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Abstract—With growing popularity, unmanned aerial vehicles
(UAVs) are pivotally extending conventional terrestrial Internet
of Things (IoT) into the sky. To enable high-performance two-way
communications of UAVs with their ground pilots/users, cellular
network-connected UAV has drawn significant interests recently.
Among others, an important issue is whether the existing cellular
network, designed mainly for terrestrial users, is also able to
effectively cover the new UAV users in the three-dimensional
(3D) space for both uplink and downlink communications. Such
3D coverage analysis is challenging due to the unique air-ground
channel characteristics, the resulted interference issue with ter-
restrial communication, and the non-uniform 3D antenna gain
pattern of ground base station (GBS) in practice. Particularly,
high-altitude UAV often possesses a high probability of line-
of-sight (LoS) channels with a large number of GBSs, while
their random binary (LoS/Non-LoS) channel states and (on/off)
activities give rise to exponentially large number of discrete UAV-
GBS association/interference states, rendering coverage analysis
more difficult. This paper presents a new 3D system model to
incorporate UAV users and proposes an analytical framework
to characterize their uplink/downlink 3D coverage performance.
To tackle the above exponential complexity, we introduce a
generalized Poisson multinomial (GPM) distribution to model the
discrete interference states, and a novel lattice approximation
(LA) technique to approximate the non-lattice GPM variable and
obtain the interference distribution efficiently with high accuracy.
The 3D coverage analysis is validated by extensive numerical
results, which also show effects of key system parameters such
as cell loading factor, GBS antenna downtilt, UAV altitude and
antenna beamwidth.

Index Terms—UAV communication, cellular network, 3D cov-
erage, air-ground interference, generalized Poisson multinomial
(GPM) distribution, lattice approximation (LA).

I. INTRODUCTION

With enhanced functionality and reducing cost, unmanned
aerial vehicles (UAVs), or so-called drones, have found fast-
growing applications over recent years in the civilian domain
such as for cargo delivery, precise agriculture, aerial imaging,
search and rescue, etc. In particular, UAV can be employed as
aerial communication platform [1] to provide wireless connec-
tivity for the ground users and Internet of Things (IoT) devices
[2] when traditional terrestrial networks are unavailable, insuf-
ficient or costly to deploy. Typical applications include UAV-
aided communication offloading for temporary hotspot regions
[3]–[9]; mobile data relaying between distant ground users
[10]; and efficient information dissemination or data collection

J. Lyu is with School of Information Science and Engineering, and Key
Laboratory of Underwater Acoustic Communication and Marine Information
Technology, Xiamen University, China 361005 (e-mail: ljb@xmu.edu.cn).

R. Zhang is with the Department of Electrical and Computer En-
gineering, National University of Singapore, Singapore 117583 (email:
elezhang@nus.edu.sg).

in IoT and sensor networks [11] [12], etc. On the other hand,
UAVs can be integrated into the existing and future cellular
networks as new aerial user equipments (UEs) to enable their
two-way communications with the terrestrial users efficiently,
thus extending the IoT to the sky, known as the Internet of
Drones (IoD) [13]. To achieve the cellular-enabled IoD, it is
of paramount importance to ensure that all UAVs can operate
safely and reliably, even in harsh environments. This calls
for ultra-reliable, low-latency, and secure communication links
between the ground base stations (GBSs) and the UAV for
supporting the critical control and non-payload communica-
tions (CNPC). Moreover, in many applications such as video
streaming, surveillance and aerial imaging, UAVs generally
require high-capacity data communication links with the GBSs
so as to timely send the payload data (such as high-quality
images and videos) to the end users.

To enable high-performance two-way communications be-
tween UAVs and ground users, the existing 4G (fourth-
generation) LTE (Long Term Evolution) or forthcoming 5G
(fifth-generation) cellular networks can be leveraged thanks to
their almost ubiquitous accessibility and superior performance.
As a result, network-connected UAV communications have
drawn significant interests recently (see e.g. [14]–[17] and
the references therein). In fact, the 3rd Generation Partnership
Project (3GPP) had launched a new work item to investigate
the various issues and their solutions for UAV communications
in the current LTE network [18]. Moreover, increasingly more
field trials have been conducted on using terrestrial cellular
networks to provide wireless connectivity for UAVs [19] [20].

Among others, one critical issue to address for cellular-
enabled UAV communications is whether the cellular network
is able to provide reliable three-dimensional (3D) coverage for
the UAVs at various altitude in both the uplink and downlink
communications1. To achieve reliable UAV-GBS communi-
cations, the uplink or downlink signal-to-noise ratio (SNR),
with co-channel interference treated as additional noise, needs
to be no smaller than a predefined threshold; otherwise, an
outage will occur. For the UAV’s uplink, it may transmit
multimedia data to the GBS, which requires high data rate and
correspondingly high SNR threshold. On the other hand, the
UAV’s downlink communication needs to support the critical
CNPC data from its associated GBS, which is typically of
lower data rate but requires higher reliability (lower outage
probability) compared to the uplink. The 3D coverage prob-
ability of the UAV uplink/downlink communication is thus

1We follow the convention to use “downlink” to refer to the communication
from GBS to UE and “uplink” to that in the reverse direction, although UAVs
usually have much higher altitude than GBSs in practice.

ar
X

iv
:1

90
1.

07
88

7v
2 

 [
ee

ss
.S

P]
  2

5 
A

pr
 2

01
9



2

defined as the corresponding average non-outage probability
of a UAV uniformly located in a given 3D space.

The 3D coverage performance analysis for aerial users is
considerably different from its two-dimensional (2D) coun-
terpart for ground UEs in the traditional cellular network
[21], due to their distinct channel characteristics and resulted
interference effects. Specifically, for ground UEs, their chan-
nels with GBSs usually exhibit severe pathloss and prominent
small-scale fading due to the rich scattering environment espe-
cially in urban areas. In contrast, for UAVs in the sky far above
the GBSs, their communication signals are more likely to prop-
agate through free space with few obstacles, and hence line-of-
sight (LoS) links usually exist with a high probability, which
increases with the UAV altitude in general [22]. Although
LoS channels entail more reliable communication between
the UAV and its serving GBS as compared to the terrestrial
UEs, they also cause more severe uplink/downlink interference
to/from a larger number of non-associated GBSs. This thus
calls for effective interference management techniques such
as multi-cell coordinated channel assignment and transmission
[23], advanced antenna beamforming techniques at the UAV
[24] and GBS [25], interference-aware UAV path planning
[17], [26], etc. Besides the LoS dominant air-ground channel,
the 3D GBS antenna pattern also has a significant effect
on the UAV’s coverage performance. The commonly adopted
GBS antenna pattern in 3GPP [27] or existing literature [21]
[28] is usually simplified in the vertical domain, e.g., by
specifying only fixed gains for the antenna mainlobe and
sidelobes, respectively. In practice, however, the GBS antenna
is usually tilted downward to support ground UEs [19], and
hence likely to communicate with aerial UEs in its sidelobes
only. Therefore, a more practically refined model for the GBS
antenna pattern is needed to characterize the 3D coverage
performance of the UAV accurately, especially for the case
with non-uniform sidelobe gains and even nulls between them.

This paper thus focuses on modeling the cellular-enabled
UAV communication system and analyzing its 3D coverage
performance for both the uplink and downlink, by taking into
account the unique air-ground channel characteristics and the
practical non-uniform GBS antenna pattern. Specifically, we
consider a practical UAV-GBS association strategy where the
UAV is associated with the GBS that provides the strongest
channel gain with it, which can be implemented by comparing
the reference signal received power (RSRP) of the downlink
signals sent by the GBSs. To capture the essential feature
of air-ground channel, we adopt a simplified but practical
binary channel state model, comprising only the two states
of LoS or non-LoS (NLoS) with different probabilities of
occurrence [22]. As a result, the UAV might be associated
with a distant instead of nearby GBS, depending on its channel
states with the GBSs as well as angles with their antennas.
Besides GBS association, the coverage performance also de-
pends on the interference with co-channel GBSs, which is a
discrete random variable (RV) (as opposed to continuous RV in
terrestrial communication) due to the probabilistic LoS/NLoS
channel model and the random on/off activities of co-channel
GBSs. As a result, the 3D coverage analysis invokes discrete
channel and interference states, and their numbers increase

exponentially with the number of involved GBSs within the
UAV’s signal coverage, which is practically large due to
the high probability of LoS. To our best knowledge, the
coverage performance of the cellular network under such large
discrete channel/interference states has not been addressed,
which is fundamentally different from that of the terrestrial
2D network with continuous fading channel/interference [21],
or the 3D air-ground network [6] [9] without considering the
probabilistic LoS/NLoS channel. The main contributions of
this paper are summarized as follows.

• First, we present a 3D system model for the UAV-
GBS uplink/downlink communications, which includes
the cellular network model, the 3D patterns of the GBS
and UAV antennas, and the 3D air-ground channel. Note
that our model is applicable to any given 3D patterns of
the GBS/UAV antennas.

• Second, we propose an analytical framework to charac-
terize the uplink/downlink 3D coverage (average non-
outage probability) performance of the UAVs. The new
contributions mainly include the consideration of the
probabilistic LoS/NLoS channel states, the UAV-GBS as-
sociation and coupled downlink interference analysis, and
the resulted discrete SNR distribution characterization.
To this end, an efficient sorting algorithm is proposed
to analyze the UAV-GBS association and uplink SNR
distribution, which significantly reduces the complexity
from an exponential order with the number of involved
GBSs by exhaustive search to a linear order. Moreover, to
resolve the coupling between the UAV-GBS association
and downlink interference, the downlink SNR distribution
characterization is reduced to deriving the interference
distribution conditioned on a given UAV-GBS association.

• Third, we model the conditional downlink discrete in-
terference given the associated GBS as a new distribu-
tion termed as generalized Poisson multinomial (GPM),
which take into account the LoS/NLoS channel states and
random on/off channel activities of all co-channel GBSs.
However, the size of the sample space of the discrete
GPM RV increases exponentially with the number of co-
channel GBSs, and as a result its cumulative distribution
function (cdf) is prohibitive to compute via the brute-
force enumeration-based method. Furthermore, the condi-
tional interference distribution needs to be evaluated over
all possible associated GBSs to obtain the downlink SNR
distribution and hence the coverage probability. To reduce
such high complexity, we propose a new and efficient
method to obtain the conditional interference distribution
with high accuracy, named the lattice approximation (LA)
method, which converts a general non-lattice distributed
GPM RV into a lattice distribution with a bounded size
of the value space, and then applies the efficient fast
Fourier transform (FFT) on its characteristic function to
obtain the approximate interference distribution with high
accuracy.

• Finally, extensive numerical results are provided to val-
idate our analysis and reveal insights for system de-
sign. First, it is shown that the GBS antenna pattern
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has a significant impact on the spatial distribution of
non-outage probability, which is useful for UAV path
planning/movement control. Moreover, a large downtilt
angle leads to overall smaller GBS antenna gain for the
UAV above the GBS height, which affects the uplink
and downlink coverage probabilities in different ways.
Second, as the UAV altitude increases, the UAV-GBS
link distance increases while so does the LoS probability,
both of which affect the link strength and hence the
coverage probability, but in opposite ways. In addition,
a high LoS probability at high altitude leads to small
variation of the coverage probability versus the SNR
threshold. Third, a high network loading factor with more
terrestrial UEs reduces the UAV coverage probability
as well as its variation. Finally, besides the antenna
gain, applying directional antenna at the UAV limits the
coverage range of its antenna mainlobe and hence the
number of covered GBSs, which effectively mitigates the
interference at high UAV altitude and thus improves the
coverage performance.

The rest of this paper is organized as follows. Section II
introduces the 3D system model. The 3D coverage analysis for
the uplink/downlink communication is presented in Section III
and Section IV, respectively. Numerical results are provided
in Section V, followed by conclusions in Section VI.

Notations: R denotes the set of real numbers; Z denotes
the set of integer numbers; P{·} denotes the probability of an
event; E{·} denotes the expectation of an RV; ‖ · ‖ denotes
the Euclidean norm; | · | denotes the cardinality of a set; \·
denotes the set minus operation;

⋃
denotes the set union;

⋂
denotes the set intersection; and ∅ denotes the empty set.

II. SYSTEM MODEL

A. Cellular Network Model

Consider a cellular network with the classic hexagonal grid
cell layout2 where each GBS is at the center of its cell with
the inter-cell distance of D meters (m) and a given frequency
reuse factor of ρ = 1/F, where F ≥ 3 and F ∈ Z. An example
of the network with ρ = 1/3 is shown in Fig. 1(a), where the
set of GBSs are denoted as B = {0, 1, 2, · · · } and represented
by circles of different colors. The whole spectrum is equally
divided into F = 3 orthogonal bands, each of which is reused
by the GBSs of the same color, denoted by the co-channel
GBS sets B1 = {1, 3, 5, · · · } (yellow), and B2 = {2, 4, 6, · · · }
(green) and B3 = {0, 8, 10, · · · } (blue), respectively. Note that
generally Bf, f = 1, · · · ,F are orthogonal and

⋃F
f=1 Bf = B.

For simplicity, we assume that all GBSs are at an identical
height of Hb m, and the 3D coordinate of GBS i ∈ B is
denoted by wi , (Xi, Yi, Hb), where Xi, Yi ∈ R. Consider a
typical UAV user flying at an altitude of Hu m, with Hu > Hb,
whose 3D coordinate is denoted by u , (xu, yu, Hu), where
xu, yu ∈ R. Without loss of generality, we assume that GBS 0
is at the origin and the UAV’s horizontal position is randomly
located inside the reference cell 0.

2Note that although we use the regular grid as an example, our analysis
can be extended to arbitrary cell topology in practice.
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Fig. 1: (a) Hexagon cell layout with frequrency reuse factor ρ = 1/3.
(b) Serving GBS for the UAV and other co-channel GBSs which are
active in communicating with their ground UEs and thus generate the
downlink interference to the UAV.
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Fig. 2: Network-connected UAV at high altitude.

In the conventional cellular network, each ground UE is
usually associated with one of its nearby GBSs for communi-
cation based on the average channel gain mainly determined
by the distance-dependent pathloss and shadowing. However,
for the UAV user flying at high altitude, it is possible that the
UAV connects to a distant GBS, due to the random realization
of LoS/NLoS links, as well as the variation of the GBS
antenna radiation pattern in the elevation domain, especially
the sidelobes and the nulls in between. An illustrative example
is given in Fig. 2, where the UAV user is served by the more
distant GBS 3 via a strong antenna sidelobe instead of the
nearby GBS 1 with a possible null of antenna gain. Denote
is ∈ B as the index of the GBS that serves the UAV of interest,
and fs as the index of the set of co-channel GBSs of GBS is,
i.e., is ∈ Bfs . For example, suppose that the serving GBS
is is = 3, then the set of co-channel GBSs is Bfs = B1 as
represented by yellow circles in Fig. 1(b).

We consider that orthogonal time-frequency resource blocks
(RBs) are assigned to the UAV for its uplink and downlink
communications, respectively, by its associated serving GBS
is. We assume that the RBs are assigned to users by the GBSs
in each co-channel GBS set Bf, independently. For each co-
channel GBS i ∈ Bfs \ is, we assume that the RBs assigned to
the UAV by GBS is in the uplink/downlink are simultaneously
used to serve a ground UE with probability ωul,i with 0 <
ωul,i < 1, and ωdl,i with 0 < ωdl,i < 1, respectively. The
channel active probabilities ωul,i and ωdl,i reflect the current
uplink/downlink loading factor of GBS i, respectively, which
are assumed to be given.

Specifically, we define a binary variable µi = 1 to indicate
that the co-channel GBS i ∈ Bfs\is is active in communication
with a ground UE in the same assigned RB as that of the UAV
in the downlink, and otherwise µi = 0. Then the downlink
µi’s for different co-channel GBSs i ∈ Bfs \is are independent
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Bernoulli RVs with parameter ωdl,i, respectively. Similarly, we
can define another binary variable νi to represent the channel
activity of co-channel GBS i ∈ Bfs \ is on the uplink RB used
by the UAV.

B. Antenna Model

We consider a practical GBS antenna gain pattern which
is omnidirectional in the horizontal plane but vertically direc-
tional.3 Denote θ ∈ (−90◦, 90◦] as the elevation angle upward
from the horizontal plane of the GBS antenna, as shown in
Fig. 2. Denote the GBS antenna gain at an elevation angle θ
as Gb(θ). For a GBS i ∈ B, the elevation angle θi as seen by
the UAV above the GBS height is given by

θi(u) = arcsin
Hu −Hb

‖u−wi‖
, θi(u) ∈ (0◦, 90◦]. (1)

The specific GBS antenna gain pattern depends on the GBS
antenna type and configuration. In existing cellular networks,
the GBS antenna is usually tilted downward to support ground
UEs, where the antenna boresight direction is electrically or
mechanically downtilted with an elevation angle θtilt degree
(θtilt < 0), as shown in Fig. 2. For the purpose of exposition,
we consider in this paper the GBS antenna pattern synthesized
by a uniform linear array (ULA) [29] with K co-polarized
dipole antenna elements placed vertically with de spacing
between elements and electrically steered with downtilt angle
θtilt. According to [29], the power gain pattern of the ULA is
given by

Gb(θ) , Ge(θ)
(
J(θ)

)2
= Ge,max cos2 θ

(
sin(K2 ϑ)
√
K sin( 1

2ϑ)

)2

,

(2)
where θ ∈ (−90◦, 90◦]; Ge(θ) , Ge,max cos2 θ is the power
gain pattern of each dipole antenna element with Ge,max denot-
ing its maximum value; and J(θ) ,

sin(K2 ϑ)√
K sin( 1

2ϑ)
is the normal-

ized array factor of the ULA with ϑ , 2π
λ de(sin θ − sin θtilt)

in radian (rad) and λ being the wavelength. Note that in the
downtilt direction, i.e., θ = θtilt, we have ϑ = 0 and hence

J(θtilt) = lim
ϑ→0

sin(K2 ϑ)
√
K sin( 1

2ϑ)
= lim
ϑ→0

d
dϑ

[
sin(K2 ϑ)

]
d
dϑ

[√
K sin( 1

2ϑ)
] =
√
K,

(3)
which follows from the L’Hospital’s rule to evaluate limits.
Therefore, we have

Gb(θtilt) = KGe,max cos2 θtilt, (4)

which approximately achieves the maximum antenna gain in
(2) for small downtilt angle in practice, e.g., |θtilt| ≤ 20◦.
For illustration, the power gain pattern of the ULA in the
3D space for θtilt = −10◦ is plotted in Fig. 3 (a), where the
half-wave dipole element is used with Ge,max = 1.64 and
the following parameters: K = 10, de = 0.5λ and carrier
frequency fc = 2 GHz. The corresponding 2D patterns in
the elevation domain for θtilt = −10◦ and θtilt = −20◦ are
plotted in Fig. 3 (b) and (c), respectively. Similar examples

3Our analysis can be readily extended to the case with sectorized antenna
pattern of the GBS in the horizontal plane.
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Fig. 3: GBS antenna synthesised by the ULA: (a) 3D power gain
pattern (θtilt = −10◦); (b) Elevation pattern (θtilt = −10◦); (c)
Elevation pattern (θtilt = −20◦).

of GBS antenna pattern synthesized by antenna arrays can be
found in the latest 3GPP technical report [30]. Note that our
proposed analytical framework in this paper is general and can
be applied to any given GBS antenna pattern.

On the other hand, the power gain pattern of the UAV
antenna also plays an important role in the link performance.
In particular, the use of directional antenna with different
boresight directions at different UAV altitudes can effectively
confine the interfered/interfering co-channel GBSs in the
uplink/downlink within a limited region and hence alleviate
the severe air-ground interference issue due to strong LoS
channels. Note that depending on the hardware configuration
and flying altitude of the UAV, the boresight direction of
the UAV antenna in general could be adjustable within a
certain range. For simplicity, in this paper, we consider a
given boresight direction of the UAV antenna at each altitude.
For the purpose of exposition, we assume that the UAV is
equipped with a directional antenna whose boresight direction
is pointing downward to the ground, and the azimuth and
elevation half-power beamwidths are both 2Φu degrees (deg)
with Φu ∈ (0◦, 90◦), as shown in Fig. 2. Furthermore, the
corresponding antenna power gain in direction (φa, φe) can
be practically approximated as

Gu(φa, φe) =

{
G0/Φ

2
u, φa, φe ∈ [−Φu,Φu];

g0 ≈ 0, otherwise,
(5)

where G0 = 30000
22 = 7500; φa and φe denote the azimuth

and elevation angles from the antenna boresight direction,
respectively [29]. Note that in practice, g0 satisfies 0 < g0 �
G0/Φ

2
u, and for simplicity we assume g0 = 0 in this paper.

Further note that, in the special case with Φu = 90◦, we have
Gu(φa, φe) ≈ 1,∀φa, φe, which reduces to the case with an
isotropic antenna. The antenna gain of the UAV as seen by a
GBS i ∈ B is thus given by

Gu,i(u) =

{
G0/Φ

2
u, di(u) ≤ rc;

0, otherwise,
(6)

where di(u) ,
√

(xu −Xi)2 + (yu − Yi)2 is the horizontal
distance from the UAV to GBS i, and rc , (Hu−Hb) tan Φu
is the radius of the coverage area of the UAV antenna main-
lobe projected on the horizontal plane at the GBS height, as
shown in Fig. 2. As a result, the UAV can only communi-
cate/interfere with the GBSs within its antenna coverage area.
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C. Channel Model
Due to the high altitude of the UAV, LoS channel exists

with a high probability for practical UAV-GBS links [22],
which has been experimentally verified (see e.g., the recent
field measurement report by Qualcomm [19]). According to
[31], the received signals in UAV-ground communications
mainly constitute three components, namely LoS signal, strong
reflected NLoS signals and multiple reflected signals which
cause multi-path fading, each with a certain probability of
occurrence. Typically, the probability of receiving LoS and
strong NLoS signals are significantly higher than that of multi-
path fading [32]. Therefore, for simplicity as well as capturing
the main characteristic of UAV-ground channels, we ignore the
multi-path fading in this paper and consider only the dominant
LoS and NLoS components.

In practice, the LoS/NLoS probability and associated
pathloss depend on the density and height of buildings in a
given environment, as well as the relative position between the
UAV and GBS. Therefore, in a given environment, the channel
power gain between GBS i ∈ B and the UAV at position u
can be expressed as

hi(u) =

{
hL,i(u), with probability pL,i(u);
hNL,i(u), with probability pNL,i(u),

(7)

where hL,i and pL,i denote the channel power gain and
occurrence probability of the LoS channel, respectively, while
hNL,i and pNL,i denote the counterparts for the NLoS channel,
respectively, and pNL,i = 1 − pL,i. For the specific forms of
the involved functions in (7), interested readers may refer to
the simplified formula in [5] or the empirical formula in [22].
Furthermore, we define a binary variable δi to represent the
event of LoS/NLoS channel occurrence, i.e.,

δi ,

{
1, LoS channel between UAV and GBS i;
0, NLoS channel between UAV and GBS i.

(8)

Then the δi’s for different GBSs i ∈ B are independent
Bernoulli RVs with parameter pL,i, respectively. Then the
channel gain in (7) can be rewritten as

hi(u) = δihL,i(u) + (1− δi)hNL,i(u). (9)

For simplicity in this paper, we consider two states
(LoS/NLoS) for the channel gain hi(u) in (9), which has
not modeled the shadowing gain variation with UAV locations
in the NLoS channel case. The authors in [33] proposed a
segmented regression approach to further extend the chan-
nel model to constitute multiple propagation groups besides
LoS/NLoS (e.g., obstructed LoS), which is shown to be able
to reconstruct the segmented structure of the UAV-ground
propagation conditions observed in practice and by ray tracing
simulations. It is worth pointing out that our proposed analyti-
cal framework is extendable to other channel models, with any
finite number of channel states. For example, for the case of
NLoS, we can add a shadowing gain factor ξ (e.g., log-normal
random variable) to the NLoS power gain hNL,i(u), and then
quantize this shadowing gain distribution approximately into
a discrete random variable with finite number of states. As
such, our proposed analytical method still applies, as we

consider generalized multinomial distributions that can be used
to model any finite number of channel states.

D. UAV-GBS Association

Denote Ci(u) as the overall power gain by taking into
account both the channel power gain and the antenna power
gains of the UAV and GBS i ∈ B, which is given by

Ci(u) , Gu,i(u)hi(u)Gb
(
θi(u)

)
= Gu,i(u)Gb

(
θi(u)

)(
δihL,i(u) + (1− δi)hNL,i(u)

)
. (10)

In this paper, we consider a practical user association rule
where the UAV is associated with the GBS that provides the
strongest power gain with it,4 which can be implemented by
comparing the RSRP of the downlink beacon signals sent by
the GBSs in B. Assume that the beacon signals are sent using
the same transmit power. Then the serving GBS is is selected
as the one with the largest power gain, i.e.,

is , arg max
i∈B

Ci(u). (11)

Accordingly, the handover of the UAV between different
GBSs can follow the typical procedure in cellular networks.
Specifically, the UAV continually monitors the RSRP of the
GBSs it can hear, including the one it is currently associated
with, and feeds this information back. When the RSRP from
the serving GBS starts to fall below a certain level, the cellular
network looks at the RSRP from other GBSs reported by the
UAV, and makes the decision whether to handover or not and
to which GBS.

Note that due to the high altitude, UAV can potentially
have strong LoS links with a large number of co-channel
GBSs. As a result, it is difficult to schedule/reserve a dedi-
cated RB for the UAV’s exclusive use, or perform inter-cell
coordination/interference cancellation for the UAV user as they
require centralized control over many GBSs within the UAV’s
wide communication range. This is especially the case with
a high network-loading factor where the number of active
ground UEs in each cell is already large, and thus the reuse
of RBs is inevitable. Therefore, this paper aims to provide a
baseline performance analysis for the UAV’s uplink/downlink
communications without the need of centralized inter-cell
scheduling/coordination.

E. Uplink Communication

Besides the direct communication link with the associated
GBS, the interference links also affect the 3D coverage per-
formance of the UAV. Specifically, there are two new types
of interference in a cellular network supporting both ground
UEs and UAV users, which are respectively the interference
between UAV users and ground UEs, and that among different
UAVs even when they are not densely distributed. In this paper,
we assume that different UAVs are assigned with orthogonal
channels and thus there is no inter-UAV interference. We
further assume that the traditional interference issue among
ground UEs in co-channel cells is effectively resolved by

4Here we assume that all GBSs have available RBs to support the
uplink/downlink communications of a new UAV user.
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existing techniques such as cell planning, frequency reuse,
dynamic RB allocation, power control, beamforming, etc.
Therefore, we focus on studying the UAV’s uplink/downlink
performance, which is the new contribution of this work.

For uplink communication, we assume that the UAV trans-
mits with power Pu in Watt (W), which is capped by the
maximum transmit power Pmax. The received SNR5 at the
receiver of the serving GBS is is thus given by

γul(u) ,
PuCis(u)

σ2
= β0 max

i∈B
Ci(u), (12)

where β0 , Pu/σ
2 and the receiver noise is assumed to be

additive white Gaussian noise (AWGN) with zero mean and
power σ2.

Note that the uplink SNR γul(u) at each given UAV location
u is an RV due to the probabilistic LoS channel occurrence
δi, i ∈ B. Moreover, γul(u) also depends on the uplink transmit
power Pu. We consider that the UAV has an uplink SNR
requirement of γul(u) ≥ ηul in order to be in non-outage,
where ηul > 0 is a pre-defined SNR threshold. The uplink
outage probability of the UAV at location u is thus defined as

pout,ul(u) , P{γul(u) < ηul} = Fγul(u)(ηul), (13)

where Fγul(u)(·) denotes the cdf6 of γul(u).
Assume that the UAV performs power control with the

objective to satisfy the SNR requirement, while at the same
time reducing the interference to co-channel GBSs, subject
to the maximum transmit power Pmax. Specifically, in the
case where the channel gain Cis of the serving GBS is is
sufficiently large such that PmaxCis (u)

σ2 ≥ ηul, then the SNR
requirement can be satisfied and the UAV can reduce its
transmit power to Pu = ηulσ

2/Cis(u). On the other hand, in
the case with PmaxCis (u)

σ2 < ηul, the SNR requirement cannot
be satisfied even with the maximum transmit power Pmax; as a
result, the UAV is said to be in the uplink “coverage hole”. In
this case, the UAV can keep silent to avoid the interference to
other co-channel GBSs. In the rest of this paper, without loss
of generality, we consider Pu = Pmax in order to characterize
the (maximum) non-outage probability in the uplink.

In practice, if the UAV is allowed to adjust its position
u within a certain region, then the UAV can move to other
position u′ with potentially better SNR to get out of the
coverage hole. For this purpose, the spatial distribution of
the outage probability within the considered region is useful
to guide the direction of the UAV movement in practice. In
Section V, we will investigate the spatial pattern of outage
probability distribution for such applications.

Next, we define the uplink coverage probability of the UAV
in the 3D space S ⊂ R3 as the spatial average of non-outage
probability over the space, i.e.,

pc,ul(S) , Eu∈S
{
P{γul(u) ≥ ηul}

}
= 1− Eu∈S

{
pout,ul(u)

}
,

(14)

5We consider SNR here without any interference from ground UEs, since
such interference belongs to the conventional terrestrial interference in the
cellular uplink, which we have assumed to be negligible and treated as
background noise.

6The cdf of an RV X is defined as FX(x) , P{X < x}.

where the UAV position u is assumed to be uniformly dis-
tributed in the considered 3D space S. More specifically, we
consider two subspaces. First, define the 2D subspace at a
given UAV altitude Hu within the 2D horizontal area A ⊂ R2

as
S(A, Hu) , {(x, y) ∈ A, z = Hu}. (15)

Second, define the 3D subspace between an altitude range
Hu ∈ [Hmin, Hmax] as7

S(A, [Hmin, Hmax]) , {(x, y) ∈ A, z ∈ [Hmin, Hmax]}. (16)

Accordingly, we can investigate the coverage probability at a
certain UAV altitude or altitude range in the cellular network.

In the considered hexagonal cell layout, thanks to symmetry,
the coverage probability of the UAV can be obtained by
applying (14) to the uniformly distributed UAV horizontal
positions within the area of the reference cell 0, denoted as A0.
Note that by symmetry, we can further divide each reference
cell into six centrally-symmetric triangular parts, and then we
only need to average over one such part A4 as shown in
Fig. 1(a) to compute the coverage probability. Therefore, the
overall uplink coverage probability of the UAV at an altitude
Hu is given by

pc,ul
(
S(A4, Hu)

)
= 1− Eu∈S(A4,Hu)

{
pout,ul(u)

}
. (17)

The overall uplink coverage probability of the UAV between
an altitude range [Hmin, Hmax] is then given by

pc,ul
(
S(A4, [Hmin, Hmax])

)
=

∫ Hmax

Hmin

pc,ul
(
S(A4, Hu)

)
dHu.

(18)

F. Downlink Communication

For downlink communication, the UAV receives interfer-
ence from potentially a large number of co-channel GBSs
(see Fig. 1(b)), which cannot be ignored due to the strong
LoS channels. Assume that each GBS transmits with the same
power Pb (W) to the UAV/ground UE in the donwlink. Then
the desired signal power received by the UAV from the serving
GBS is is given by PbCis(u); while the interference power
from each active co-channel GBS i ∈ Bfs \ is is given by
PbIi(u), where Ii(u) , µiCi(u). The aggregate interference
power (normalized by Pb) received by the UAV is thus given
by

I(u) ,
∑

i∈Bfs\is

Ii(u) =
∑

i∈Bfs\is

µiCi(u). (19)

As a result, the SNR received at the UAV is given by

γdl(u) ,
PbCis(u)

PbI(u) + σ2
=

max
i∈B

Ci(u)

α0 +
∑

i∈Bfs\is
µiCi(u)

, (20)

where α0 , σ2/Pb. The downlink SNR γdl(u) at UAV
location u is an RV due to the random channel activity µi of
co-channel GBSs and the probabilistic LoS channel occurrence
δi in Ci, i ∈ B.

7In practice, there are usually limits on the maximum and minimum UAV
altitude due to the air traffic control.
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We assume that the UAV has a downlink SNR requirement
of γdl(u) ≥ ηdl in non-outage, where ηdl > 0 is a pre-defined
SNR threshold. The downlink outage probability of the UAV
at location u can then be defined as

pout,dl(u) , P{γdl(u) < ηdl} = Fγdl(u)(ηdl), (21)

where Fγdl(u)(·) denotes the cdf of γdl(u). Based on (21),
we can similarly define pc,dl(S), pc,dl

(
S(A4, Hu)

)
and

pc,dl
(
S(A4, [Hmin, Hmax])

)
for the downlink similarly as their

uplink counterparts.

III. UAV-GBS ASSOCIATION AND UPLINK OUTAGE
ANALYSIS

In this section, we analyze the UAV’s uplink outage prob-
ability in (13) at any given location u, which is essential to
the characterization of the 3D coverage probability in (14).
For uplink communication, the SNR γul(u) is determined
by the UAV-GBS association based on the strongest power
gain, which is, however, random due to the probabilistic LoS
channel occurrence δi, i ∈ B.

For a given UAV location u, suppose that the antenna power
gains of the UAV and GBS i ∈ B, the channel power gains
hL,i(u) and hNL,i(u) of LoS/NLoS channels, and the LoS
probability pL,i(u) are all given. For notation simplicity, we
drop (u) in the following analysis. Then the uplink SNR in
(12) can be rewritten as

γul = β0 max
i∈B

Ci = β0 max
i∈B

Gu,iGb
(
θi
)(
δihL,i+(1−δi)hNL,i

)
,

(22)
where each term Ci can take two possible values of CL,i ,
Gu,iGb

(
θi
)
hL,i or CNL,i , Gu,iGb

(
θi
)
hNL,i, depending on

the realization of the Bernoulli RV δi which takes the value
of 1 with probability pL,i or 0 with probability 1 − pL,i. In
general, we have CL,i > CNL,i,∀i ∈ B.

In order to obtain the probability mass function (pmf)8

of the uplink SNR γul, a direct method is to enumerate
2|B| possible combinations of Ci, i ∈ B, then find for each
realization the maximum Ci and its probability of occurrence.
This enumeration-based method has an exponential complexity
in terms of |B|, which can be practically large (e.g., when the
UAV altitude Hu is high and the UAV antenna beamwidth
Φu is large, the UAV can potentially establish strong LoS
links with a large number of GBSs9). In order to reduce
such complexity, we propose an efficient algorithm to obtain
the pmf of γul in Algorithm 1. The key idea is to sort the
LoS channel gains {CL,i}i∈B in descending order, then obtain
the maximum Ci and its probability one by one based on
the sorted order. Specifically, denote the ordered index of
the GBSs as im,m = 1, · · · , |B|. First, we have P{γul =
β0CL,i1} = pL,i1 , since max

i∈B
Ci = CL,i1 when the channel

realization between the UAV and GBS i1 is LoS. Similarly,
we have P{γul = β0CL,im} = pL,im

∏m−1
j=1 (1 − pL,ij ), since

max
i∈B

Ci = CL,im when the channel realization between the

8The pmf of a discrete RV X is defined as fX(x) , P{X = x}.
9Note that due to the probabilistic LoS/NLoS channel realization and the

non-uniform GBS antenna pattern in the elevation domain, the serving GBS
is not necessarily nearby the UAV, but instead can be quite far apart.

UAV and GBS im is LoS while those between the UAV and
GBSs i1, · · · , im−1 are NLoS. As a result, the worse-case
complexity of Algorithm 1 is only linear in the maximum
number of iterations |B|.

To further reduce the number of iterations in Algorithm 1,
two early stopping criteria can be applied. First, let Cmax

NL ,
maxi∈B CNL,i be the maximum NLoS channel gain among
the GBSs in B. Then the algorithm can stop early if the
current LoS channel gain CL,im is smaller than Cmax

NL , since the
maximum Ci cannot be smaller than Cmax

NL . Second, in the m-
th iteration, if the probability term

∏m−1
j=1 (1− pL,ij ) is lower

than a prescribed small threshold value ε > 0, then we can
also neglect the rest of iterations and stop the algorithm early.
Finally, after the pmf of uplink SNR γul(u) at UAV location
u is derived, we can then obtain its cdf and hence the uplink
outage probability in (13).

Algorithm 1 Computing the pmf of uplink SNR γul

1: Sort {CL,i}i∈B in descending order, and denote the ordered index
of the GBSs as im,m = 1, · · · , |B|.

2: Let Cmax
NL , maxi∈B CNL,i.

3: Set P{γul = β0CL,i1} = pL,i1 .
4: for m = 2, · · · , |B| do
5: if CL,im < Cmax

NL then
6: Set P{γul = β0C

max
NL } =

∏m−1
j=1 (1− pL,ij );

7: go to END.
8: end if
9: P{γul = β0CL,im} = pL,im

∏m−1
j=1 (1− pL,ij ).

10: end for
11: P{γul = β0C

max
NL } =

∏|B|
j=1(1− pL,ij ).

12: END: Set for all other values of γul probability 0.

IV. DOWNLINK OUTAGE ANALYSIS

In this section, we analyze the UAV’s downlink outage
probability in (21) at any given location u, which is more
involved as compared to that in the uplink derived in the
previous section. For downlink communication, the SNR
γdl(u) depends on not only the UAV-GBS association, but
also the aggregate interference I(u) from all co-channel GBSs
i ∈ Bfs \ is, which is a discrete RV due to the probabilistic
LoS channel occurrence δi and the random channel activity
µi. First, we derive the general cdf expression of γdl(u), by
resolving the coupling between the UAV-GBS association and
the aggregate interference based on conditional probabilities.
Then conditioned on the associated GBS, we further investi-
gate the cdf of aggregate interference with practically a large
number of co-channel GBSs in our considered system. As
a result, the computational complexity of the enumeration-
based method to directly compute the discrete conditional
interference cdf is exponential in the number of co-channel
GBSs, which is prohibitive for implementation. To reduce such
high complexity, we propose a new and more efficient method,
named the lattice approximation (LA) method.
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A. Downlink SNR Distribution

For any given UAV location u and by dropping (u) for
brevity, the SNR γdl in (20) can be rewritten as

γdl =
Cis

α0 + I
=

max
i∈B

(
δiCL,i + (1− δi)CNL,i

)
α0 +

∑
i∈Bfs\is

µi
(
δiCL,i + (1− δi)CNL,i

) ,
(23)

which is mainly determined by the UAV-GBS association and
the aggregate co-channel interference I . However, it is evident
that they are coupled with each other. In the following, we
first derive a general formula to obtain the downlink SNR
cdf, by resolving the above coupling based on conditional
probabilities.

From (23), the cdf of γdl can be defined as

Fγdl(y) , P{γdl ≤ y} = P
{

Cis
α0 + I

≤ y
}

= P
{
I ≥ −α0 + Cis/y

}
(a)
= ECis

{
P
{
I ≥ −α0 + Cis/y|Cis

}}
= ECis

{
1− FI|Cis

(
− α0 + Cis/y

)}
, (24)

where y > 0 is assumed; the right-hand side (RHS) of (a)
takes expectation of the conditional probability P

{
I ≥ −α0 +

Cis/y|Cis
}

over the realization of the channel power gain
Cis with the associated GBS; and FI|Cis (·) is the cdf of I
conditioned on the realization of Cis .

The realization of Cis depends on the UAV-GBS associ-
ation, whose pmf can be obtained similarly by Algorithm 1
in Section III. The overall algorithm to obtain the cdf of the
downlink SNR γdl is summarized in Algorithm 2. Denote T
as the running time of each iteration (which will be specified
later in Section IV-B) to obtain the conditional interference cdf
FI|Cis (·) in Step 4 of this algorithm. As a result, the worse-
case complexity to compute the cdf of downlink SNR γdl(u)
at UAV location u is O(T |B|). Note that similar to Algorithm
1, we can stop the algorithm early if the current LoS channel
power gain CL,im is smaller than Cmax

NL , which is omitted in
Algorithm 2 for brevity. The early stopping threshold ε for
Algorithm 1 can also be similarly used to further reduce the
number of iterations.

Algorithm 2 Computing the cdf of downlink SNR γdl

1: Sort {CL,i}i∈B in descending order, and denote the ordered index
of the GBSs as im,m = 1, · · · , |B|.

2: for m = 1, · · · , |B| do
3: Set P{Cis = CL,im} = pL,im

∏m−1
j=1 (1− pL,ij ).

4: Obtain the conditional cdf FI|Cis (·) by using the LA method
in Section IV-B.

5: end for
6: Compute the cdf of γdl by (24).

The main challenge of implementing Algorithm 2 lies in
how to obtain the conditional cdf FI|Cis (·) in each iteration
m, which is addressed in the following. For any given UAV
location u and by dropping (u) for brevity, the aggregate

interference power in (19) can be expressed as

I =
∑

i∈Bfs\is

µi
(
δihL,i + (1− δi)hNL,i

)
Gu,iGb

(
θi
)
, (25)

which depends on two sets of independent RVs, i.e., the
random channel activity µi and the probabilistic LoS channel
occurrence δi of all the co-channel GBSs i ∈ Bfs \ is.
Conditioned on the realization of channel power gain Cis of
the associated GBS is, a subset of LoS channel realizations
δi, i ∈ B are implied. Specifically, for the m-th iteration in
Algorithm 2, some of the co-channel GBSs should have the
NLoS channel realization, i.e., δij = 0,∀j = 1, · · · ,m−1. As
a result, the involved co-channel interference terms Iij , j =
1, · · · ,m − 1, ij ∈ Bfs \ is, can only take two possible
values between 0 (corresponding to µi = 0) and CNL,ij
(corresponding to µi = 1) with probabilities 1 − ωdl,ij and
ωdl,ij , respectively. On the other hand, the interference term
Ii from each remaining co-channel GBS i ∈ Bfs \ is can take
three possible values of 0, CNL,i and CL,i with probabilities
1− ωdl,i, ωdl,i(1− pL,i) and ωdl,ipL,i, respectively.

In general, consider a discrete RV ζi which takes values
from 1, · · · , L with probabilities pi,1, · · · , pi,L, respectively,
where

∑L
l=1 pi,l = 1. Based on independent ζi, i = 1, · · · ,M ,

a new RV is defined as

Z ,
M∑
i=1

zi =

M∑
i=1

L∑
l=1

ai,l1l(ζi), (26)

which is named as the generalized Poisson multinomial (GPM)
RV10, where zi ,

∑L
l=1 ai,l1l(ζi) can take L possible val-

ues ai,1, · · · , ai,L, and 1l(x) is the indicator function where
1l(x) = 1 when x = l and 1l(x) = 0 otherwise. Without loss
of generality, assume that ai,1 ≤ ai,2 · · · ≤ ai,L. From (25)
and (26), it follows that the conditional aggregate interference
I can be modeled as a GPM variable.

For real-valued ai,l’s in practice, the value space of the
composite GPM variable Z has a worst-case size of LM . As
a result, in order to completely characterize the pmf of Z,
an enumeration-based method has time complexity O(LM ),
and moreover it requires additional O(LM ) time for sorting
the mass points in order to obtain the cdf. To avoid such
exponential complexity, in the sequel we propose the LA
method to obtain the approximated cdf of Z efficiently with
high accuracy.

B. Lattice Approximation (LA) Method

Instead of directly computing the pmf/cdf, we leverage
the characteristic function (cf)11 of Z, which always exists
and uniquely characterizes its distribution. The cf approach is
useful in the analysis of linear combinations of independent

10It is called “generalized” as it allows each individual summand zi to take
values from different real-valued sample spaces with different probabilities,
thus extending the Poisson multinomial distribution [34] and further the
ordinary multinomial distribution.

11The cf of an RV X is defined as ϕX(s) , E{ejsX} =∫∞
−∞ ejsx dFX(x), where j =

√
−1.
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RVs. In our setting, the GPM variable Z is the sum of
independent RVs zi, i = 1, · · · ,M , whose cf is given by

ϕZ(s) , E{ejsZ} =

M∏
i=1

ϕzi(s), (27)

which is decomposed as the product of individual cf ϕzi(s)
given by

ϕzi(s) , E{ejszi} =

L∑
l=1

pi,le
jsai,l , i = 1, · · · ,M. (28)

After decomposition, computing the cf ϕZ(s) at one point s
has only linear complexity O(LM), which involves computing
M independent cfs ϕzi(s), i = 1, · · · ,M , using the given
values of pi,l and ai,l for i = 1, · · · ,M and l = 1, · · · , L.

Next, we introduce a cf inversion lemma which will be used
to recover the cdf of Z.

Lemma 1. If an RV X has all its masses concentrated on
the integer lattice N , {0, 1, · · · , N − 1} of finite length N ,
then its pmf qn = P{X = n}, n ∈ N can be recovered by
performing inverse discrete Fourier transform (DFT) on the
N equally-spaced samples of the cf ϕX(s), i.e.,

qn =
1

N

N−1∑
k=0

ϕX [k]e−j2πkn/N , n ∈ N , (29)

where ϕX [k] , ϕX(s)|s= 2πk
N
, k ∈ N .

Proof: If X has its masses concentrated on N with the pmf
qn , P{X = n}, n ∈ N , then its cf is given by

ϕX(s) , E{ejsX} =

N−1∑
n=0

qne
jns, (30)

which is continuous in s and has a period 2π (analogous to the
frequency domain signal), and coincides with the discrete time
Fourier transform (DTFT) for the “time” sequence qn, n ∈ N .
To obtain perfect recovery (i.e., no aliasing) of the sequence
qn, n ∈ N , we can take N samples from ϕX(s) which are
equally spaced around the unit circle as

ϕX [k] , ϕX(s)|s= 2πk
N

=

N−1∑
n=0

qne
j2πkn/N , k ∈ N , (31)

which is the DFT of the sequence qn, n ∈ N . Therefore, we
can use the inverse DFT to recover the pmf sequence as in
(29) and hence lemma 1 follows. �

Note that the fast Fourier transform (FFT) algorithm can be
applied to perform the inverse DFT efficiently. In our context,
the cf samples for the GPM variable Z can be obtained using
(27). However, Lemma 1 cannot be applied directly to recover
the pmf of Z. This is because the real-valued discrete GPM
variable Z has its masses concentrated on a set of LM points,
which are usually not equally spaced to form a lattice12 or
even integer lattice, and moreover the number of mass points
to be recovered is overwhelming even for the FFT algorithm.
To resolve the above challenge, we propose the LA method,

12A lattice is a set of the form {nd + κ|n =
0,±1,±2, · · · , for some d > 0 and κ ∈ R}.

where the original Z is approximated by an integer lattice with
a bounded size of value space, and furthermore the efficient
FFT algorithm is applied on its cf samples to recover its pmf
and hence the approximated cdf of Z.

Specifically, we propose the offset-scale-quantize operation
to convert a general non-lattice GPM variable Z into an
integer-lattice GPM variable Z̃, and then use the cdf of Z̃
to obtain an approximated cdf of Z. Denote A0 ,

∑M
i=1 ai,1

as the minimum possible value of Z, and A ,
∑M
i=1 ai,L−A0

as the absolute range of possible values of Z. The first step is
to offset each summand zi by ai,1, respectively, so that each
summand has a minimum value of 0 and so does their sum.
This offsetting process is practically helpful for the stability
of numerical computations involving complex numbers of
potentially large phase (e.g., computing the cf samples in (27)),
and also facilitates the subsequent scaling operation. Second,
we perform a scale-and-quantize operation on zi − ai,1 and
convert it into z̃i, which is obtained by multiplying zi − ai,1
with a common factor of β > 0, and then rounding all the
possible values β(ai,l − ai,1)’s to their nearest integer values,
denoted as ãi,l, respectively, to which the original mass pi,l
now attributes13. The absolute value range of the converted
GPM variable Z̃ ,

∑M
i z̃i can then be denoted as

Ã ,
M∑
i=1

ãi,L, (32)

which is around dβAe with d·e denoting the ceiling function.
As a result, the new GPM variable Z̃ has its masses con-
centrated on the lattice N = {0, 1, · · · , Ã} of finite length
Ã+ 1 ≈ dβAe+ 1. Compared to the exponential number LM

of mass points in a general non-lattice GPM variable Z, the
scale-and-quantize operation effectively merges adjacent non-
lattice mass points into an integer lattice with bounded size of
value space, where the size can be controlled by the scaling
factor β. Note that the offset-scale-quantize operation takes
effect on each possible value of each summand zi, which has
an overall complexity of O(LM).

For the converted integer-valued GPM variable Z̃, samples
of its cf ϕZ̃(s) can be obtained similar to (27). Therefore, we
can apply Lemma 1 to obtain the exact pmf of Z̃ whose mass
points are already sorted, and hence we can directly obtain its
cdf FZ̃(·). The cdf of the original GPM variable Z can then
be approximated as

FZ(x) , P{Z ≤ x} = P{β(Z −A0) ≤ β(x−A0)}
(a)
≈ P{Z̃ ≤ β(x−A0)} = FZ̃

(
β(x−A0)

)
, (33)

where (a) is due to possible quantization errors.
Note that a larger scaling factor β corresponds to more

lattice points and hence smaller quantization errors. However,
the time to compute βA samples of the cf ϕZ̃(s) in (27)
increases in O(βALM), while the time to perform FFT
increases in O

(
βA log2(βA)

)
. Therefore, there is a trade-off

between the accuracy and computational efficiency. The over-
all algorithm to obtain the cdf of a real-valued GPM variable is

13Rounding is performed on the individual summand instead of the sum,
since otherwise we still have to round LM possible values of the sum.
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summarized in Algorithm 3, whose computational time T has
the complexity of O(LM) +O(βALM) +O

(
βA log2(βA)

)
.

Note that β can be chosen as β = c0/A so that βA is a
large enough constant c0 (e.g., in the range of 100 to 1000)
to provide high approximation accuracy, and hence the LA
method has a linear complexity in M .

Algorithm 3 LA method to approximate the cdf of non-lattice
GPM
Input: For each independent summand zi, i = 1, · · · ,M , given its
possible values ai,l with probabilities pi,l for l = 1, · · · , L. Let
ai,1 ≤ ai,2 · · · ≤ ai,L.
Output: The approximated cdf of the GPM variable Z =

∑M
i=1 zi.

1: A0 ,
∑M

i=1 ai,1;A ,
∑M

i=1 ai,L −A0.
2: Set β = c0/A.
3: Under β, perform the offset-scale-quantize operation on zi and

convert it into z̃i, i = 1, · · · ,M .
4: Let Z̃ ,

∑M
i z̃i. Apply Lemma 1 to obtain its sorted pmf and

hence its cdf FZ̃(·).
5: Approximate the cdf of Z based on (33).

V. NUMERICAL RESULTS

Consider a network area centered at the reference GBS 0
with radius Dmax. The following parameters are used if not
mentioned otherwise: Dmax = 10D, D = 500 m, Hb = 20
m, θtilt = −10◦, Φu = 90◦ (isotropic UAV antenna), fc = 2
GHz, c = 3 × 108 m/s, per-RB noise power σ2 = −124
dBm, Pb = 0.1 W, Pu = −20 dBm14, ε = 10−6, c0 = 1000,
ηul = 12 dB, ηdl = 2 dB and ωdl = 0.5. The corresponding
empirical formulas in [22] are used in the simulation for the
channel model in (7).

A. Uplink Communication

1) Spatial Distribution of Non-Outage Probability: The
non-outage probability 1 − pout,ul(u) at location u can be
obtained by the analysis in Section III. The spatial distribution
of uplink non-outage probability for the UAV located in the
reference cell 0 at different altitude Hu under different GBS
antenna downtilt angle θtilt (as in Fig. 3 (b) and (c)) is plotted in
Fig. 4. It can be seen that the GBS antenna pattern, especially
the sidelobes and nulls in between, has a significant impact
on the spatial distribution of non-outage probability, where
the UAV is mainly served by the sidelobe peaks of GBS
0 or other GBSs complementarily. Moreover, a larger |θtilt|
leads to overall smaller GBS antenna gain for the UAV above
the GBS height, which results in overall lower strength of
the communication link and hence lower coverage probability
(average non-outage probability), as will be also shown later
in Fig. 5. On the other hand, as the UAV altitude increases,
the UAV-GBS link distance increases, while so does the LoS
probability. This two factors affect the link strength and hence
the coverage probability in opposite ways.

The spatial distribution of non-outage probability is helpful
in facilitating UAV path planning/movement control. For the
example in Fig. 4(a), in order to move across the cell from
location a to location c, the straight path a − c needs to fly

14Pu is set to a low level (40 dB lower than Pb) in order to limit the uplink
interference to other cells.

(a) Under θtilt = −10◦.

(b) Under θtilt = −20◦.

Fig. 4: Uplink non-outage probability 1− pout,ul for the UAV located
in the reference cell 0 at different altitude Hu.

over the outage region while the dashed red trajectory a−b−c
enjoys full uplink coverage along the way with short traveling
distance. Other examples may suggest UAV movement across
different layers of altitude in the 3D space. Similar applications
exist for the downlink case (e.g., based on Fig. 8 in the sequel).

2) Coverage Probability: The uplink coverage probability
pc,ul at an altitude Hu can be obtained in (17). The trends
of pc,ul versus the UAV altitude Hu under different GBS
antenna downtilt angle θtilt and UAV antenna beamwidth Φu
are plotted in Fig. 5. For the cases with Φu = 90◦ (isotropic
UAV antenna), the coverage probability pc,ul corresponds to the
spatial average of non-outage probability in Fig. 4 and tends
to decrease with the UAV altitude Hu, while the oscillation
is mainly due to the non-uniform GBS antenna pattern in the
elevation domain. In contrast, for the cases with Φu = 75◦,
the UAV directional antenna gain is helpful for pc,ul (see Fig.
5 at high altitude, e.g., Hu ≥ 80 m). On the other hand, at
low altitude, the limited coverage range of the UAV antenna
mainlobe limits its chance to be served by GBSs with good
channel. As a result, the coverage probability first increases
and then decreases with the UAV altitude. Moreover, the curve
also becomes smoother since the UAV is potentially served by
fewer GBSs with non-uniform antenna patterns.

In addition, the trend of pc,ul versus the SNR threshold ηul is
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Fig. 5: Uplink coverage probability versus the UAV altitude.
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Fig. 6: Uplink coverage probability pc,ul versus the SNR threshold ηul,
under Φu = 90◦ (isotropic UAV antenna) and GBS antenna downtilt
θtilt = −10◦.

plotted in Fig. 6. It can be seen that pc,ul in general decreases
with ηul at a given UAV altitude. On the other hand, as the
UAV altitude Hu increases, the LoS probability also increases,
resulting in an overall less variation of pc,ul versus ηul.

B. Downlink Communication

1) Aggregate Interference Distribution: Assume that the
UAV is equipped with isotropic antenna of unit gain, located at
horizontal location (0.3D, 0.1D) with altitude Hu = 100 m,
and is associated with the GBS with the largest LoS channel
gain. We apply the LA method, enumeration method, Monte
Carlo (MC) based simulation, and a benchmark Gaussian
Approximation (GA) method to obtain the aggregate inter-
ference distribution under different cell loading factor ωdl, for
comparison. For the MC method, 106 random samples of the
aggregate interference I is generated in order to provide a good
approximation for the true distribution, where each sample of
I is drawn by summing over one realization of the interference
terms Ii, i ∈ Bfs \ is which are randomly and independently
generated. On the other hand, the GA method is based on the
central limit theorem, where the cdf of I is approximated by
the non-negative part of the Gaussian cdf which is normalized
such that the total probability is 1. The mean and standard
deviation of I need to be computed in the GA method, based
on the given values of ai,l’s and pi,l’s and with a computation
time T of O(LM2).

Consider a network area with radius Dmax = 3D, where
there are 37 GBSs in B and 11 co-channel GBSs. The results
are plotted in Fig. 7. It can be seen that the LA method
matches almost exactly with the enumeration method, while
both results are verified by MC simulation. On the other
hand, the GA method provides fair approximation result for

0 0.2 0.4 0.6 0.8 1
Aggregate interference I (normalized by Pb) ×10-9

0

0.2

0.4

0.6

0.8
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cd
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Dmax = 3D (11 co-channel BSs)

ωdl = 0.9ωdl = 0.5ωdl = 0.2

LA
GA
Enumeration
Monte Carlo

Fig. 7: The cdf of the downlink aggregate interference I for network
layout Dmax = 3D, under different cell loading factor ωdl.

the case with moderate loading (e.g., ωdl = 0.5), while the
approximation result is poor for the case with low (or high)
loading. The average CPU time for the LA, GA, MC, and
enumeration methods are 0.040, 0.028, 7.36 and 194 seconds,
respectively, which are performed in MATLAB2015b on a
laptop computer with Intel i7 2.7GHz CPU and 8GB memory
without multi-core tasking. It can be seen that both the LA and
GA methods run much faster than the MC and enumeration
methods. Note that due to exponential time complexity, the
enumeration method cannot be used for a larger setup with one
or more tiers of co-channel GBSs (i.e., M ≥ 17). In summary,
the LA method provides highly accurate approximation for the
aggregate interference distribution with low time complexity,
thus it will be applied in the rest of simulations.

2) Spatial Distribution of Non-Outage Probability: The
downlink non-outage probability 1 − pout,dl(u) at location u
can be obtained by the analysis in Section IV. The spatial
distribution of downlink non-outage probability for the UAV
located in the reference cell 0 at different altitude Hu is
plotted in Fig. 8. Compared to the uplink, the UAV’s non-
outage probability in the downlink is determined by the direct
communication link as well as the aggregate interference
distribution. In particular, a larger downtilt angle |θtilt| leads
to overall smaller GBS antenna gain for the UAV above the
GBS height, which reduces the overall strength of both direct
link and interference links. However, the reduction on the
aggregate interference is more significant, resulting in overall
higher downlink coverage probability for the UAV above a
certain altitude (e.g., Hu ≥ 60 m), which is also shown next
in Fig. 9.

3) Coverage Probability: The trends of downlink coverage
probability pc,dl versus the UAV altitude Hu under different
UAV antenna beamwidth Φu and GBS antenna downtilt angle
θtilt are plotted in Fig. 9. The curve oscillation is due to
the non-uniform GBS antenna pattern which also results in
complicated interference distribution. It can be seen that at
high altitude, the directional UAV antenna is helpful for
improving pc,dl, which not only brings directional antenna gain,
but also effectively limits the interference from GBSs outside
the UAV’s antenna coverage range, hence resulting in higher
pc,dl compared to the case with isotropic UAV antenna.

In addition, the trend of pc,dl versus the SNR threshold ηdl
is plotted in Fig. 10. It can be seen that at a given altitude, pc,dl
decreases with ηdl, and is lower for a higher loading factor ωdl.
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(a) Under θtilt = −10◦.

(b) Under θtilt = −20◦.

Fig. 8: Downlink non-outage probability 1−pout,dl for the UAV located
in the reference cell 0 at different altitude Hu.
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Fig. 9: Downlink coverage probability versus the UAV altitude.

Moreover, a higher loading factor ωdl also leads to overall less
variation of pc,dl versus ηdl.

VI. CONCLUSIONS

This paper studies the 3D system modeling and coverage
performance analysis for network-connected UAVs in the
cellular uplink and downlink communications. A 3D cellular
network model is presented which incorporates the 3D air-
ground channel and 3D patterns of the GBS/UAV antennas.
Based on it, an analytical framework is further proposed to
characterize the uplink/downlink 3D coverage performance,
which effectively reduces the exponential complexity due to
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Fig. 10: Downlink coverage probability pc,ul versus the SNR thresh-
old ηdl, under Φu = 90◦ (isotropic UAV antenna) and GBS antenna
downtilt θtilt = −10◦.

UAV-GBS association and coupled interference distribution.
The conditional discrete interference is modeled as a new
GPM RV, and a novel LA method is proposed to obtain
the interference distribution efficiently with high accuracy.
The 3D coverage analysis is validated by extensive numerical
results, which also show the effects of cell loading factor, GBS
antenna downtilt, UAV altitude and antenna beamwidth, and
applications for UAV path planning/movement control.

Our analytical framework is applicable to heterogeneous
GBS locations, heights, antenna patterns and loading factors.
The results based on directional UAV antenna and practi-
cally downtilted GBS antenna provide motivation for more
advanced antenna and beamforming design, such as vertically
sectorized GBS antenna and 3D digital beamforming at the
GBS/UAV. Advanced interference mitigation techniques such
as multi-cell coordinated GBS selection, channel allocation,
power control and joint transmission/reception can also be
applied to further improve the coverage performance, which
will lead to promising future studies.
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