is one for which the maximum number of iterations were reached, or the objective value increased relative to that of the
initial guess. For the SDP method an invalid result is one for which the solution matrix has rank greater than 1.

approximation. This corroborates with the findings of [3]. This
reliability of returning a valid solution, combined with the fact
that NLP methods always improved on the accuracy of the best
trilateration estimate (A\), by up to 6 centimeters, indicates that
the trilateration estimate (()) is a sufficiently accurate initial
guess for the NLP algorithm. For the field of anchors with
all but one in the same plane, multi-starting had a significant
effect on the tag localization accuracy, whereas for the field
of anchors with various heights the effect was only slightly
noticeable for the GN method with Ny ={4,12}. This trend
follows from the insight provided by Fig. 4 that the field with
various height anchors will generally have one local minimum
near the tag location and a convex region around it, while the
field with many anchors in the same plane may have multiple
local minima near the tag location and the local minima found
by the NLP algorithm is more sensitive to the initial guess.

Table I shows the computation times to solve (4) for each of
the NLP methods shown in Fig. 5. These times are from per-
forming the computations on a Cortex M4 microprocessor unit,
as introduced in Sec. II-B, and demonstrate that optimization-
based tag localization can be performed at up to IMHz on
an IoT device. The computation time increases sub-linearly
with the number of anchors, and as expected the multi-start
times are about one order of magnitude greater because 10
optimization problems of the same size are solved serially.
Additionally, we observe that using the BFGS Hessian approx-
imation finds a solution faster and more reliably than using GN
Hessian approximation. Although the minimum and median

TABLE I
NLP SOLUTION TIMES ON CORTEX M4 10T DEVICE.

Symbol Computation Times [ms]
(See Fig. 5 For Fig. 5(a) with Ny = For Fig. 5(b) with Na =
for legend) 4 8 12 4 8 12
min. 0.27 0.37 0.47 0.37 0.42 0.41
median 0.47 0.53 0.59 0.42 0.54 0.65
max. 1.60 0.82 1.05 1.27 1.39 1.18
min. 5.29 6.12 7.22 5.13 6.56 8.51
median 6.39 6.88 8.88 6.09 7.74 9.67
max 8.33 8.09 9.80 7.84 9.57 12.61
<1 min. 0.16 0.39 0.49 0.16 0.47 0.59
<1 median 0.36 0.72 1.01 0.48 0.81 1.11
< max. 6.78 1.19 31.55 19.29 25.21 31.52
> min. 5.52 7.44 9.39 5.20 8.58 10.65
> median 6.17 9.53 12.30 6.31 10.17 12.49
> max. 72.20 76.69 191.2 126.4 153.2 315.5

times are all within a factor of two, the worst case computation
time is more than an order of magnitude slower for the GN
method in most cases. This completes the analysis that for real-
time optimisation-based tag localization, an interior point NLP
algorithm using a BFGS Hessian approximation is preferred in
terms of reliability, localization accuracy, and computational
speed.

The purple triangle (v/) in Fig. 5 represents an alternative
optimization-based tag localization method, implemented as
a point of comparison with the NLP method we propose in
this paper. This method is based on a convex semi-definite
programming (SDP) relaxation of the optimization problem
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(4) which can be certified as tight if the solution matrices
are rank 1 [27]. The results indicate that for the field with
anchors at varying heights, the SDP method provides less than
1 centimeter improvement in localization accuracy compared
to the best NLP method. While for the field with all but one
anchor in the same plane, the SDP method is 4-5 centimeters
less accurate for Ny ={8,12} and 1 centimeter more accurate
for No = 4. A major benefit of the SDP method is that no
initial guess is required because the relaxation is a convex
problem. However, Fig. 5 shows that up to one third of the
solutions were invalid because the solution matrices were not
rank 1. Another disadvantage of the SDP approach is that the
authors are not aware of any software that allows convex semi-
definite optimization programs to be solved in a reasonable
computation time on an IoT device like the Cortex M4.

B. Tag Localization with Unknown Anchor Positions

We now consider the more general case where some an-
chor positions are unknown. In order to provide tag location
estimates in the global coordinate frame, we assume that the
precise position of three anchors is known and that these
anchors are not co-linear. This constitutes a setting that is
practical to implement for large-scale IoT deployments.

The computation of the tag location estimates is split into
the two phases tabulated in Fig. 6. To simplify the exposition,
we present the results for the field with Ny = 12 anchors
at varying z-height as per Fig. 1(a). The first phase is the
anchor self-calibration phase. This involves estimating the nine
anchor locations that are unknown via either trilateration as
per Sec. III-A, or a solution of the least squares formulation
(3) obtained via an NLP solver. The second phase is tag self-
localization as per the results in Sec. V-A, with the anchor
positions fixed to those estimated in the first phase. As a point
of comparison, the best non-iterative and iterative methods (
and < respectively) from Sec. V-A with all anchor position
known are repeated in Fig. 6. Note that it is also possible to
augment (3) with one additional objective for the tag and solve
for the unknown anchor and tag locations simultaneously. The
resulting overall anchor and tag self-localization performance
is not included here for conciseness but it is comparable to
the optimization-based results presented in Fig. 6.

The results in Fig. 6 demonstrate that an optimization-
based localization approach used for both the anchor self-
calibration and tag self-localization phase (<I) achieves the
highest accuracy for this set of experimental data. Interesting
to note is that the accuracy is improved by 2-3 centimeters
in comparison to the LLS method (<) with all the anchor
positions known.

To demonstrate the flexibility of optimization-based local-
ization for including additional information through inequality
constraints we consider that a tight estimate of the z-coordinate
is known for all anchors. This type of additional information is
motivated by typical indoor localization where the floor is level
to within a centimeter and thus the z-position can be readily
measured. To this end, results > in Fig. 6 are solved with 18
additional inequality constraints as a lower and upper bound on
the z-coordinate of each of the nine unknown anchor positions.
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Anchor Tag Mean
calibration localization distance
Symbol | method method error [m]
Same as per Fig. 5 0.117
Same as per Fig. 5 0.075
O Trilateration — Trilateration 0.191
A Trilateration NLP (4) 0.252
0 NLP (3) Trilateration 0.140
< NLP (3) NLP (4) 0.094
> NLP (3) NLP (4) 0.076

Fig. 6. Accuracy of the “tag localization”, plotted and tabulated as the distance
between the estimated and true tag location for each of the 21 tag positions in
the field shown in Fig. 1(a) with the Na =12 anchors at various heights and
only three of the anchor positions precisely known; horizontal lines indicate
the mean. To estimate the tag location, the unknown anchor locations are
estimated according to “Anchor calibration method” column in the table. The
first results < and < are repeated directly from Fig. 5 for comparison. Result
> solves the NLP (3) with additional information about the z-coordinate of
the unknown anchor positions included via inequality constraints.

A range of +5 centimeters around the true z-coordinate was
used for the inequality constraints and Fig. 6 shows that
the tag localization accuracy is improved by approximately
2 centimeters on average. Moreover, the accuracy is within
0.5 centimeters of that achieved when all the anchor positions
are precisely known.

It is tractable to solve the anchor self-calibration optimiza-
tion problem with Ny =12 using a float-precision solver on
the Cortex M4 IoT device. The anchor self-calibration phase
for < and > in Fig. 6 was solved on average in 138 and
83 milliseconds respectively. As the anchor self-calibration
phase is performed only when anchors are re-positioned, this
result (together with the timings in Tab. I) demonstrates the
real-time applicability of optimization-based localization on
resource constrained IoT devices for large-scale deployments.

VI. CONCLUSION

This paper proposed the use of code generation soft-
ware to enable optimization-based sensor self-localization for
resource-constrained Internet of Things (IoT) applications.
We presented a non-linear least-squares optimization formu-
lation tailored towards embedded self-localization using range
measurements from affordable, off-the-shelf ultra-wideband
(UWB) range sensors. The experimental implementation of
the system demonstrates the strength of optimization-based
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approach to achieve a 2-3 fold improvement in localization
accuracy when compared to trilateration which is commonly
implemented in embedded systems. Optimization-based meth-
ods consider all available information about measured UWB
distances which leads to improved localization performance.
We have also compared the experimental results to other least-
squares formulations, a linear least square approximation and
another optimization method based on semi-definite program-
ming relaxation, which either achieve worse accuracy or are
not suitable for an IoT implementation.

To achieve a plug-and-play implementation on IoT devices,
we proposed the use of standard software, FORCES Pro, to
generate the iterative non-linear programming solver required
to solve the non-linear optimization problem. The benefit of
the proposed framework is that additional situation-specific
information about the localization problem can be easily incor-
porated, by adding inequality constraints to the optimization
problem, without affecting the viability for IoT devices.

Experimental implementations of UWB-based localization
systems typically require an infrastructure consisting of several
UWB anchors to be installed. Common UWB applications
assume precise knowledge of anchor locations which can be
impractical in large-scale IoT environments. We therefore also
demonstrated the use of the optimization-based approach for
infrastructure calibration to simplify the experimental imple-
mentation. The paper also provides further practical guidelines
for an optimization-based localization system.
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