
ar
X

iv
:1

90
4.

10
88

9v
1

 [
cs

.D
C

]
 2

4
A

pr
 2

01
9

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, OCTOBER 201X 1

Distributed Continuous Range-Skyline Query

Monitoring over the Internet of Mobile Things
Chuan-Chi Lai, Member, IEEE, Zulhaydar Fairozal Akbar, Chuan-Ming Liu, Member, IEEE, Van-Dai Ta,

and Li-Chun Wang, Fellow, IEEE

Abstract—A Range-Skyline Query (RSQ) is the combination
of range query and skyline query. It is one of the practical query
types in multi-criteria decision services, which may include the
spatial and non-spatial information as well as make the resulting
information more useful than skyline search when the location
is concerned. Furthermore, Continuous Range-Skyline Query
(CRSQ) is an extension of Range-Skyline Query (RSQ) that
the system continuously reports the skyline results to a query
within a given search range. This work focuses on the RSQ
and CRSQ within a specific range on Internet of Mobile Things
(IoMT) applications. Many server-client approaches for CRSQ
have been proposed but are sensitive to the number of moving
objects. We propose an effective and non-centralized approach,
Distributed Continuous Range-Skyline Query process (DCRSQ
process), for supporting RSQ and CRSQ in mobile environments.
By considering the mobility, the proposed approach can predict
the time when an object falls in the query range and ignore more
irrelevant information when deriving the results, thus saving the
computation overhead. The proposed approach, DCRSQ process,
is analyzed on cost and validated with extensive simulated
experiments. The results show that DCRSQ process outperforms
the existing approaches in different scenarios and aspects.

Index Terms—Internet of Mobile Things, Query processing,
Range-skyline, Cooperative process

I. INTRODUCTION

IN recent years, skyline queries receive much attention in

various applications such as multi-preference analysis and

decision making. In such applications, a skyline set contains

the most interesting objects or best objects and retrieves the

objects that are not dominated by any other objects. In database

systems, queries specialized to search for the non-dominated

data objects are called skyline queries and their corresponding

result sets are known as skyline sets. The data objects in

a skyline set are known as skyline objects. In tradition, the

skyline query is discussed in a static environment, where all

the data objects and query are static. Now it is progressively

extended for dynamic or distributed environments. If the user

is moving or the query is issued from a dynamic environment,

such a case addresses the skyline problem in dynamic envi-

ronments. The skyline query is also used in spatial networks

and all the considered data objects are highly distributed. Thus,

C.-C. Lai and L.-C. Wang are with the Department of Electrical and
Computer Engineering, National Chiao Tung University, Hsinchu, Taiwan.
(E-mail: cclai1109@nctu.edu.tw; lichun@g2.nctu.edu.tw)

Z. F. Akbar is with the Department of Informatics Engineering, Electronic
Engineering Polytechnic Institute of Surabaya (PENS), Surabaya, Indonesia.
(E-mail: fyrozal.akbar@gmail.com)

C.-C. Liu and V.-D. Ta are with the Department of Computer Science and
Information Engineering, National Taipei University of Technology, Taipei,
Taiwan. (E-mail: cmliu@csie.ntut.edu.tw; daitv88@gmail.com)

how to process skyline queries in distributed environments has

become an important issue.

Conventional Location-Based Services (LBSs) focus on pro-

cessing proximity-based queries, including range query [1, 2]

and nearest neighbor (NN) query [3, 4]. However, these

queries are not sufficient for providing high-quality services to

mobile users without considering both spatial and non-spatial

information simultaneously. A typical scenario is finding a

nearby hotel with a cheap price, in which the distance is

a spatial attribute and the price is non-spatial. Clearly, in

this case, a multi-criteria query is more appealing than a

conventional spatial query that considers the distance only.

Among various multi-criteria queries, the skyline query is

considered as one of the most classical ones and receives a

great deal of attention in LBS research. However, the resulting

skyline may contain many useless data objects since the

resulting data objects (hotels) may be too far away from the

query (user). Some other works [5, 6] tend to solve the range-

skyline query to improve the QoS of LBSs by considering the

dynamic data objects and supporting the continuous range-

skyline query. The continuous range-skyline is a collection of

range-skyline answers during a specific time interval that the

query concerns. Such a query is applied in many LBSs whose

environments are dynamic. For example, searching taxis is an

application of the continuous range-skyline query. Users can

use such a service to obtain some candidate taxis which are

nearby, cheap, and high-ranked. Hence, this work focuses on

processing the range-skyline query and the continuous case.

Most of the existing approaches [5–8] process the skyline

or range-skyline in a centralized way under the assumption

that data objects are stored in a centralized fashion. They

provide some algorithms that focus on how to index the spatial

or non-spatial data and how to efficiently process queries

with a large number of data objects. Although some of them

have discussed spatial queries and moving data objects in

the distributed and mobile environments like the Internet of

Mobile Things (IoMT) or Mobile Wireless Sensor Networks

(MWSNs), the computing model is still centralized. The

collected data objects are stored distributively and the process

of data sensing (collection) phase is not discussed. They

discussed the changes (or updates) of data and treated such

cases as moving data objects. In these approaches, each mobile

node needs to continuously obtain the location information of

itself by GPS and sends the information back to the server(s)

for updating the database(s). However, the overhead of the data

collection process was not mentioned and addressed. If we use

the conventional methods in a specific scenario, the position of

http://arxiv.org/abs/1904.10889v1

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, OCTOBER 201X 2

each data object changes frequently, the server(s) will receive

a huge amount of information for updating the location of

each data object in a short time. In this case, the system will

be overloaded. Furthermore, a large number of messages for

updates will occupy quite a lot of communication bandwidth.

In general, the IoMT applications based on MWSNs are

self-configuring and infrastructure-less. IoMT consists of

many mobile sensor nodes connected by wireless commu-

nication. In such environments, each node can move freely

and independently in any direction, so the communication

links between nodes will change frequently. Each node can

forward the information unrelated to its owns and act as

a router. In comparison with the client-server environment,

IoMT applications may have no centralized server to handle

the spatial queries. Accordingly, the information system for

an infrastructure-less IoMT application must process queries

in a distributed (or decentralized) way. Each mobile sensor

node can cooperate and exchange data with each other and

then derive the answers for spatial queries. Since most of the

existing works consider multiple data sources but only a few

works consider the fully distributed and dynamic computing

environments, one of the main objectives of this work is to

provide a fully distributed approach for processing Range-

Skyline Queries (RSQ) and Continuous Range-Skyline Queries

(CRSQ) in an infrastructure-less mobile environments, IoMT.

In this work, we propose a Distributed Range-Skyline Query

process (DRSQ process) in IoMT whose computing model is

decentralized. We further extend DRSQ to Distributed Con-

tinuous Range-Skyline Query process (DCRSQ process) for

supporting continuous range-skyline query processing. Each

mobile node can filter out the irrelevant data objects, derive a

primary candidate answer set of the received query, and then

report the candidate set to the query node. For validating the

DRSQ process, we perform the simulation experiments with

the following measurements: the response time and the number

of messages (I/O operations). Furthermore, to validate the

DCRSQ process, we consider four measurements: the number

of accessed objects (the overhead on the query node), the

number of messages, precision and recall. We also consider

the effects on the number of sensor nodes, the number of

queries, the transmission range of a node, and the query range

in the DRSQ process. One additional effect, node speed, is

considered in the DCRSQ process. Besides, we give the anal-

ysis on network cost for the proposed approach and compare

the proposed approach with the centralized approach. As the

results show, the proposed approach has a better performance

in the simulation.

We address the distributed continuous range-skyline query

(DCRSQ) processing over the IoMT and make the following

contributions:

• We propose a distributed approach, DCRSQ, to make the

process of range-skyline query appropriate to the Internet

of Mobile Things environments.

• To the best of our knowledge, this is the first study for

this problem simultaneously considering the computing

process and information filtering in the data collection

phase so that the performance of system is significantly

improved in comparison with the conventional approach.

• With the mobility, DCRSQ can make each node predict

the time when its neighboring mobile data objects fall in

the query range and avoid periodically flooding messages

for updating the information of neighbors.

• We give a formal analysis of the network cost on the

proposed approach and conduct extensive simulations to

evaluate the performance. The simulation results show

that DCRSQ can save more than 15% network cost and

achieve almost 90% accuracy in most of the scenarios.

The balance of this paper is organized as follows. In

Section II, we introduce the background and review related

research. Section III presents the overview of problem and the

notations used in this work. Section IV introduces the proposed

solution and a breakdown of the data structures and algorithms.

Some analysis on network cost will be discussed in Section V.

Simulation experiments are presented in Section VI. Finally,

we make concluding remarks in Section VII.

II. RELATED WORK

The IoMT has triggered a lot of emerging applications

and services [9, 10] in wireless communications, fog/edge

computing, and (mobile) big sensor data processing. Ang et

al. [9] identified some important research topics, like data

analysis and processing, in smart city ecosystems which base

on IoMT. They also investigate some use cases in IoMT (smart

cities) such as real-time urban monitoring [11] and spatial

decision support system for flood risk management [12]. These

use cases are spatio-temporal applications classified in [10].

In spatio-temporal IoMT applications, spatial query processing

plays a key role for the decision making. In our work, we focus

on the range-skyline query for this kind of IoMT applications.

A range-skyline query is an extension of skyline query with

a distance threshold in spatial databases. Borzsony et al. [13]

introduced skyline operator into the database systems with

algorithms Block Nested Loop (BNL) and Divide-and-Conquer

(D&C). A great number of researchers also keep their eyes on

skyline query processing from then on. Papadias et al. [7]

proposed a Branch-and-Bound Skyline (BBS) method based

on the best-first nearest neighbor algorithm [14]. Cheema et

al. [15] proposed a safe zone based approach and combined

it with Vonronoi cells to provide a better BBS algorithm for

processing skyline queries. Hose and Vlachou [16] provided

comprehensive analysis of previous skyline algorithms without

indexing supports, and proposed a new hybrid method with

improvement. Lin et al. [5] also discussed both the indexing

and non-indexing algorithms, and then extended their work to

process probabilistic RSQ. All these works discuss the issues

in a centralized data storage.

To make the applications scalable and improve the per-

formance of skyline query processing, many parallel or dis-

tributed algorithms have been proposed. Wu et al. [21] first

attempted a progressive processing of skyline queries on a

CAN-based P2P network [22]. By using the query range to re-

cursively partition the data region involved and encoding each

involved sub-region dynamically, their method can progres-

sively report skyline objects without accessing the data sites

not containing potential skyline objects, thus saving computa-

tion overhead. Chen et al. [18] proposed a parallel approach

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, OCTOBER 201X 3

TABLE I
COMPARISONS OF EXISTING WORKS FOR SKYLINE QUERY

Methods

Considered Issues BBS [7] LDSQ [17] PadSkyline [18] EDDS [19] RSQ [5] L-SQ [20] DRSQ & DCRSQ

Distributed Databases × × X X × X X

Distributed Computing × × X X × X X

Moving Objects × × × × X × X

Moving Queries × × × × X X X

Non-Index based × × × × X × X

to filter data objects efficiently from distributed databases

for processing constrained (or range) skyline queries. Zheng

et al. [17] introduced a variant notion of the valid scope

for skyline queries, that can save the re-computation if the

next query is still inside the valid scope. Although the above

existing works considered the distributed databases, they still

used some high-performance servers to process skyline queries

with the data objects from multiple data sources. Alternatively,

we consider an infrastructure-less environment, IoMT, in this

work.

Huang et al. [20] proposed techniques for skyline query

processing in MANETs. Lightweight devices in MANETs are

able to issue spatially constrained skyline queries that involve

data stored on many mobile devices. Queries are forwarded

through the whole MANET without routing information.

However, they only considered the mobile distributed data

sites over MANETs but did not consider the moving objects.

Ahmed et al. [19] proposed an approach, Enhanced Distributed

Dynamic Skyline (EDDS), to handle skyline queries over the

IoMT. EDDS used disc track and sector to map the data

locations. Such a way improves the performance of searching

the new input data objects for computing and updating the

skyline. Although EDDS considered the dynamically data in-

put from the distributed sensor nodes, EDDS did not consider

the mobile sensor nodes (moving objects).

In fact, the conventional works can be categorized into

following models: (1) single data source with a centralized

computing model, (2) multiple data sources with a central-

ized computing model, and (3) multiple data sources with a

distributed/decentralized computing model. The third model

is more popular in recent years. However, it is not easy to

compare all the works in type (3) by simulation or experiments

since the considered environments, assumptions, and require-

ments are quite different. To the best of our knowledge, most

of works in type (3) consider the distributed computing model

with multiple ”powerful” computing servers for the query

processing. Only very few works consider query processing

over a lightweight mobile environment whose computing

resource is limited. However, these few works only consider

the static spatial data and do not support moving data objects.

We therefore present a comparison summary of the existing

methods related to skyline query and our work in Table I.

III. PRELIMINARIES

In this section we give some preliminaries of the problem,

including some fundamental notations and definitions. We

consider a data set S of sensor nodes. Each mobile sensor

node s ∈ S is associated with a spatial (i.e., location or

distance) attributes and several other non-spatial attributes

(e.g., temperature, trust rank, and possibility). Note that we use

Euclidean distance in the spatial attribute and the non-spatial

dominance relation between the mobile objects is described as

Definition 1.

Definition 1 (Non-spatial Dominance). Given two sensor

nodes s and s′, if s′ is no worse than s in all non-spatial

attributes, then we say s′ non-spatially dominates s. We say

that s′ is a non-spatial dominator object of s, and s is a

non-spatial dominance object of s′. Formally, it is denoted as

s′ ⊳ s. The set of s’s non-spatial dominator objects is denoted

as Dom(s), i.e., s is dominated by any object in Dom(s) on

non-spatial attributes.

If s′⊳s and s⊳s′ are hold, it means that non-spatial attributes

of s′ and s are equivalent. In this case, the system is going to

check the dominance relation between the spatial attributes of

s′ and s. So the complete dominance relation can be described

as

Definition 2. (Dominance)

Given a query node q and two sensor nodes s and s′, if 1)

s′ non-spatially dominates s, and 2) dist(q, s′) ≤ dist(q, s)
(i.e., s′ also spatially dominates s), then we say s′ dominates

s w.r.t. the query node q. Formally, it is denoted as s′ ⊳q s.

Note that if s′ ⊳q s and s′ ⊳q s, it means that both spatial and

non-spatial attributes of s′ and s are equivalent with respect

to the query node q.

With the above definitions, point-skyline query (PSQ) can

be defined as

Definition 3. (Point-Skyline Query (PSQ))

Given a data set S, the skyline of a query node q is a subset of

S in which each object (sensor node) is not dominated by any

other object in S w.r.t. q. We call this subset skyline set and

denote it as PSQ(S, q) = {s|s ∈ S∧∀s′ ∈ S−{s} : s′ ⋪q s}.

In accordance with the above definitions, the range-skyline

query can be defined in Definition 4 and such a definition

comes from a global view of system.

Definition 4. (Range-Skyline Query (RSQ))

Given a data set S with a range R, the range-skyline query

with respect to q returns the skyline set of the subset of objects

(sensor nodes) that locate in R. Formally, it is denoted as

RSQ(R,S, q), and RSQ(R,S, q) = {s ∈ S ∧ s locates in

R|∀s′ ∈ S − {s} ∧ s′ locates in R : s′ ⋪q s}.

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, OCTOBER 201X 4

Fig. 1 is an example of a range-skyline w.r.t. query node q,

where the mobile user wants to search a nearby taxi around

the query node with a high rank of service quality. The system

firstly uses q’s range value, R, to prune the irrelevant moving

objects which are out of the range. Then the system examines

dominance relations between the remaining data objects. We

assume that the mobile objects with smaller weights have a

higher priority in this example. Since s1 is the nearest neighbor

of q and spatially dominates all the other sensor nodes, s1 must

be in the resulting range skyline. Sensor node s4 non-spatially

dominates the other nodes in the range R, except s3 and s5. So

the possible RSQ is {s1, s3, s4, s5}. However, s3 is dominated

by s5 in the non-spatially attribute. Thus, RSQ(R,S, q) will

be {s1, s4, s5}. It means that the system returns taxi s1, s4
and s5 to the mobile user.

Fig. 1. An example of an RSQ(R, S, q) where S is the data set, R is the
range with the query node q as the center, and the output is {s1, s4, s5}

A continuous range-skyline query (CRSQ) is an extension

of RSQ. CRSQ will monitor the environmental information

within a given range and continuously produce the skyline

for a period of time. It means that the system monitors each

continuous range-skyline query q within a specific range R
for a time period ∆t = [t0, tend]. Since each sensor node can

move in the considered environment, such a phenomenon will

make the answer of an RSQ change during the monitoring time

∆t. We formally define the continuous range-skyline query as

below.

Definition 5. (Continuous Range-Skyline Query (CRSQ))

Suppose that the notations are defined as above. Given a query

q with a query range R and a time period ∆t = [t0, tend],
the continuous range-skyline query returns a collection of

range-skyline sets RSQti(R,S, q), where ti ∈ ∆t and i is

the number of updated results. Formally, it is denoted as

CRSQ(R,S, q,∆t) = {RSQti(R,S, q)|ti ∈ ∆t, i ∈ N}.

An example of a continuous range-skyline query q is

shown in Fig. 2. In this example, the system monitors the

range-skyline of q for a time period ∆t and the result may be

a collection of answers that contains different RSQ answers

at different time since the answer may change. The answer

collection contains 3 RSQ results at time t0, t1, and t2 and

these results are respectively shown in Fig. 2(a), Fig. 2(b),

and Fig. 2(c). The result of q is CRSQ(R,S, q,∆t) =
{RSQt0(R,S, q), RSQt1(R,S, q), RSQt2(R,S, q)}, where

RSQt0(R,S, q) = {s1, s4, s5}, RSQt1(R,S, q) =

{s1, s8, s11}, and RSQt2(R,S, q) = {s8}. The final

output therefore will be {< {s1, s4, s5}, [t0, t1) >,<
{s1, s8, s11}, [t1, t2) >,< {s8}, [t2, tend] >}.

IV. THE DISTRIBUTED CONTINUOUS RANGE-SKYLINE

QUERY PROCESS

This section describes in detail the proposed distributed

range-skyline query process over the IoMT. The proposed

approach includes two parts: distributed range-skyline query

process (DRSQ process) and distributed continuous range-

skyline query process (DCRSQ process). The fundamental

distributed approach for processing snapshot RSQs will be

introduced in the DRSQ process. In second part, the DCRSQ

process is extended from the DRSQ process with the consider-

ation of node mobility to support CRSQ. Thus, the system can

predict the change of RSQ result when monitoring a CRSQ

during a period of time in IoMT environments.

A. Distributed Range-Skyline Query

In general, the query processing in mobile and distributed

environments like IoMT based on MWSNs or MANETS,

contains three steps. The first step is the local process that

computes the skyline set based on local data and filters

information received along with the query. The second step is

query routing by which the query message can be forwarded

to some of the neighboring nodes in order to retrieve their

partial results. Thus, the node decides whether a neighbor

can contribute to the skyline set based on available routing

information. The last step is to merge the results, where the

node receives the local result sets from queried neighbors

and merges all the partial results by checking for dominated

objects. Then, each node sends the merged result to the query

node hop by hop.

1) Description of DRSQ: We assume that each mobile

sensor node can hold a small database to store the collected

sensing data and the query’s information for the distributed

query process. The collected sensing data set is called local

data set and all of the data are collected from the sensor node’s

one-hop neighbors and itself. Hence, each mobile sensor node

can derive the result of local range-skyline query process

(LRSQ process) which may be the subset of range-skyline

and return the result to the query node for computing the final

(global) range-skyline answer. The result of LRSQ is defined

in Definition 6.

Definition 6. (Local Range-Skyline Query)

Suppose that the notations are defined as above and a query

node q with a query range R is given. After a mobile sensor

node sj receives the query q, sj will return a subset of the

local data set Ssj and each object s in Ssj is sj’s neighbor

and not dominated by any other object s′ in Ssj w.r.t. q, where

Ssj ⊆ S. We refer to this result as a local range-skyline set

and denote it as LRSQsj(R,S, q) = {s locates in R ∧ s ∈
Ssj |∀s

′ ∈ Ssj − {s} ∧ s′ locates in R : s′ ⋪q s}.

According to Definition 6, the query node q will receive the

results of LRSQsj(R,S, q), where sj is q’s one-hop neighbor

(1 ≤ j ≤ k) and k is the maximum number of neighbors.

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, OCTOBER 201X 5

(a) RSQt0(R, S, q) = {s1, s4, s5}

(b) RSQt1(R, S, q) = {s1, s8, s11} (c) RSQt2(R, S, q) = {s8}

Fig. 2. An example of a CRSQ(R, S, q,∆t) and the output is {< {s1, s4, s5}, [t0, t1) >,< {s1, s8, s11}, [t1, t2) >,< {s8}, [t2, tend] >} where t0,
t1, and t2 are different times during ∆t = [t0, tend]

Then the query node takes the union of these results as the

candidate set, RSQcandidate =
⋃k

j=1
LRSQsj(R,S, q). After

RSQcandidate is derived, the query node will use Definition 1

and Definition 2 to examine the dominance relations of all

the mobile objects in RSQcandidate again and then save the

final result in RSQdistributed set. Such a cooperative and

distributed process is refer to distributed range-skyline query

process (DRSQ process). As a result, DRSQ can be defined

as Definition 7.

Definition 7. (Distributed Range-Skyline Query)

Suppose the candidate set RSQcandidate of query node q has

been computed. Then, the query node q uses RSQcandidate

to derive the skyline set of the data objects in R and the

result of distributed range-skyline query can be denoted as

DRSQ(R,S, q) = {s locates in R∧ s ∈ RSQcandidate|∀s
′ ∈

RSQcandidate − {s} ∧ s′ locates in R : s′ ⋪q s}.

The above distributed process for LRSQ derivation has a

benefit that many irrelevant data objects are also pruned during

the process. Thus, the computation overhead of the query node

can be reduced.

2) Overview of DRSQ process: Before introducing the

DRSQ processes on a query node and a sensor node with

pseudo-codes in detail, we use a running example in Fig. 3 to

depict the overview of DRSQ process and explain it step by

step. Note that the spatial and non-spatial attributes of each

sensor node (data object) are shown in Fig. 1.

As shown in Fig. 3(a) and Fig. 3(b), a query node spreads

the query message mq (TTL = 2) to its one hop and two-

hop neighbors. Each message mq contains the information

of query node, such as query range R, location, and speed

of q. Fig. 3(c) then shows that two-hop neighbors of q,

s2, s3, s5, and s11, use their own local information to derive

their local range-skyline results and return these local range-

skyline results to q’s one-hop neighbors, s1 and s4. After

s1 and s4 receive the local range-skyline results from the

two-hop neighbors of q, they will merge the received local

range-skyline results and do the dominance check with the

information of themselves. As Fig. 3(c) shows, the local

skyline candidate sets of s1 and s4 are LRSQs2 = {s1, s2}
and LRSQs3 ∪ LRSQs5 ∪ LRSQs11 = {s3, s4, s5} respec-

tively. Sensor nodes s1 and s4 then check the dominance

relations between all the candidate data objects and obtain

their local range-skyline results, LRSQs1 = {s1, s2} and

LRSQs4 = {s4, s5} because of s5 ⊳q s3 respectively, as

Fig. 3(d) shows. After aggregating the local range-skyline sets,

LRSQs1 and LRSQs4 , s1 and s4 return them to the query

node q respectively.

After receiving the local range-skyline sets from s1 and

s4, query node q merges these sets to derive a candidate set

RSQcandidate = LRSQs1∪LRSQs4 = {s1, s4, s5}. Fig. 3(e)

presents the step of obtaining a candidate set of q. Finally,

in Fig. 3(f), query node q checks the dominance relations

between all the data objects in local candidate set and derives

the final range-skyline, DRSQ(R,S, q) = {s1, s4, s5}.
3) The DRSQ Process: In this subsection, we introduce

DRSQ process with pseudo-codes. The whole DRSQ process

includes two parts: LRSQ and GRSQ processes. The pseudo-

codes of Algorithm 1 and Algorithm 2 respectively show

the LRSQ process on a mobile sensor node and the GRSQ

process on the query node as well as present the ideas and

frameworks of our proposed approaches. Note that each sensor

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, OCTOBER 201X 6

(a) (b) (c)

(d) (e) (f)

Fig. 3. A running example of DRSQ process where the data set is S = {s1, ..., s11}, mq is a query message, and the TTL of mq is 2: (a) one-hop
neighbors s1 and s4; (b) two-hop neighbors s2, s3, s5, and s11; (c) two-hop neighbors derive and return their LRSQ results to the one-hop neighbors; (d)
one-hop neighbors merge all the received information, prune the irrelevant information, and then return LRSQ of themselves to q; (e) q unites all the received
information and obtains a candidate set; (e) q derives the final result after checking the dominance relations between all the data objects in the candidate set.

node repeatedly runs the LRSQ process in Algorithm 1 for

a query and thus continuously receives messages from the

network. When a user (mobile device) issues a query q, the

device floods query messages to its one-hop neighbors with

a maximum hop count, Time-To-Live (TTL). After flooding

the query messages, the query node starts GRSQ process (in

Algorithm 2) to collect the local skyline sets from its one-hop

neighbors and then derives the final result, RSQdistributed, for

the query.

When each one-hop neighbor of q receives the query

messages, it will do the operations from Line 5 to Line 15 of

LRSQ process (Algorithm 1). If the TTL value in the received

query message is larger than 0, it means that the mobile sensor

node is an intermediate node in the routing path of the query

and the sensor node will forward the query to its neighbors

at Line 9. Otherwise, the mobile sensor node is an end node

in the routing path of the query. The sensor node will stop

forwarding the query message, add the data objects of itself

to the local skyline set RSQlocal at Line 13, and then start to

return the RSQlocal to the query node (at Line 33) through

the reversed routing path of the query. Note that RSQlocal

is equal to the term, LRSQsi(R,S, q), and we may use both

interchangeably afterward in this paper.

When an intermediate sensor node receives a response

message for the query, it will perform the operations from

Line 16 to Line 31 in Algorithm 1 to compute the latest

local range-skyline RSQlocal. Since the received response

message contains a local range-skyline set w.r.t. the neigh-

boring node which sent this message, the intermediate mobile

sensor node will save the received local range-skyline in a

temporary set RSQneighbor . Note that all the data objects

in RSQneighbor do not dominate each other, so the sensor

node will check the dominance relations between each data

object o′ in RSQneighbor and the data object o of itself.

If data object o′ in RSQneighbor is not dominated by data

object o, the data object o′ is still a local range-skyline

member. The operations of dominance relation checking are

presented from Line 20 to Line 27 of Algorithm 1. The

mobile sensor node executes the operation at Line 29 if the

data object o of itself is not dominated by any other data

objects in RSQneighbor. It indicates that the sensed data

object o of the intermediate sensor node becomes one of the

local range-skyline member. After the dominance validation,

the intermediate sensor node keeps forwarding the response

message, including the latest local range-skyline, back to the

query node. All the intermediate sensor nodes do the above

operations and update the local skyline set which is saved in

the response message until the response message is received

by the query node.

Algorithm 2 describes the operations executed by the query

node q after it floods the query messages. From Line 4 to

Line 11, the query node collects all the local range-skyline sets

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, OCTOBER 201X 7

Algorithm 1: LRSQ process on a mobile sensor node

Input: received message m and neighbor list listneighbor

Output: local range-skyline RSQlocal

1 q ← new query object; /* create a temporary empty

query object */

2 s← new node; /* create a temporary empty source

node */

3 RSQlocal ← ∅; /* create a local range-skyline set

*/

4 o← this.sense(); /* save self’s environmental data in

a temporary object */

5 if m.type == RSQ TYPE then

6 q ← this.parse(m, RSQ TYPE); /* save the query

information to q */

7 s.address← m.source address; /* record the

previous node s */

8 if m.TTL > 0 then

9 this.flood(m, m.TTL− 1); /* forward message m
to all the neighbors */

10 return;
11 else if m.TTL == 0 then

12 if o locates in q’s range then

13 add o into RSQlocal;
14 end

15 end

16 else if m.type == RSQ REPLY TYPE then /* LRSQ */

17 RSQneighbor ← ∅; /* create a temporary

range-skyline set */

/* get the neighbor’s local range-skyline set

*/

18 RSQneighbor ← this.parse(m, RSQ REPLY TYPE);
/* check dominance relations between the

recieved objects and itself */

19 int isDominated = 0;
20 foreach data object o′ in RSQneighbor do

21 if o ⊳q o′ then

22 continue;
23 else if o′ ⊳q o then
24 isDominated = 1;
25 end

26 RSQlocal ← RSQlocal ∪ {o
′};

27 end

28 if isDominated == 0 then

29 RSQlocal ← RSQlocal ∪ {o};
30 end
31 end

/* return m′ to q through the previous sensor

node s in q’s routing path */

32 m′ ← this.createMessage(RSQlocal , RSQ REPLY TYPE); /* only

in DRSQ approach */

33 this.forward(m′ , s); /* only in DRSQ approach */

34 return RSQlocal;

from its one-hop neighbors and merges them into the candidate

range-skyline set RSQcandidate. Such a union operation is

done to avoid recording the same data objects multiple times.

Note that the Line 5 is a operation to check whether the

received message is a reply message or not. Such a check can

avoid the routing loop of a query message. In the considered

environment, the query node q is a sensor node and may be

an i-hop neighbor of a node s, so q may receive the query

message from s if TTL > 2i−1, where the appropriate value

of TTL will be discussed in Section V. Such a scenario may

only occur when the query range R is much larger than the

transmission range r.

However, RSQcandidate is not the final result for the query

because the data objects in all the received local range-skyline

sets may dominate each other. So the query node executes

the operations from Line 12 to Line 23 for checking the

Algorithm 2: GRSQ process on the query node

Input: received message m and neighbor list listneighbor

Output: distributed range-skyline RSQdistributed

1 RSQdistributed ← ∅; /* create a set to save the

distributed range-skyline */

2 RSQcandidate ← ∅; /* create a set to save the

candidate range-skyline */

3 int i = 0;
4 repeat
5 if m.type == RSQ REPLY TYPE then

6 RSQneighbor ← ∅; /* create a temporary

range-skyline set */

/* obtain the neighbor’s local

range-skyline set */

7 RSQneighbor ← this.parse(m);
8 RSQcandidate ← RSQcandidate ∪ RSQneighbor ;
9 i++;

10 end

11 until i == listneighbor .length;
/* check dominance relations between the recieved

candidiates and itself */

12 foreach data object o in RSQcandidate do

13 int isDominated = 0;
14 foreach data object o′ in (RSQcandidate − {o}) do

15 if o′ ⊳q o then

16 isDominated = 1;
17 break;
18 end

19 end

20 if isDominated == 0 then

21 RSQdistributed ← RSQdistributed ∪ {o};
22 end

23 end

24 return RSQdistributed;

dominance relations between all the candidate points and then

saves the non-dominated data objects in a set, RSQdistributed.

Finally, the query node (the user’s device) returns the final

range-skyline, RSQdistributed, to the user.

B. Distributed Continuous Range-Skyline Query

This subsection is organized as follows. We will first present

some important notations and assumptions for the DCRSQ

process. Second, we will introduce the proposed DCRSQ

approach with a running example extended from the CRSQ

example in Fig. 2. Last, the proposed DCRSQ process will be

explained in details with some definitions.

1) System Assumptions: In order to make the DRSQ pro-

cess able to support CRSQ in the DCRSQ process, some

additional and modified assumptions of the system are needed

and we will describe them in detail before introducing the

DCRSQ process. Details of the system assumptions are given

as follows:

• Each mobile node can always obtain the spatial (location

and mobility) and non-spatial (sensed data) informa-

tions of its one-hop neighbors and itself with its GPS

equipment. We call such collected informations as local

information.

• Each mobile node has a limited buffer to store the

received CRSQ queries and each stored query will be

continuously processed with local information until the

query is expired.

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, OCTOBER 201X 8

• Each node also collects the information of existing

queries from its neighbors while generating local infor-

mation of itself.

• The size of a network packet (message) is fixed and one

packet only can store one data object.

We here show all the important notations used in this paper

in Table II.

TABLE II
IMPORTANT NOTATIONS

Notation Description

A The sensing area
S The set of all the mobile nodes
s Sensor node (mobile object)
q Query node
R Query range
r Transmission range (Sensing range)
N Number of mobile sensor nodes
NR Number of mobile sensor nodes in the query range
Nr Number of neighbors in the transmission range
∆t A period of time for monitoring a CRSQ
T A time interval for each sensor node return its information

periodically
Tsafe A predicted time period that the answer may change
tMs

The monitoring time of node s w.r.t. q
mq Query message
mr Reply message
TTL Time-To-Live (Hop count) of a message
dist Euclidean distance

2) Overview of DCRSQ: To support CRSQ, the DCRSQ

process should take node mobility into account because the

movement of nodes may cause frequent change of the answer.

We thus adapt the idea of [23], safe-time, for considering the

mobility of nodes. The safe time is derived for a node to

predict when a neighbor node enters and leaves the query

q’s range. If a neighboring object leaves the range of q, this

object will not to a point of range-skyline and thus it will not

be processed on the sensor node. It means that the node can

determine that processing this neighboring object is necessary

or not with the safe-time information.
For deriving the precise safe time, we consider the move-

ment of mobile nodes simultaneously and use Fig. 4 to illus-
trate. Initially, dist(q, s) is the distance from the query node
q to sensor node s, where dist(q, s) ≤ R. In the following,
we present the equation to calculate the safe time t|qs| when
dist(q, s) = R. Suppose the initial location of object q(s)
is (xq, yq)((xs, ys)) with speed (vxq

, vyq
)((vxs

, vys
)). Since

dist(q, s) = R, we can have

R
2 = [(xq + vxq ∗ tqs)− (xs + vxs ∗ tqs)]

2

+ [(yq + vyq ∗ tqs)− (ys + vys ∗ tqs)]
2
. (1)

After transposing each term, (1) can be a quadratic equation.

Then, we can simply use the discriminant of quadratic equa-

tion to get two values of the safe time. We select the minimum

positive value as the safe time tqs. Note that the above example

shows the case of a leaving node. The other scenario is that

a node may enter the range of query q. If the node is out of

the q’s range and receives the query message in advance, the

time periods of its entering and leaving can also be obtained

by the same way.

For example, a query q issues a CRSQ with ∆t = [3, 10] at

time t0. Fig 5 shows the relative locations of s and q at each

Fig. 4. An example for deriving the safe time tqs when dist(q, s) = R

time step ti where i ≥ 0. The query q can use (1) to obtain

the safe time of node s, tqs = [tenter , tleave] = [1, 6]. So the

exact monitoring time of node s w.r.t q, tMs
, is [3, 6], since

the q only concerns the results during the time ∆t = [3, 10]
and the node s will leave the range of q after time t6.

Fig. 5. The monitoring time (tMs
= [3, 6]) of node s w.r.t. q where ∆t =

[3, 10],

Combine the prediction of monitoring time with the LRSQ

process, the continuous local range-skyline candidate sets

also can be obtained. We refer such a process to contin-

uous local range-skyline query process (CLRSQ process).

Consider the query CRSQ(R,S, q,∆t = [0, 3]) in Fig. 2,

the nodes s2, s3, s5, and s11 in CLRSQ process (modified

from the LRSQ process in Fig. 3), respectively return the

information of their local range-skyline candidate sets during

the time ∆t = [0, 3]. Node s2 returns CLRSQs2 = {<
{s1, s2}, [t0, t1) >,< {s1, s2}, [t1, t2) >,< {s2}, [t2, t3] >}
back to the intermediate node s1. Nodes s3, s5, and s11
respectively return CLRSQs3 = {< {s3, s4}, [t0, t1) >,<
{s3, s11}, [t1, t2) >,< {s3, s11}, [t2, t3] >}, CLRSQs5 =
{< {s4, s5}, [t0, t1) >,< {s4}, [t1, t2) >,< {s4}, [t2, t3] >
}, and CLRSQs11 = {< {s3, s4}, [t0, t1) >,<
{s3, s11}, [t1, t2) >,< {s3, s11}, [t2, t3] >} to the interme-

diate node s4. In such a case, node s1 will use the received

CLRSQs2 and the local information of itself to derive the

CLRSQs1 = {< {s1, s2}, [t0, t1) >,< {s1, s2}, [t1, t2) >,<
{s2}, [t2, t3] >}; and node s4 will use the received CLRSQs3 ,

CLRSQs5 , CLRSQs11 , and the local information of itself

to calculate the CLRSQs4 = {< {s4, s5}, [t0, t1) >,<
{s3, s11}, [t1, t2) >,< {s3, s11}, [t2, t3] >}. Finally, with re-

ceived CLRSQs1 and CLRSQs4 , the query node q can obtain

a predicted final result of CRSQ, DCRSQ(R,S, q,∆t) =
{< {s1, s4, s5}, [t0, t1) >,< {s1, s3, s11}, [t1, t2) >,<
{s3, s11}, [t2, t3] >}, at time t0.

Unfortunately, the predicted result may not be correct. In

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, OCTOBER 201X 9

the above example, DCRSQ(R,S, q,∆t) is not equal to

CRSQ(R,S, q,∆t) since the query node q cannot obtain

the information of node s8 at time t0. So the result needs

to be updated continuously. In the DCRSQ process, three

cases may happen if a node enters the range of q. First, if

s8 received a query message from q, s8 would return its

local range-skyline while entering the range of q. It means

that at least one node locates in the range of q at time t0
and it is the intermediate (relay) node between s8 and q.

In such a case, the intermediate node has the information

of s8 and uses that to derive the predicted CLRSQ result.

Then the predicted DCRSQ result should be a correct an-

swer, DCRSQ(R,S, q,∆t) = {< {s1, s4, s5}, [t0, t1) >
,< {s1, s8, s11}, [t1, t2) >,< {s8}, [t2, t3] >}. However,

the mentioned example is not in this case since there is no

intermediate node between s8 and q. It is the second case that

s8 does not receive any information of q at time t0. According

the assumptions of the DCRSQ process, s8 will obtain the

information of q from its neighbors when s8 enters the range

of q after time t1. Hence, the RSQ results at time t1 and t2,

< {s1, s3, s11}, [t1, t2) > and < {s3, s11}, [t2, t3] >, will be

updated to < {s1, s8, s11}, [t1, t2) > and < {s8}, [t2, t3] >,

since s8 ⊳q {s3, s11}. The last case is that s8 cannot success-

fully obtain the information of q when it enters the range of

q. Such a case will be recognized as an incorrect result and it

only occurs when the mobile environment is too sparse.

3) Description of DCRSQ: According to Definition 5, the

system will process the CRSQ for a period of time ∆t and

derive the collection of possible answers. However, such a

definition comes from the global and centralized view of

system. In the previous subsection, the distributed method for

processing RSQ has been introduced with Definition 6 and

Definition 7. In the DCRSQ process, we use a mechanism to

make each node able to predict the change of LRSQ answer

with the node mobility. With above definitions and examples,

the formal descriptions of CLRSQ and can be defined as

Definition 8 and Definition 9 respectively.

Definition 8. (Continuous Local Range-Skyline Query)

Suppose that the notations are defined as above and a

query CRSQ(R,S, q,∆t) is issued by the query node q.

After a mobile sensor node sj receives the query message

from q, sj will return a collection of local range-skyline

sets LRSQsj(R,S, q, ti), where ti ∈ ∆t and i is the

number of local answer change. Formally, it is denoted as

CLRSQsj(R,S, q,∆t) = {LRSQsj(R,S, q, ti)|ti ∈ ∆t, i ∈
N}.

According to Definition 8, the query node q will receive

the results of CLRSQsj (R,S, q,∆t), where sj is one-hop

neighbor of q, 1 ≤ j ≤ k, and k is the maximum number

of neighbors. Then the query node q will take the union of

received results, which are the local range-skyline sets for time

ti, as RSQcandidate(R,S, q, ti) =
⋃k

j=1
LRSQsj(R,S, q, ti).

Thus, the candidate collection can be denoted as

CRSQcandidate = {< RSQcandidate(R,S, q, t0), [t0, t1) >
,< RSQcandidate(R,S, q, t1), [t1, t2) >, . . . , <
RSQcandidate(R,S, q, ti), [ti, tend] >}. After deriving

CRSQcandidate, q will check the dominance relations of all

objects in each RSQcandidate(R,S, q, ti) set again and then

obtain the final result DRSQ(R,S, q, ti) at each time ti.
We call such a process distributed continuous range-skyline

query process (DCRSQ process) and the definition is given

in Definition 9.

Definition 9. (Distributed Continuous Range-Skyline Query)

Suppose the candidate collection CRSQcandidate of query

node q has been computed. Query node q uses CRSQcandidate

to derive a collection of the range-skyline sets for differ-

ent time ti and we use DCRSQ(R,S, q,∆t) to represent

such a collection of continuous range-skyline sets, where

DCRSQ(R,S, q,∆t) = {DRSQ(R,S, q, ti)|ti ∈ ∆t, i ∈
N}.

Note that the fundamental process of DCRSQ is similar to

DRSQ process mentioned in section IV-A3. The main differ-

ence is that each mobile node sj generates a continuous local

range-skyline set CLRSQsj(R,S, q,∆t) with the safe-time

information of candidate nodes. Thus the DCRSQ process can

provide sufficient information to the query node q for deriving,

predicting, and updating the answer as time continuously goes

on. Algorithm 3 gives the high-level description of DCRSQ

process. To implement Line 12 and Line 13 of Algorithm 3,

we use the idea of sliding window, which is already a widely

used design in many domains. Since it is out of the scope of

this paper, we will not address it. In addition, if the ∆t is the

specific time of the query issuing, [ti, ti], ti ≥ 0, the query

will be a snapshot RSQ and the DCRSQ will do the same

process as the DRSQ process does.

V. COST ANALYSIS AND DISCUSSION

Suppose that N mobile data objects are distributed inde-

pendently and uniformly in the sensing area, A, and each

data object has d attributes. If all the attributes of each object

are in a uniform distribution, the skyline search problem can

be treated as the problem of finding the maxima [24] in an

N × d matrix. Hence, the expected size of skyline will be

nsky = O((lnN)d−1). In the considered environment, the

query node does not need to process all the mobile sensor

nodes (or data objects) for the range-skyline query and thus

the expected size of range-skyline will be nrange−sky =
O((lnNR)

d−1) ≤ O((lnN)d−1), where NR is the number of

mobile sensor nodes in the query range R and 0 ≤ NR ≤ N .

Note that the value of NR is influenced by the value of N ,

sensing area |A| and the query range R and NR = ⌊πR2N
|A| ⌋.

According to the above notations, the average number of data

objects in the transmission range of a mobile sensor node will

be Nr = ⌊πr2N
|A| ⌋, where r is the transmission range of a

mobile sensor node. If Nr ≤ 1, the density of mobile sensor

nodes is too sparse and thus it is too hard to route messages. In

such a case, none of the conventional centralized and proposed

approaches can perform well in the CRSQ processing. Hence,

we only discuss the case, Nr > 1, in this work. Note that we

do not discuss the case here NR ≤ 1 since none of mobile

sensor nodes can serve this query.

In the considered IoMT, the mobile sensor nodes in the

query range have to return information to the query node

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, OCTOBER 201X 10

Algorithm 3: DCRSQ process on a mobile node (both

query and sensor node)

Input: received message m and neighbor list listneighbor

1 RSQdistributed ← ∅; /* create a set to save the

distributed range-skyline */

2 RSQlocal ← ∅; /* create a set to save the latest

local range-skyline */

3 RSQcurrent local ← ∅; /* create a set to save the

previous local range-skyline */

4 listsafe time ← ∅; /* create a list to record the

safe time of neighbors */

5 if this.nodeType == QUERY NODE then
6 repeat

/* call the Algorithm 2 to update the

final distributed range-skyline */

7 RSQdistributed ←GRSQ(m, listneighbor);
8 until m.isExpired();
9 else if this.nodeType ==SENSOR NODE then

10 if m.type == RSQ REPLY TYPE then

/* derive the safe time of each neighbor

*/

11 listsafe time ← UpdateSafeTime(listneighbor);
/* call the Algorithm 1 to update the

local range-skyline */

12 RSQlocal ← LRSQ(m, listneighbor);
/* update the local range-skyline with the

safe time values of neighbors */

13 RSQlocal ← SafeTimeCheck(RSQlocal , listsafe time);
/* return the update message when the

local range-skyline changes */

14 if RSQcurrent local is not equal to RSQlocal then

15 s←new node;
16 s.address← m.source address;
17 m′ ← this.createMessage(RSQlocal ,

RSQ REPLY TYPE);
18 this.forward(m′ , s);
19 end
20 end

21 end

22 return RSQdistributed;

in hop-by-hop manner. The possibility distribution function

of each hop in a multi-hop wireless environment has been

discussed in [25] and we use that to obtain the possibility Pi

of the ith hop transmission. To obtain sufficient information

for deriving the accurate result of a RSQ, the system must

guarantee that more than NR neighboring nodes of the query

node can receive the query message. Then we can denote such

an expected network cost for spreading the query message as

E[qspread] =

k∑

i=1

N i
r

i∏

j=1

Pj , (2)

where N i
r is the average number of ith-hop neighbors with

respect to the query node q. Since all sensor nodes in the query

range should be notified with the query messages from q, we

can find a minimum value of k ∈ N that E[qspread] ≥ NR.

Hence, the expected hop count TTLq can be derived by (2)

and TTLq = k.

The process of data collection in the centralized approach

is straightforward and each of the mobile sensor node which

receives the query message will return the information of

itself to the query node. Since the ith-hop neighbor needs

to return an i-hop response message to the query node, the

network cost of the reply messages for the ith-hop neighbors

will be N i
r × i

∏i

j=1
Pj without the cooperative pruning.

Hence, the expected network cost for returning messages in

the centralized approach can be denoted as

Ecentralized[qresponse] =

k∑

i=1

N i
r × i

i∏

j=1

Pj , (3)

where k = TTLq is determined by (2) with the constraint

E[qspread] ≥ NR. In summary, the total network cost of the

centralized approach for a RSQ, q, can be denoted as

Ecentralized[q] = E[qspread] + Ecentralized[qresponse]. (4)

In the proposed approach, DRSQ process, each node derives

the local range-skyline and the expected size of result is

O(lnNr)
d−1. The reason is that DRSQ process combines the

information filtering into the data collection, thus reducing

a large number of irrelevant response messages. Hence, the

network cost for replying the information can be denoted as

EDRSQ[qresponse] =

k∑

i=1

N i
r(lnN

i
r)

d−1Pk−i, (5)

and EDRSQ[qresponse] < Ecentralized[qresponse] in normal

cases. So the total network cost of DRSQ process can be

estimated as

EDRSQ[q] = E[qspread] + EDRSQ[qresponse]. (6)

For monitoring a CRSQ query in the centralized approach,

the query node has to spread the query message periodically

during the time period ∆t and each neighboring node also has

to periodically return the information of itself. So the network

cost of the centralized approach can be denoted as

ECRSQ
centralized[q] =

|∆t|

T
× Ecentralized[q], (7)

where T is the time interval that each mobile sensor node

periodically reports the updated information to the query node

and the default value of T is 1 second. In DCRSQ process,

the query node does not have to periodically spread query

messages since each mobile sensor node can buffered the

information of the query. So the network cost is mainly

influenced by the frequency of the answer changes and it can

be derived by

ECRSQ
DCRSQ[q] = E[qspread] +

|∆t|

Tsafe

×EDRSQ[qresponse], (8)

where Tsafe is the average safe-time that the result needs to

be updated.

VI. SIMULATION RESULTS

All of the simulations are implemented as custom programs

using C++ and executed on a Windows 7 system with an Intel

i5-4460 3.20GHz CPU and 8GB memory. In all the simulation

scenarios, the mobile sensor nodes are distributed uniformly

and the results are reported with the average of 200 executions.

The used mobility model is Random Way Point (RWP) and

the network routing protocol is AODV [26]. Since none of

existing works provides distributed RSQ process over IoMT

environments, we thereby use a centralized method [7] as

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, OCTOBER 201X 11

the compared centralized approach and it is executed on the

query node for calculating the query results. In the centralized

approach, the query node directly uses the flooding scheme

to spread query messages and then collects information from

moving data objects.

The proposed approach, DCRSQ process, can support

(snapshot) range-skyline query and continuous range-skyline

query. If ∆t = [t0, tend] = 0, where t0 = tend, the DCRSQ

process will perform the DRSQ process for deriving the results

of the (snapshot) RSQ at time t0. We thus organize the

simulation section as two scenarios. In the first scenario, we

discuss the performance of DRSQ process in terms of response

time and number of messages. The response time is the period

of time from issuing a RSQ to obtaining the result during

the DRSQ process. The number of messages represents the

necessary network cost on data collection.

In the second scenario, the performance of DCRSQ process

is discussed in terms of number of accessed objects and

number of messages. Additionally, the correctness of DCRSQ

result is discussed in terms of precision and recall. In both

scenarios, the following important factors are discussed: den-

sity (number of sensor nodes), number of queries, query range,

and transmission range. For validating the DCRSQ process,

an additional factor, node speed, is also in the discussion.

A. Scenario I: Performance of DRSQ Process

In the first scenario, we discuss the performance of DRSQ

process. There are 100 mobile sensor nodes in a 400m×400m
square sensing area. The default transmission range is 75m and

the node speed is 5m/s. Initially, mobile sensor nodes and

queries are placed randomly in the area. The basic simulation

settings for the first scenario are shown in TABLE III and,

we execute the simulation 200 times to get the average results

and the 95% confidence intervals under each scenario.

TABLE III
SIMULATION PARAMETERS FOR SCENARIO I

Parameter Default Value Range (type)

Sensing Area (m ×m) 400 × 400 –
Number of Sensor Nodes 100 50, 100, 150 ,200
Number of Queries 1 1, 2, 3, 4, 5
Query Range, R (m) 80 60, 80, 100, 120
Transmission Range, r (m) 75 50, 75, 100, 125
Node Speed (m/s) 2 1, 2, 3, 4, 5
TTL of Messages (centralized
approach)

5 –

Bandwidth (Mb/s) 2 –

To the best of our knowledge, none of existing works

proposed a method for processing range-skyline queries in

such an environment, where the databases, CPUs, and mem-

ory are fully-distributed. We hence compare the proposed

approach, DRSQ process, with a centralized approach which

is a baseline. Note that the centralized approach does not use

a powerful server. In the centralized approach, we assume

that the query node is a sink node and can process the query

with received information. The other mobile nodes only just

forward the query and response messages without processing

the local range-skyline.

50 100 150 200
Number of Sensor Nodes

0

200

400

600

800

1000

1200

R
es

p
o

n
se

 T
im

e
(m

s)

DRSQ
Centralized

(a) Response Time

50 100 150 200
Number of Sensor Nodes

0

200

400

600

800

1000

N
u

m
b

er
 o

f
M

es
sa

g
es

DRSQ
Centralized

(b) Number of Messages

Fig. 6. Impact of the number of sensor nodes on (a) response time and (b)
number of messages

1 2 3 4 5
Number of Queries

200

400

600

800

1000

1200

R
es

p
o

n
se

 T
im

e
(m

s)

DRSQ
Centralized

(a) Response Time

1 2 3 4 5
Number of Queries

0

500

1000

1500

2000

N
u

m
b

er
 o

f
M

es
sa

g
es

DRSQ
Centralized

(b) Number of Messages

Fig. 7. Impact of the number of queries on (a) response time and (b) number
of messages

1) DRSQ: Density: Fig. 6(a) shows that the response time

of our proposed distributed approach, DRSQ process, is 10%
better than the centralized approach when the density becomes

more dense (the number of sensor nodes increases). Although

both centralized approach and DRSQ process need to collect

the information from the other sensor nodes, DRSQ process

spends less time on data collection. There are two reasons. One

is that DRSQ process only needs to access the sensor nodes

around the query range. Conversely, the centralized approach

asks all the sensor nodes in the considered environment for

data collection. The other reason is that the query node using

the centralized approach needs to process many data objects

and the computation overhead is thus heavy.

Fig. 6(b) presents that DRSQ process is almost 75% better

than the centralized approach in term of number of messages.

In the DRSQ process, each mobile sensor node collects the

information of its neighbors and derives a local RSQ result

before sending a response message to the query node. Such

a process can effectively prune a lot of irrelevant information

from data objects (sensor nodes) and thus cost less number

of messages on returning the local range-skyline. On the

contrary, the centralized approach just floods query messages

and collects the information from all the neighboring mobile

sensor nodes to derive the range-skyline. It thus wastes more

network cost on data collection.

2) DRSQ: Number of Queries: In this subsection, we

discuss the impact of the number of queries. The number of

queries indicates the maximum number of queries concurrently

processed in the system. Fig. 7(a) shows that the response

time of DRSQ process is much better than the centralized

approach as the number of queries increases. When the

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, OCTOBER 201X 12

60 80 100 120
Query Range

190

200

210

220

230

240

250

R
es

p
o

n
se

 T
im

e
(m

s)

DRSQ
Centralized

(a) Response Time

60 80 100 120
Query Range

0

100

200

300

400

500

600

700

N
u

m
b

er
 o

f
M

es
sa

g
es

DRSQ
Centralized

(b) Number of Messages

Fig. 8. Impact of query range on (a) response time and (b) number of
messages

50 75 100 125
Radio Range

100

200

300

400

500

R
es

p
o

n
se

 T
im

e
(m

s)

DRSQ
Centralized

(a) Response Time

50 75 100 125
Radio Range

0

500

1000

1500

N
u

m
b

er
 o

f
M

es
sa

g
es

DRSQ
Centralized

(b) Number of Messages

Fig. 9. Impact of transmission range on (a) response time and (b) number of
messages

number of queries is 5, the DRSQ process performs almost

30% faster than the centralized approach does. The DRSQ

process only needs to access the sensor nodes which are

around the query range. In contrast, the centralized approach

floods query messages to asks all the sensor nodes in the

considered environment for data collection. As the number

of queries increases, a large amount of flooding messages

harms the network routing performance and thus increases the

response time. In addition, the query node using the centralized

approach needs to process more information from data objects,

so the overhead of RSQ computing on the query node becomes

heavy. This can be verified by the experimental results shown

in Fig. 7(b). As the result indicates, the DRSQ process costs

20% to 50% fewer number of messages than the centralized

approach does since it can avoid irrelevant data objects during

data collection, and thus reducing a large amount of duplicated

messages for data transmissions.

3) DRSQ: Query Range: Different values on the query

range also influence the performance of query processing.

Fig. 8(a) shows that the DRSQ process outperforms the

centralized approach by 2% to 10% in term of response time

with all different range values. When the query range R is

smaller than the transmission range r, the probability that the

whole query range falls in the transmission range is high and

it thus is easier for the query node to obtain the RSQ result by

collecting sufficient information from its one-hop neighbors.

When the query range R is larger than the transmission range

r, the DRSQ process only needs to access the sensor nodes

which are around the query range instead of accessing all

the sensor nodes as the centralized approach does. So, the

DRSQ process can outperform the centralized approach on

response time. Fig. 8(b) shows that DRSQ saves almost 80%
transmission cost in comparison with the centralized approach.

The reason is that the DRSQ process can effectively prune

the irrelevant information from data objects during data (local

skyline) collection.

4) DRSQ: Transmission Range: The last important impact

is the transmission range r of a sensor node. As Fig. 9(a)

indicates, the distributed approach outperforms the centralized

approach by 5% to 10% with different transmission ranges

in terms of the response time. Unlike the dramatic increasing

response time of the centralized approach, the response time

of DRSQ process increases more gently. The centralized

approach has to do the dominance checks after it receives

a large amount of information from the neighboring sensor

nodes. So, it needs more computation overhead. Instead, the

DRSQ process can avoid the irrelevant data objects in a

distributed way during the information collection. The query

node only processes the one-hop neighbors’ local range-

skyline sets whose sizes are much smaller than the sizes of

the data sets in the centralized approach on the query node.

Effectively pruning irrelevant data objects in a distributed

way also reduces a lot of required messages for returning

the local range-skyline sets to the query node and this trend

is demonstrated in Fig. 9(b). DRSQ can save 60% to 70%
transmission cost on the data collection.

B. Scenario II: Performance of DCRSQ Process

In the second scenario, we present the performance results

of DCRSQ process. The duration of each query ∆t is 10
seconds and the total duration of the simulation is 60 seconds.

Initially, the mobile sensor nodes and query nodes are placed

randomly in a 500m×500m square area. For each simulation

set, we execute the simulation 200 times to get the average

results and the 95% confidence intervals. The t0 of each

query’s ∆t is randomly generated from second 1 to 50. The

other important settings are shown in Table IV.

The system will continuously return results for a CRSQ

query within the time period ∆t, so it is difficult to measure

the response time precisely. Instead, we observe the number

of accessed objects (collected data objects) on each query

node. If the number of accessed objects on the query node

is small, it means that the efficiency of DCRSQ process is

better since a large number of irrelevant data objects are

skipped during message routing. For the DCRSQ process in

a mobile environment, the node speed is one of the important

factors. If the node speed becomes fast, it may lead the answer

changing more frequently and the overhead of processing

CRSQ queries also becomes heavier. We thus discuss the

impact of node speed on the performance of DCRSQ process.

In addition, we use a server to check the correctness of

results, generated by the DCRSQ process and the centralized

approaches respectively in terms of precision and recall. Note

that the server has a global knowledge of all the data objects

and always generates the correct answer for a query.

1) DCRSQ: Density: Fig. 10(a) shows that DCRSQ process

is better than the centralized approach in terms of number

of accessed objects. When the number of mobile sensors

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, OCTOBER 201X 13

TABLE IV
SIMULATION PARAMETERS FOR SCENARIO II

Parameter Default Value Range (type)

Sensing Area (m×m) 500 × 500 –
Simulation time (seconds) 60 –
Number of Sensor Nodes 60 30, 60, 90, 120
Number of Queries 1 1 to 10
Query Range, R (m) 100 50, 100, 150, 200
∆t of a Query (seconds) 10 –
Transmission Range, r (m) 75 50, 75, 100, 125
Maximum of Node Speed (m/s) 10 5, 10, 15, 20, 25, 30
TTL of Messages (centralized
approach)

5 –

Bandwidth (Mb/s) 2 –

increases, the total number of accessed objects in the proposed

method remains constant that is no more 1100 nodes. In

contrast, using the centralized way, a query point needs about 2

to 5.5 times more nodes to derive the final range-skyline. This

is due to no process of discarding irrelevant moving objects

during data collection (local range-skyline processing) in the

centralized approach. In summary, DCRSQ can save 50% to

80% computational cost in average for a query.

Similarly, Fig. 10(b) shows that DCRSQ process is better

than the centralized approach in terms of number of messages.

In DCRSQ process, each mobile sensor node collects the

information of its neighbors and derives a local RSQ result

before sending a response message to the query node. Such

a process can prune a lot of moving objects which will not

be the candidates and thus cost less number of messages

on returning local range-skyline. On the other hand, the

centralized approach just floods query messages and collects

the information of all neighboring mobile sensor nodes for

deriving the final range-skyline. So, the centralized approach

wastes 10% to 20% more network cost on data collection.

For the accuracy, each mobile sensor node in the centralized

approach does not consider the prediction location of the

neighbor nodes. Each sensor node only forwards the collected

information to the query point. The result of final range-skyline

may be inaccurate, so we compare the results of DCRSQ

process and centralized approach with the answer in a server

to measure the precision and recall. Fig. 10(c) and Fig. 10(d)

show that both precision and recall of the centralized approach

are worse than DCRSQ process by 10% to 20%. Moreover,

precision and recall of DCRSQ process are almost 100%
correct when the number of sensor nodes is large.

2) DCRSQ: Number of Queries: In this simulation exper-

iment, we are interested in evaluating the performance of

different number of queries issued simultaneously. We set the

number of queries from 1 to 10, which means that there

are at most 10 queries within the time period ∆t in the

simulation. Fig. 11(a) and Fig. 11(b) show that as the number

of queries increases, the number of messages and the number

of accessed objects grow up respectively for both approaches.

However, DCRSQ process only needs to access 50% to 70%
amount of data objects in the derivation comparing to the

centralized approach. DCRSQ outperforms the centralized

approach and saves about 30% on network cost when the

number of queries is smaller then 7. If the number of queries

exceeds 7, DCRSQ will cost more network messages. The

reason is that the neighboring nodes cooperatively process the

local result of CRSQ and some of them store duplicated local

results (objects). That is, the query node may receive many

duplicated reply messages.

Fig. 11(c) and Fig. 11(d) show that DCRSQ process is

better than the centralized approach in terms of precision and

recall. As the number of queries increases, DCRSQ process

still can achieve almost 90% correctness and outperforms the

centralized approach by 12% to 25% in terms of precision

and recall, respectively. The reason is that DCRSQ process

does not compute the irrelevant data objects anymore since

they have already been filtered by the neighboring mobile

nodes. Thus, a query point only checks the dominance objects

that can guarantee to be in the final range-skyline. The other

reason is that each mobile sensor node in the centralized

way just gathers the information of its neighbors and sends

the information back to the query node for deriving final

range-skyline. Therefore, there is a possibility to compute a

large number of irrelevant data objects for the query node.

Thus, it makes the precision and recall of the centralized

approach worse than the DCRSQ process. Although DCRSQ

still has many redundant transmissions we mentioned above (in

Fig. 11(b)), such duplicate local results significantly recover

transmission failures and thus increase the precision and recall

of the query result.

3) DCRSQ: Query Range: In this simulation set, we dis-

cuss the results of varying the query range. In Fig. 12(a),

the number of accessed objects in the centralized approach

remains around 3000 nodes for the final range-skyline in query

point. However, the number of accessed node increases slightly

when the query range becomes larger. It means that the query

node in DCRSQ can save almost 30% to 80% computational

cost in comparison with the centralized approach. As shown

in Fig. 12(b), when the query range increases, the number

of messages in the centralized approach is always about

1.7 × 105 because it always floods messages to the whole

sensing area. DCRSQ process needs much less network cost

than the centralized approach when the query range is smaller

than 150 meters and only performs slightly worse when the

query range is 200 meters. The possible reason is that the

DCRSQ still costs too much network messages on exchanging

information between the irrelevant nodes which are very far

away from the query node.

As for the accuracy shown in Fig. 12(c) and Fig. 12(d),

the trends in centralized approach, in comparison with the

previous two measurements, are different. With the wider

range of a query, the percentage of recall drops rapidly down

about 40% in the centralized approach. Recall that all the

neighboring sensor nodes have to report their information

to the query node continuously for CRSQ queries in the

centralized approach. As the query range becomes larger,

more neighboring sensor nodes need to continuously report

their information without data pruning. In such a scenario,

the query node will be a bottleneck of the system and thus

many messages may be dropped. Due to the above reason,

the precision and recall of the centralized approach decrease

significantly. On the contrary, the DCRSQ process already

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, OCTOBER 201X 14

30 60 90 120
Number of Sensor Nodes

0

1000

2000

3000

4000

5000

6000

N
u

m
b

er
 o

f
A

cc
es

se
d

 O
b

je
ct

s

DCRSQ
Centralized

(a) Number of Accessed Objects

30 60 90 120
Number of Sensor Nodes

0

2

4

6

8

10

12

N
u

m
b

er
 o

f
M

es
sa

g
es

105

DCRSQ
Centralized

(b) Number of Messages

30 60 90 120
Number of Sensor Nodes

30

40

50

60

70

80

90

100

P
re

ci
si

o
n

 (
%

)

DCRSQ
Centralized

(c) Precision

30 60 90 120
Number of Sensor Nodes

30

40

50

60

70

80

90

100

R
ec

al
l (

%
)

DCRSQ
Centralized

(d) Recall

Fig. 10. Impact of the number of sensor nodes on (a) number of accessed objects, (b) number of messages, (c) precision, and (d) recall

1 2 3 4 5 6 7 8 9 10
Number of Queries

0

0.5

1

1.5

2

2.5

3

N
u

m
b

er
 o

f
A

cc
es

se
d

 O
b

je
ct

s 104

DCRSQ
Centralized

(a) Number of Accessed Objects

1 2 3 4 5 6 7 8 9 10
Number of Queries

0

2

4

6

8

10

12

N
u

m
b

er
 o

f
M

es
sa

g
es

105

DCRSQ
Centralized

(b) Number of Messages

1 2 3 4 5 6 7 8 9 10
Number of Queries

75

80

85

90

95

100

P
re

ci
si

o
n

 (
%

)

DCRSQ
Centralized

(c) Precision

1 2 3 4 5 6 7 8 9 10
Number of Queries

65

70

75

80

85

90

95

100

R
ec

al
l (

%
)

DCRSQ
Centralized

(d) Recall

Fig. 11. Impact of the number of queries on (a) number of accessed objects, (b) number of messages, (c) precision, and (d) recall

computes the range-skyline locally and the local range-skyline

candidate sets are continuously sent back to the query node

for deriving the final range-skyline. Such a way can reduce

large amount of network cost and avoid the bottleneck problem

on the query node. Thus, the accuracy of our approach can

achieve over 92% better.

4) DCRSQ: Transmission Range: Transmission range (or

sensing range) of each object is also an important impact

factor. We therefore measure the performance on different

values of transmission range. As shown in Fig. 13(a), the

number of accessed objects in DCRSQ process is much

less than the centralized approach by up to 80% if the

transmission range is 125 meters. Filtering unnecessary data

objects in a distributed way can reduce a lot of required

messages for returning the local range-skyline sets to the query

point. Fig. 13(b) shows that DCRSQ process outperforms the

centralized approach by up to 25% with different settings

of transmission range in terms of the number of messages.

Unlike the dramatic increasing of the number of messages in

the centralized approach, the number of messages in DCRSQ

process increases more slowly. The reason is that each mobile

node in the centralized approach brings a large number of data

objects from neighboring sensor nodes before forwarding them

back to the query node.

Fig. 13(c) and Fig. 13(d) show the accuracy of both ap-

proaches. For the centralized approach, the precision and recall

are under 50% when r = 50, and jump to more than 90% if

r becomes larger than 100 meters. The reason is that each

mobile sensor node may not successfully transmit information

to others while the transmission range becomes too small. In

contrast, DCRSQ process can achieve 98% precision and recall

since DCRSQ process uses safe time to predict the locations

of its neighbors and thus provides more accurate results in the

final range-skyline sets.

5) DCRSQ: Node Speed: The last simulation experiment

investigates the effect of mobile sensor node’s speed. We vary

the maximum value of node speed from 5 to 30 m/s in the

simulation. Fig. 14 indicates that all the trends are gradually

decreasing and our proposed method, DCRSQ process, al-

ways has a better performance than the centralized approach.

Fig. 14(a) and Fig. 14(b) show that DCRSQ outperforms

the centralized approach in terms of the number of accessed

objects and the number of messages. Note that each mobile

sensor node in DCRSQ process knows when the neighboring

nodes enter and leave the query range in advance. It thus can

save almost 20% to 90% message cost on query processing

and reduce 60% amount of accessed objects for deriving the

final skyline result on the query node.

In addition, when each mobile node moves faster, the neigh-

bors will change more frequently and wireless connections

between mobile sensor nodes become more unstable. Hence,

in high-speed scenarios, it is more difficult for the query node

to collect sufficient information to derive the accurate result.

Fig. 14(c) and Fig. 14(d) show that both DCRSQ and the

centralized approach has the similar trends of performance on

precision and recall. Comparing to the centralized approach,

DCRSQ has 20% improvement in average on the precision

and recall.

VII. CONCLUSION

In IoMT, very few works discuss the RSQ and CRSQ

queries while simultaneously considering the following con-

straints: distributed computing units and databases on different

mobile sensor nodes databases, moving data objects, and the

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, OCTOBER 201X 15

50 100 150 200
Query Range

0

500

1000

1500

2000

2500

3000

N
u

m
b

er
 o

f
A

cc
es

se
d

 O
b

je
ct

s

DCRSQ
Centralized

(a) Number of Accessed Objects

50 100 150 200
Query Range

0

0.5

1

1.5

2

2.5

N
u

m
b

er
 o

f
M

es
sa

g
es

105

DCRSQ
Centralized

(b) Number of Messages

50 100 150 200
Query Range

50

60

70

80

90

100

P
re

ci
si

o
n

 (
%

)

DCRSQ
Centralized

(c) Precision

50 100 150 200
Query Range

20

40

60

80

100

R
ec

al
l (

%
)

DCRSQ
Centralized

(d) Recall

Fig. 12. Impact of query range on (a) number of accessed objects, (b) number of messages, (c) precision, and (d) recall

50 75 100 125
Transmission Range

0

2000

4000

6000

8000

N
u

m
b

er
 o

f
A

cc
es

se
d

 O
b

je
ct

s

DCRSQ
Centralized

(a) Number of Accessed Objects

50 75 100 125
Transmission Range

0

2

4

6

8

10

N
u

m
b

er
 o

f
M

es
sa

g
es

105

DCRSQ
Centralized

(b) Number of Messages

50 75 100 125
Transmission Range

20

40

60

80

100

P
re

ci
si

o
n

 (
%

)

DCRSQ
Centralized

(c) Precision

50 75 100 125
Transmission Range

20

40

60

80

100

R
ec

al
l (

%
)

DCRSQ
Centralized

(d) Recall

Fig. 13. Impact of transmission range on (a) number of accessed objects, (b) number of messages, (c) precision, and (d) recall

5 10 15 20 25 30
Node Speed

0

1000

2000

3000

4000

N
u

m
b

er
 o

f
A

cc
es

se
d

 O
b

je
ct

s

DCRSQ
Centralized

(a) Number of Accessed Objects

5 10 15 20 25 30
Node Speed

0

0.5

1

1.5

2

2.5

N
u

m
b

er
 o

f
M

es
sa

g
es

105

DCRSQ
Centralized

(b) Number of Messages

5 10 15 20 25 30
Node Speed

20

40

60

80

100

P
re

ci
si

o
n

 (
%

)

DCRSQ
Centralized

(c) Precision

5 10 15 20 25 30
Node Speed

20

40

60

80

100

R
ec

al
l (

%
)

DCRSQ
Centralized

(d) Recall

Fig. 14. Impact of node speed on (a) number of accessed objects, (b) number of messages, (c) precision, and (d) recall

mobile query. We hence propose a Distributed Continuous

Range-Skyline Query process (DCRSQ process), for driving

the results of RSQ and CRSQ queries. The main idea of the

proposed DCRSQ process is to predict the appropriate time,

safe-time, that the answer of a query changes. We apply such

a prediction to each mobile sensor node and query node,

so each mobile sensor node can compute the local result

more precisely and then provide the local result to the query

node for computing the final result. Instead of processing

the information of all the neighboring mobile sensor nodes

on the query node, the proposed distributed and cooperative

approach with safe-time prediction can effectively reduce the

computation overhead of the query node. The performance of

DCRSQ process is also validated by the extensive simulation

experiments. In some scenarios, the performance of DCRSQ

process is almost 80% better than the performance of the

centralized approach in terms of the number of accessed

objects. The DCRSQ process saves more than 15% network

cost in terms of the number of messages in general. In most

scenarios, the DCRSQ process outperforms the centralized

approach by more than 10% to 25% accuracy (precision and

recall).

In this work, we propose a prototype of distributed query

process for CRSQ and simply use 2 dimensional data objects

(distance and sensing value) to valid the performance in

the simulation. For each sensor node, it needs to buffer the

received query information and then help the data filtering and

local computation until the query time is expired. Hence, there

is one possible future research direction to find the relation be-

tween the minimum requirement (CPU and memory/storage)

of each sensor and a parameterized (report/sense rate, number

of sensor nodes and number of queries, etc.) IoT environment.

Another possible future research work is to implement the

distributed multi-criteria decision services on different modern

open source IoT constrained platform [27] or simulators [28].

Such a way can help the research and open source commu-

nities for evaluating. In the future, we are going to develop

distributed approaches for monitoring different spatial queries

in practical drone-assisted IoMT applications [29].

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, OCTOBER 201X 16

ACKNOWLEDGMENT

This research is partially supported by Ministry of Science

and Technology under the Grant MOST 107-2221-E-027-

099-MY2 and MOST 108-2634-F-009-006- through Pervasive

Artificial Intelligence Research (PAIR) Labs, Taiwan.

REFERENCES

[1] S. Im, M. Song, S.-W. K. Jongwan Kim, C.-S. Hwang, and S. Lee,
“Cell-based distributed index for range query processing in wireless
data broadcast systems,” in Knowledge-Based Intelligent Information

and Engineering Systems Lecture Notes in Computer Science, vol. 4251,
pp. 1139–1146, Springer Berlin Heidelberg, 2006.

[2] J. Zhang and L. Gruenwald, “Optimizing data placement over wireless
broadcast channel for multi-dimensional range query processing,” in
Mobile Data Management, pp. 256–265, IEEE, 2004.

[3] C. Li, Y. Gu, J. Qi, R. Zhang, and G. Yu, “A safe region based approach
to moving knn queries in obstructed space,” Knowledge and Information

Systems, vol. 45, no. 2, pp. 417–451, 2015.
[4] C.-M. Liu and S.-Y. Fu, “Effective protocols for knn search on broadcast

multi-dimensional index trees,” Information Systems, vol. 33, pp. 18–35,
2008.

[5] X. Lin, J. Xu, and H. Hu, “Range-based skyline queries in mobile
environments,” IEEE Transactions on Knowledge and Data Engineering,
vol. 25, pp. 835–849, April 2013.

[6] S. Rahul and R. Janardan, “Algorithms for range-skyline queries,”
in Proceedings of the 20th International Conference on Advances in
Geographic Information Systems, SIGSPATIAL ’12, (New York, NY,
USA), pp. 526–529, ACM, 2012.

[7] D. Papadias, Y. Tao, G. Fu, and B. Seeger, “Progressive skyline
computation in database systems,” in ACM Transactions on Database

Systems, TODS, (New York, NY, USA), pp. 41–82, ACM, 2005.
[8] L. Tian, L. Wang, P. Zou, Y. Jia, and A. Li, “Continuous monitoring of

skyline query over highly dynamic moving objects,” in Proceedings of
the 6th ACM International Workshop on Data Engineering for Wireless

and Mobile Access, MobiDE ’07, (New York, NY, USA), pp. 59–66,
ACM, 2007.

[9] L. Ang, K. P. Seng, A. M. Zungeru, and G. K. Ijemaru, “Big sensor
data systems for smart cities,” IEEE Internet of Things Journal, vol. 4,
pp. 1259–1271, Oct 2017.

[10] X. Cheng, L. Fang, L. Yang, and S. Cui, “Mobile big data: The fuel for
data-driven wireless,” IEEE Internet of Things Journal, vol. 4, pp. 1489–
1516, Oct 2017.

[11] F. Calabrese, M. Colonna, P. Lovisolo, D. Parata, and C. Ratti, “Real-
time urban monitoring using cell phones: A case study in rome,” IEEE
Transactions on Intelligent Transportation Systems, vol. 12, pp. 141–
151, March 2011.

[12] F. E. Horita, J. ao Porto de Albuquerque, L. C. Degrossi, E. M.
Mendiondo, and J. Ueyama, “Development of a spatial decision support
system for flood risk management in brazil that combines volunteered
geographic information with wireless sensor networks,” Computers &

Geosciences, vol. 80, pp. 84–94, 2015.
[13] S. Borzsony, D. Kossmann, and K. Stocker, “The skyline operator,”

in Proceedings of 17th International Conference on Data Engineering,
pp. 421–430, 2001.

[14] G. R. Hjaltason and H. Samet, “Distance browsing in spatial databases,”
ACM Trans. Database Syst., vol. 24, pp. 265–318, June 1999.

[15] M. A. Cheema, X. Lin, W. Zhang, and Y. Zhang, “A safe zone based
approach for monitoring moving skyline queries,” in Proceedings of
the 16th International Conference on Extending Database Technology,
EDBT ’13, (New York, NY, USA), pp. 275–286, ACM, 2013.

[16] K. Hose and A. Vlachou, “A survey of skyline processing in highly
distributed environments,” The VLDB Journal, vol. 21, no. 3, pp. 359–
384, 2012.

[17] B. Zheng, K. C. K. Lee, and W. C. Lee, “Location-dependent skyline
query,” in The Ninth International Conference on Mobile Data Manage-
ment (mdm 2008), pp. 148–155, April 2008.

[18] L. Chen, B. Cui, and H. Lu, “Constrained skyline query processing
against distributed data sites,” IEEE Transactions on Knowledge and

Data Engineering, vol. 23, no. 2, pp. 204–217, 2011.
[19] K. Ahmed, N. S. Nafi, and M. A. Gregory, “Enhanced distributed

dynamic skyline query for wireless sensor networks,” Journal of Sensor

and Actuator Networks, vol. 5, no. 1, 2016.

[20] Z. Huang, C. S. Jensen, H. Lu, and B. C. Ooi, “Skyline queries against
mobile lightweight devices in manets,” in 22nd International Conference
on Data Engineering (ICDE’06), pp. 66–66, April 2006.

[21] P. Wu, C. Zhang, Y. Feng, B. Y. Zhao, D. Agrawal, and A. El Abbadi,
“Parallelizing skyline queries for scalable distribution,” in Proceedings of

the 10th International Conference on Advances in Database Technology,
EDBT’06, (Berlin, Heidelberg), pp. 112–130, Springer-Verlag, 2006.

[22] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker,
“A scalable content-addressable network,” in Proceedings of the 2001
Conference on Applications, Technologies, Architectures, and Protocols

for Computer Communications, SIGCOMM ’01, (New York, NY, USA),
pp. 161–172, ACM, 2001.

[23] K. Kim, Y. Cai, and W. Tavanapong, “Safe-time: Distributed real-time
monitoring of cknn in mobile peer-to-peer networks.,” in Proceedings

of the 9th IEEE International Conference on Mobile Data Management

(MDM), pp. 124–131, 2008.
[24] J. L. Bentley, H. T. Kung, M. Schkolnick, and C. D. Thompson, “On

the average number of maxima in a set of vectors and applications,” J.

ACM, vol. 25, pp. 536–543, Oct. 1978.
[25] J. C. Kuo and W. Liao, “Hop count distribution of multihop paths

in wireless networks with arbitrary node density: Modeling and its
applications,” IEEE Transactions on Vehicular Technology, vol. 56,
pp. 2321–2331, July 2007.

[26] C. E. Perkins and E. M. Royer, “Ad-hoc on-demand distance vector
routing,” in Proceedings WMCSA’99. Second IEEE Workshop on Mobile

Computing Systems and Applications, pp. 90–100, Feb 1999.
[27] R. A. Light, “Mosquitto: server and client implementation of the mqtt

protocol,” Journal of Open Source Software, vol. 2, May 2017.
[28] I. Minakov, R. Passerone, A. Rizzardi, and S. Sicari, “Routing behavior

across wsn simulators: The aodv case study,” in 2016 IEEE World

Conference on Factory Communication Systems (WFCS), pp. 1–8, May
2016.

[29] C. Lai, C. Chen, and L. Wang, “On-demand density-aware uav base
station 3d placement for arbitrarily distributed users with guaranteed
data rates,” IEEE Wireless Communications Letters, pp. 1–1, 2019.

Chuan-Chi Lai is currently holding a post-doctoral
position in the Department of Electrical and Com-
puter Engineering at National Chiao Tung Univer-
sity, Taiwan, R.O.C. He received his Ph. D. in Com-
puter Science and Information Engineering from Na-
tional Taipei University of Technology (Taipei Tech),
Taiwan in 2017. He won Excellent Paper Award
and Best Paper Award in ICUFN 2015 and WOCC
2018 conferences, respectively. His current research
interests are in the areas of data management and
dissemination techniques in mobile wireless environ-

ments, mobile ad-hoc and sensor networks, distributed query processing over
moving objects, and analysis and design of distributed algorithms.

Zulhaydar Fairozal Akbar received the MSc. de-
gree in Electrical Engineering and Computer Sci-
ence from National Taipei University of Technology
(NTUT), in 2016. Now, he is a Junior Lecturer in
Informatics Engineering Department, Electronic En-
gineering Polytechnic Institute of Surabaya (PENS).
His research interests include mobile computing,
data mining and machine learning.

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, OCTOBER 201X 17

Chuan-Ming Liu is an associate professor in the
Department of Computer Science and Information
Engineering, National Taipei University of Tech-
nology (NTUT), TAIWAN. He received his Ph. D.
in Computer Sciences from Purdue University in
2002 and B.S. and M.S. degrees both in Applied
Mathematics from National Chung-Hsing Univer-
sity, Taiwan, in 1992 and 1994, respectively. In the
summer of 2010 and 2011, he has held visiting
appointments at Auburn University and Beijing In-
stitute of Technology, respectively. Dr. Liu’s research

interests include data management and data dissemination in various emerging
computing environments, query processing in moving objects, location-based
services, ad-hoc and sensor networks, parallel and distributed computation,
and analysis and design of algorithms.

Van-Dai Ta received the MSc. degree in computer
science from National Formosa University, Taiwan,
in 2015. Now, he is currently a PhD student of
National Taipei University of Technology, Taiwan.
His current research interests are computer networks,
wireless sensor networks, Data Mining.

Li-Chun Wang (M’96 – SM’06 – F’11) received
Ph. D. degree from the Georgia Institute of Tech-
nology, Atlanta, in 1996. From 1996 to 2000, he
was with AT&T Laboratories, where he was a Se-
nior Technical Staff Member in the Wireless Com-
munications Research Department. Since August
2000, he has joined the Department of Electrical
and Computer Engineering of National Chiao Tung
University in Taiwan and is jointly appointed by
Department of Computer Science and Information
Engineering of the same university. Dr. Wang was

elected to the IEEE Fellow in 2011 for his contributions to cellular archi-
tectures and radio resource management in wireless networks. He won two
Distinguished Research Awards of National Science Council, Taiwan in 2012
and 2017, respectively. He was the co-recipients of IEEE Communications
Society Asia-Pacific Board Best Award (2015), Y. Z. Hsu Scientific Paper
Award (2013), and IEEE Jack Neubauer Best Paper Award (1997). His
current research interests are in the areas of software-defined mobile networks,
heterogeneous networks, and data-driven intelligent wireless communications.
He holds 19 US patents, and have published over 200 journal and conference
papers, and co-edited a book, ”Key Technologies for 5G Wireless Systems,”
(Cambridge University Press 2017).

	I Introduction
	II Related Work
	III Preliminaries
	IV The Distributed Continuous Range-Skyline Query Process
	IV-A Distributed Range-Skyline Query
	IV-A1 Description of DRSQ
	IV-A2 Overview of DRSQ process
	IV-A3 The DRSQ Process

	IV-B Distributed Continuous Range-Skyline Query
	IV-B1 System Assumptions
	IV-B2 Overview of DCRSQ
	IV-B3 Description of DCRSQ

	V Cost Analysis and Discussion
	VI Simulation Results
	VI-A Scenario I: Performance of DRSQ Process
	VI-A1 DRSQ: Density
	VI-A2 DRSQ: Number of Queries
	VI-A3 DRSQ: Query Range
	VI-A4 DRSQ: Transmission Range

	VI-B Scenario II: Performance of DCRSQ Process
	VI-B1 DCRSQ: Density
	VI-B2 DCRSQ: Number of Queries
	VI-B3 DCRSQ: Query Range
	VI-B4 DCRSQ: Transmission Range
	VI-B5 DCRSQ: Node Speed

	VII Conclusion
	Biographies
	Chuan-Chi Lai
	Zulhaydar Fairozal Akbar
	Chuan-Ming Liu
	Van-Dai Ta
	Li-Chun Wang

