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software programs, along with information and communication 

technology (ICT) and added intelligence. The smart meter can 

provide useful information wirelessly to users to optimize 

consumption efficiency and make informed decisions while 

performing necessary maintenance or repair. The research 

development in this area has been greatly encouraged by the 

recent growth in the Internet of Things (IoT) and Smart Cities 

[1, 2].  [3] discussed the distributed online energy management 

for data centers and electric vehicles in smart dc grids. Several 

low cost smart electrical meters have also been proposed in [4-

6]. An anomaly is a deviation from the normal conditions of 

the various operating modes. Anomaly detection is the process 

of finding instances in a data set that are different from the 

majority of the data. There are two basic assumptions for 

anomaly detection; anomalies only occur very rarely in data and 

their features do differ from the normal instances significantly 

[7]. The aim of anomaly detection is to provide some useful 

information where no information was previously attainable. 

An anomaly warning can be triggered by predicting potential 

fault through the analysis of historical data so measures or 

maintenance can be taken to prevent accidents or to ensure 

recovery of the system. Constant monitoring of the grid and 

system with data analytics provides useful information and 

helps users make reasonable decisions to prevent potential fault 

and reduce adverse effects. The method based on protective 

relays and circuit breakers addresses the problem after the faults 

have happened; it cannot do much for predictive maintenance. 

Consequently, anomaly detection warning is a significant and 

valuable research subject.  

 In the past decade, extra low voltage (ELV) dc loads such as 

personal gadgets, household appliances and office equipment 

have been rising in numbers and their power consumption of 

buildings. There has also been an escalated interest in the use 

of dc power grids in segregated power systems [8]; With the 

growing installation of photovoltaic (PV) panels and battery 

energy storages, the advantage of dc power grids is obvious 

with a signification reduction in conversion losses since loads, 

sources and energy storage can be connected through simpler 

and more efficient power electronics interfaces [9]. The 

complex, expensive and lossy power factor correction (PFC) 

feature can also be avoided. In addition, a dc power grid in 

general has no worries when it comes to harmonics pollutions. 

Most of the past studies of power system’s state were on ac 
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Abstract—The remote monitoring of electrical systems has 

progressed beyond the need of knowing how much energy is 

consumed. As the maintenance procedure has evolved from 

reactive to preventive to predictive, there is a growing demand to 

know what appliances reside in the circuit (classification) and a 

need to know whether any appliance requires attention and 

maintenance (anomaly warning). Targeting at the increasing 

penetration of dc appliances and equipment in households and 

offices, the described low-cost solution consists of multiple 

distributed slave meters with a single master computer for extra 

low voltage dc pico-grids. The slave meter acquires the current 

and voltage waveform from the cable of interest, conditions the 

data and extracts four features per window block that are sent 

remotely to the master computer. The proposed solution uses a 

hierarchical extended k-nearest neighbors (HE-kNN) technique 

that exploits the use of distance in kNN algorithm and considers a 

window block instead of individual data point for classification 

and anomaly warning to trigger the attention of the user. This 

solution can be used as an ad hoc standalone investigation of 

suspicious circuit or further expanded to several circuits in a 

building or vicinity to monitor the network. The solution can also 

be implemented as part of an Internet of Things application. This 

paper presents the successful implementation of  HE-kNN 

technique in three different circuits: lightings, air-conditioning 

and multiple load dc pico-grids with accuracy of over 93%. Its 

performance is superior over other anomaly warning techniques 

with the same set of data. 

  Index Terms—load classification, anomaly warning, k-nearest 

neighbors, extra low voltage, dc grid, artificial intelligence. 

I. INTRODUCTION

HE modern power system has gone through many changes

T 
over the past few years. Apart from providing power from 

the source to various loads, its primary goal is to ensure 

reliability and stability of the power system as power-grid 

transforms and its loads evolve over the years. The maintenance 

of power grid has shifted from the traditional reactive 

maintenance to the scheduled preventive maintenance to the 

artificial intelligence-enabled predictive maintenance. Fault 

prediction and anomaly warning increases the operational 

reliability and stability and can help prevent unnecessary losses. 

The traditional meter only provides data on the energy 

consumed by the user; this meter requires the service provider 

and the user to manually record the data. However, recent 

proined different hardware devices and 
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electrical grids [10, 11]. As the ELV dc loads get smaller, the 

dc power grids are also shrinking from micro to nano to pico-

grid [12]. There has not been much attention paid on dc, thus 

motivating the research on state detection and anomalies 

warning in dc grids.   

 Several artificial intelligence (AI) techniques have been 

proposed and applied in power systems including  the use of 

Long Short Term Memory (LSTM) and Support Vector 

Machine (SVM) for trip fault prediction in power systems [13], 

Bayesian-based approach for short-term steady-state forecast of 

a smart grid [14] and k-means clustering with k-Nearest 

Neighbors (kNN) in equipment identification [15]. There are 

also anomaly detection approaches based on clusters and 

neighborhoods. [16] proposed a clustering-based anomaly 

detection in multi-view data where the anomalies are detected 

by comparing affinity vectors in multiple views. [17] detects 

intrusion and anomaly by using a Combined Strangeness and 

Isolation measure K-Nearest Neighbors (CSI-kNN) algorithm. 

These neighborhood-based approaches are not commonly used 

in dc power systems and they did not take into account of burst 

error and consecutive error occurrence detection. The burst 

error and consecutive error occurrence detection are necessary 

to avoid false positive prediction in real-life data. Due to the 

recent growth in dc power systems, there is an increasing 

interest in  AI applications proposed in dc power systems, for 

example the use of wavelet and artificial neural networks on 

medium dc voltage power system [18] and fuzzy control for 

energy management for a dc microgrid systems [19]. In 

addition to fault detection, there has also been some interest in 

load identification and disaggregation as seen in [20, 21].  

 This paper describes a low cost smart meter solution for ELV 

dc pico-grid, that consists of a low-cost distributed slave meter 

to acquire and extract features from the current value and a 

master computer that, using a new Hierarchical ExtendedkNN 

(HE-kNN) technique, performs classification of operating 

modes or loads and signals a trigger warning if abnormal 

behavior is detected in the current waveform. The HE-kNN is a 

semi-supervised anomaly detection approach that uses an 

anomaly-free training set only consisting of the normal classes. 

There is a separated test set that comprises normal records and 

anomalies. The HE-kNN algorithm exploits the use of distance 

in the clustering-based approach and differentiates itself from 

other approaches with the innovative addition of burst error 

anomaly and consecutive error occurrence detection. The paper 

is organized as follows. Section II describes the purpose of ELV 

dc pico-grids. Section III presents an overview of the 

monitoring solution. Section IV discusses the feature extraction 

from the current waveform and Section V elaborates on the task 

of the master computer-load classification and anomaly 

warning using the HE-kNN technique. Section VI discusses the 

results of the solution in three different types of ELV dc pic-

grids. Section VII concludes the paper.   

II. EXTRA LOW VOLTAGE DC PICO-GRID  

The International Electrotechnical Commission (IEC) and 

UK Institution of Engineering and Technology (IET) 

(BS7671:2008) define an ELV device or circuit as one in which 

the electrical potential between the conductor or the electrical 

conductor and Earth does not exceed 50Vac or 120Vdc (ripple 

free). In recent years, there has been a significant rise in the 

number of small appliances in households and offices that are 

powered by extra-low-dc voltage. Some of these appliances and 

equipment are low in cost and perform simple tasks such as 

turning on and off appliances (for example lights and fans). 

There is no incentive for them to possess power monitoring 

features or anomaly detection intelligence as these additional 

features increase their price significantly. These ELV loads 

typically share a single power supply, but due to the limited 

power of the power supply, the number of appliances sharing it 

is usually very small. The limited power is the fundamental 

reason for the formation of an ELV dc pico-grid. These pico-

grids can be bundled together to form nano-grids and mini-

grids. These nano-grids can then be clustered into bigger micro-

grids as seen in Fig. 1. This paper suggests that the monitoring 

and management of the grids can be done bottom-up where the 

monitoring starts at pico-grids and progresses up in level and 

scale.   

 

  
Fig. 1. ELV dc pico-grids forming into a micro-grid 

III. SOLUTION OVERVIEW 

The technique described in this paper focuses on studying 

application in ELV dc pico-grids. The system setup allows 

users to perform remote monitoring of the ELV dc pico-grid by 

sensing the main line’s current waveform using the slave meter 

and wirelessly sending the extracted features to the master 

computer that is at a distance.   

The described monitoring system can be set up as a many to 

one system by exploiting the ubiquitous availability of the Wi-

Fi network in buildings. The slave meter was designed to be 

low cost and satisfy the low power requirement; thus, it can be 

installed in multiple locations in a building and they can be 

identified by their IP addresses and communicate with a distant 

master computer.  

The system can also be installed as an ad-hoc monitoring 

system for a suspicious ELV dc pico-grid when powered with a 

portable battery bank and has its Wi-Fi Local Area Network 

(WLAN) wireless network covered by a mobile broadband 

router. This property eliminates the needs to access any power 

sockets and wireless network during the investigation of the 

grid. The following section describes the design of the slave 

meter, followed by the design of the master computer. Fig. 2 

shows the tasks of the slave meter and the master computer in 

the system overview. 
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Fig. 2.  System overview of the solution 

IV. FEATURES EXTRACTION IN DISTRIBUTED SLAVE METERS 

The slave meters designed in this project are meant to be 

distributed as a functional part of a many slaves to one master 

system, thus they are to be affordable and portable.  Instead of 

expensive high-end power quality analysis equipment, low cost 

single board small computers are chosen as the platform for the 

slave meters because they have reasonable computing power, 

low cost and have high portability. They consume low power at 

approximately 240mA (1.2W) and can also be powered up with 

ease as they just require a 5V portable battery. The duty of the 

slave meter is to sense the current waveform, condition the 

signal, extract the features and send the extracted data 

wirelessly to the master computer. With the aid of additional 

low-cost hardware and optimized software, the single-board 

small computers can perform the above tasks. An example of 

the slave meter in the monitoring system is shown in Fig. 3. 

 
Fig. 3.  An example of the slave meter in an ELV dc pico-grid of lightings 

Using the Closed Loop Hall Effect technology, the closed 

loop current transducers used in this paper can measure current 

over a wide range of frequencies, including the dc current 

frequency. The transducers provide contact-free coupling to the 

current that needs to be measured, safe galvanic isolation and 

high reliability. They can provide fast, accurate and high 

resolution images of the primary current. The selected current 

transducers can work with a single 5V power supply with 

primary nominal current measurement up to 25A.  

Assuming negligible error, the output voltage Vo of the 

current transducer is related to the primary current linkage Ɵp 

by sensitivity G (1).  

Vo = GƟp          (1) 

The current linkage, Ɵp, is related to the number of primary 

turns, Np, and the primary current, Ip (2). 

Ɵp = NpIp          (2) 

 Since G and Np can be extracted from the specification of the 

transducer, Vo can be determined from Ip (3).  

Vo = GNpIp         (3) 

Within the range of 0A to 6A, the output voltage signal Vo 

and Ip can be assumed to have a linear relationship.  

A low-pass filter is added after the sensing of the current 

transducer to allow the passing of the lower frequencies up to 

the cut-off frequency, attenuating the higher frequencies that 

are above the cut-off frequency, fc. The filter can be 

implemented using low power single operational amplifier 

LM321 or low power dual operational amplifier LM358 (4-6). 

Both LM321 and LM358 require 5V dc power supply that can 

be provided by the portable battery bank. The cut-off frequency, 

fc, selected in this paper is approximately 50Hz, which is ½ of 

the sampling frequency, fs, which is 100Hz. The operational 

amplifier is also capable of creating a unity gain follower by 

setting the Rlpff to 0Ω. Although amplification is not required, 

the unity gain follower provides the important benefit of 

isolating the input side of the circuit from the output side of the 

circuit. 

The single board small computer does not possess the ability 

to receive analog input thus an Analogue to Digital Conversion 

(ADC) is required.  MCP3008 is a 10bit ADC that operates 

over a broad range of voltages. It can communicate with the 

single board small computer using the Serial Peripheral 

Interface (SPI) protocol. MCP3008 is used in the slave meter to 

receive the filtered analog signal from the operational 

amplifiers and communicate it in digital form to the single 

board small computer. Fig. 4 shows the system drawing of the 

slave meter.    

 
Fig. 4.  Hardware system diagram of the slave meter 

𝑓𝑐 =
1

2𝜋𝑅𝑙𝑝𝑓1𝐶𝑙𝑝𝑓1
         (4) 

𝐴𝑙𝑝𝑓 = (1 +
𝑅𝑙𝑝𝑓𝑓

𝑅𝑙𝑝𝑓2
)                (5) 

𝐴𝑣 =
𝑉𝑜,𝑙𝑝

𝑉𝑖
=  

𝐴𝑙𝑝𝑓

√1+(
𝑓

𝑓𝑐
)

2
         (6) 

The hardware saves the small computer much calculation 

resources thus allowing it to focus on the extraction of the 

features of the signal and on sending it to the master computer. 

The software in the slave meter converts the acquired signal 

from SPI into electrical current readings by using the Least 

Significant Bit (LSB) value of the ADC MCP3008 as the value 

of each digital step (7). Range is the difference between the 

maximum and minimum values of the acquired data and n is the 

number of bits.  
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𝐷𝑖𝑔𝑖𝑡𝑎𝑙 𝑠𝑡𝑒𝑝 𝑣𝑎𝑙𝑢𝑒 =  𝐿𝑆𝐵 =  
𝑅𝑎𝑛𝑔𝑒

2𝑛−1
    (7) 

The slave meter reads the signal at 100Hz and extract four 

features (Mean µ, Variance σ2, Largest gradient max (i)̅ and 

Range R) from each 1 second block of 100 data points. The data 

samples of the raw current waveform are placed in a 1D matrix 

I as seen below, where m is the total number of samples logged. 

I = [i1, i2, i3, …, im]       (8) 

Given in is the element in the input signal I and M is the 

number of points in the window subset. µ in (9) is the computed 

mean and σ2 (10) is the computed variance. The largest 

gradient, igrad,max is computed by finding the largest difference 

between subsequent data points i ̅ (11) and range, R, is the 

difference between the maximum and minimum values of the 

window (12).   

µ=  
1

𝑀
 ∑ 𝑖𝑗  𝑛

𝑗=𝑛−𝑀+1        (9) 

σ2 = 
∑ (𝑖𝑛−𝜇)2𝑚

𝑛=1

𝑚−1
        (10) 

i̅ =
𝛥𝑖

𝛥𝑡
=  

𝑖𝑛−𝑖𝑛−1

𝑇
        (11) 

𝑅 = [max(𝐼) − min (𝐼)]     (12) 

 

These data are packaged into a packet and transmitted to the 

master computer once every second via Wi-Fi for higher level 

processing. The operation of the slave meter is the same for both 

training mode and routine operation mode. This similarity 

reduces the manhandling of the slave meters.  

V. CLASSIFICATION AND ANOMALY WARNINGS IN MASTER 

COMPUTER 

The master computer can be a laptop or workstation 

depending on the resource requirement of the task. A 

workstation is necessary to monitor multiple meters. A laptop 

will be sufficient for ad-hoc single point monitoring of 

suspicious dc pico-grid. The software used in this paper is 

Matlab R2017B. There are two modes in the master computer, 

namely the training mode and the monitoring operation mode.  

A. Training Mode 

During the training mode, the user starts the training 

software that receives data from the slave meter and capture the 

4-feature data point of the various normal operating modes of 

the interested dc pico-grid. These data points form the elements 

in the overall kNN training set 𝑋 = [𝑥1, 𝑥2, … 𝑥𝑁] ∈ ℜ where N 

is the number of training samples, 𝑥𝑖 = [𝑥1,𝑖 , 𝑥2,𝑖 , … 𝑥𝑠,𝑖] ∈ ℜ,  

is a vector that represents the ith training sample and s is the 

number of extracted feature from the data set. As this is a 

supervised machine learning technique, the users need to 

indicate the operating mode of each data point, cluster them and 

the training software then label them with classes 𝐶 =
[𝑐1, 𝑐2, … 𝑐𝑀] ∈ ℜ where M is the number of Cluster or Class. 

The users need to ensure no anomaly occurs during the training 

phases and the features need to be captured for all normal 

operating modes including the no load situation. The extracted 

features should be informative, non-redundant and a good 

descriptive of the data set. In the event that the user finds that 

the extracted features are not good representation of the class or 

cluster, the training phase can be reperformed. It is faster and 

resource-efficient to use extracted features instead of raw data 

points.  

B. Monitoring Operation Mode 

After the training phase, the user needs to switch to the 

Monitoring Operation mode for routine operation to monitor 

and inspect the remote dc pico-grid. The classification of loads 

in the master computer is performed using kNN. kNN is a 

supervised machine learning algorithm that is instance-based -

it is based on the computation of the k nearest training elements 

in the overall training set and on the election of the class through 

majority voting on the labels of the nearest elements. The 

training phase took care of the clustering and labeling of the 

training elements.  

kNN is a distance-based algorithm and this paper uses 

Euclidean distance to determine the closeness between the 

elements. Given that all training samples are stored in M 

clusters, the number of training samples in the m(1≤m≤M) 

cluster is Cm. For the i training sample xi in the m cluster, the 

kNN rule performed in this cluster using the following equation 

for distance, di,j (13).  

𝑑𝑖,𝑗 =∥ 𝑥𝑖 − 𝑥𝑗 ∥ = √∑ 𝑥𝑖,𝑠
2 ∓ 𝑥𝑗,𝑠

2𝑆
𝑠=1 , 𝑗 = 1,2, … , 𝐶𝑚; 𝑗 ≠ 𝑖   (13) 

As the features were of different scale, normalization of the 

features’ values was performed to avoid over reliance on any 

dimension. The normalization can be performed as follows 

(14).  

𝑥𝑛𝑒𝑤 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
        (14) 

The kNN algorithm is non-parametric as it does not make any 

explicit assumptions on the model or function. However, it 

requires potentially large data set thus possibly requiring higher 

computational cost and resources. This requirement is also one 

of the reasons why it is advisable to perform the computation 

using the more powerful master computer. It is a robust and 

versatile machine learning technique that is commonly used in 

solving classification problems. The function of the traditional 

kNN algorithm is extended enhanced in this project to perform 

anomaly warning detection in addition to its usual 

classification. The next sub-section describes the Hierarchical 

Extended k-Nearest Neighbors (HE-kNN) technique. 

C. Hierarchical Extended k-Nearest Neighbors 

This paper exploits the use of distance in the kNN algorithm 

for anomaly warning and fault detection. In addition to the usual 

classification process of the kNN algorithm, several additional 

steps are added to enhance the algorithm to perform meaningful 

anomaly detection, thus forming a hierarchy process as seen in 

Fig. 5.  
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Fig. 5.  Hierarchy processes in HE-kNN technique 

During the monitoring operation mode, the first layer of the 

HE-kNN receives the data point from the slave and convert the 

four features into a vector as the test object. The second layer is 

to normalizes the test object and places it into the test 

environment with the trained and labeled elements. Depending 

on the k value indicated by the user, the third layer of the 

technique performs the classification by the majority vote of the 

k nearest neighbors. The selection of k value is important. It is 

recommended to run through a range of possible k values and 

find the most appropriate k value with high accuracies in 

classification, taking into consideration that a small value of k 

means that noise will have significant influence on the result 

and large value of k makes it computationally expensive.  The 

fourth to sixth layers of the HE-kNN perform anomalies 

detection and trigger warnings to the user.     

Two enhancements were applied in the fourth layer of the 

HE-kNN technique for instantaneous error detection. The first 

enhancement technique defines the centroids of each identified 

cluster and set an acceptable boundary around the centroid (15).  

𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑚 = [�̅�𝑚𝑒𝑎𝑛,𝑚, �̅�𝑣𝑎𝑟,𝑚, �̅�𝑟𝑎𝑛𝑔𝑒,𝑚, �̅�𝑔𝑟𝑎𝑑,𝑚] 

where 𝑠𝑚̅̅̅̅ =
∑ 𝑠𝑖,𝑚

𝑁𝑚
𝑖=1

𝑠𝑖𝑧𝑒(𝑚|
 (15) 

After the test object is labeled with a cluster’s class, the 

distance between the test object and that cluster’s centroid, dtestc, 

is calculated (16). If the test object falls out of the boundary of 

its labeled centroid it is flagged as an instantaneous error.    

The boundary of the cluster is set to be the sum of the mean 

distance, 𝑑𝑚
̅̅ ̅̅ , and three times the standard deviations, σm, of all 

the training elements with the centroid in the cluster. This limit 

is with reference to the Statistical Process Control (SPC) that 

considers a process to be in control and stable if the measured 

value is within the control limits of mean±3 standard deviations 

from the mean (17-18) [22, 23].  

𝑑𝑡𝑒𝑠𝑡𝑐 =∥ 𝑥𝑡𝑒𝑠𝑡,𝑠 − 𝑥𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑,𝑚,𝑠 ∥    (16) 

 

𝑑𝑙𝑖𝑚𝑖𝑡,𝑚 = 𝑑𝑚
̅̅ ̅̅ + 3𝜎𝑚      (17) 

𝐴𝑛𝑜𝑚𝑎𝑙𝑦 𝑤𝑎𝑟𝑛𝑖𝑛𝑔 =  {
𝑌𝐸𝑆     𝑖𝑓    𝑑𝑡𝑒𝑠𝑡𝑐 >  𝑑𝑙𝑖𝑚𝑖𝑡,𝑚 

𝑁𝑂    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                       
 (18) 

The second enhancement technique uses the average 

distance between the trained elements in the same cluster as the 

constraint for abnormal operation. This technique assumes the 

closeness of the test object to its k nearest neighbors, Dtest, as an 

indication of whether the test object is normal (19). For every 

element in the cluster, the average distance between it and its 

neighbors are calculated to find the average of all the 

distances, �̅�𝑚 (20). Referring to the Statistical Process Control, 

the instantaneous error criterion, �̇�𝑙𝑖𝑚𝑖𝑡,𝑚, is set the sum of the 

average distance �̅�𝑚 and three times the standard deviation, σm 

(21-22). Fig. 6 illustrates the examples for both anomaly 

warning conditions.    

𝐷𝑡𝑒𝑠𝑡 =
1

𝑘
∑ 𝑑𝑗

𝑘
𝑗=1         (19) 

�̅�𝑚 =
1

𝑠𝑖𝑧𝑒(𝑚)𝑘
∑ ∑ 𝑑𝑗

𝑘
𝑗=1  

𝑠𝑖𝑧𝑒(𝑚)
𝑗=1      (20) 

�̇�𝑙𝑖𝑚𝑖𝑡,𝑚 =  𝐷𝑚
̅̅ ̅̅ + 3𝜎𝑚      (21) 

𝐴𝑛𝑜𝑚𝑎𝑙𝑦 𝑤𝑎𝑟𝑛𝑖𝑛𝑔 =  {
𝑌𝐸𝑆     𝑖𝑓𝐷𝑡𝑒𝑠𝑡 > �̇�𝑙𝑖𝑚𝑖𝑡,𝑚

𝑁𝑂    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                  
 (22) 

 
Fig. 6.  Anomaly warning criteria in HE-kNN 

 

Although the two methods presented can flag instantaneous 

errors, an instantaneous error is not a good indicator of an 

anomaly as it can be caused by noise or may occur when there 

is a change in the operation mode. Further processes are 

required to ensure that the anomalies flagged by the technique 

are meaningful and significant enough to trigger warnings.  

The fifth layer in the HE-kNN is to employ the burst error 

anomalies detection. In this step, the user can enter the window 

block size, wb, and the threshold number of error in the window 

block or the burst error limit, eb, to be considered as an anomaly. 

The error may not occur continuously. For example, let us 

consider that the user entered wb = 20 (in this case, it is a 20 

second block), and eb =5. An anomaly indicator is recorded if 

the number of instantaneous error that occur in the 20 second 

block is 5 or more, else it is considered as normal operation with 

the mode previously classified. 

In addition, the steps in detecting burst error anomalies also 

consider the frequency interchanging of operation modes as an 

error since there should not be frequent changing of modes in 

practical scenarios of a system. For example, it is rare to have 

the cooling function of an air-conditioner turning on and off at 

continuous interval of 2 – 3 second. These errors should 

indicate to the user the need to take a closer look at the air-

conditioner if they persist over a long time. Using the previous 

example of wb = 20 and eb =5, an anomaly indicator would be 

recorded if there are 5 or more changes in the operation mode 

in the 20 second block.  

The final layer in the HE-kNN technique is to consider the 

consecutive occurrence of the anomalies identified in the 

previous layer, ce. The user decides the desired number of 

consecutive occurrence of anomalies count to be considered as 

a meaningful situation for the user to take note and consider 
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inspecting the ELV dc pico-grid manually. This layer can lead 

to predictive maintenance before the dc pico-grid actually 

breaks down for reactive action and maintenance.  

The next section discusses the application of HE-kNN 

solution and its results on various ELV dc pico-grids.  

VI. RESULTS AND DISCUSSIONS 

The HE-kNN solution was tested in the remote monitoring of 

several ELV dc pico-grids. The slave meter that was attached 

to the ELV dc pico-grids extracted 4 features from the 1 second 

block of 100Hz signals and they were sent via Wi-Fi to the 

master computer which would perform load classification and 

anomaly warning using the HE-kNN technique. For the 

purposes of this paper, this section describes the application of 

the proposed setup in 3 ELV dc pico-grids that highlight the 

capabilities of the HE-kNN technique in dc environments for 

monitoring and diagnosing. Each of these grids was injected 

with faults and anomalies to be detected and triggered as 

warning for predictive maintenance. 

The three ELV dc pico-grids are: 

• A dc lighting grid consisting of five LED 

downlights 

• A dc single split air-conditioner with a wall mount 

indoor unit and an outdoor unit 

• A dc grid with three different loads of phone, LCD 

TV and laptop         

A. Application of HE-kNN on ELV dc lightings grid of five 

LED downlights 

The recent advancement in LED technology has spurred the 

lighting market turning it from ac to dc lighting [24]. Lighting 

is one of the most common building loads. It has always been a 

challenge to monitor and manage the lighting system in a 

building. The common methods to identify spoilt or degraded 

lights are either through the complaints of tenants or through 

manual walk-pass inspection by technicians or security guards. 

These are especially tedious and unnecessary for far locations 

with low traffic. Re-lamping is usually necessary for the 

following 2 common issues with lights: 

- Degrading light output 

- Flickering light    

This sub-section describes both scenarios and the application 

of the setup and HE-kNN to detect the anomalies and trigger 

warnings. Fig. 7a below shows the current signal waveform 

acquired by the slave meter. The five lights in the circuit were 

switched off one by one. The two anomalies were injected in 

the system; the degrading of one lamp’s light output occurred 

at around 72s to 97s and flickering of another lamp occurred at 

around 206s to 220s. Fig. 7b shows the extracted mean current 

data received by master computer from the slave meter. These 

anomalies are boxed out in the figures.  

The selected k value was 5, the window block size, wb, was set 

at 15, the burst error limit, eb, was set at 5 and consecutive error 

warning, ce, was set at 3. The class allocation of the ELV dc 

lighting grid is shown in Table I. The detected anomaly 

warnings are marked with class -1. 

Fig. 7c shows the result after performing classification using 

traditional kNN algorithm. Each data point was labeled via the 

majority of votes from the k nearest neighbors. There was no 

fault detection or anomaly warning features. The period of 

degraded light output was classified alternatively between class 

4 and 5. The flickering period was classified under class 5. 

Fig. 7d shows the calculated distance of each data point with 

reference to the labeled cluster’s centroid and that information 

can be used to decide whether an anomaly has occurred. Fig. 7e 

shows that anomaly warnings were triggered when the distance 

of the datapoint from the centroid exceed the boundary. This is 

an instantaneous check of individual datapoint without 

consideration of previous or group datapoints. The results 

showed a good result except when the individual lights were 

being switched on and off. There were also some incorrect 

warnings triggered due to stray readings. Fig. 7f shows the 

results with the implementation of HE-kNN technique. As HE-

kNN considers a window block of data instead of a single 

individual data point, it removed the stray anomaly warnings 

and also removed the warnings between the changing of stages. 

The trade-off observed was a slight delay in the triggering of 

warning.   

Fig. 7g shows the average distance of each data point 

received by the master computer with reference to its k-nearest 

neighbors. Fig. 7h shows the instantaneous check of individual 

datapoint where an anomaly is triggered if the average distance 

of that particular data point is more than the boundary set by the 

average distance between the elements plus three times its 

standard deviations. Although the flickering light was detected, 

the degraded light period was indicated as changing between 5 

lights and 4 lights instead of being detected as anomalies. This 

classification is because the instantaneous data points of the 

degraded light were within the acceptable boundaries of either 

class 6 (5 lights) or class 5 (4 lights). There were also stray 

warnings and switching on and off of lights were also triggered 

as warnings. In Fig. 7i, applying HE-kNN while considering the 

distance between k neighbors gave better result as compared to 

the instantaneous anomaly detection. Applying HE-kNN 

triggered warning for the degraded light and flickering light. 

The stray warning and interchanging between stages were also 

removed because of the additional steps of burst error anomaly 

detection and consecutive occurrence detection. In a normal 

operation of a system, there should not be numerous changing 

of modes within a short period of time, it should be picked up 

as an anomaly. However, there were delays in the warning and 

classification.  

 

TABLE I Class allocation for the ELV dc lighting grid 
Class 1 2 3 4 5 6 7 

Loads No 

load 

1 

light 

2 

lights 

3 

lights 

4 

lights 

5 

lights 

6  

lights 

*Anomalies are indicated as class -1 
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*Degrading light output 

#Flickering light 

(a) Current signal sensed by the slave meter 

 
(b) Current signal received by master computer 

 
(c) Classification by kNN 

 
(d) Distance of data points from the labeled cluster’s centroid 

 
(e) Instantaneous classification and anomaly warning by the distance from the 

centroid 

 
(f) HE-kNN classification and anomaly warning by the distance from the 

centroid 

 
(g) Distance of data points from k nearest neighbors 

 
(h) Instantaneous classification and anomaly warning by distance from nearest 

neighbors 

 
(i) HE-kNN classification and anomaly warning by distance from nearest 

neighbors 

Fig. 7.  Waveforms and results from the 5 LED downlights grid 

B. Application of HE-kNN on ELV dc air-conditioning                                                                                                            

Another major load in a building is the heat ventilation and 

air-conditioning (HVAC). This subsection describes the 

application of HE-kNN in a 48V dc-powered single split air-

conditioning system. The two scenarios described here were as 

follows:  

- Malfunction in the cooling mode causing it to 

repetitively turn on and off 

- Malfunction in the fan unit that causes it to slow down 

The k value selected was 5, window size, wb, was set at 30, 

burst error limit, eb, was set at 5 and consecutive error 

warning, ce, was set at 3.  

Fig. 8a shows the current waveform for a period of the dc air 

condition where there was a repetitive decrease and increase of 

the current consumption. This repetition was caused by the 

mode of the dc air conditioner being switched between low fan 

mode (class 2) and low fan with cooling mode (class 4). This 

was an anomaly in the operation of the dc air conditioner, but it 

was not picked up as one when the distance of individual data 

points was considered in the algorithms, as shown in Fig. 8b 

and Fig. 8d. The individual data points were within either the 

acceptable boundary of class 2 or 4 thus no anomaly was 

triggered. However, the HE-kNN algorithm, as seen in Fig. 8c 

and Fig. 8e, was able to correctly identify the period as an 

anomaly by considering additional steps of burst error anomaly 

detection and consecutive occurrence detection in both distance 

from the centroid and distance from k nearest neighbors. Stray 

warnings were also removed.  

 

TABLE II Class allocation for the ELV dc air-conditioning 
Class 1 2 3 4 5 

Loads No 

load 

Low 

fan 

High  

fan 

Low fan with 

cooling 

High fan 

with cooling 

*Anomalies are indicated as class -1 

 

 
*Malfunction in the cooling mode causing it to repetitively turn on and off 

(a) Current signal received by the master computer 

 

Anomaly* 
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(b) Instantaneous classification and anomaly warning by the distance from the 

centroid 

 
(c) HE-kNN classification and anomaly warning by the distance from the 

centroid 

 

 
(d) Instantaneous classification and anomaly warning by the distance from 

nearest neighbors 

 
(e) HE-kNN classification and anomaly warning by the distance from the 

nearest neighbors 

Fig. 8.  Waveforms and results from the ELV dc air conditioner on 
malfunction of cooling mode 

The second scenario of the malfunction in the dc air-

conditioner was the reduction in fan speed. This malfunction 

occurred in the High fan with Cooling mode (class 5). As seen 

in Fig. 9a, there was a gradual decrease in the current 

consumption of the system as the fan slowed down. Both 

techniques using instantaneous classification and anomaly 

warnings were not able to identify it as an anomaly. The results 

also show that the technique using distance from the centroid 

(Fig. 9b) as compared to using distance from nearest neighbors 

(Fig. 9d) produced slightly better results as it identified the 

anomalies intermediately..  

The HE-kNN technique was able to trigger a warning for 

anomalies in both applications of distance from the centroid 

(Fig. 9c) and the distance from the nearest neighbors (Fig. 9e).    

 
- * Malfunction in fan unit which causes it to slow down 

 
(a) Current signal received by the master computer 

 
(b) Instantaneous classification and anomaly warning by the distance from the 

centroid 

 
(c) HE-kNN classification and anomaly warning by the distance from the 

centroid 

 
(d) Instantaneous classification and anomaly warning by the distance from 

nearest neighbors 

 
(e) HE-kNN classification and anomaly warning by the distance from nearest 

neighbors 

Fig. 9.  Waveforms and results from the ELV dc air conditioner on 

malfunction in fan 

C. Application of HE-kNN on ELV dc pico-grid with 3 loads                                                                                                            

This sub-section describes the application of the HE-kNN 

anomaly technique on a ELV dc pico-grid with 3 dc loads 

namely mobile phone (5V), LCD TV (12V) and laptop (19V). 

Four features were extracted from the received current 

waveform, they are µ (mean), σ2 (variance), igrad,max (largest 

gradient) and R (range which is the difference between the 

maximum and minimum value of the window). Table III shows 

the classification allocation and Fig. 10. gives a clear three-

dimensional representation of the clusters for the different 

classes.  

Noise was added into the grid and caused the current signal to 

have larger variance while the mean current value remained 

unchanged. This anomaly is difficult to detect using a 

multimeter since a low range multimeter only provides the 

average reading of the system, which in this case, would 

indicate no changes. This anomaly is shown in Fig. 11a from 

around 1490s to 1550s. Fig. 11b and Fig. 11d show that both 

techniques that use instantaneous classification and anomaly 

without hierarchical enhancement produced several false 

positive predictions whereas HE-kNN was able to identify the 

anomaly and trigger warnings using both the distance from the 

centroid and distance from the nearest neighbors techniques. 

See Fig. 11c and Fig 11e. 

 

TABLE III Class allocation for the ELV dc grid of the three 

loads 
Class 1 2 3 4 5 6 7 8 

Phone OFF ON OFF OFF ON ON OFF ON 

LED TV OFF OFF ON OFF ON OFF ON ON 

Laptop OFF OFF OFF ON OFF ON ON ON 

*Anomalies are indicated as class -1 
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Fig. 10.  Clusters for the ELV 3 loads dc grid  

 

 
*Large variance anomaly 

(a) Current signal sensed by the slave meter 

 
(b) Instantaneous classification and anomaly warning by the distance from the 

centroid 

 
(c) HE-kNN classification and anomaly warning by the distance from the 

centroid 

 
(d) Instantaneous classification and anomaly warning by the distance from 

nearest neighbors 

 
(e) HE-kNN classification and anomaly warning by the distance from nearest 

neighbors 

Fig. 11.  Waveforms and results from the ELV dc pico-grid of 3 loads 

D. Comparison of results   

Table IVshows the comparison table of performance using 

various type of anomaly warning technique. The HE-kNN 

technique is placed in comparison with random generation 

baseline, Standard Process Control that uses the sum of mean 

current waveform ± 3 times its standard variations as normal 

operation conditions and instantaneous error detection using the 

boundary around the cluster centroid in kNN as given in (15).  

The results were compared using accuracy and F1-score. 

Accuracy is the most straightforward measure of performance. 

It is simply the ratio of the sum of True Positive and True 

Negative over the Total Population (23). F1-score is the 

weighted average of Precision and Recall. It considers both 

false positives and false negatives (24). 
       TABLE IV COMPARISON TABLES OF PERFORMANCE 

Technique Accuracy F1-score 

3 loads dc pico-grid (1000 data points) 

Baseline random generator 0.4865 0.2165 

SPC on single parameter  0.9015 0.5800 

Instantaneous detection 0.9111 0.6277 

HE-kNN 0.9371 0.8025 

5 LED lights dc pico-grid (300 data points) 

Baseline random generator 0.5033 0.2513 

SPC on single parameter 0.7867 0.5294 

Instantaneous detection 0.9366 0.8191 

HE-kNN 0.9667 0.8936 

Multi-mode air-conditioner dc pico-grid (5000 data points) 

Baseline random generator 0.4971 0.2016 

SPC on single parameter 0.8928 0.3296 

Instantaneous detection 0.8810 0.2199 

HE-kNN 0.9717 0.8992 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
∑ 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+ ∑ 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
    (23) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  
2∗∑ 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

2∗∑ 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+∑ 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+∑ 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (24) 

 

 The proposed HE-kNN technique produced the best results 

for all three ELV dc pico-grids. In terms of accuracy, the 

proposed HE-kNN technique produced the best result for all 

three dc pico-grids at 0.9371, 0.9667 and 0.9717 for 3 loads dc 

pico-grid, 5LED lights dc pico-grid and multi-mode air-

conditioner dc pico-grid respectively. The comparison of the 

F1-scores sets HE-kNN technique apart from the other 

techniques. HE-kNN achieved high F1-score in all 3 dc pico-

grids while other techniques performed badly especially in the 

multi-mode air-conditioner dc pico-grid where HE-kNN 

achieved 0.8992 as compared to the next best F1-score of 

0.3296 using SPC on single parameter. This shows that the HE-

kNN technique will also perform well in uneven class 

distribution such as large number of actual negatives.       

VII. CONCLUSION 

This paper introduced a low-cost monitoring system with 

classification feature and anomaly detection and warning for 

ELV dc pico-grids. The system consisted of multiple distributed 

inexpensive smart slave meters to a master computer. The 

innovative brain of the master computer is the proposed HE-

kNN technique. The master computer received the four 

extracted features from the slave meter every second over the 

Wi-Fi network. By using the HE-kNN technique that considers 

the distance of test data to the centroid or its nearest neighbors 

and consideringthe burst error window and consecutive errors, 

the proposed HE-kNN technique produced very good results as 

shown through the experiments in the three ELV dc pico-grids 

mentioned in the paper. The proposed HE-kNN is a semi-

supervised anomaly detection algorithm that requires users’ 

Anomaly* 
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intervention in setting some of the parameters, while future 

improvement includes making the process automated. An 

example is to automate the process of running through a range 

of k value to select the appropriate k value based on accuracy 

and amount of computational resource. This cost-efficient 

monitoring system is currently operating using the ubiquitous 

Wi-Fi network in buildings but it can be further developed to 

cater to other communication technologies or expand to a larger 

scale in a building or estate and be implemented as part of an 

IoT solution.  
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