
IEEE INTERNET OF THINGS JOURNAL 1

Process migration-based computational offloading
framework for IoT-supported mobile edge/cloud

computing
Abdullah Yousafzai, Ibrar Yaqoob, Senior Member, IEEE, Muhammad Imran, Abdullah Gani, Senior

Member, IEEE, and Rafidah Md Noor

Abstract—Mobile devices have become an indispensable com-
ponent of Internet of Things (IoT). However, these devices have
resource constraints in processing capabilities, battery power,
and storage space, thus hindering the execution of computation-
intensive applications that often require broad bandwidth, strin-
gent response time, long battery life, and heavy computing power.
Mobile cloud computing and mobile edge computing (MEC) are
emerging technologies that can meet the aforementioned require-
ments using offloading algorithms. In this paper, we analyze the
effect of platform-dependent native applications on computa-
tional offloading in edge networks and propose a lightweight
process migration-based computational offloading framework.
The proposed framework does not require application binaries
at edge servers and thus seamlessly migrates native applications.
The proposed framework is evaluated using an experimental
testbed. Numerical results reveal that the proposed framework
saves almost 44% of the execution time and 84% of the energy
consumption. Hence, the proposed framework shows profound
potential for resource-intensive IoT application processing in
MEC.

Index Terms—Computational offloading, mobile edge comput-
ing, mobile cloud, process migration, Smart cities, Internet of
things.

I. INTRODUCTION

THE remarkable proliferation of resource-intensive Inter-
net of Things (IoT) applications, such as face recognition,

ultrahigh-definition video, voice semantic analysis, interactive
gaming, and augmented reality, have gained immense popu-
larity in recent years [1], [2]. These IoT applications require
intensive computation capabilities. However, smart mobile
devices that support IoT have limited computational resources
and battery constraints compared with desktop computers.
Consequently, these limitations pose considerable challenges
for future mobile platform development [3]. Computational
offloading is an appealing software-level solution that helps
mitigate the problem of resource-constrained mobile devices
by enabling the remote execution of computation-intensive IoT
applications [4], [5]. These applications are offloaded to the
edge of the user network, which shortens the execution time

Abdullah Yousafzai is with the Department of Computer Systems, Uni-
versity of Malaya, Kuala Lumpur, 50603, Malaysia. (e-mail: abdullahy-
ousafzai@siswa.um.edu.my).

Ibrar Yaqoob is with the Department of Computer Science and Engineering,
Kyung Hee University, Yongin-si 17104, South Korea.

Muhammad Imran is with the College of Computer and Information
Sciences, King Saud University, Saudi Arabia.

Abdullah Gani and Rafidah Md Noor are with the Department of Computer
Systems, University of Malaya, Kuala Lumpur, 50603, Malaysia.

compared with a typical cloud computing environment [6],
[7]. We use the term "mobile cloud environments" (MCE) to
generalize mobile cloud and mobile edge computing (MCC
and MEC, respectively).

Conventionally, a computational offloading architecture is
composed of a client and a server subsystem. The former is
configured and executed on the mobile/IoT device, whereas the
latter is available either on the network edge [8] or the cloud
provider [9], [10]. The client subsystem performs three major
tasks to optimize the net system utility: i) observes and esti-
mates the network performance metrics for the mobile device;
ii) monitors, estimates, and analyzes the resource requirements
of mobile applications in terms of CPU time on the mobile
device and the cloud server; and iii) generates task-migration-
related decisions [11]. The server subsystem is generally
supported by the cloud computing business model, which
revolutionizes the business life cycle by reducing the capital
investment in infrastructure while maintaining additional focus
on business services and strategies [12]. Given these prominent
features, cloud computing systems have expanded into the
business model of MCC [13], which is further extended to
MEC [14], [15].

Code migration is one of the most common computational
offloading mechanisms, which migrates intermediate-level in-
structions between a mobile device and a server [16]. These
instructions must be executed on the same type of application-
level virtual machines (ALVMs) of the mobile device and
server [16]. Literature also reveals offloading mechanisms
that consider thread-state migration or thread-state synchro-
nization. Code migration and thread-state synchronization
highly depend on ALVMs. This dependency invalidates the
offloading mechanisms for native application binaries. For
example, Google has offered android runtime environment
(ART), which introduces ahead of time (AHOT) compilation
to platform-dependent native machine instructions to replace
the just-in-time-based Dalvik virtual machine (DVM). ART is
beneficial in terms of execution time and battery consumption
and uses AHOT compilation to transform device-independent
DEX code into device-specific machine binaries [16].

The obsolescence of DVM creates a gap because all mi-
gration primitives (e.g., method or thread-based) based on
DVM are incompatible with ART. Therefore, a platform-
dependent process-level migration mechanism is required to
enable application migration for future IoT applications that
contain a bulk of native machine instructions. We utilize this

ar
X

iv
:1

90
9.

11
05

8v
1 

 [
cs

.D
C

] 
 2

4 
Se

p 
20

19



2 IEEE INTERNET OF THINGS JOURNAL

concept for MCE1.

A. Related Works and Contributions

Computational offloading has become one of the crucial
problems in MCE due to the complexity and interdependencies
of modern mobile/IoT applications, heterogeneity between
mobile/IoT devices and the cloud/edge infrastructure, unpre-
dictability, variability of wireless connectivity, and security
issues. In this section, we discuss the computational offloading
solutions proposed in the IoT-supported MEC/fog computing
paradigm.

Bellavista et al. [17] proposed human-driven edge com-
puting to ease the provisioning and extend the coverage of
traditional MEC solutions for IoT and cyberphysical sys-
tems application scenarios. Similarly, a general framework
for IoT fog-cloud applications, along with a delay-minimizing
collaboration and offloading policy for fog-capable devices,
was proposed in [18]. This framework aimed to reduce the
service delay of IoT applications. Lyu et. al. [19] introduced
an integration architecture of cloud, MEC, and IoT and
proposed a request-and-admission framework to resolve the
scalability problem. Without coordination among devices, the
proposed framework separately operates at the IoT devices
and computing servers by encapsulating the latency require-
ments in offloading requests. To meet the heterogeneity in
the requirements of the offloaded IoT tasks in a multiaccess
edge network, (e.g., different computing requirements and
latency), Alameddine et al. [20] mathematically formulated
the dynamic task offloading and scheduling problem, which
encompass three subproblems. The authors designed a decom-
position method based on logic-based bender decomposition to
decide jointly on the task offloading (i.e., tasks to application
assignment) and scheduling.

Chen et al. [21] devised a resource-efficient edge computing
scheme in which an intelligent IoT device user can support
the device’s computation-intensive task through proper task
offloading across local and nearby devices and the edge
cloud in proximity. They explored the perspective of resource
efficiency and proposed a delay-aware task graph partition
algorithm and an optimal virtual machine selection method
to minimize the edge resource occupancy of an intelligent IoT
device by satisfying its quality of service (QoS) requirement.
A density-based offloading strategy was analyzed in [22]. The
authors first utilized a strategy based on the density of IoT
devices using k-means algorithm to partition the network of
edge servers. Then, they analyzed and developed mathematical
models to offload heterogeneous and uncertain tasks from var-
ious IoT devices to the edge server. An algorithm that utilizes
the sample average approximation method for IoT devices
was proposed, resulting in optimal computation offloading
decisions.

The authors of [23] investigated the utilization problem
of heterogeneous computation resources at the network edge
to achieve the best energy efficiency among multiple-end
devices while satisfying their delay requirements. They studied

1In this paper, we use the term mobile cloud environments (MCE) to
generalize both MCC and MEC

the computation offloading management problem by jointly
considering the heterogeneous computation resources, latency
requirements, power consumption at end devices, and channel
states. The formulated energy minimization problem falls into
the category of mixed-integer and nonlinear program. To
solve the problem efficiently, the researchers decomposed the
original problem into two subproblems and proposed an iter-
ative solution framework that deals with transmission power
allocation strategy and computation offloading. Elazahry et.
al. [24] formulated IoT offloading as a decision problem.
They proposed a W5 reference framework for future research
works. Cheng et. al [25] investigated the computing offloading
problem in a space-air-ground integrated network (SAGIN)
and proposed a deep reinforcement learning-based computing
offloading approach to learn the optimal offloading policy on
the fly from dynamic SAGIN environments. They also pro-
posed a joint resource allocation and task scheduling approach
for unmanned aerial vehicle-based edge servers to allocate
the computing resources to virtual machines and schedule the
offloading tasks efficiently.

The authors of [26] formulated a computational offloading
game to model the competition between IoT users and effi-
ciently allocate the limited processing power of fog nodes.
They confirmed the existence of a pure Nash equilibrium and
provided an upper bound for the price of anarchy. They further
proposed a near-optimal polynomial time resource allocation
mechanism wherein each user aims to maximize the net
utility. The study conducted in [27] introduced a generic fiber-
wireless architecture that coexists with centralized cloud and
distributes MEC for IoT connectivity. The problem of cloud-
MEC collaborative computation offloading was defined, and
a game-theoretic collaborative computation offloading scheme
was proposed. Some early solutions proposed in MCC, such
as Cloudlets [28], paranoid Android [29], virtual smartphone
[30], and phone mirroring [31], have utilized virtual machine
migration primitives to harness the computational power on
the edge. Similarly, the studies conducted in [32], [33], [34],
[35], [36], [37], [38], [39], [40], [41] utilized code migration,
which rely on programmers to specify program partitions using
code annotation and skeletons. Meanwhile, CloneCloud [9]
and its variants [42], as well as COMET [43], utilized the
concept of thread migration. Yousafzai et al. [16] proposed
a framework to offload ART-based mobile applications. The
framework uses cloud data center support to enable offloading
services for heterogeneous mobile devices. The researchers of
[44] presented a user-level online offloading framework, which
is based on a decision engine that minimizes remote execution
overhead without requiring any modification in the device’s
operating system. In summary, most computational offloading
primitives strictly depend on virtualization technology.

The aforementioned research focuses on the formal mod-
eling of computational offloading decision and optimization
algorithms rather than focusing on process-level computational
offloading. In addition, the existing offloading solutions do not
consider the native code of IoT applications. However, modern
mobile and IoT applications are compiled into native machine-
dependent binaries upon their installation. Unlike the existing
studies, the main contributions of this paper are summarized



3

Syn
c P

ro
cess State

Send Request

Offloading Server

A
d

m
is

si
o

n
 C

o
n

tr
o

l Migration 
Coordinator

Virtual/Emulated Phone

Application Migration 
Manager

Process 
1

Process 
2

Application 
Migration 
Manager

Checkpoint 

(Acquire/Restore)

Process 
1

Process 
2

Process 
N

Checkpoint 

(Acquire/Restore)

Users Mobile Device

Response

Checkpoint File

Migration 
Coordinator

P
referen

ce M
an

ager

Fig. 1: Bird eye view of proposed PMCO for mobile device
augmentation.

as follows:
a) We establish the case for process migration-based com-

putational offloading in IoT-supported mobile edge/cloud
computing.

b) We propose a process migration-based computational of-
floading (PMCO) framework that transparently migrates
a running process from a resource-constrained mobile
device to resource-rich computing infrastructure. The pro-
posed framework does not require an application source
code on the edge server, which is a prominent case in
MEC scenarios.

c) We evaluate the proposed framework and its lightweight
features using standardized synthetic benchmarking ex-
periments on an indigenous IoT research testbed measur-
ing application execution time, amount of data transfer,
and consumed energy.

The rest of the paper is organized as follows: Section II
presents the components of the proposed PMCO framework.
Section III discusses the details of the algorithmic procedures
involved in the proposed framework. Section IV outlines the
performance evaluation results, followed by the concluding
remarks provided in Section V.

II. COMPONENTS OF THE PROPOSED FRAMEWORK

Our proposed framework consists of five major build-
ing blocks, namely, user-side migration preference manager
(UMPM), user-side application migration manager (UAMM),
user-side application migration coordinator (UAMC), edge-
side admission control (EAC), and edge-side application mi-
gration manager (EAMM), as shown in figure 1. The details of
these components are provided in the following subsections.

A. UMPM

UMPM allows users to enable/disable runtime application
offloading preferences for mobile/IoT applications installed in
the client’s device. This preference manager helps avoid the
computationally expensive static analysis of user applications.
Preferences are stored in a key/value-based fashion in the
preference registry. The preferences defined in this registry are

classified into two categories: global and application-specific
preferences.

1) Global preferences: Global preferences apply to all mo-
bile applications. These preferences include parameters, such
as Ec, Ei, Et, Er, Sm, Bt, and server selection criteria (cost
per service), where Ec stands for active energy consumption
of the device’s CPU; Ei is the idle energy consumption of the
device’s CPU; Et and Er correspond to energy consumption
while the device’s wireless interface is in transmission and
reception mode, respectively; Sm and Sc represent the com-
puting power (in MIPS) of the mobile device and remote edge
server, respectively; βu and βd represent the network’s uplink
and downlink bandwidth; and Bt is the benefit threshold.
Bt indicates the energy-saving amount of the computational
offloading process required by the offloading decision function
(Equation (1)) to trigger the offloading process.

[[Ec×
I

Sm
]−[Ei×

I

Sc
]−[Et×

α

βu
]−[Er×

γ

βd
]] > Bt, whereBt > 0

(1)
2) Application specific preferences: Application-specific

parameters are defined as a 4-tuple (< I, α, γ, Pf >) for all
applications that can be offloaded. I is the number of instruc-
tions in the application; α represents the amount of data that
will at least be transferred in a single offloading transaction
(α is the only value that the offloading engine can accurately
obtain without any overhead because it can be calculated at
the time of offloading); and γ is the amount of data that will
be received in a single offloading transaction. Intuitively, γ is
unknown at the time of offloading decision without prediction,
estimation, or pre-execution, thus becoming expensive and
counterproductive because of the increase in the offloading
decision time. Therefore, the preference manager simplifies
the offloading process with user assistance. Pf is a binary
variable that can be set to enable forced migration or disable
migration for a specific application.

B. UAMM

UAMM is responsible for discovering, selecting, and inter-
facing the edge service provider. As discussed in the previous
subsection, an edge service is selected on the basis of the
preferences (cost and QoS metrics) defined by the mobile
user and the offloading decision function. After selecting the
service and establishing a connection, the UAMM initiates the
UAMC. Then, the UAMM iterates over the UMPM application
list. If an application needs to be offloaded and obtains a
positive result from (Equation (1)), UAMM will launch the
application using UAMC. The UAMM will wait for a signal
from the UAMC about a checkpoint package, which needs to
be shipped to a remote device on the edge infrastructure. The
UAMM will then fetch the checkpoint package from the local
temporary storage designated for the process and dispatch the
checkpoint along with a meta information. The meta infor-
mation specifies the size, as well as whether the application
is migration aware or does not contain any migration marker.
This meta information is utilized by the EAMM to restart
the checkpoint image correctly. Once the checkpoint package



4 IEEE INTERNET OF THINGS JOURNAL

is transferred to the edge device, UAMM will wait for the
response from the edge device. Once the response package,
which is also a checkpoint image, is received from the edge,
UAMM will restart the received checkpoint file on the device.

C. UAMC

UAMC is a modified over-the-counter checkpoint-restart
tool2, which can checkpoint a running process and subse-
quently restart it on a remote computing infrastructure or mo-
bile device. Executing an application through UAMC launches
a coordinator process on the local client’s device to assist
the migration process [45]. The coordinator is stateless; thus,
when it crashes and subsequently reboots, the process that
the coordinator needs to checkpoint is also restarted. The
coordinator uses two approaches to send the checkpoint signals
to the running applications. The first approach is applied to ap-
plications without migration markers (i.e., nonmigration-aware
applications). In MCE, such applications are referred to as
unmodified applications that do not have programmer-defined
migration markers. Unmodified applications cannot checkpoint
themselves. The second approach applies to applications that
can be modified (either by the developer or automatically
during the compilation process) to include migration markers.
Applications with migration markers can readily checkpoint
themselves. The former is resource-hungry because it may
checkpoint the application multiple times, whereas the latter
is lightweight due to its ability to checkpoint upon reaching a
marker.

The checkpoint mechanism interrogates kernel state (open
file descriptors, file descriptor offset) and saves register values
using available kernel data structures. Lastly, all user-space
memory is stored to the checkpoint image (/proc/self/maps),
which includes any library that the process is using. This
strategy improves the portability of the checkpoint images and
even allows the migration of the process in some cases to hosts
with different Linux distributions and kernels. The checkpoint
mechanism is configured to use gzip for the compression
of checkpoint images, resulting in the reduction of network
traffic.

D. EAC

The admission control unit imposes the fair-share usage
policy for edge resources. In the case of an edge device that
has a weak pricing model admission control, the admission
unit enforces the efficacy of the system [46]. Furthermore,
offloading in MEC faces scalability problems due to numerous
mobile and IoT devices [19]. Admission control manages user
request to resolve the scalability, security, and load balancing
problem in the edge infrastructure [47]. The administration
depends on the edge provider policy. User requests are queued
and processed using any state-of-the-art scheduling discipline
defined by the edge provider [48]. Whenever an IoT device
sends a task offloading request to the edge server, the admis-
sion control verifies whether the device can be emulated/vir-
tualized or not. In addition, the admission control also ensures

2Accessed on: 25 February 2019 https://github.com/dmtcp/dmtcp

the availability of any software platform that is required for
the offloaded task. If both conditions are satisfied, the request
is granted, and the subsequent process state synchronization
packets from that device are directly transmitted/forwarded
to the emulated/virtualized edge instance that manages users’
request.

E. EAMM

EAMM resides in a virtualized/emulated or physical device
instance in the edge infrastructure. EAMM acts as a server
to the UAMM residing on the user’s mobile/IoT device. To
maintain the policies implemented by the admission control,
EAMM tracks the service time of the user requests. If the ad-
mission control policy is violated, EAMM stops servicing the
mobile device. Once EAMM receives an offloading package
from the mobile device, it restarts the application package.
Then, once the application is restarted on the edge device,
EAMM recheckpoints the application within regular intervals
for applications without migration markers. Meanwhile, if the
application is migration aware, the application recheckpoints
itself after reaching a certain marker. The recheckpoint of the
application at the edge is performed to transfer the computa-
tion and execution control back to the mobile device.

III. PROPOSED PMCO ALGORITHMS

In this section, we present our proposed algorithms, which
originally correspond to the interaction between the compo-
nents of the drafted framework detailed in Section II. The
implementation of PMCO can vary depending on checkpoint
methodology, hardware, and software architecture. The pri-
mary steps in the generic process migration can be found in
[49]. Based on these generic steps and the components of our
proposed solution, we present the PMCO algorithm and an
edge-side service algorithm to serve the IoT end users.

Algorithm 1 begins with initializing the global parameter
values defined by the IoT user in the UMPM registry (Line
1). The UAMM searches and negotiates for a suitable
edge server according to the criteria defined by the IoT
user (Line 2). Once the mobile device is connected to the
edge server, a test upload and download transmission is
performed (Lines 3-4). Test transmission is performed to
gather the upload bandwidth βu and the download bandwidth
βd along with Et and Er, if not set by the IoT user in the
global preferences. Subsequently, the main offloading loop,
which is conditioned by the server connectivity, is executed
(Lines 5-32). The UMPM registry is queried to obtain an
offloading candidate application that is listed along with its
preferences (Line 6). Once an application has been fetched,
the application is executed through UAMC, along with the
parameters required for making an offloading decision (Lines
8-9). Afterward, the type of application is determined (i.e.,
whether the application is migration aware or not) (Line
10). If the application is migration aware, the offloading
decision benefit function (equation (2)) is called inside the
application execution life cycle at the point of offloading.
If the function returns true, the application is checkpointed,
and UAMC is acknowledged about the checkpoint. The

https://github.com/dmtcp/dmtcp


5

Algorithm 1: Offloading Algorithm

1: Ec, Ei, Et, Er, Sm, Bt ← MPMGetGlobalPrefrences()
2: S ← AMMGetFindServer()
3: βu, Et ← TestUpload()
4: βd, Er ← TestDownload()
5: while isConnected(S) do
6: P, I, α, γ, Pf , Pt ← MPMGetProcessInfo()
7: if P 6= NULL then
8: AMC ← LaunchApplicationMigrationCoordinator

(Ec, Ei, Et, Er, βu, βd, α, γ)
9: LaunchProcess(P )

10: if Pt = MigrationAware then
11: Ot ← AMMInfoPolling()
12: if Ot 6= NULL then
13: βu ← TransferCheckpoint(Ot, Pt, S)
14: βd ← ReceiveCheckpoint(Or, S)
15: RestartCheckpoint(Or)
16: end if
17: else
18: if Benefit(Ec, Ei, Et, Er, βu, βd, α, γ) > 0)

orPf = 1 then
19: AMMSignalCheckpoint(P )
20: Ot ← AMMInfoPolling()
21: AMMSignalKill(P )
22: if Ot 6= NULL then
23: βu ← TransferCheckpoint(Ot, Pt, S)
24: βd ← ReceiveCheckpoint(Or, S)
25: RestartCheckpoint(Or)
26: end if
27: else
28: ExecuteProcessLocally(P )
29: end if
30: end if
31: end if
32: end while
33: while isNotConnected(S) do
34: P ← MPMGetProcessInfo()
35: if P 6= NULL then
36: ExecuteProcessLocally(P )
37: end if
38: end while

acknowledgment means that a checkpoint is ready and must
be offloaded to the remote device (Line 13). In retrospect,
the algorithm waits to receive the updated checkpoint from
the remote device (Line 14). Meanwhile, if the application
is not migration aware, the control is then jumped to where
the offloading algorithm calls the benefit function listed in
equation (2) (Line 18). If the offloading benefit function
returns true, then the UAMM sends signals for the UAMC
to send a checkpoint signal to the process checkpoint thread
(Line 19). Once the process receives that signal, the process
checkpoints itself and acknowledges the UAMC, which
is handled by the polling function (Line 20). Once the
acknowledgment is received, the process is terminated, and
the checkpoint is transferred to the remote device (Line 23).

In response, the algorithm waits for receiving the updated
checkpoint from the remote device (Line 24). If the benefit
function (Line 18) returns false, then the application is
locally executed (Lines 33-37). Lastly, if the mobile device
is not connected to an edge service, the application is
locally executed on the mobile/IoT device, irrespective if
a UMPM entry for the mobile application is available and true.

Equation (2) presents an offloading decision function, which
is modified from Equation (1) to consider the PMCO. This
equation needs to be modified for additional decision criterion.

[Ep
m − E

′p
m − E

′′p
m − E

p
t − Ep

r ] > Bt, whereBt > 0 (2)

where Ep
m represents the energy consumption of process p

on the source mobile device m, E
′p
m is the energy consumption

of the checkpointing of process p on the source mobile device
m, E

′′p
m represents the energy consumption of restarting the

process from a checkpoint state (received from a remote
computing device) on the on-the-source mobile device m.
Ep

t and Ep
r represent the energy consumption required to

transfer and receive a checkpoint of process p, respectively.
The modification of the decision function is necessary for
process migration in which the process is terminated after the
checkpoint and subsequently transferred to the remote device
where it is restarted on the source device by considering the
updated state.

In Algorithm 2, we present the step sequence of the edge-
side offloading service provided to the IoT end users.

Algorithm 2: Offloading Service

1: while 1 do
2: C ← AcceptConnection()
3: ReceiveCheckpoint(Or, Pt, C)
4: if Pt = MigrationAware then
5: P ← RestartCheckpoint(Or)
6: Ot ← AMMInfoPolling()
7: if Ot 6= NULL then
8: TransferCheckpoint(Ot, S)
9: end if

10: else
11: P ← RestartCheckpoint(Or, Interval)
12: if isProcessExecutionFinished(P) then
13: Ot ← AMMInfoPolling()
14: if Ot 6= NULL then
15: TransferCheckpoint(Ot, S)
16: end if
17: end if
18: end if
19: end while

Client connection is established, and then a checkpoint
file is accepted (Lines 2-3). Once the checkpoint file is
received, the service checks if the application for which the
checkpoint file is received is migration aware (Line 4). If the
received application is migration aware, then the application is



6 IEEE INTERNET OF THINGS JOURNAL

restarted with its own checkpoint coordinator process (Line 5).
Then, the EAMM starts polling to prepare a new checkpoint
image that will be sent to the client device (Line 6). If
the received application is not migration aware, the received
application is restarted with its own coordinator on an interval-
based checkpoint (Line 11). Once the received application is
restarted, the offloading service will wait until the process is
finished. The offloading service conducts a poll (Line 13) of
the latest checkpoint image, which is generated on the basis
of the interval timeout during program execution. Finally, the
checkpoint image is returned to the client’s device for re-
execution.

IV. PERFORMANCE EVALUATION RESULTS

This section presents the performance evaluation of our
proposed framework. To evaluate the proposed model and
its lightweight features, we use standardized synthetic bench-
marking experiments with a computation-intensive application
for measuring mega floating point operation per second, mega
instruction per second, application execution time, amount of
data transfer, and consumed energy. A total of 30 observations
for each benchmark application was collected and analyzed.

A. Experimental setup
To benchmark the proposed prototype, we selected four

standard synthetic computing benchmarks and a synthetic
computation-intensive application with various execution input
granularities. The selected synthetic benchmarks included (i)
Dhrystone3, (ii) Whetstone4, (iii) Linpack5, and (iv) Sci-
mark26. The Scimark benchmark was configured to execute
the large instance; the configuration can be set as a command
line parameter using the source code provided by National
Institute of Standards and Technology. Table I presents the
computation-intensive application, which is a matrix multipli-
cation application with different matrix granularities. All appli-
cations (benchmarks and matrix multiplication programs) were
annotated with migration points that enable self-checkpointing.
These applications were compiled using a standard GNU
compiler collection (GCC) with position independent codes (-
fPIC) switch. -fPIC is required by the checkpointing engine to
checkpoint and transparently restart the process in user space.

The primary data for the performance evaluation were
collected by testing the prototype applications in three different
real scenarios. In the first scenario, all components of the mo-
bile/IoT applications were executed on a local mobile device to
analyze the performance evaluation metrics of the application.
In the second scenario, the application was again executed
on local mobile/IoT device using the proposed framework to
analyze the framework overhead. In the third scenario, the
components of the mobile/IoT application were offloaded at
runtime by implementing the proposed computational offload-
ing techniques. A schematic of our benchmarking setup is
shown below (figure 2).

3Accessed on: 28 February 2019 https://en.wikipedia.org/wiki/Dhrystone
4Accessed on: 28 February 2019 https://en.wikipedia.org/wiki/Whetstone_

(benchmark)
5Accessed on: 28 February 2019 https://en.wikipedia.org/wiki/LINPACK
6Accessed on: 28 February 2019 http://math.nist.gov/scimark2/

TABLE I: Benchmark Matrix Multiplication Granularity

Workload#1 Matrix Granularity

1 300x300

2 400x400

3 500x500

4 600x600

5 700x700

6 800x800

7 900x900

8 1000x1000

Fig. 2: Network topology of experimental setup.

The process state is platform dependent. To prepare a real
experimentation environment, we needed similar hardware
and operating system architecture on both endpoints of the
experimental setup, as shown in figure 2. We used a Samsung
Galaxy S-II i9100g, which is considered a core component of
the IoT. This device is equipped with a dual core 1.2 GHz
TI OMAP 4430 ARM Cortex-A9 SoC and 1 GB RAM. The
client device is connected to the edge server device using
the campus WiFi network. The edge server device is a high-
performance Sony Xperia Z Ultra equipped with a quad-core
2.2 GHz Qualcomm MSM8274 ARM Cortex-A9 SoC. To
differentiate the client and the server device further, we down-
clocked the client device from 1.2 GHz to 600 MHz to emulate
a resource-poor client device and a resource-rich server device.
Both devices were based on Android OS. In our experimental
setup, we utilized the Android kernel but deployed a standard
ARM port of Ubuntu 13.10 Saucy Salamander in a chroot
environment over both devices. This chroot jail over Android
allowed us to utilize the full capabilities of the standard GNU
Glibc (missing in Android) and Android kernel (Linux kernel),
especially in accessing the process state from user spaces.

The application migration manager was programmed in
Java to provide a client-server communication interface be-
tween both endpoints, whereas for checkpoint management
and coordination, we used and modified distributed multi-
threaded checkpointing (DMTCP)7, a multipurpose check-
pointing mechanism for parallel and distributed computing
environments. DMTCP is community driven and has a pro-
gressive enhancement; the framework can be ported to new

7Accessed on: 25 February 2019 http://dmtcp.sourceforge.net/

https://en.wikipedia.org/wiki/Dhrystone
https://en.wikipedia.org/wiki/Whetstone_(benchmark)
https://en.wikipedia.org/wiki/Whetstone_(benchmark)
https://en.wikipedia.org/wiki/LINPACK
http://math.nist.gov/scimark2/
http://dmtcp.sourceforge.net/


7

(a) (b)

(c) (d)

Fig. 3: (a) Execution time for matrix multiplication workloads generated via experimentation. (b) Breakdown of the contributing
factors of remote execution time using PMCO. (c) Impact of the contributing factors on remote execution time using PMCO.
(d) Mean MFLOPS values for 30 observations of Linpack and Scimark benchmarks generated via Local, Local_PMCO and
PMCO executions.

platforms and environments, thereby enabling portability to a
large extent.

We evaluated the performance of each benchmark and the
eight different granularities of the matrix multiplication work-
load in three modes, namely, Local, Local_PMCO, and the
proposed PMCO. Each benchmark and matrix multiplication
workload were executed 30 times, and the mean value was
considered for analysis. To enhance the reliability of the results
and ensure that the data collection is unbiased, we presented
the findings with 95% confidence interval.

The improvement in computing power/execution time was
measured by executing the benchmark applications, which are
specifically designed for benchmarking computing systems
and hardware. The migration segments of the benchmark
applications comprise the start and end of the main function of
the application to ensure that the generated benchmark values
are unbiased and can provide the real increase in computing
power based on the edge device. The benchmark execution
results were automatically encapsulated in the checkpoint
parcel by the checkpoint manager (EAMM) on the edge server.

To collect the energy consumption of the complete ap-
plication under execution, we monitored the application and
the framework components using PowerAPI [50]in console
mode, which is a granular tool for investigating the power
consumption of running applications based on the chipset
thermal design power (TDP). The TDP value for the client
device (Samsung Galaxy SII i9100g) was set to 0.6 W8. Pow-

8Accessed on: 30 January 2019 http://www.notebookcheck.net/
Texas-Instruments-TI-OMAP-4430-SoC.86865.0.html

erAPI also provides a feature to monitor the aggregate energy
consumption of a group of processes, which in our scenario of
remote execution (i.e., process migration) was configured to
monitor the power consumption of the UAMM and the UAMC
components of the proposed framework. Energy consumed by
other software components were not considered in this data
collection phase, and the applications in active mode were run
throughout the experiment by preventing any pause of block in
the application execution. Furthermore, we parsed the power
profile output generated by PowerAPI using bash scripts to
generate the CSV files for analysis.

The improvement in execution time was measured using the
matrix multiplication applications because benchmarks were
not designed for this purpose (i.e., benchmarks will run for
the same time units on all devices to provide an unbiased
analysis of the computing capabilities). The execution time
of the matrix multiplication application was measured by the
application itself because we enclosed the migration segment
of the source code with timers to provide details about the
execution time during local or remote execution. Thus, the
execution time of the program on the platform where it
is executing was provided. The remote execution time also
contained the checkpoint restart overhead and the transmission
and reception time, and their respective components generated
these values in a formatted log file, which was then processed
using bash scripts to generate the CSV files for analysis.

Our last parameter is the amount of data transfer or the
size of checkpoint file, which was first migrated from the
mobile device. An updated checkpoint state was transferred

http://www.notebookcheck.net/Texas-Instruments-TI-OMAP-4430-SoC.86865.0.html
http://www.notebookcheck.net/Texas-Instruments-TI-OMAP-4430-SoC.86865.0.html


8 IEEE INTERNET OF THINGS JOURNAL

by the mobile device from the server. The amount of data
transfer was logged by the UAMM to provide the bandwidth
consumption details. The log file was processed similarly as
the other parameters.

B. Execution time and Computing Power

Fig. 4: Mean MIPS and MWIPS values for 30 observations
of Dhrystone and Whetstone benchmarks generated via Local,
Local_PMCO and PMCO executions.

Fig. 5: Energy consumed for matrix multiplication workloads
gathered via PowerAPI.

This section presents the temporal results of the execution
of the experimental application of matrix multiplication and
the benchmarking applications in three environments. One en-
vironment was local, in which the entire application-including
intensive and nonintensive-was executed on the mobile device.
In the second environment (Local_PMCO), the experimental
application of the matrix multiplication was locally executed
through the PMCO environment. The third environment was
the proposed PMCO in which application execution started
locally. When the execution reached a migration marker, the
process was offloaded to the mobile cloud for execution. Data
related to execution were gathered using experimental analysis.
Several charts were used to demonstrate the findings.

The mean execution time of the workloads in PMCO
execution mode was 1.88, 2.10, 2.25, 2.12, 2.18, 2.56, 2.25,
and 2.27 times better than the local execution. Each diag-
onal brick bar in figure 3(a) represents the mean value of
the execution time measured by PMCO for 30 iterations of
each matrix multiplication workload. Similarly, each diagonal
strip bar represents the mean execution time measured using
Local_PMCO, whereas each checkered bar represents the

execution time for local execution. Figure 3(b) depicts the
increase in complexity as the matrix multiplication intensity
increases from left to right. The growth of the workload
intensity had a significant effect on execution time when
the workloads were entirely executed on the mobile device.
Meanwhile, the execution time in PMCO execution mode was
remarkably smaller than local execution. The execution of the
last workload on the local client’s device took more than 199
s to complete, which suggests the incapacity to execute high
intensity workloads on the client device.

The improvement in execution time is not a function of
intensity level of the workload but is a function of the com-
puting power of the remote server and the underlying network
conditions. The mean execution time savings according to
the increasing order of workload intensity are 53%, 47%,
44%, 47%, 45%, 39%, 44%, and 43%. Data transmission
time plays a vital role in the overall execution response
time of the workload. Similarly, from the overhead point
of view, when the workloads were locally executed through
the PMCO framework, the degradation in increasing order
of workload intensities was 2.16%, 2.81%, 1.73%, 0.50%,
1.32%, 0.99%, 0.51%, and 0.59%. The minimum degrada-
tion was approximately 0.50%, and the maximum reached
up to 2.81%. However, we could not identify a correlation
between the workload intensity level and the percentage of
degradation because of the influences of the internal operating
system threading model and the thread context switching. The
correlation between the workload intensity and time saving
is illustrated in figure 3(a), indicating that low workload
intensities have smaller discrepancies compared with higher
ones.

The execution time in local mode is highly affected by the
workload intensity and the computing power of the mobile
device (e.g., CPU clock speed, RAM, storage, and cache).
However, the PMCO execution time also depends on other
metrics, such as checkpoint/restart time and underlying net-
work bandwidth. These contributing factors play a crucial
role in the overall offloading benefit. Figure 3(b) shows a
stacked chart with the breakdown of the details in PMCO
execution mode. An increase in the offloading time (from the
500×500 to the 600×600) was observed. Similarly, a decrease
in offloading time (from 700 × 700 to the 800 × 800) was
discerned. Furthermore, the number of the 800× 800 and the
900×900 matrix workload offloading times were less than the
600×600 ones. The variation of results is due to the fact that
at a certain point, the campus network bandwidth fluctuates,
thereby affecting the data rate at which the checkpoint image is
transferred and eventually increasing the offloading time and
the total execution time. Figure 3(c) shows a 100% stacked
chart, which shows that in the first workload, the overhead
of the contributing factors was approximately 40%. As the
workload intensity increases, the overhead of the contributing
factors decreases. The solid black color in the bar represents
the offloading time. The white, gray, and blue chunks represent
the response time, the checkpoint restart overhead, and the
process execution time on the remote server, respectively.

The data plotted in figures 3(d) and 4 are the average
computing power measured from the benchmark workloads



9

(a) (b)

(c) (d)

Fig. 6: (a) Scattered plot with interpolation lines for matrix multiplication energy consumption. (b) Scatter plot showing
linearity correlation between local execution time and consumed energy. (c) Scatter plot showing linearity correlation between
PMCO execution response time and consumed energy. (d) Energy consumed for benchmark application workloads gathered
via PowerAPI.

for local, Local_PMCO, and PMCO execution modes. Each
diagonal brick bar represents the mean value of the com-
puting power measured using PMCO mode in 30 iterations
for each corresponding benchmark workload. Diagonal strip
bars represent the mean computing power measured using
the Local_PMCO mode of execution, whereas the checkered
bar represents the corresponding computing power for local
execution. In summary, figures 3(d) and 4 depict the increase
in computing power that is disposed to the local mobile device
through PMCO. The figure also demonstrates that a minimal
margin of degradation is present if a benchmark is locally
executed using PMCO components.

C. Energy Consumption

In this section, we present the energy consumption required
in the execution of the experimental matrix multiplication
application in the Local, Local_PMCO, and PMCO execution
modes along with their statistical comparison.

Figure 5 depicts increasing energy consumption as the
matrix multiplication intensity increases from left to right.
The growth of the workloads had a significant effect on
consumed energy when the workloads were entirely executed
on the mobile device. The energy consumption using PMCO
was remarkably smaller than that of the local execution. The
execution of the last workload in the experiment took more
than 40.33 J to complete, which suggests incapacity to execute
intensive workloads on client devices.

Moreover, executing workloads on the local device in in-
creasing order of workload intensity consumes 4.94, 5.62,
6.55, 6.27, 6.25, 7.16, 6.04, and 6.37 times more energy
compared with the PMCO execution. The mean energy con-
sumption for the eight workloads was approximately 6.15
times more than the energy consumption of the application
when it was executed on the client’s device. For instance, if
the energy required to run the eighth workload locally is 40.33
J, the same workload will consume as low as 6.33 J when
performed outside the mobile device. In terms of the overhead,
when the workloads were locally executed through the PMCO
framework, the degradation was approximately 0.01% to 5%.
The data plotted in figure 5 are the mean consumed energy of
the workloads for Local, Local_PMCO, and PMCO execution
modes. Each diagonal brick bar represents the mean value of
the consumed energy measured using PMCO, whereas each
diagonal strip and checkered bar represent the mean consumed
energy measured using the Local_PMCO mode and local
execution, respectively.

Significant differences in local and PMCO energy con-
sumption enable mobile users to offload using the PMCO
of extremely intensive workloads on their mobile devices
to gain battery lifetime. These differences are depicted in
figure 6(a). Scattered triangles and squares across the graph
and the corresponding interpolating lines show the differences
in achievements and the correlation between the workload
intensity and time saving, respectively. Workloads with low



10 IEEE INTERNET OF THINGS JOURNAL

intensity have smaller discrepancies compared with those with
high intensity (represented by the circle and the triangle). The
increase in energy consumption of PMCO was not abrupt
compared with local execution.

The energy consumption in local execution mode was highly
affected by workload intensity, along with the power rating
of the mobile device. This phenomenon is presented by the
scattered plots in figures 6(b) and 6(c), which demonstrate that
if workload intensity increases, the energy consumption also
increases. Figure 6(d) shows the mean values of the energy
consumed by the benchmark workloads using the Local,
Local_PMCO, and PMCO execution modes. The diagonal
brick, diagonal strip, and checkered bars represent the values
obtained using PMCO, Local_PMCO, and local execution,
respectively.

Figure 6(d) depicts the reduction of consumed energy in the
PMCO execution mode, which is remarkably smaller than that
of the local execution. The execution of the Linpack workload
in our experiment consumed 6.24 J using local execution mode
and had an overhead of approximately 0.20 J when locally
executed using the PMCO. The improvement was substantial,
consuming only 2.15 J on the average when executed using
PMCO, which is almost 2.5 to 3 times less than the local
consumption.

V. CONCLUSION

In this paper, we proposed the PMCO framework for IoT-
supported MCE. Results demonstrated significant time and
energy efficiency yield. The performance evaluation of the
framework was performed using standard computing bench-
marks and custom workloads with eight different intensity
levels to highlight the correlation between workload, time, and
energy saving effectively. Although the proposed solution was
remarkably effective at all intensity levels, the findings became
more significant when the workloads were highly intensive.
The time and energy efficiency rates increased as the workload
intensities were increased.

Results exhibited about 44% time efficiency and 84%
energy efficiency when the execution of the experimental
workload was performed outside the mobile device. The
findings were synthesized to demonstrate minimal differences
between the reported achievements. The supportive results of
real-time experiments revealed the lightweight nature of the
framework, as well as its usability and successful adoption
in real scenarios. Our secondary experiment confirmed that
the lightweight feature of our proposed framework does not
deteriorate the performance of the mobile device when used
to trigger local execution. In the future, we aim to extend this
concept towards mobility assisted edge-to-edge computational
offloading mechanism for coping with mobility-related issues
posed by IoT devices to save the computational and migration
time.

ACKNOWLEDGMENT

Imran’s work is supported by the Deanship of Scientific
Research, King Saud University through Research Group
Project number RG-1435-051. This work is funded by Bright

Spark Program from the University of Malaya under reference
BSP/APP/1635/2013.

REFERENCES

[1] J. Wang, J. Pan, F. Esposito, P. Calyam, Z. Yang, and P. Mohapatra,
“Edge cloud offloading algorithms: Issues, methods, and perspectives,”
ACM Computing Surveys (CSUR), vol. 52, no. 1, p. 2, 2019.

[2] N. Hassan, S. Gillani, E. Ahmed, I. Yaqoob, and M. Imran, “The role of
edge computing in internet of things,” IEEE Communications Magazine,
vol. 56, no. 11, pp. 110–115, 2018.

[3] K. Govindan, A. Karthikeyan, J. M. Ppallan, S. Jaiswal, and K. Subra-
maniam, “Tcp closure optimization for enhanced battery life in smart
devices,” IEEE Transactions on Mobile Computing, vol. 18, no. 3, pp.
645–657, 2019.

[4] D. Puthal, S. P. Mohanty, S. A. Bhavake, G. Morgan, and R. Ranjan,
“Fog computing security challenges and future directions [energy and
security],” IEEE Consumer Electronics Magazine, vol. 8, no. 3, pp. 92–
96, May 2019.

[5] W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, and X. Yang, “A
survey on the edge computing for the internet of things,” IEEE access,
vol. 6, pp. 6900–6919, 2017.

[6] M. Chiang and T. Zhang, “Fog and iot: An overview of research
opportunities,” IEEE Internet of Things Journal, vol. 3, no. 6, pp. 854–
864, 2016.

[7] S. F. Abedin, M. G. R. Alam, S. A. Kazmi, N. H. Tran, D. Niyato,
and C. S. Hong, “Resource allocation for ultra-reliable and enhanced
mobile broadband iot applications in fog network,” IEEE Transactions
on Communications, vol. 67, no. 1, pp. 489–502, 2018.

[8] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2322–2358,
2017.

[9] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
Elastic execution between mobile device and cloud,” in Proceedings of
the Sixth Conference on Computer Systems, ser. EuroSys ’11. ACM,
2011, Salzburg, Austria, pp. 301–314.

[10] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: making smartphones last longer with
code offload,” in Proceedings of the 8th international conference on
Mobile systems, applications, and services. ACM, 2010, San Francisco,
California, USA, pp. 49–62.

[11] C. Shi, K. Habak, P. Pandurangan, M. Ammar, M. Naik, and E. Zegura,
“Cosmos: Computation offloading as a service for mobile devices,” in
Proceedings of the 15th ACM International Symposium on Mobile Ad
Hoc Networking and Computing, ser. MobiHoc ’14. ACM, 2014, New
York, USA, pp. 287–296.

[12] P. Mell, T. Grance et al., “The nist definition of cloud computing,”
National institute of standards and technology, vol. 53, no. 6, p. 50,
2009.

[13] E. Ahmed, A. Naveed, A. Gani, S. H. Ab Hamid, M. Imran, and
M. Guizani, “Process state synchronization-based application execution
management for mobile edge/cloud computing,” Future Generation
Computer Systems, vol. 91, pp. 579–589, 2019.

[14] W. Z. Khan, E. Ahmed, S. Hakak, I. Yaqoob, and A. Ahmed, “Edge
computing: A survey,” Future Generation Computer Systems, vol. 97,
pp. 219–235, 2019.

[15] E. Ahmed, A. Ahmed, I. Yaqoob, J. Shuja, A. Gani, M. Imran, and
M. Shoaib, “Bringing computation closer toward the user network:
Is edge computing the solution?” IEEE Communications Magazine,
vol. 55, no. 11, pp. 138–144, Nov 2017.

[16] A. Yousafzai, A. Gani, R. M. Noor, A. Naveed, R. W. Ahmad, and
V. Chang, “Computational offloading mechanism for native and android
runtime based mobile applications,” Journal of Systems and Software,
vol. 121, pp. 28–39, 2016.

[17] P. Bellavista, S. Chessa, L. Foschini, L. Gioia, and M. Girolami,
“Human-enabled edge computing: Exploiting the crowd as a dynamic
extension of mobile edge computing,” IEEE Communications Magazine,
vol. 56, no. 1, pp. 145–155, Jan 2018.

[18] A. Yousefpour, G. Ishigaki, R. Gour, and J. P. Jue, “On reducing iot
service delay via fog offloading,” IEEE Internet of Things Journal,
vol. 5, no. 2, pp. 998–1010, April 2018.

[19] X. Lyu, H. Tian, L. Jiang, A. Vinel, S. Maharjan, S. Gjessing, and
Y. Zhang, “Selective offloading in mobile edge computing for the green
internet of things,” IEEE Network, vol. 32, no. 1, pp. 54–60, Jan 2018.



11

[20] H. A. Alameddine, S. Sharafeddine, S. Sebbah, S. Ayoubi, and C. Assi,
“Dynamic task offloading and scheduling for low-latency iot services
in multi-access edge computing,” IEEE Journal on Selected Areas in
Communications, vol. 37, no. 3, pp. 668–682, March 2019.

[21] X. Chen, Q. Shi, L. Yang, and J. Xu, “Thriftyedge: Resource-efficient
edge computing for intelligent iot applications,” IEEE Network, vol. 32,
no. 1, pp. 61–65, Jan 2018.

[22] C. Zhang, H. Zhao, and S. Deng, “A density-based offloading strategy
for iot devices in edge computing systems,” IEEE Access, vol. 6, pp.
73 520–73 530, 2018.

[23] S. Li, Y. Tao, X. Qin, L. Liu, Z. Zhang, and P. Zhang, “Energy-aware
mobile edge computation offloading for iot over heterogenous networks,”
IEEE Access, vol. 7, pp. 13 092–13 105, 2019.

[24] H. H. Elazhary and S. F. Sabbeh, “The w5 framework for computation
offloading in the internet of things,” IEEE Access, vol. 6, pp. 23 883–
23 895, 2018.

[25] N. Cheng, F. Lyu, W. Quan, C. Zhou, H. He, W. Shi, and X. Shen,
“Space/aerial-assisted computing offloading for iot applications: A
learning-based approach,” IEEE Journal on Selected Areas in Commu-
nications, vol. 37, no. 5, pp. 1117–1129, May 2019.

[26] H. Shah-Mansouri and V. W. S. Wong, “Hierarchical fog-cloud comput-
ing for iot systems: A computation offloading game,” IEEE Internet of
Things Journal, vol. 5, no. 4, pp. 3246–3257, Aug 2018.

[27] H. Guo, J. Liu, and H. Qin, “Collaborative mobile edge computation
offloading for iot over fiber-wireless networks,” IEEE Network, vol. 32,
no. 1, pp. 66–71, Jan 2018.

[28] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
vm-based cloudlets in mobile computing,” Pervasive Computing, IEEE,
vol. 8, no. 4, pp. 14–23, Oct 2009.

[29] G. Portokalidis, P. Homburg, K. Anagnostakis, and H. Bos, “Paranoid
android: Versatile protection for smartphones,” in Proceedings of the
26th Annual Computer Security Applications Conference, ser. ACSAC
’10. New York, NY, USA: ACM, 2010, pp. 347–356.

[30] E. Chen and M. Itoh, “Virtual smartphone over ip,” in IEEE International
Symposium on a World of Wireless Mobile and MultimediaNetworks
(WoWMoM), June 2010, Montrreal, QC, Canada, pp. 1–6.

[31] B. Zhao, Z. Xu, C. Chi, S. Zhu, and G. Cao, “Mirroring smartphones
for good: A feasibility study,” in Mobile and Ubiquitous Systems:
Computing, Networking, and Services, ser. Lecture Notes of the Institute
for Computer Sciences, Social Informatics and Telecommunications
Engineering, P. SÃl’nac, M. Ott, and A. Seneviratne, Eds. Springer
Berlin Heidelberg, 2012, vol. 73, pp. 26–38.

[32] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair: Dy-
namic resource allocation and parallel execution in the cloud for mobile
code offloading,” in Proceedings IEEE INFOCOM, 2012, Orlando, FL,
USA, pp. 945–953.

[33] S. Simanta, K. Ha, G. Lewis, E. Morris, and M. Satyanarayanan, “A
reference architecture for mobile code offload in hostile environments,”
in Mobile Computing, Applications, and Services, ser. Lecture Notes of
the Institute for Computer Sciences, Social Informatics and Telecommu-
nications Engineering, D. Uhler, K. Mehta, and J. Wong, Eds. Springer
Berlin Heidelberg, 2013, vol. 110, pp. 274–293.

[34] D. Kovachev, Y. Cao, and R. Klamma, “Augmenting pervasive envi-
ronments with an xmpp-based mobile cloud middleware,” in Mobile
Computing, Applications, and Services, ser. Lecture Notes of the Insti-
tute for Computer Sciences, Social Informatics and Telecommunications
Engineering, M. Gris and G. Yang, Eds. Springer Berlin Heidelberg,
2012, vol. 76, pp. 361–372.

[35] D. Kovachev, T. Yu, and R. Klamma, “Adaptive computation offloading
from mobile devices into the cloud,” in IEEE 10th International Sympo-
sium on Parallel and Distributed Processing with Applications (ISPA),
2012, Leganes, Spain, pp. 784–791.

[36] B.-D. Lee, “A framework for seamless execution of mobile applications
in the cloud,” in Recent Advances in Computer Science and Information
Engineering, ser. Lecture Notes in Electrical Engineering, Z. Qian,
L. Cao, W. Su, T. Wang, and H. Yang, Eds. Springer Berlin Heidelberg,
2012, vol. 126, pp. 145–153.

[37] T. Verbelen, T. Stevens, P. Simoens, F. De Turck, and B. Dhoedt,
“Dynamic deployment and quality adaptation for mobile augmented
reality applications,” Journal of Systems and Software, vol. 84, no. 11,
pp. 1871–1882, 2011.

[38] T. Verbelen, P. Simoens, F. D. Turck, and B. Dhoedt, “Aiolos: Mid-
dleware for improving mobile application performance through cyber
foraging,” Journal of Systems and Software, vol. 85, no. 11, pp. 2629 –
2639, 2012.

[39] R. Kemp, N. Palmer, T. Kielmann, and H. Bal, “Cuckoo: A compu-
tation offloading framework for smartphones,” in Mobile Computing,

Applications, and Services, ser. Lecture Notes of the Institute for Com-
puter Sciences, Social Informatics and Telecommunications Engineering,
M. Gris and G. Yang, Eds. Springer Berlin Heidelberg, 2012, vol. 76,
pp. 59–79.

[40] H. Flores, S. Srirama, and R. Buyya, “Computational offloading or
data binding? bridging the cloud infrastructure to the proximity of the
mobile user,” in 2nd IEEE International Conference on Mobile Cloud
Computing, Services, and Engineering (MobileCloud), 2014, Oxford,
United Kingdom, pp. 10–18.

[41] S. Wu, C. Mei, H. Jin, and D. Wang, “Android unikernel: Gearing mobile
code offloading towards edge computing,” Future Generation Computer
Systems, vol. 86, pp. 694 – 703, 2018.

[42] S. Yang, D. Kwon, H. Yi, Y. Cho, Y. Kwon, and Y. Paek, “Techniques to
minimize state transfer costs for dynamic execution offloading in mobile
cloud computing,” Mobile Computing, IEEE Transactions on, vol. 13,
no. 11, pp. 2648–2660, Nov 2014.

[43] M. S. Gordon, D. A. Jamshidi, S. Mahlke, Z. M. Mao, and X. Chen,
“{COMET}: Code offload by migrating execution transparently,” in 10th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI), 2012, Hollywood, California, pp. 93–106.

[44] J. L. D. Neto, S.-Y. Yu, D. F. Macedo, M. S. Nogueira, R. Langar,
S. Secci et al., “Uloof: A user level online offloading framework for
mobile edge computing,” IEEE Transactions on Mobile Computing,
vol. 17, no. 11, pp. 2660–2674, 2018.

[45] J. Ansel, K. Arya, and G. Cooperman, “Dmtcp: Transparent check-
pointing for cluster computations and the desktop,” in International
Symposium on Parallel & Distributed Processing. IEEE, 2009, Rome,
Italy, pp. 1–12.

[46] M. Whaiduzzaman, A. Gani, and A. Naveed, “Pefc: Performance en-
hancement framework for cloudlet in mobile cloud computing,” in IEEE
International Symposium on Robotics and Manufacturing Automation
(ROMA), Dec 2014, Kuala Lumpur, Malaysia, pp. 224–229.

[47] D. Puthal, M. S. Obaidat, P. Nanda, M. Prasad, S. P. Mohanty, and A. Y.
Zomaya, “Secure and sustainable load balancing of edge data centers
in fog computing,” IEEE Communications Magazine, vol. 56, no. 5, pp.
60–65, May 2018.

[48] S. K. Mishra, D. Puthal, J. J. P. C. Rodrigues, B. Sahoo, and
E. Dutkiewicz, “Sustainable service allocation using a metaheuristic
technique in a fog server for industrial applications,” IEEE Transactions
on Industrial Informatics, vol. 14, no. 10, pp. 4497–4506, Oct 2018.

[49] N. Vasudevan and P. Venkatesh, “Design and implementation of a pro-
cess migration system for the linux environment,” in 3rd International
Conference on Neural, Parallel and Scientific Computations, 2006.

[50] A. Bourdon, A. Noureddine, R. Rouvoy, and L. Seinturier, “Powerapi:
A software library to monitor the energy consumed at the process level,”
ERCIM News, vol. 2013, no. 92, 2013.

Abdullah Yousafzai is an assistant professor with the the Department of Com-
puter Science and Engineering, HITEC University, Taxila, Pakistan. Prior to
that, he worked as a Brightspark Research Assistant at C4MCCR University of
Malaysia, and as a Backend Web Developer in Pakistan. He received his Ph.D
from University of Malaya in 2017, MS (Computer Science) from Comsats
Institute of Information Technology, Abbottabad in 2013 and BCS(Hons) from
Hazara University Mansehra, Pakistan in 2009. He has reviewed manuscripts
for IEEE Access, SUSCOM, TIIS, AJSE, WPC, SUPE and served as a
TPC member for numerous international conferences. His work mainly
focuses on Distributed Computing Environments comprising cloud computing
systems, edge computing, mobile cloud computing, blockchain systems, and
the Internet of Things.



12 IEEE INTERNET OF THINGS JOURNAL

Ibrar Yaqoob (S’16-M’18-SM’19) is a research professor with the De-
partment of Computer Science and Engineering, Kyung Hee University,
South Korea, where he completed his postdoctoral fellowship under the
prestigious grant of Brain Korea 21st Century Plus. Prior to that, he received
his Ph.D. (Computer Science) from the University of Malaya, Malaysia, in
2017. He worked as a researcher and developer at the Centre for Mobile
Cloud Computing Research (C4MCCR), University of Malaya. His numerous
research articles are very famous and among the most downloaded in top
journals. He has reviewed over 200 times for the top ISI- Indexed journals and
conferences. He has been listed among top researchers by Thomson Reuters
(Web of Science) based on the number of citations earned in last three years
in six categories of Computer Science. He is currently serving/served as a
guest/associate editor in various Journals. He has been involved in a number
of conferences and workshops in various capacities. His research interests
include big data, edge computing, mobile cloud computing, the Internet of
Things, and computer networks.

Muhammad Imran is working as an Associate Professor in the College
of Applied Computer Science, King Saud University (KSU). His research
interest includes mobile and wireless networks, Internet of Things, cloud/edge
computing, big data analytics, and information security. He has published a
number of research papers in refereed international conferences and journals.
His research is financially supported by several grants. He served as an Editor
in Chief for EAI Transactions on Pervasive Health and Technology. He also
serves as an associate editor of many international journals including IEEE
Access, IEEE Communications Magazine, and Future Generation Computer
Systems. He has been involved in more than seventy-five conferences and
workshops in various capacities such as a chair, co-chair and technical
program committee member. These include IEEE ICC, Globecom, AINA,
LCN, IWCMC, IFIP WWIC and BWCCA. He has received a number of
national and international awards.

Abdullah Gani is a full professor at the Department of Computer System and
Technology, University of Malaya, Malaysia. His academic qualifications were
obtained from the University of Hull, UK for bachelor and master degrees,
and the University of Sheffield, UK for Phd. He has vast teaching experience
due to having worked in various educational institutions locally and abroad -
schools, teaching college, ministry of education, and universities. His interest
in research started in 1983 when he was chosen to attend the Scientific
Research Course in RECSAM by the Ministry of Education, Malaysia. More
than 200 academic papers have been published in conferences and respectable
journals. He actively supervises many students at all level of study - Bachelor,
Master and Phd. His interest of research includes self-organized system,
reinforcement learning, wireless-related networks. He has worked on mobile
cloud computing with High Impact Research Grant of USD 500,000 (RM
1.5M) for the period of 2011-2016. He is a senior member of IEEE. Currently,
he is a director of the Centre for Mobile Cloud Computing Research, which
focuses on high impact research. He is also a visiting Professor at the King
Saud University, Saudi Arabia as well as serves as Adjunct Professor at the
COMSATS Institute of Information Technology, Islamabad, Pakistan. He also
serves as a visiting professor at the University Malaysia Sabah, Kota Kinabalu,
Sabah. Malaysia (2015-2017). He serves as a chairman of Industry Advisory
Panel for Research Degree Program at UNITEN, Malaysia (2015-2017).

Rafidah Md Noor received her BIT from University Utara Malaysia in 1998,
and M.Sc. in Computer Science from University Technology Malaysia in
2000, and Ph.D. in Computing from Lancaster University in 2010. She is
currently a Senior Lecturer at Computer System and Technology Department
at the Faculty of Computer Science and Information Technology, University of
Malaya. Her research interests include network mobility, vehicular networks,
mobile IP, quality of service and quality of experience.


	I Introduction
	I-A Related Works and Contributions

	II Components of the proposed framework
	II-A UMPM
	II-A1 Global preferences
	II-A2 Application specific preferences

	II-B UAMM
	II-C UAMC
	II-D EAC
	II-E EAMM

	III Proposed PMCO Algorithms
	IV Performance evaluation results
	IV-A Experimental setup
	IV-B Execution time and Computing Power
	IV-C Energy Consumption

	V Conclusion
	References
	Biographies
	Abdullah Yousafzai
	Ibrar Yaqoob
	Muhammad Imran
	Abdullah Gani
	Rafidah Md Noor


