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Recurrent Neural Networks For Accurate RSSI
Indoor Localization

Minh Tu Hoang, Brosnan Yuen, Xiaodai Dong, Tao Lu, Robert Westendorp, and Kishore Reddy

Abstract— This paper proposes recurrent neural networks
(RNNs) for WiFi fingerprinting indoor localization. Instead of
locating a mobile user’s position one at a time as in the cases
of conventional algorithms, our RNN solution aims at trajectory
positioning and takes into account the correlation among the
received signal strength indicator (RSSI) measurements in a tra-
jectory. To enhance the accuracy among the temporal fluctuations
of RSSI, a weighted average filter is proposed for both input
RSSI data and sequential output locations. The results using
different types of RNN including vanilla RNN, long short-term
memory (LSTM), gated recurrent unit (GRU), bidirectional RNN
(BiRNN), bidirectional LSTM (BiLSTM) and bidirectional GRU
(BiGRU) are presented. On-site experiments demonstrate that
the proposed structure achieves an average localization error
of 0.75 m with 80% of the errors under one meter, which
outperforms KNN algorithms and probabilistic algorithms by
approximately 30% under the same test environment.

Index Terms- Received signal strength indicator, WiFi indoor
localization, recurrent neuron network, long short-term memory,
fingerprint-based localization.

I. INTRODUCTION

The motivation of this paper is to locate a walking human
using the WiFi signals of the carried smartphone. In general,
there are two main groups in WiFi indoor localization: model
based and fingerprinting based methods. To estimate the lo-
cation of the target, the former one utilizes the propagation
model of wireless signals in forms of the received signal
strength (RSS), the time of flight (TOF) and/or angle of arrival
(AOA) [1], [2]. In contrast, the latter considers the physically
measurable properties of WiFi as fingerprints or signatures for
each discrete spatial point to discriminate between locations.
Due to the wide fluctuation of WiFi signals [3] in an indoor
environment, the exact propagation model is difficult to obtain,
which makes the fingerprinting approach more favorable.

In fingerprint methods, the received signal strength indicator
(RSSI) is widely used as a feature in localization because
RSSI can be obtained easily from most WiFi receivers such as
mobile phones, tablets, laptops, etc. [4], [5]. However, RSSI
has two drawbacks: instability due to fading and multipath
effects and device heterogeneity due to the fact that different
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devices have different RSSIs even at the same position [5].
In order to mitigate these problems, channel state information
(CSI) is adopted to provide richer information from multiple
antennas and multiple subcarriers [5], [6]. Although CSI is a
more detailed fingerprint to improve the localization accuracy,
it is only available with the specific wireless network interface
cards (NIC), e.g., Intel WiFi Link 5300 MIMO NIC, Atheros
AR9390 or Atheros AR9580 chipset [6]. Therefore, RSSI is
still a popular choice in practical scenarios.

Among WiFi RSSI fingerprinting indoor localization ap-
proaches, the probabilistic method is based on statistical in-
ference between the target signal measurement and stored
fingerprints using Bayes rule [7]. The RSSI probability density
function (PDF) is assumed to have empirical parametric distri-
butions (e.g., Gaussian, double-peak Gaussian, lognormal [8]),
which may not be necessarily accurate in practical situations.
In order to achieve better performance, non-parametric meth-
ods [9], [10] did not make no assumption on the RSSI PDF
but require a large amount of data at each reference point (RP)
to form the smooth and accurate PDF. Beside the probabilistic
approach, the deterministic methods use a similarity metric
to differentiate the measured signal and the fingerprint data
in the dataset to locate the user’s position [11]. The simplest
deterministic approach is the K nearest neighbors (KNN) [12]–
[14] model which determines the user location by calculating
and ranking the fingerprint distance measured at the unknown
point and the reference locations in the database. Moreover,
support vector machine (SVM) [15] provides a direct mapping
from RSSI values collected at the mobile devices to the
estimated locations through nonlinear regression by supervised
classification technique [16]. Despite their low complexity, the
accuracy of these methods are unstable due to the wide fluctu-
ation of WiFi RSSI [13]–[15]. In contrast to these algorithms,
artificial neural network (ANN) [5], [17] estimates location
nonlinearly from the input by a chosen activation function
and adjustable weightings. In indoor environments, because
the transformation between the RSSI values and the user’s
locations is nonlinear, it is difficult to formulate a closed form
solution [16]. ANN is a suitable and reliable solution for its
ability to approximate high dimension and highly nonlinear
models [5]. Recently, several ANN localization solutions,
such as multilayer perceptron (MLP) [18], robust extreme
learning machine (RELM) [19], multi-layer neural network
(MLNN) [20], convolutional neural network (CNN) [21], etc.,
have been proposed.

Although having been extensively investigated in the litera-
ture, all of the above algorithms still face challenges such as
spatial ambiguity, RSSI instability and RSSI short collecting
time per location [22]. To address these challenges, this paper
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focuses on recurrent neural network (RNN) to determine the
user’s location by exploiting the sequential correlation of RSSI
measurements. Since the moving speed of the user in an
indoor environment is bounded, the temporal information can
be used to distinguish the locations that has similar finger-
prints. Note that resolving the ambiguous locations has been
a common challenge in indoor localization. Some works in
literature also exploit the measurements in previous time steps
to locate the current location, including the use of Kalman
filter [23]–[26] and soft range limited K-nearest neighbors
(SRL-KNN) [22]. Among them, Kalman filter estimates the
most likely current location based on prior measurements,
assuming a Gaussian noise of the RSSI and linear motion
of the detecting object. However, in real scenarios, these
assumptions are not necessarily valid [27]. In comparison,
SRL-KNN does not make the above assumptions but requires
that the speed of the targeting object is bounded, e.g., from
0.4 m/s to 2 m/s. If the speed of the target is beyond the
limit, the localization accuracy of SRL-KNN will be severely
impaired. In contrast, our RNN model is trained from a large
number of randomly generated trajectories representing the
natural random walking behaviours of humans. Therefore, it
does not have the assumptions or constraints mentioned above.

The main contributions of this paper are summarized as
follows.

1 According to our knowledge, there is no existing com-
prehensive RNN solution for WiFi RSSI fingerprinting
with detailed analysis and comparisons. Therefore, we
propose a complete study of RNN architectures includ-
ing network structures and parameter analysis of several
types of RNNs, such as vanilla RNN, long short term
memory (LSTM) [28], gated recurrent unit (GRU) [29],
bidirectional RNN (BiRNN), bidirectional LSTM (BiL-
STM) [30] and bidirectional GRU (BiGRU) [31].

2 The proposed models are tested in two different datasets
including an in-house measurement dataset and the
published dataset UJIIndoorLoc [32]. The accuracy is
compared not only with the other neural network meth-
ods, i.e., MLP [18] and MLNN [20], but also some
popular conventional methods, i.e., RADAR [12], SRL-
KNN [22], Kernel method [9] and Kalman filter [23].

3 Three challenges of WiFi indoor localization, i.e., spatial
ambiguity, RSSI instability and RSSI short collecting
time per location are discussed and addressed. Further-
more, the other important factors, including the network
training time requirement, users speed variation, differ-
ent testing time slots and historical prediction errors, are
discussed and analyzed.

II. RELATED WORKS

The first research on neural network for indoor localization
was reported by Battiti et al. [15], [18]. In their work, a mul-
tilayer perceptron network with 3 layers consisting one input
layer, one hidden layer with 16 neurons and one output layer
was implemented to nonlinearly map the output (coordinate)
from the input (RSSI). Using 207 RPs for training and 50
random points for validation, the accuracy of this model is

(b)

(a)

Fig. 1. (a) Floor map of the test site. The solid red line is the mobile user’s
walking trajectory with red arrows pointing toward walking direction. (b) Heat
map of the RSSI strength from 6 APs used in our localization scheme.

2.82±0.11 m, which is comparable with that of simple KNN
algorithm. In order to achieve better performance, multi-layer
feed-forward neural network with 3 hidden layers was investi-
gated [20]. MLNN is designed with 3 sections: RSSI transfor-
mation section, RSSI denoising section and localization section
with the boosting method to tune the network parameters for
misclassification correction. Other refinements of MLP are pro-
posed in discriminant-adaptive neural network (DANN) [17],
which inserts discriminative components (DCs) layer to extract
useful information from the inputs. The experiment shows that
DANN improves the probability of the localization error below
2.5 m by 17% over the conventional KNN RADAR [12]. As all
of the above methods are time-consuming in the training phase,
robust extreme learning machine [19] is proposed to increase
the training speed of the feedforward neuron networks. RELM
consists of a generalized single-hidden layer with random
hidden nodes initialization and kernelized formulations with
second order cone programming. The experiment illustrates
that the training speed of RELM is more than 100 times faster
than the conventional machine learning methods [34] and the
localization accuracy is increased by 40%.

Although the feedforward neural networks are simple and
easy to implement, they cannot extract the useful information
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TABLE I. COMPARISONS OF INDOOR LOCALIZATION EXPERIMENTS USING MACHINE LEARNING TECHNIQUES

Method Feature Access point (AP) Reference point (RP) Testing Point Grid Size Accuracy
MLP [18] RSSI 6 207 50 1.7 m 2.8 ± 0.1 m
DANN [17] RSSI 15 45 46 2 m 2.2 ± 2.0 m
RELM [19] RSSI 8 30 10 3.5 m 3.7 ± 3.4 m
MLNN [20] RSSI 9 20 20 1.5 m 1.1 ± 1.2 m
ConFi [5] CSI 1 64 10 1.5 - 2 m 1.3 ± 0.9 m
Geomagnetic RNN [33] Magnetic Information - 629 5% of RPs 0.57 m 1.1 m

efficiently from the noisy WiFi signal, leading to a limited
accuracy. Therefore, more complicated neural networks, e.g.,
CNN and RNN, were adopted for indoor WiFi localization.
ConFi [5] proposed a three layers CNN to extract the informa-
tion from WiFi channel state information. CSI from different
subcarriers at different time is arranged into a matrix, which
is similar to an image. ConFi is trained using the CSI feature
images collected at a number of RPs. The localization result
is the weighted centroid of RPs with high output values. The
experiment illustrates that ConFi outperforms conventional
KNN RADAR [12] by 66.9% in terms of mean localization
error. However, as mentioned above, CSI is only accessible for
some specific wireless network interface cards. Consequently,
such algorithms cannot be generically implemented. Recently,
RNN is used for indoor localization. Ref. [35] proposed a
simple RNN with 1 time step and 2 hidden layers. In their
work, RNN classifies 42 RPs based on the RSSI readings
from 177 APs. The classification accuracy is 82.47%. A more
efficient RNN is published in [33]. In that work, the RNN
model uses 200 neurons, mean squared error (MSE) loss
function, and 20 time step traces as the input for the network.
Geomagnetic data is used as fingerprints instead of the wireless
data. A million traces of various pedestrian walking patterns
are generated with 95% of them being used for training and
5% for validation. The achieved localization errors range from
0.441 to 3.874 m with the average error being 1.062 m. In
addition to the geomagnetic data, light intensity is also utilized
in the deep LSTM network [36] to estimate the indoor location
of the target mobile device. Their 2-layer LSTM exploits
temporal information from bimodal fingerprints, i.e., magnetic
field and light intensity data, through recursively mapping the
input sequence to the label of output locations. The accuracy
is reported as 82% of the test locations with location errors
around 2 m and the maximum error being around 3.7 m.

Table I summarizes the experimental set-up and the results
from the above mentioned neural network methods. Here the
number of access points (APs), RPs and testing points vary
between those experiments and the grid size is defined as the
distance between two consecutive RPs.

In general, these methods provide acceptable accuracy from
1 m to 3 m but none of them have sufficiently investigated
the three problems of using RSSI as fingerprints. Therefore,
we propose several RNN solutions, such as vanilla RNN,
LSTM, GRU, BiRNN, BiLSTM and BiGRU, to solve the three
RSSI fingerprinting challenges. Our localization results are
compared not only with the other neural network methods, i.e.,
MLP [18] and MLNN [20], but also some conventional meth-
ods, i.e., RADAR [12], SRL-KNN [22], Kernel method [9]
and Kalman filter [23].

III. RNN METHODS

A. Recurrent Neural Network Overview

A recurrent neural network is a class of artificial neural
network, where the output results depend not only on the
current input value but also on the historical data [33]. RNN
is often used in situations, where data has a sequential corre-
lation. In the case of indoor localization, the current location
of the user is correlated to its previous locations as the user
can only move along a continuous trajectory. Therefore, RNN
exploits the sequential RSSI measurements and the trajectory
information to enhance the accuracy of the localization. Sev-
eral RNN models have been proposed. The vanilla RNN [37],
the simplest RNN model, has limited applications due to
vanishing gradient during the training phase [38]. To mitigate
this effect, long short term memory [28] creates an internal
memory state which adds the forget gate to control the time
dependence and effects of the previous inputs. GRU [29] is
similar to LSTM but only consists of the update and reset
gate instead of the forget, update and output gate in LSTM.
BiRNN [37], BiLSTM [30] and BiGRU [31] are the extensions
of the traditional RNN, LSTM and GRU respectively, which
not only utilize all available input information from the past but
also from the future of a specific time frame. In the following
section we will describe the details about the proposed WiFi
RSSI indoor localization system using RNN models.

B. Proposed Localization System

The development of our localization RNN models is divided
into two phases: a training phase (offline phase) and a testing
phase (online phase). In the training phase, RSSI readings at
each predefined RP are collected into a database. Assuming
that the area of interest has P APs and M RPs, we consider
each RP i at its physical location li(xi, yi) having a corre-
sponding fingerprint vector fi = {F i1, F i2, ..., F iN}, where N
is the number of available features (RSSIs) from all APs at
all carrier frequencies and F ij (1 ≤ j ≤ N) is the j-th feature
at RP i. During the training phase, a number of scans are
collected at a single RP while in the testing phase fewer scans
of RSSIs readings is collected as the user is mobile in practical
scenario. Fig. 1(a) illustrates the localization map with 6 APs,
365 RPs and 175 testing locations, while Fig. 1(b) shows the
heat map of these 6 APs. The architecture of the proposed
RNN system is presented in Fig. 2(a). Details of the process
are described as follows.

1) Data Filter: During the training phase, RSSIs at RPs
are collected by a mobile device mounted on an autonomous
driving robot and stored in a database. As expected, the RSSI
measurements often experience substantial fluctuations due to
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Fig. 2. (a) Localization process of the proposed RNN system. (b) Trajectory generation process. (c) Sliding window averaging in online testing phase.

dynamically changing environments such as human blocking
and movements, interference from other equipment and de-
vices, receiver antenna orientation, etc., [27]. For example, the
mobile device was placed at P (7, 4) as shown in Fig. 1(a).
The experiment was conducted during working hours when
many students used WiFi and walked around the lab. The
standard deviation of maximum RSSI over 100 consecutive
RSSI readings was 5.5 dB, and 5% of the measurements (5
readings) could not be detected. In those cases, the mobile
device missed the beacon frame packets sent by the router.
In order to filter out those outliers, we adopt the iterative
recursive weighted average filter [39] with 3 taps and 5
different weighted factors, i.e., β1 = 0.8, β2 = 0.2, β3 = 0.8,
β4 = 0.15, β5 = 0.05. This weighted filter has the form of
a low pass filter as shown in Fig. 4. In both the training and
testing phase, the filter is used in the same way with fixed
taps and weighted factors. The effectiveness of the filter will
be studied in Section V.

2) Trajectory Generation: The RSSIs at the output of the
data filter will be used to generate random training trajecto-

ries under the constraints that the distance between consec-
utive locations is bounded by the maximum distance a user
can travel within the sample interval in practical scenarios.
Fig. 2(b) illustrates the trajectory generation process. Firstly,
the physical Euclidean distance between each location and
the rest of the database is calculated to form a Euclidean
distance dataset. Secondly, based on that, the probabilistic map
will be generated to represent the probability of a location
(P (li)) that will become the next location of the user in the
trajectory. Since the moving speed of an indoor user is limited,
the locations which are near to the previous locations should
have higher probability to become the next location in the
trajectory than the further locations. The user location will
be updated in every consecutive sampling time interval ∆t.
Therefore, the maximum distance which the user can move
in ∆t is σ = vmax ×∆t, where the maximum speed vmax is
chosen to be larger than the human indoor normal speed (from
0.4 m/s to 2 m/s [40], [41]). The normalized probability P (li)
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Multiple RSSI Input, Single Location Output

  

RNN

…

  

      

Time Step 1 Time Step 2 Time Step 3 Time Step T

      

Time Step 1 Time Step 2 Time Step 3 Time Step T-1

…

  

                    

RNN

  

…
RNN RNN RNN

  

RNN

…

      

      

Time Step 1 Time Step 2 Time Step 3 Time Step T

      

Time Step 1 Time Step 2 Time Step 3 Time Step T-1

…
RNN RNN RNN

  

RNN

…

      

                    

Time Step 1 Time Step 2 Time Step 3 Time Step T-1

…
RNN RNN

  

RNN

…
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Model 2: A-MISO
Multiple RSSI with Actual Locations Input, Single 

Location Output

Model 3: MIMO
Multiple RSSI Input, Multiple Locations Output

Model 4: A-MIMO
Multiple RSSI with Actual Locations Input, 

Multiple Locations Output

Model 5: P-MIMO
Multiple RSSI with Predicted Locations Input, 

Multiple Locations Output

Fig. 3. Proposed RNN models.

Fig. 4. Weighted average filter transfer function.

is calculated as follows.

P (li) =
1

2σ2(1− e
d2max
2σ2 )

exp(− (xi − xpre)2 + (yi − ypre)2

2σ2
)

(1)
where (xpre, ypre) is the most recent location of li, dmax is
the maximum distance between the considered location li and

the furthest location in the interested area. Eq. (1) has the form
of a Gaussian distribution with the mean being the previous
location and the standard deviation being σ. All of the locations
having the same physical distance with li will get the same
probability to be chosen as the next point on the trajectory.
From the probabilistic map, a cumulative distribution function
(CDF) map is built by summing the P (li) for each location li.
Finally, in order to get the next location lj of a any location li
in the trajectory, a random number R (0 < R < 1) is picked.
lj is the location which has the value in the CDF map being
closest with R.

3) Proposed RNN Models: The proposed RNN architecture
is trained by the data from consecutive locations in a trajectory
to exploit the time correlation between them. Each location in
a trajectory appears at a different time step. The length of a
trajectory, or equivalently the number of time steps, defines
the memory length T as illustrated in Fig. 3. The number of
time steps T significantly impacts the performance of RNN
because all of the weights and hidden states will be saved at
every time step during a training trajectory [37]. A larger T
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value will incorporate more information from the past but will
accumulate more localization errors. The optimal T value will
be chosen by the experiment in Section V.

Fig. 3 illustrates 5 different proposed RNN models labeled
from model 1 to model 5. Model 1 has a multiple input single
output (MISO) structure where several RSSI readings (fi)
from the previous time steps are fed into the network to get the
single location at time step T (lT ). Model 2, similar to model
1, has a multiple input single output (A-MISO) structure.
However, model 2 takes in actual previous step locations as
well as RSSIs unlike model 1. The actual locations are the
ground truth locations l̃.

By comparison, model 3 to model 5 are multiple input mul-
tiple output (MIMO) structures where several RSSI readings
from multiple time steps are fed to the network to get multiple
output locations l. Model 3 has a MIMO structure, where
multiple RSSI inputs fi produce multiple output locations li.
In contrast, model 4 takes in multiple RSSIs with multiple
actual locations for the input and produces multiple locations
for the output, denoted as A-MIMO.

Model 5 takes in multiple RSSIs and multiple previous pre-
dicted locations for the input and produces multiple locations
for the output, denoted as P-MIMO. Specifically, in model 4:
A-MIMO, the location used in the training is the ground truth
from the dataset. In model 5: P-MIMO, the location value is the
predicted location (li) from the previous time step. Note that in
the testing phase, both model 2 and model 4 use the predicted
locations from the previous time steps as input because ground
truth is not available.

The objective of RNN training is to minimize the loss
function L(l, l̃) defined as the Euclidean distance between
the output l and the target l̃ using the backpropagation al-
gorithm [37]. In single output models such as MISO and A-
MISO, the loss function is given by

L(l, l̃) = ||lT − l̃T ||2. (2)

In contrast, the multiple output models MIMO, A-MIMO and
P-MIMO adopt a loss function expressed by

L(l, l̃) =

∑T
i=1 ||li − l̃i||2

T
. (3)

4) Sliding Window Averaging: MIMO, A-MIMO and P-
MIMO have the output locations appearing in every time step
(Subsection III-B3). In the online testing phase, the output
location lT will appear in several time steps as shown in
Fig. 2(c). lji is the output location li of time step j. At the
output time step T − 1, we have a set of output location
(l1T , l

2
T , ..., l

T−1
T ) from T − 1 previous steps. In each output

time step, the accuracy of the targeted output result lT can
be slightly different due to the difference in length of previous
historical information. For example, in Fig. 2(c), at output time
step 1, l1T is estimated with the information of T − 1 previous
steps. However, at output time step 2, the number of previous
steps for l2T decrease to T −2; and at time step T −1, lT−1

T is
predicted with no previous step. Therefore, the sliding window
averaging can average the error of the predicted location lT in
multiple output steps and increase the localization accuracy.

The final output result lT will be the average of the above
output set:

lT =

∑T−1
j=1 ljT
T − 1

. (4)

IV. DATABASE AND EXPERIMENTS

All experiments have been carried out on the third floor of
Engineering Office Wing (EOW), University of Victoria, BC,
Canada. The dimension of the area is 21 m by 16 m. It has
three long corridors as shown in Fig. 1(a). There are 6 APs
and 5 of them provide 2 distinct MAC address for 2.4 GHz
and 5 GHz communications channels respectively, except for
one that only operates on 2.4 GHz frequency. Equivalently,
in every scan, 11 RSSI readings from those 6 APs can be
collected.

The RSSI data for both training and testing will be collected
using an autonomous driving robot. The 3-wheel robot as
shown in Fig. 2(a) has multiple sensors including a wheel
odometer, an inertial measurement unit (IMU), a LIDAR, sonar
sensors and a color and depth (RGB-D) camera. It can navigate
to a target location within an accuracy of 0.07±0.02 m. The
robot also carries a mobile device (Google Nexus 4 running
Android 4.4) to collect WiFi fingerprints. The dataset for
offline training was collected by the phone-carrying robot at
365 RPs. At each location, 100 scans of RSSI measurements
(S1 = 100) were collected. To build the dataset, at each
location in the training trajectory, we randomly choose one out
of 100 stored RSSIs as the RSSI associated with the location.
There are total 365,000 random generated training trajectories
following the proposed method in Subsection III-B2. This
approximates well the user’s random walk property and helps
to reduce the spatial ambiguity. The initial position of the user
in the whole testing trajectory is known.

In the online phase, the robot moved along a pre-defined
route (Fig. 1(a)) with an average speed around 0.6 m/s. The
robot will collect RSSI at 175 testing locations along the
trajectory. At each location, only 1 or 2 RSSI scans (S2 = 1 or
2) will be collected and transmitted to a server in real time. The
server will predict the user’s position according to the proposed
algorithms and the prediction accuracy will be calculated.

V. RESULTS AND DISCUSSIONS

The initial setup for the proposed RNN system follows the
parameters presented in Table II. All of the results below are
presented after 10-fold tests with a total of 365,000 random
training trajectories.

A. Filter Comparison
Fig. 5(a) compares the CDF of localization errors among

the proposed RNN models (i.e., MISO LSTM and P-MIMO
LSTM) with and without weighted average filter (Subsec-
tion III-B1) in both offline training and online testing phases. In
P-MIMO, the filter decreases the maximum error from 4.5 m to
3.25 m. In addition, 80% of the error is within 1.25 m with the
filter while without filter the value increases to 1.5 m. In MISO,
the filter also leads to better performance with 80% of the error
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TABLE II. INITIAL SETUP PARAMETERS FOR RNN SYSTEM

Category Value
K-fold tests 10
RNN type LSTM

Memory length (T ) 10
Model P-MIMO

Loss function RMSE
Hidden layer (HL) 2

Number of neurons for each HL 100
Dropout 0.2

Optimizer Adam
Learning rate 0.001

Number of training trajectory for 1-fold test 10,000
Number of training epochs 1000

σ 2 m
∆t 1 s
dmax 2 m

(d)

(a)

(b)

(c)

Fig. 5. The CDF of the localization error of (a) Filter and no filter cases (b)
5 different RNN models (c) Different memory lengths in RNN structure (d)
RNN, LSTM, GRU, BiRNN, BiLSTM and BiGRU with P-MIMO model.

being within 1.75 m compared with 2 m without filter. In A-
MISO, MIMO and A-MIMO, the weighted average filter also
provides consistently good results. The localization accuracy

Fig. 6. Average number of ambiguous trajectories with different number of
locations in a training trajectory

of those methods has approximately 15% improvement with
filter. Because of the apparent improvements, we adopt the
filter to all the models proposed in this paper.

B. Model Comparison
Table III illustrates the average errors of all proposed models

in Subsection III-B3. Among them, P-MIMO achieves the best
performance with an accuracy of 0.75±0.64 m. MIMO is the
second best performer with the average error of 0.80±0.67 m.
MISO has the worst accuracy with the error of 1.05±0.78 m.
Fig. 5(a) compares the CDF errors among these five models.
MIMO and P-MIMO consistently show the dominating accu-
racy with 80% of the errors within 1.2 m, compared with 1.7 m
of MISO. Furthermore, the maximum error of P-MIMO is
3.25 m which is lower than the 4 m obtained from MISO. In the
rest of the paper, P-MIMO is chosen for further performance
study.

C. Hyper-parameter Analysis
This subsection provides a detailed study of choosing the

optimal hyper-parameters for the proposed model P-MIMO.
Although the 5 proposed models, i.e., MISO, A-MISO, MIMO,
A-MIMO, P-MIMO, have different input and output, their
general neural network structures are mostly similar. There-
fore, the procedure to select the optimal hyper-parameters of
P-MIMO will also be valid for the other proposed models
including MISO, A-MISO, MIMO and A-MIMO.

1) Memory Length T : Fig. 5(c) shows the results of P-
MIMO with different memory lengths (Subsection III-B3), i.e.,
a training trajectory has 5, 10 or 40 locations. The performance
of all three cases is comparable. The 10 time steps training
trajectory has a slightly better accuracy with the maximum
error being only 2.9 m, compared with 3.5 m and 3.75 m in
the case of 40 time steps and 5 time steps respectively.

The theoretical explanation is as follows. A location lj is
defined as an ambiguous point of li if their physical distance
is larger than the grid size but their two vectors fi and fj
have high Pearson correlation coefficient above the correla-
tion threshold. Besides, two locations are defined as physical
neighbours if the physical distance between them is less than



8

TABLE III. AVERAGE LOCALIZATION ERRORS

Method MISO LSTM A-MISO LSTM MIMO LSTM A-MIMO LSTM P-MIMO LSTM
Average Error (m) 1.05 ± 0.78 0.92 ± 0.75 0.80 ± 0.67 0.91 ± 0.75 0.75 ± 0.64
Method RADAR [12] MLNN [20] MLP [18] Kernel Method [9] Kalman Filter [23]
Average Error (m) 1.13 ± 0.86 1.65 ± 1.20 1.72 ± 1.17 1.10 ± 0.84 1.47 ± 1.2

or equal to the grid size. The correlation threshold is chosen
based on the average correlation coefficients between li and
all of its physical nearest neighbours, i.e., approximately 0.9 in
our database. Then all non-nearest-neighbour locations whose
correlation coefficient above this threshold are considered as
ambiguous points. Pearson correlation coefficient ρ(fi,fj)
between fi and fj can be calculated as follows

ρ(fi,fj) =
1

N − 1

N∑
n=1

(
F in − µi
δi

)(
F jn − µj
δj

) (5)

where µi, µj are the mean of fi and fj respectively, δi, δj
are the standard deviation of fi and fj respectively. Similar
to the definition of the ambiguous location, 2 trajectories are
defined as ambiguous if they include different locations but
the combinations of their fingerprints have a high Pearson
correlation coefficient. Fig. 6 demonstrates the advantage of
the proposed LSTM model which exploits the sequential tra-
jectory locations compared with the conventional single point
prediction. In the case of single point prediction (1 location
in a training trajectory), the average number of ambiguous
locations in our database are 27. If we increase the number of
locations in a trajectory for training, the number of ambiguous
trajectories decreases significantly. If a training trajectory has
more than 8 locations, there will be no ambiguity in our
database. Therefore, the memory length configured as 10
locations is reasonable to remove all the ambiguity.

2) Number of Hidden Layers and Neurons: Fig. 7(a) illus-
trates the average localization errors of P-MIMO with different
number of hidden layers and neurons per layer. In general,
adopting 2 hidden layers leads to better accuracy than 1 hidden
layer. In the 1 hidden layer model, using 200 neurons results
the best accuracy of 0.85±0.72 m. Increasing more neurons
does not result in better performance. In comparison, the best
accuracy of 2 hidden layers model is 0.75±0.64 m when the
number of neurons per layer is 100. In summary, 2 hidden
layers and 100 neurons per layer are the optimal parameters
for our proposed model.

3) Number of Training Trajectories and Training Epochs:
The learning curve can determine the minimum required
number of training trajectory samples and training epochs for
the proposed RNN models. Fig. 7(b) shows the relationship
between the training and validation errors vs. the number of
training trajectory samples of the proposed P-MIMO model.
According to Fig. 7(b), overfitting will be mitigated if the
number of training samples increases to 104. Therefore, 104

is the minimum number for the random training trajectories to
feed to P-MIMO in the training phase. Fig. 7(c) illustrates the
relationship between the training and cross-validation errors vs.
the number of running epochs of P-MIMO LSTM when the
training trajectory samples is 104. When the cross-validation
error is at a minimum on the graph, the minimum number of

(a)

(b)

(c)

Fig. 7. (a) Average localization errors of P-MIMO LSTM with different
number of hidden layers and neurons per layer. (b) Learning curve of P-
MIMO LSTM with the average localization error vs. the number of training
trajectory samples. (c) Learning curve of P-MIMO LSTM with the average
localization error (the training trajectory samples = 104) vs. the number of
running epochs.

epochs is approximately 1,000.
4) Learning Rate, Optimization Algorithm and Dropout

Rate: Table IV shows the localization errors when the learning
rates and optimization algorithms are varied. Clearly, optimizer
ADAM with the learning rate 0.001 provides the best results
with the average error of 0.75±0.64 m. Table V demonstrates
the accuracy of different dropout rates. With the dropout rate
equals or less than 0.2, the performance of P-MIMO is mostly
unchanged, i.e., 0.72±0.68 m at a dropout rate of 0.1 and
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TABLE IV. DIFFERENT LEARNING RATES AND OPTIMIZATION
ALGORITHMS

Optimization algorithm Learning rate Average Error (m)
Adam 0.01 1.0 ± 0.78
Adam 0.001 0.75 ± 0.64
Adam 0.0001 0.80 ± 0.62
SGD 0.01 1.52 ± 1.32
SGD 0.001 1.92 ± 1.52
SGD 0.0001 1.85 ± 1.25

RMSProp 0.01 1.05 ± 0.95
RMSProp 0.001 0.88 ± 0.72
RMSProp 0.0001 0.85 ± 0.68

TABLE V. DIFFERENT DROPOUT RATES

Dropout rate Average Error (m)
0.1 0.72 ± 0.68
0.2 0.75 ± 0.64
0.3 0.87 ± 0.74
0.4 0.92 ± 0.73

Fig. 8. The CDF of the localization error of P-MIMO LSTM and the other
methods in literature.

0.75±0.64 m at a dropout rate of 0.2. After the dropout rate
increases to above 0.2, the accuracy is deteriorated and reaches
the bottom of 0.92±0.73 m at a dropout rate of 0.4.

D. RNNs Comparison
Fig. 5(d) compares the performance between vanilla

RNN [33], LSTM [28], GRU [29], BiRNN, BiLSTM [30]
and BiGRU [31]. All of the settings follow Table II. Al-
though the gap between these systems are close, LSTM
still consistently has the best performance with the average
error at 0.75±0.64 m compared to 1.05±0.77 m of RNN,
0.80±0.70 m of GRU, 0.95±0.77 m of BiRNN, 0.89±0.75 m
of BiLSTM and 0.93±0.81 m of BiGRU, respectively. While
80% of the errors of RNN and BiLSTM are all within
1.5 m, the ones of LSTM and GRU are within 1.2 m. Some
explanations are as follows.

Regarding vanilla RNN, there is a disadvantage of vanishing
gradient at large T [38]. Therefore, RNN has difficulty to
learn from the long-term dependency, i.e, T = 10 in our
case. Unlike the traditional RNN, both LSTM and GRU are
able to decide whether to keep the existing memory from the
past by their gates, i.e, forget gate in LSTM and reset gate
in GRU. Intuitively, their performances in our experiment are
both better than vanilla RNN because if LSTM and GRU detect
an important feature from an input sequence at early stage, they
easily carry this information over a long distance and capture

Fig. 9. Average localization errors with the error bars of P-MIMO LSTM
and SRL-KNN in changing speed scenarios

potential long-distance dependencies. Furthermore, GRU is a
simpler version of LSTM, which means that some of the
feature of LSTM are reduced in GRU, e.g., the exposure of the
memory content control [38]. Therefore, LSTM has a slightly
better performance than GRU. For the bidirectional models
including BiRNN, BiLSTM, BiGRU, they use both historical
and future information, i.e., the initial location and the last
location to predict the current location. In this paper, we
assume only the very first location of each trajectory is known.
As the ground truth of the last location is not incorporated,
error is introduced into the bidirectional models. Therefore,
the bidirectional models are not favorable in our work.

E. Literature Comparison

Fig. 8 compares the proposed P-MIMO LSTM with the
feedforward neural network MLP [18], multi-layer neural
network (MLNN) [20] and the other conventional methods
including KNN-RADAR [12], probabilistic Kernel method [9]
and Kalman filter [23]. In our experiments, we reproduced
the results of MLP and MLNN [18], [20]. The MLP model
has three layers with only one 500-neuron hidden layer. In
contrast, MLNN has five layers, i.e., 1 input layer, 3 hidden
layers with 200, 200 and 100 neurons respectively and 1 output
layer. The input of these memoryless methods is a single RSSI
vector (11 RSSI readings) of a specific location, the output is
a single location. The input of P-MIMO is a trajectory with T
RSSI vectors (11×T RSSI readings) from T time steps, the
output is a trajectory including T output locations. P-MIMO
clearly outperforms MLP with the maximum error of 3.4 m
compared with 5.5 m of MLP. 80% of LSTM model errors are
within 1.2 m, which is much lower than 2.7 m of MLP. The
maximum errors of conventional methods such as RADAR,
Kalman filter and Kernel method are more significant 4.8 m,
5.0 m and 4.50 m, respectively. Besides, 80% of the errors
of those methods are all within 2 m, 1.7 times higher than
the proposed LSTM model. Table III lists the average errors
between LSTM models and the other mentioned methods.
Clearly, the accuracy of P-MIMO with 0.75 m dominates the
other conventional feedforward neural networks with 1.65 m
of MLNN [20] and 1.72 m of MLP [18].
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F. Further Discussion

1) Three Challenges of WiFi Indoor Localization: As men-
tioned at the beginning, the proposed LSTM models can
address three challenges of WiFi indoor localization. Sub-
section V-C1 has demonstrated that LSTM adopts sequential
measurements from several locations in the trajectory and
decreases the spatial ambiguity significantly. In addition, RSSI
instability and RSSI short collecting time per location create
the diverse values of RSSI readings in one location, which can
lead to more locations having similar fingerprint distances. The
proposed LSTM models can effectively remove the number of
false locations which are far from the previous points based
on the series of the previous measurements and predictions.
Therefore, the adverse effects of the second and third challenge
can be mitigated.

2) Training Time Requirement: Compared with other con-
ventional methods, e.g., KNN-RADAR [12], probabilistic Ker-
nel method [9] and Kalman filter [23], the proposed RNN
method outperforms. However, those conventional methods do
not require the training phase, which compares the current
RSSI measurement with the ones in the database to get user
locations directly. In contrast, the proposed RNN methods
require to train the neural network model beforehand. The
learning curve can determine the minimum required training
time for the proposed RNN models. From Subsection V-C3,
the optimal training trajectory samples is 104 and the optimal
number of epochs is approximately 1,000 according to a 1 fold
test. In the experiment, the training is executed on a home-built
computer with an AMD FX(tm)-8120 Eight-Core CPU and an
Nvidia GTX 1050 GPU. The running time is approximately
4 s per epoch. Therefore, the training time is approximately
4×1000 = 4000 s (∼= 1 hour and 6 minutes).

In practical scenarios, more APs are used, more RSSI fea-
tures can be extracted and better performance can be achieved.
However, increasing the number of APs also creates more com-
putational cost and extends the training time. Ref. [42] suggests
to use LSTM with projection layer (LSTMP) to reduce the
computational cost. Furthermore, LSTMP was reported helpful
to error rate reduction because parameter reduction helps the
LSTM generalization. In the future work, when the number
of APs are increased to achieve better accuracy, the idea of
LSTMP can be applied to reduce the training time of our RNN
models.

3) Impacts from speed variation: Some conventional short-
memory methods such as Kalman filter [23], SRL-KNN [22]
have the constraints on the speed of the users. If a user
changes moving speed rapidly, the localization accuracy of
these methods will be degraded severely. In contrast, the
proposed LSTM network is trained with random trajectories
as described in Subsection III-B2 without strict constraints on
the speed of the users. Fig. 9 illustrates the average errors
of the proposed P-MIMO LSTM and SRL-KNN using RSSI
mean database with parameter σ = 2 m [22]. The number
of testing points are 344 locations following the backward
and forward trajectory like Fig. 1. The maximum speed is
the instant speed of the robot between 2 random consecutive
testing locations in a sampling time interval ∆t. The number

Fig. 10. Average correlation coefficient between different time trajectory
tests and the database.

of locations having the maximum speed are 50% of the total
testing points (172 locations). The rest of the locations have
a random speed smaller than the maximum speed. When the
maximum speed increases from 0.5 m/s to 2.5 m/s, the average
errors of LSTM model stays stable around 0.85±0.75 m. On
the other hand, SRL-KNN starts from the comparable result as
P-MIMO LSTM with 0.90 m in the case of 0.5 m/s. After the
maximum speed increases to above 1.5 m/s, the accumulated
errors appear and the accuracy of SRL-KNN is significantly
degraded to above 3 m with a large variation more than 5 m.

4) Impacts from Different Time Slots: The proposed RNN
methods first learn the RSSI range characteristics of the
environment offline in a prior training phase before using the
learned characteristics during the testing phase. Therefore, the
initial data in the training phase might not have the same
distribution with the data in the testing phase [43]. In our
experiment, we address this problem with the support of
our autonomous robot as shown in Fig. 2(a). The robot is
programmed to repeatedly navigate around the experimental
area and collect the new data to update the database in different
hours and days. The proposed RNN networks are trained with
a wide variety of data reflecting the different characteristics of
the environment at different time periods. Fig. 10 illustrates
the Pearson correlation coefficients between different time
trajectory tests and the appropriate neighbour locations in our
database. We repeatedly collect the testing trajectory with 175
locations as shown in Fig. 1(a) at 18 random hours. The
correlation coefficients range from 0.7 to 0.9, which proves that
we can always find similarly distributed data in the database
corresponding to each single test.

Furthermore, according to the survey [44], the percentage
of stationary time when a user is not moving can exceed 80%
for most mobile users. Some of the locations falling in the
stationary period can serve as the anchor points to re-calibrate
the network in the testing phase [45]. On the other hand, if
other sensors such as camera are available, the additional data
can help to increase the estimation accuracy of locations in the
trajectory [45]. A detailed study of these issues is out of the
scope of this paper but will be addressed in our future work.

5) Stability and Robustness: Since P-MIMO LSTM lever-
ages the information of a user’s previous positions to estimate
the current location, the stability of P-MIMO LSTM depends
on the accuracy of historical data from the previous steps. In
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TABLE VI. AVERAGE LOCALIZATION ERRORS OF UJIINDOORLOC DATABASE

P-MIMO LSTM RADAR [12] MLNN [20] Kalman Filter [23] MLP [18]
Building 0 (m) 4.5 ± 2.7 7.9 ± 4.9 7.6 ± 4.2 8.2 ± 5.0 9.2 ± 5.8
Building 1 (m) 4.0 ± 3.8 8.2 ± 4.9 7.5 ± 3.3 8.4 ± 3.9 7.4 ± 4.4
All buildings (m) 4.2 ± 3.2 8.1 ± 4.9 7.5 ± 3.8 8.2 ± 4.7 8.2 ± 5.2

Fig. 11. CDF of P-MIMO LSTM localization errors in different historical
data error scenarios.

order to investigate the propagation error due to the imperfect
prior location estimation, Fig. 11 illustrates the localization
errors of P-MIMO LSTM with both the ideal and erroneous
history data. Starting with the perfect historical coordinate
h(x, y) for every location in the testing trajectory as illustrated
in Section IV, an amount of Gaussian error is added to
h. The erroneous prior location h′(x′, y′) is obtained as:
x′ = x + xe , y

′ = y + ye, where xe and ye are random
variables that follow Gaussian distribution

xe ∼ N (0, σ2
xe) ; ye ∼ N (0, σ2

ye) ; γe =
√
σ2
xe + σ2

ye

Fig. 11 shows that if the standard deviation error γe of the
historical data is within 2 m, the localization accuracy is mostly
similar to the ideal case, with a maximum error of 3.5 m and
80% of the error is 1.5 m. When γe increases to 4 m and 6 m,
the accuracy becomes slightly worse with the maximum errors
being around 5 m and 80% errors being around 1.80 m and
2.3 m, respectively. As shown in Table III, the average errors
of P-MIMO LSTM is within 1 m, i.e., 0.75± 0.64 m, which
indicates that our proposed P-MIMO LSTM is robust to the
localization error of the previous positions.

G. Other Database Comparison
The consistent effectiveness of the proposed LSTM system

is proved by the published dataset, UJIIndoorLoc [32]. The
reported average localization error [32] is 7.9 m. The database
from 2 random phone users (Phone Id: 13, 14) in 2 different
buildings (Building ID: 0 and 1) are used to implement P-
MIMO LSTM. Note that the grid size of UJIIndoorLoc is
different from the collected database which affects the average
localization error. However, the relative accuracy comparison
between the proposed LSTM and conventional KNN, e.g.,
RADAR [12] and Kalman filter [23] or feedforward neural
network, e.g, MLP [18] and MLNN [20] can verify the

Fig. 12. Localization error CDF of UJIndoorLoc database for all buildings

effectiveness of our algorithm. Table VI shows the average
errors in meter of P-MIMO LSTM, RADAR, Kalman filter,
MLP and MLNN for each separate building and for all 2
buildings in general. For all 2 buildings, the average error of P-
MIMO LSTM is 4.2±3.2 m, significantly lower than the result
of RADAR 8.1±4.9 m, MLNN 7.5±3.8 m, Kalman filter
8.2±4.7 m and MLP 8.2±5.2 m. Furthermore, Fig. 12 com-
pares the CDF of localization errors between those methods.
In total, a 11.5 m maximum localization error is recorded for
P-MIMO LSTM, 22 m for MLNN and the largest maximum
localization error of 28 m for RADAR. Besides, 80% of the
error is below 7 m in the case of P-MIMO LSTM, which
is much lower than 12 m in the case of MLP, MLNN and
RADAR.

VI. CONCLUSIONS

In conclusion, we have proposed recurrent neural networks
for WiFi fingerprinting indoor localization. Our RNN solution
has considered the relation between a series of the RSSI
measurements and determines the user’s moving path as one
problem. Experimental results have consistently demonstrated
that our LSTM structure achieves an average localization error
of 0.75 m with 80% of the errors under 1 m, which outperforms
feedforward neural network, conventional methods such as
KNN, Kalman filter and probabilistic methods. Furthermore,
main challenges of those conventional methods including
the spatial ambiguity, RSSI instability and the RSSI short
collecting time have been effectively mitigated. In addition,
the analysis of vanilla RNN, LSTM, GRU, BiRNN, BiLSTM
and BiGRU with important parameters such as loss function,
memory length, input and output features have been discussed
in detail.
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