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Dominant Dataset Selection Algorithms for
Electricity Consumption Time-Series Data Analysis

Based on Affine Transformation
Yi Wu, Yi Liu, Syed Hassan Ahmed, Jialiang Peng, Ahmed A. Abd El-Latif

Abstract—The explosive growth of time-series data, the scale
of time-series data (TSD) suggests that the scale and capability
of many Internet of Things (IoT)-based applications has already
been exceeded. Moreover, redundancy persists in TSD due to
correlation between information acquired via different sources.
In this paper, we propose a cohort of dominant dataset selection
algorithms for electricity consumption time-series data with focus
on discriminating the dominant dataset that is small dataset
but capable of representing the kernel information carried by
time-series data with an arbitrarily small error rate less than
ε. Furthermore, we prove that the selection problem of the
minimum dominant dataset is an NP-complete problem. The
affine transformation model is introduced to define as the linear
correlation relationship between time-series data objects. Our
proposed framework consists of the scanning selection algorithm
with O(n3) time complexity and the greedy selection algorithm
with O(n4) time complexity, which are respectively proposed to
select the dominant dataset based on the linear correlation dis-
tance between timeseries data objects. The proposed algorithms
are evaluated on the real electricity consumption data Harbin
city in China. The experimental results show that the proposed
algorithms not only reduce the size of extracted kernel dataset
but also ensure the time-series data integrity in term of accuracy
and efficiency.

Index Terms—Time series data, dominant dataset, affine trans-
formation, linear correlation.

I. INTRODUCTION

ACCOMPANYING the growing popularity of smart grids
and intelligent electric power networks is the generation

and availability of large amounts of time-series data (TSD) in
the power sector [1]. For example, the electricity consumption
TSD in public institutions or private homes is continuously
monitored via intelligent electric power systems using by
Internet of Things (IoT) infrastructure. Information about
electricity consumption is collected as TSD from smart sensors
and transmitted in real-time and analysed via IoT, so customers
can be provided with the meaningful power usage data to
help them utilize power more efficiently. In this sense, it is
expected that the data analysis methods can be effectively used
for advanced electricity planning and forecasting at different
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levels. In most cases, the assessment of such massive and
dynamic TSD is time-consuming and resource intensive. More
so, since TSD streams are continuous and decisions are often
needed in real time [2]. This has made efficient data extraction
an important issue in IoT. Conventional extraction methods
assume infinite computing and storage resources [3], which
fail because electricity consumption TSD is associated with
large-scale, low-value density, and strong correlation charac-
teristics. Therefore, the more efficient data extraction methods
are expected to process the massive TSD. For example, the
approximate information extraction method using the summary
data structure [4] and the dimensional decomposition as well
as recovery methods [5] [6] mainly focus on reducing the time
complexity of algorithms. Consequently, advanced techniques
for efficient data extraction are necessary.

Since the volume of TSD is always beyond the computation
and storage capabilities of IoTs, one feasible solution is
to dramatically reduce the amount of TSD involved in the
computation. For example, several sampling based algorithms
[7]–[10] were proposed to sample a small portion of sensory
data to answer queries based on the user-specified precision
requirements. However, the characteristics and correlations of
sensory data are neglected during the sampling procedure, and
is impossible to accurately recover the original information.
The data compression techniques were further proposed, such
as linear regression based compression [11], [12], source
coding based compression [13], information entropy based
compression [14] have also been proposed. Moreover, the
temporal demands imposed by the decompression process
further complicates these approaches.

Recently, the usability theory was introduced in [15] to
analyze the big data issues. Similarly, the (ε, δ) approximation
theory [16] was further proposed to select the high quality
data related to big data, including the sample selection, the
mathematical solver (ε, δ) for a given problem, and the
dynamic sample maintenance. According to the “Do More
with Less” strategy for big data when the big data processing
exceeds the computation and storage capacities, thence small
data needs to be processed from big data. Based on such a
strategy, the several methods [17]–[20] have been proposed
to select the dominant datasets from big sensory data in
wireless sensor networks. The selected dominant datasets
are applied as the small-scale datasets on which the data
query operations can be completed under the given precision
constraints. However, most of the above-mentioned methods
lack efficient data correlation analysis needed for different
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big data application scenarios. More importantly, the real-
time performances of the existing dominant dataset selection
methods are often neglected or poorly accounted for. The
above facts motivate our investigation of new dominant data
selection methods to efficiently deal with massive TSD. Earlier
efforts in [21] and [22] show there are both temporal and
spatial correlation relationships between the massive TSD
because the physical world always varies continuously in space
and time. To a certain extent, such strong correlations in TSD
accompany high data redundancy, i.e., majority of information
carried by large-scale TSD can be represented by a small-scale
dataset referred to as a dominant dataset of TSD. Obviously,
the information processing on a dominant dataset instead of
the original massive TSD can significantly reduce the costs
involved in computation, storage, and transmission.

In this work, we investigate how to select a dominant dataset
in order to efficiently represent TSD. More specifically, in
this paper, we select a dominant dataset from the electric
power consumption time-series data to support the analysis
and management of TSD effectively. Table I shows the real
electric power consumption data in each time window. Table
I can also be regarded as a TSD model that is an m by
n matrix X where m and n denote the sampling time
points and the number of users in the given time window,
respectively. Such a data matrix X has high redundancy due
to the strong correlations between the consumption data of
consumers with similar living habits. Thus, another data matrix
Y with much smaller dimensionality is expected to represent
the matrix X . In other words, for any given error rate ε,
a small matrix Y with the size of m ∗ k (k � n) can
be selected as a dominant dataset if the information carried
by the matrix Y is compared to that by the original matrix
X with the information error rate being not more than ε.
In order to ensure the real-time performance of dominant
dataset selection, we establish a linear reduction function
f : xi → xj , (i, j = 1, 2, · · · , n) if there is a linear correlation
relationship between the column vectors xi and xj in matrix
X . Therefore, xj can be represented by f(xi)

.
= x′j when

the information difference between xj and x′j can satisfy the
requirement of error rate being not more than ε. Furthermore,
it is assumed that f(x2)

.
= x′1, f(x2)

.
= x′4 and f(x3)

.
= x′5,

where each error rate between x1 and x′1, x4 and x′4, x5 and
x′5 is not more than ε. It means that the information carried by
the “large dataset” {x1, x2, x3, x4, x5, x6} can be represented
by a “small dataset” {x2, x3, x6}. In essence, it also reflects
the idea that the information processing technology on the
“large dataset” can be dealt on the “small dataset”. In order
to reduce the computational cost as much as possible, the
optimal goal of seeking a dominant dataset is to minimize
its size. Meanwhile, the costs of computation and storage
can be reduced by processing a dominant dataset instead of
the original massive TSD. In the experiments, the dominant
dataset is selected to represent the kernel power consumption
information of all users under the constraint of error rate ε.
The main contributions of this paper are described as follows.

• We define the concept of dominant dataset for TSD,
formalize the dominant dataset selection problem for

TSD, and prove that the minimum dominant dataset is
an NP-complete problem.

• Based on the affine relation theory, an affine transfor-
mation model is applied as the reduction function to
solve the linear correlation computational problem in
TSD. In addition, using the proposed reduction, functions
that can be dynamically updated by the increasing TSD
to maintain the information processing adequately are
presented.

• Measuring the linear correlation between TSD is a key
problem in selecting dominant datasets. Definitions of
the affine linear correlation and the least square linear
correlation are also presented. Further, the rigours of
selecting appropriate dominant dataset of TSD that meet
the requirements of information error rate based on the
proposed correlation measures are also presented.

• We propose a scanning selection algorithm (SSA) and the
greedy selection algorithm (GSA) to determine dominant
datasets based on the constraint of (ε, δ)-solver. Finally,
extensive experimental analyses are employed to validate
the performance of the proposed algorithms in terms of
both information representation accuracy and dominant
dataset size.

TABLE I
EXAMPLES OF ELECTRIC POWER CONSUMPTION DATA (KWH PER-USER)

Times
Users

x1 x2 x3 x4 x5 x6 · · ·

1:00 1.60 9.60 5.53 20.20 16.59 13.90 · · ·
2:00 1.88 11.28 4.90 23.56 16.20 16.20 · · ·
3:00 2.32 13.60 6.81 18.69 14.90 10.30 · · ·
4:00 4.32 11.50 9.10 17.69 13.90 14.60 · · ·

...
...

...
...

...
...

...
...

The rest of this paper is organized as follows: Section II de-
scribes the related works. Section III introduces the dominant
dataset definition, including proof that the selection problem
of the minimum dominant dataset is an NP-complete problem.
Section IV presents the reduction function of the dominant
dataset selection based on affine linear transformation. Section
V provides the linear correlation measure definitions. Section
VI elaborates the proposed dominant dataset selection algo-
rithms. The experimental results are presented and discussed
in Section VII. Finally, Section VIII concludes this paper.

II. RELATED WORKS

Recent studies adopt data mining techniques to analyze
electricity consumption and extract valuable information for
the benefit of customers, utility companies, etc. Data mining
techniques are mostly used to study and improve issues related
to electricity consumption patterns [23]. In addition, several
approaches related to clustering large-scale TSD have been
recently proposed in [24]–[26]. The information retrieved via
data mining techniques are further used as input parameters
to forecast the electricity consumption based on regression,
neural network, support vector machine, etc [27]. However, to
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the best of our knowledge, none of the above methods apply
dominant datasets to detect patterns of electricity consumption
from massive TSD collected by IoTs. Therefore, this work
intends to provide a reliable and accurate dominant dataset
selection method as the basis for these data mining algorithms
dealing with massive TSD.

At present, most methods employed in high-dimensional
variable selection require various assumptions to guarantee
statistical properties required for low error rate and large power
[28]. These methods have been applied for simultaneously
selecting important variables and estimating their effects in
high-dimensional statistical inference. Notwithstanding the
complexity and difficulty of choosing a proper statistical model
have also prevented these approaches from being widely used
in practice even though most have the elegant theoretical
properties [29] of these methods. For example, the stepwise
regression is a method of fitting regression models in which
the selection of predictive variables is carried out by an
automatic procedure [30]. In each step, a variable is considered
for addition to or subtraction from the set of explanatory
variables based on some pre-specified criteria. Although the
stepwise regression [31]–[33] is a simple and powerful model
selection method, it may not be a good choice in instances
with large number of predictors and a relatively small number
of observations, i.e. because the stepwise regression to select
models with many spurious predictors. It indicates that the
stepwise regression methods may be sensitive to specific
model assumptions derived from linear regression models
despite consistent properties that are theoretically justified.
More importantly, the existing stepwise regression methods
fail to maintain the dynamic update of the new time-series data
arrival to select the dominant data in real time. The above facts
motivate our effort to develop the dominant dataset selection
algorithms for time-series data without statistical models.

Some dominant dataset selection methods [4]–[6], [34]–[36]
were proposed in several areas, such as tradition database,
data stream, wireless sensor network, etc. However, none of
them are adapted for the high-quality information extraction
associated with massive TSD [37]. In order to reduce com-
putational cost, a typical method using the summary data
structure was proposed in [4] to select a small-scale dataset as
the approximate sampling dataset from a large-scale dataset.
However, it is difficult for the selected sampling dataset
to control the error of information extraction. The wavelet
function was applied in [34] to decompose the stream data
to obtain approximate data query results. Based on both the
coupling characteristics of stream data and the multi-level
wavelet decomposition, the multi-stream compression methods
were further proposed in [5], [6]. These methods offer 2 to
4 times better compression ratio than the traditional wavelet
compression method [34]. However, they fail to work well
for the massive TSD analysis due to the high computational
cost associated with Harr wavelet decomposition and recovery.
Meanwhile, in spite of its use of Discrete Fourier transform
was used to analyse the coupling relation between the stream
data, the method in [36] failed to account for the effect of
historical data for information extraction. Improvements in
the highlighted methods mainly focus on reducing the time

complexity without considering the scale of TSD are still not
obvious for the computational efficiency of massive TSD.

Currently, representative methods [15], [38]–[40] have been
proposed to support the big data compression approaches
without the decompression computation. The original datasets
are compressed in advance and then related computational
operations can be done directly on the compressed datasets.
These approaches reduce the size of original dataset to lower
the computational cost, but they fail to solve the online com-
putational problems that accompany real-time TSD. The (ε, δ)
approximate computing principle of big data was proposed in
[8], [9], [35], [38], [41] where the computational problem in
the small dataset is solved by randomly extracting a small-
scale dataset from the big dataset in accordance with the (ε, δ)
principle. However, the sampling probability for individual
data is very low based on the random sampling procedure.
Therefore, the (ε, δ) principle is suitable for the macro-
data analysis rather than the micro-data query. Although the
dynamic statistics of partial TSD was proposed in [42] based
on the affine transformation theory, it failed to represent the
complete TSD information well. Unlike the existing methods,
in this study, we implement the real-time data processing on
the dominant dataset using the small-scale dominant dataset
from large-scale TSD based on the given accuracy of infor-
mation representation.

III. PROBLEM DEFINITION

Time-varying objects in a timeline form the data sequence
called time-series data (TSD), which we refer to as the time-
series sample objects. Herein, a matrix Xm×n represents as
m×n TSD objects where there are n sample objects composed
of m observation times per-object.

A. Dominant Dataset

A dominant dataset of the n sample objects {x1, x2, ..., xn}
is defined as follows.

Definition 1 (Dominant Dataset). Assuming that
X = {xi|xi ∈ R, 1 ≤ i ≤ n} is a finite time-series dataset,
and let P = {pi|pi ∈ R, 1 ≤ i ≤ k} be another dataset,
P ⊂ X , |P |� |X| (k � n). If there is a reduction function
f during the time period T that can meet the requirement
of f(P ) .

= YP and X = YP ∪ P , then P is defined as a
dominant dataset of X based on the function f .

Definition 2 ((ε, δ)-solver). Given the parameters ε (ε > 0)
and δ (0 6 δ 6 1), the function f is established by the
correlation between the sample objects in X . A small dataset
P can be selected as a dominant dataset of X by the function
f such that the information representation problem of X can
be solved in the small dataset P instead of X under the
condition that the probability of information extraction error
being larger than ε is less than δ. This solution condition of
dominant dataset selection problem is defined as (ε, δ)-solver.
If δ = 0, it means that the information extraction error is
less than ε. In such case, the solution condition is defined as
ε-solver.
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Definition 3 (Correlation Distance). In order to measure
the degree of correlation between X and Y , the correlation
distance between X and Y is defined as D(X,Y ). Based
on (ε, δ)-solver, an element of dominant dataset can be de-
termined if the condition D(X,Y ) ≤ ε is met where the
correlation distance is commutative, i.e. D(X,Y ) = D(Y,X).

Definition 4 (Central Object and Target Object). Assuming
that X and P are sample datasets (P ⊂ X), there is a
reduction function f that can establish both f(P ) .

= YP and
X = YP ∪ P to be established. if the function f meets the
requirement of (ε, δ)-solver, P is a dominant dataset of X
based on (ε, δ)-solver during the time period T . Each sample
object in P is defined as a central object, and each sample
object in YP is defined as a target object.

B. Dominant Dataset Selection

In this work, the information representation problem of
large-scale TSD is transformed to a small-scale data process-
ing problem that needs to meet the accuracy requirement of
the information extraction in the original time-series dataset.

Definition 5 ((ε, δ)-Dominant Dataset) Given a sample
dataset X = {x1, x2, . . . , xn} and the constraint (ε, δ)-solver
in time period T , a dominant dataset P = {p1, p2, . . . , pk}
exists subject to the constraint (ε, δ)-solver. It requests the
existence of both the reduction function f and the correlation
distance Df (X,P ) meeting the requirement of (ε, δ)-solver to
establish f(P ) .= YP and X = YP ∪ P (P ⊂ X , |P |� |X|).
Here, P is defined as the (ε, δ)-dominant dataset.

Lemma 1 If there are multiple dominant datasets P =
{P1, P2, . . . , Pw}, w ∈ N+ in a time-series dataset X
corresponding to the different reduction functions F =
{f1, f2, ...fw} with the determined (ε, δ)-solver, then a mini-
mum dominant dataset (a dominant dataset with the minimum
size) Pmin exists in P.

Proof. When the different reduction functions are deter-
mined by (ε, δ)-solver, it can be seen that the dominant
dataset, namely, the dominant dataset selection result of X ,
is not unique based on Definition 5. Therefore, there exists
multiple dominant datasets P = {P1, P2, . . . , Pw}, w ≥ 1
for X corresponding to the different reduction functions
F = {f1, f2, ...fw}. Therefore, it is bound to exist a dominant
dataset Pmin with the minimum size in P. �

Definition 6 (The Inclusion Problem of Dominant
Dataset). Let Up = 〈X,P〉, where X = {x1, x2, ..., xd} is a
time-series dataset and the several subsets of X make up the
set P = {P |P ⊂ X}, |P| = 2|X|. The inclusion problem of
minimum dominant dataset is defined to select an element
Pmin in P to make Pmin be the minimum dominant dataset
of X based on a given reduction function f .

Definition 7 (The Selection Problem of Minimum Domi-
nant Dataset). Let Cq = 〈X,F 〉, where X = {x1, x2, ...xd} is
a time-series dataset and F = {f1, f2, ...fw} is the available
reduction function set for X based on (ε, δ)-solver. The
consequent dominant datasets are P′ = {P1, P2, ...Pw}, where

fi(Pi)
.
= YPi (∀Pi ∈ P′, 1 ≤ i ≤ w) , then the problem of

selection of minimum dominant dataset is reduced to selection
Pi ∈ P′ under the condition that the size of Pi is minimum.

Lemma 2 The inclusion problem of the dominant datasets is
NP-complete problem.

Proof. Based on the graph theory, a dominating set [43] in an
undirected graph G with a set of T of vertices such that every
vertex in G is either in T or connected to a vertex of T by
an edge, or both. The dominating set problem is to input an
undirected graph G and a number k, and determine whether
there is a dominating set with k vertices. The dominating set
problem is a classical NP-complete problem in computational
complexity theory [44]. According to Definition 1, a dominant
dataset P is a subset of the time-series dataset X that can
be approximately represented by P based on the reduction
function f . Based on Definition 6, X can be abstractly
considered as an undirected graph G. xi ∈ X and fi ∈ F
can further be represented as a vertex and an edge in G,
respectively. Consequently, the problem of finding a dominant
dataset P of X in this work is equivalent to the dominating set
problem in the graph theory. Therefore, the inclusion problem
of dominant datasets is NP-complete problem. �

Theorem 1 The solution of the inclusion problem and that of
the selection problem for the minimum dominant dataset are
equivalent.

Proof. For the reduction function set F , it needs to prove that a
solution for the minimum dominant dataset selection problem
of Cq corresponds to a solution for the minimum dominant
dataset inclusion problem of Up needs to be proven. That
is, given S(Cq) as one solution instance of Cq , one solution
instance, S(Up), for Up, can be obtained, and vice versa. �

For S(Cq) => S(Up), according to the requirement of
dominant dataset, given S (Cq), there is a reduction function
f to produce S (Cq) according to the requirement of dominant
dataset. Each element in S (Cq) belongs to the dataset X based
on the definition of Cq . Moreover, S (Cq) is a subset of P
and since the reduction function f can produce S (Cq) as the
minimum dominant dataset of P′ then S (Cq) is also a solution
of the dominant dataset inclusion problem for Up.

For S (Up) => S (Cq), according to the definition of Up,
given S(Up), S(Up) is a defined subset of the dataset P
according to the definition of Up. A reduction function f
can produce the minimum dominant dataset Pmin based on
the definition of Cq , and all elements of Pmin belong to
P, namely, Pmin ⊆ P. Therefore, S(Up) is a solution of the
minimum dominant dataset selection problem for Cq based on
the reduction function f .

In summary, it is proven that the solution of the inclusion
problem and that of the selection problem for the minimum
dominant dataset are equivalent.

Theorem 2 The selection problem of the minimum domina-
tion dataset is NP-complete problem.

Proof. According to Lemma 2 and Theorem 1, the inclusion
problem of the dominant datasets is NP-complete, and both the
inclusion problem and the selection problem of the minimum
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dominant dataset are equivalent. Therefore, the selection prob-
lem of the minimum domination dataset is an NP-complete
problem. �

IV. MATHEMATICAL FOUNDATION

Inspired by the work of Saket, et. al in [42], we intro-
duce the affine relation theory to implement the information
extraction of TSD based on the choice of a suitable affine
transformation function. Affine transformation is a nonsingular
linear transformation between two vector spaces. We use the
affine relation model as the reduction function to construct
the target object vector space of TSD for the dominant dataset
selection.

A. Affine Relation Model

In this work, the affine relation model is defined as
S = P ×A+B, where S and P represent a sample object
matrix and central object matrix of the TSD respectively (see
Definition 4), A is a coefficient matrix and B denotes a
residual matrix.

It is assumed that a 2-dimensional affine relation can be
expressed as Sm×2 = Pm×2×A2×2 +Bm×2, where both the
sample object matrix Sm×2 = (y1, y2) and the central object
matrix Pm×2 = (x1, x2) are m-row by 2-column matrices,
A = (a1, a2) is a 2-row by 2-column coefficient matrix,
and B = (b1, b2) is an m-row by 2-column constant matrix.
Without loss of generality, a 2-dimensional affine relation
model can be defined as follows: y1 (1) y2 (1)

...
...

y1 (m) y2 (m)

 =

 x1 (1) x2 (1)
...

...
x1 (m) x2 (m)

( a11 a12

a21 a22

)
+

 b1(1) b1(2)
...

...
bm(1) bm(2)


(1)

Eq. (1) can be further considered as the affine transformation
from x1, x2 to y1, y2, as shown in Eq. (2).{

y1 (i) = a11 × x1 (i) + a21 × x2 (i) + bi(1)

y2 (i) = a12 × x1 (i) + a22 × x2 (i) + bi(2)
(i = 1, 2, . . . ,m) (2)

Next, we extend both S and P to m-row by n-column
matrices. The n-dimensional affine relation model can be
represented as Sm×n = Pm×n × An×n + Bm×n, where
An×n is the transformation coefficient matrix and Bm×n
is the residual matrix. Let Sm×n = (y1, y2, · · · , ym),
Pm×n = (x1, x2, · · · , xm), An×n = (a1, a2, . . . , an) =
(aij)n×n (i, j = 1, 2, . . . , n), Bm×n = (b1, b2, · · · , bm), and
then

yi =

 n∑
j=1

ajixi

+ bi, i = 1, 2, . . . ,m. (3)

B. Affine Transformation Function

The affine relation between the sample object matrix S and
the central object matrix P is assumed as < : (A,B), and

let the corresponding matrix R =

(
An×n
B1×n

)
, where there

are (n + 1) × n elements in the matrix R . Based on the
affine relation model S = P ×A+B, let P ′ = (P, 1m) and

then S = P ′ × R. Thus, Eq. (3) can be further expressed as
presented in Eq. (4).


y1 (1) y2 (1) · · · yn (1)
y1 (2) y2 (2) · · · yn (2)

...
... · · ·

...
y1 (m) y2 (m) · · · yn (m)

 =


x1 (1) x2 (1) · · · xn (1) 1
x1 (2) x2 (2) · · · xn (2) 1

...
... · · ·

...
...

x1 (m) x2 (m) · · · xn (m) 1




a11 a12 · · · a1n

a21 a22 · · · a2n

...
... · · ·

...
an1 an2 · · · ann
b1 b2 · · · bn


(4)

Since that the central object matrix P aims to represent
different target objects in TSD, it can also ensure the nonlinear
correlation relation between the sample object vectors when
the time window of TSD m is very large. That is to say,
P can have full column rank within a large time window.
Due to S = P ′ × R, there is a pseudo-inverse matrix
of P ′ to establish R = pinv(P ′) × S where pinv(P ′)
denotes the pseudo-inverse matrix of P ′. Meanwhile, the

equation pinv(P ′) =
(
P

′T × P ′
)−1

× P ′T holds. When the
dimensionality of the sample object vector is m, the equation

Rm =
(
P

′T
m × P

′

m

)−1

× P
′T

m × Sm also holds. When m

increases to m+1 in Eq. (4) (namely, an additional observation
of TSD with increasing the time window), it increases a row
in the matrices P ′ and S respectively, as shown in Eq. (5).

P ′m+1 =

(
P ′m
p′m+1

)
, Sm+1 =

(
Sm
sm+1

)
(5)

where p′m+1 = (x1 (m+ 1) , x2 (m+ 1) , · · · , xn (m+ 1) , 1)
and sm+1 = (y1 (m+ 1) , y2 (m+ 1) , · · · , yn (m+ 1)).

Therefore, Rm+1 =
(
P

′T
m+1 × P

′

m+1

)−1

×P ′T

m+1×Sm+1. It
can be derived as

Rm+1 =

(
In +

(
P

′T
m P ′m

)−1

p
′T
m+1p

′
m+1

)−1

×
(
Rm +

(
P ′m

T
P ′m

)−1

p
′T
m+1sm+1

)
.

(6)

Please see the Appendix for the proof of Eq. (6).
For the time-series data, the sample object matrix S can

be represented by the central object matrix P based on the
affine relation model. It means that the affine relation can be
used to extract target object information based on the central
object matrix P . P ′ are actually collected in real time as
shown in Eq. (5), and the transform matrix R can be also
real-time computed by Eq. (6). Therefore, the sample objects
can be efficiently represented by P ′, R matrices. Herein, R
also means the transformation function in this work.

As shown in Eq. (6), R can be dynamically updated by the
continuous arrival of TSD samples. The dynamic update of
R guarantees the maintenance of the continuous information
extraction from large-scale time-series datasets.

V. INFORMATION LOSS AND LINEAR CORRELATION
DISTANCE

In accordance with the accuracy requirement of information
representation, we study how to select the dominant dataset
from TSD under the error constraint. Given the error constraint
ε, the dominant dataset is selected by the affine transformation
function, and then the dominant dataset is evaluated by (ε, δ)-
solver to analyze the usability of information representation.
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A. Information Loss

Based on the definition of affine relation model in Eq. (4)
and the transformation function R in Eq. (6), the dataset S =
(y1, y2, · · · , yn) can be reconstructed as S′ = (y′1, y

′
2, · · · , y′n)

based on the dominant object dataset P and S′ = P × R.
Therefore, the information loss between S and S′ is defined
as E = |S − S′|.

E =


|y1 (1)− y′1 (1) | |y2 (1)− y′2 (1) | · · · |yn (1)− y′n (1) |
|y1 (2)− y′1 (2) | |y2 (2)− y′2 (2) | · · · |yn (2)− y′n (2) |

· · · · · · · · · · · ·
|y1 (m)− y′1 (m) | |y2 (m)− y′2 (m) | · · · |yn (m)− y′n (m) |


(7)

According to Definition 2, E is subject to the condition that
the information loss of the target objects is less than ε or the
error extraction proportion of the target objects exceeding ε
is not more than δ. Therefore, the information loss of target
objects is also determined by the (ε, δ)-solver constraint.

Given S = (y1, y2, · · · , yn) and S′ = (y′1, y
′
2, · · · , y′n) of m

observation times, the root mean square error (RMSE) vector
between S and S′ is defined as Eq. (8),

E RMSE = (E RMSE1
, E RMSE2

, · · · , E RMSEn
) (8)

where E RMSEj =

√∑m
i=1 (yj(i)−y′j(i))

2

m (1 6 j 6 n). Thus,
the information loss between S and S′ can be analyzed based
on E RMSE .

B. Linear Correlation Distance

Definition 8 (Linear Correlation Distance, LCD). Assum-
ing that there are pair matrices of P = (x1, x2) and
S = (y1, y2), DLCD(P,S) is defined as the linear correlation
distance between P and S.

Based on the degree of DLCD(P,S) as it tends to 0, LCD
can be used to measure the linear correlation relationship
between P and S. DLCD(P,S) is further applied to determine
whether S can be affine transformed by P to implement the
information representation. If DLCD(P,S) ≤ ε, it means that
LCD meets the requirements for information extraction accu-
racy. When the linear correlation distance DLCD(P,S) ≤ ε
meets the requirement of (ε, δ)-solver, it implies that the
couple vectors y1, y2 can be linearly represented by the couple
vectors x1, x2 based on the affine transformation function.

Inspired by the work in [42], we further introduce the terms:
public object vector, central object vector, and sample object
vector in this work, where it is assumed that
• u represents a public object vector,
• p represents a central object vector,
• v represents a target object vector,
• Faff represents an affine transformation function,
• R represents an affine transformation matrix.

In [42], two m-by-2 matrices are respectively defined as
the pivot pair matrix (u, p) and the sequence pair matrix
(u, v). The generating procedure for the pivot pair matrix is
conducted by Affine Clustering Algorithm [42]. Furthermore,
the covariance for all the pivot pair matrices are computed to
determine the affine transformations between each sequence
pair matrix and one of the pivot pair matrices. Here, the pivot

pair matrix and the sequence pair matrix play the role of the
affine transformation as shown in Fig. 1. Although the above
procedure can be used for computing (u, p) and (u, v), in
our proposed methods, we simplify the generating procedure
for (u, p) by selecting a random object vector u as a public
object vector for a central vector p to find the target object v
based on the proposed affine transformation function between
P = (u, p) and S = (u, v) in this work. As the same definition
in [42], P = (u, p) and S = (u, v) are represented as the pivot
vector pair and the target vector pair respectively, in order to
determine the linear correlation distance between P and S
based on the condition of DLCD(P,S) ≤ ε.

Therefore, let the sample object vector set
X = {x1, x2, ..., xn}, and P = (u, p),S = (u, v), ∃u ∈ X ,
∀p ∈ X , ∀v ∈ X . If the linear correlation distance between
P and S satisfies the condition of DLCD(P,S) ≤ ε, the
linear correlation distance between p and v is less than ε. Let
a vector p ∈ P be a central vector for a target vector v ∈ S
based on an affine transformation function Faff : p→ v,
and then all central vectors form the dominant dataset
P = {p1, p2, . . . , pk}. As shown in Fig. 1, the public object
vector u is selected to form both the pivot vector pair P and
the target vector pair S, therefore, the vector v in S can be
computed by the vector p in P based on the transformation
function Faff .

u

Affine relationship

( , )u p ( , )u v

 Pivot vector pair Target vector pair

: ( , )A B

u

p v

Fig. 1. Procedure for generating the pivot pairs [42].

Assuming that the central object dataset P and the sample
object dataset S, the two linear distance measures are intro-
duced as follows:
• Affine linear correlation distance (AFF): Let the affine

relation <AFF : (A,B) be used for the pair matrices P
and S. The dataset S ′AFF can be obtained by S ′AFF =
A × P + B to approximatively represent S. The linear
correlation distance DLCD(P,S) can be represented by
the affine linear correlation DAFF (P,S) as shown in Eq.
(9)

DAFF (P,S)
∆
= ||S−S ′AFF ||. (9)

When DAFF (P,S) ≤ ε, it can meet the requirement of
the (ε, δ)-solver constraint. It is obvious that the vectors
u, v in S can be linearly represented by the vectors u, p
in P .

• Least-squares linear transformation distance (LS):
As similar as the affine relation distance, let the least-
squares transformation [45] <LS : (A,B) be used for
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the pair matrices P and S . The dataset S ′LS can be
also obtained by S ′LS = A×P +B to approximatively
represent S. The linear correlation distance DLCD(P,S)
can be represented by the least-squares linear distance
D

LS
(P,S) as shown in Eq. (10)

D
LS

(P,S) ∆
= ||S − S ′LS ||. (10)

When DLS(P,S) ≤ ε, it can also meet the requirement
of the (ε, δ)-solver constraint to linearly represent the
vectors u, p in S by the vectors u, p in P .

VI. DOMINANT DATASET SELECTION ALGORITHMS

Theorem 2 proves that the dominant dataset selection prob-
lem is an NP-complete problem. According to Definition 8,
the dominant dataset is selected under the condition that
the linear correlation distance is subject to the constraint of
(ε, δ)-solver. Based on Theorem 1, we construct k linear
correlation groups from a given TSD matrix Xm×n. The
distance between a central target object Sp in each group and
any other sample object Sv in the same group is required to
meet the requirement of the (ε, δ)-solver constraint. In fact, it
hopes to find the dominant dataset P with the minimum size
k can meet the requirement of the (ε, δ)-solver constraint.

A. Scanning Selection Algorithm

We propose the scanning selection algorithm (SSA) to select
the dominant dataset based on the linear correlation distance
measure with the constraint of (ε, δ)-solver. The basic idea of
SSA is described as follows:
• A linear independent object pair P = (u, p) is selected

from the sample object dataset X based on the sequential
object order of X . The target object v is identified by
traversing X to form the target object pair S = (u, v)
that is subject to the constraint DLCD(P,S) ≤ ε.

• The central object p is added into the dominant dataset
P , and the affine transformation matrix < is formed by
its corresponding affine function Faff : p→ v.

• The above procedure is repeated until the identification
of the central objects and the target objects for all objects
in X is completed to give the final dominant dataset P .

The proposed SSA is executed using Algorithm 1. The re-
lated variables are initialized in Line 1, and the corresponding
target object is identified by the sequential central object in
Lines 2 through 18. This iterative process that the central ob-
ject is selected from unidentified target objects is described in
Lines 5 through 15, where the central object is identified based
on the constraint of (ε, δ)-solver. The identified central object
p and the corresponding transformation function coefficient
matrix (Aj , bj) are added to the dominant dataset P and the
transformation coefficient matrix set A respectively, in Line
16. In Line 17, the next unidentified target object is orderly
selected as the central object until X becomes an empty set.
Finally, the dominant set P and the affine transformation
coefficient matrix set A are output from SSA.

In this work, we introduce the directed graph structure to de-
scribe the dominant selection relationship between the central

Algorithm 1 Scanning Selection Algorithm (SSA)
Input: TSD matrix Xm×n = {x1, x2, ..., xn} and (ε, δ)-
solver.
Output: The dominant dataset P and the affine transformation
coefficient matrix set A.

1: P ← ∅, A← ∅, i← 1, X ← Xm×n, nδ ← 0;
2: while X 6= ∅ do
3: p← xi, ∃u ∈ X , P ← (u, p), X ← X − {xi};
4: Pvi ← ∅, Api ← ∅;
5: for j ∈ [1, |X|] , j 6= i do
6: ∃xj ∈ X, v ← xj , S ← (u, v);
7: if DLCD(P,S) ≤ ε then
8: Pvi ← Pvi ∪ {v}, Api ← Api ∪ {(Aj , bj)};
9: else

10: if nδ < [(|P |+|A|)× δ] then
11: Pvi ← Pvi ∪ {v}, Api ← Api ∪ {(Aj , bj)};
12: nδ ← nδ + 1;
13: end if
14: end if
15: end for
16: P ← P ∪ {p}, A← A ∪Api ;
17: X ← X − {Pvi}, i← i+ 1;
18: end while
19: return P , A.

objects and the target objects under conditions imposed via the
(ε, δ)-solver. Let a dominant relationship be a directed graph
G = (X,E), where X = {x1, x2, ..., xn} is the vertex set of G
representing all sample objects, E is the directed edge set of G,
and a directed edge in E representing an affine transformation
relationship between a central object xi ∈ X and a target
object xj ∈ X, j 6= i that meets the constraint of (ε, δ)-
solver. As shown in Fig. 2, we further illustrate a sample for
the dominant dataset selection process based on SSA. In Fig.
2(a), the dominant relationship is denoted as the directed graph
structure G = (X,E), where X = {x1, x2, x3, x4, x5, x6}
and E = {〈x1, x2〉 , 〈x2, x1〉 , 〈x2, x4〉 , 〈x3, x5〉}. Initially, x1

is sequentially selected as the central object p from X to
construct the target object pair (u, p). And then, x2 is orderly
selected as the object v in order to construct the object pair
(u, v). From Fig. 2(a), we can see that the linear corre-
lation distance between x1 and x2 meets the constraint of
DLCD(x1, x2) ≤ ε. Therefore, x2 is selected as the target
object for the central object x1, and then the transformation
coefficient matrix set A is updated with the affine function
Faff until the central object x1 does not satisfy the constraint.
In Fig. 2(b), x3 is orderly selected as the central object
from the remaining target objects {x3, x4, x5, x6}, and then
x5 is selected as the target object dominated by x3 under
the constraint of DLCD(x3, x5) ≤ ε. However, there are
no target objects for x4 when x4 is orderly selected as the
central object from the remaining target objects {x4, x6}
as shown in Fig. 2(c). Similarly, Fig. 2(d) shows that x6

is selected as the central object to complete the dominant
dataset selection process. Finally, the dominant object dataset
P = {x1, x3, x4, x6} and the affine transformation function
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coefficient matrix set A ={(A2, b2), (A5, b5)} for {x2, x5} are
output as the results based on SSA.

Fig. 2. A sample for the dominant dataset selection process based on SSA.

In the dataset X containing n target objects, the central
objects are identified successively to constitute the dominant
dataset based on SSA. The time complexity of Algorithm 1
is the sum of running-time costs for each statement in it. In
Line 1, the running-time cost is O(m × n) for initializing
the related variables. In Lines 2 through 18, it is a while
loop to allow the scanning selection of dominant dataset to be
executed repeatedly based on the condition X 6= ∅ is satisfied.
It is assumed that the computational cost of the while loop is
O(n×T ) , where T is the running-time cost of the statements
in Lines 3 through 17. In Lines 3 and 4, it is constant time for
the assignment of the related variables. In Lines 5 through 15,
it is assumed that the running-time cost is O(n×Z) for the for
loop in which the dominant data objects are identified based on
the constraint of (ε, δ)-solver, where Z is the computational
cost of executing statements in Lines 6 through 14. Except
for the statement in Line 7, a constant time is required to
execute the statements in Line 6 and Lines 10 through 13.
To judge the inequality of DLCD(P,S) ≤ ε in Line 7, we
simplify to compare ε2 to the inner product of P,S with the
time complexity of O(n) in the implementation of Algorithm
1. In Lines 16 and 17,, it is also a constant time to update P ,
A, etc. The computational cost Z = O(1 + n) = O(n) and
the running-time cost for the for loop is O(n× Z) = O(n2).
Therefore, T = O(1+n2+1) = O(n2). So, the computational
cost of the while loop is O(n× T ) = O(n3) and the into the
time complexity of SSA is O(m×n)+O(n3), namely, O(n3).

B. Greedy Selection Algorithm
In the dominant dataset, it is expected that greedy selection

of the dominant dataset maximizes the coverage of the sample
object dataset X within the constraint of (ε, δ)-solver is
expected, such that the size of P is minimised.

Given a sample object dataset X , there is an object subset
Pv, Pv ⊆ X that contains the target objects corresponding to
a central object p ∈ X meets the requirement of (ε, δ)-solver.
The greedy strategy of selecting a central object is to choose
p from X to obtain the corresponding target object subset Pv
meeting the following condition:

argmax
p

(|σ(Pv, X)|), s.t. Pv ⊆ X, p ∈ X (11)

where σ(Pv, X) represents to form the subset Pv that contains
the target objects determined by the central object p based on
(ε, δ)-solver.

Therefore, the basic idea of the proposed dominant dataset
greedy selection algorithm (GSA) is described as follows:
• The linear correlation distance DLCD between any two

objects in X are computed to find which paired objects
can meet the requirement of DLCD ≤ ε. According to
the above greedy selection strategy, the central object p
supporting the largest size of the target object subset is
added into the dominant set P , the corresponding target
objects are added into Pv , and X is updated as X =
X−{p}−Pv . In addition, the affine transformation matrix
< is further formed by its corresponding affine function
Faff : p→ Pv .

• The above procedure is repeated until the dataset X
becomes empty. Finally, the dominant dataset greedy
selection of X is completed to give the final dominant
dataset P .

Meanwhile, according to the definition of (ε, δ)-solver, the
proportion of the target objects corresponding a central object
p in Pv dissatisfying with the condition DLCD ≤ ε can be
less than δ. The vector E RMSE (see Eq. (8)) is used to
select a central object when the above-mentioned situation
arises. Therefore, the target object v in the dataset X can be
also identified by the condition of the minimum ERMSE in
the proposed GSA when DLCD > ε. Given a sample object
dataset X and a target object subset Pv′ corresponding to the
central object p do not meet the condition of DLCD ≤ ε, the
current greedy selection operation for a target object v′ from
X should meet the following condition:

argmin
v′

(E RMSEv′ ),

s.t. σ′(Pv′ , X), p ∈ X, Pv′ ⊆ X, v′ ∈ Pv′
(12)

where σ′(Pv′ , X) represents to the dataset Pv′ that contains
the target object v′ corresponding to the central object p that
does not meet the condition of DLCD ≤ ε in the dataset X .

Algorithm 2 executes the proposed GSA outlined as follows.
The related variables are initialized in Line 1. In Line 2-12,
the linear correlation distance between any two target objects
in X is computed to determine whether DLCD(P,S) ≤ ε
can be held to form the dominant relationship, and the affine
coefficient matrices are merged into the set Ap. Next, the dom-
inant object is further selected and the affine transformation
function is constructed in Line 13-24. Based on the dominant
relationship in X , the greedy selection of dominant objects
is conducted to choose the central object p supporting the
largest size of the target object subset Pv in Line 15. In Line
16, the central object p and the corresponding transformation
function coefficient matrix App = (Ap, bp) are added to
the central object set P and the coefficient matrix set A,
respectively. X is updated as X = X−{p}−Pv in Line 17. If
the proportion of target objects dissatisfying the condition of
DLCD ≤ ε is smaller than δ in Line 18, the target object
p is also allowed to be selected to support the object v′

from the unrecognized target objects in X under the condition
of the smallest E RMSEv′ in Line 19. The corresponding
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transformation function coefficient matrix (Av′ , bv′) are joined
into the coefficient matrix set A in Line 20. X and nδ are
updated in Line 21-22. The above procedure in Line 14-24 is
repeated to do until X becomes empty. Finally, the dominant
set P and the affine transformation coefficient matrix set A
are output as the results based on GSA.

Algorithm 2 Greedy Selection Algorithm (GSA)
Input: TSD matrix Xm×n = {x1, x2, ..., xn} and (ε, δ)-
solver.
Output: The dominant dataset P and the affine coefficient
matrix set A.

1: X ← Xm×n, Ap ← ∅;
2: for i ∈ [1, |X|] do
3: p← xi, ∃u ∈ X , P ← (u, p), Xv ← X − {xi};
4: Api ← ∅;
5: for j ∈ [1, |Xv|], j 6= i do
6: v ← xj , S ← (u, v);
7: if DLCD(P,S) ≤ ε then
8: Api ← Api ∪ {(Aj , bj)}
9: end if

10: end for
11: Ap ← Ap ∪Api
12: end for
13: P ← ∅, A← ∅, Pv ← ∅, nδ ← 0;
14: while X 6= ∅ do
15: argmax

p
(σ(|Pv, X)|), s.t. Pv ⊆ X, p ∈ X

16: P ← P ∪ {p}, A← A ∪App;
17: X ← X − {p}, X ← X − Pv;
18: while nδ < {(|P |+|Ap|)× δ} and X 6= ∅ do
19: argmin

v′
(E RMSEv′ ), s.t. σ

′(P ′v, X), p ∈ X, Pv′ ⊆ X, v′ ∈ Pv′;
20: A← A ∪ {(Av′ , bv′)};
21: X ← X − Pv′ ;
22: nδ ← nδ + 1;
23: end while
24: end while
25: return P , A.

We also illustrate a sample for the dominant dataset
selection process based on GSA as shown in Fig. 3.
Similarly, Fig. 3(a) shows the directed graph structure
G = (X,E) where X = {x1, x2, x3, x4, x5, x6} and
E = {〈x1, x2〉 , 〈x2, x1〉 , 〈x2, x4〉 , 〈x3, x5〉}. As shown Fig.
3(a), the object x2 has 2 dominant relationships with the target
objects x1, x4 . Compared to other objects in X , there are the
maximum dominant relationships for x2 in X if x2 becomes
a central object. Therefore, x2 is firstly selected as the central
object to add into the dominant dataset P and x1, x4 are joined
into the set Pv based on GSA. The transformation function
(A1, b1), (A4, b4) of x2 is also computed to form the affine
function coefficient matrix A = {(A1, b1), (A4, b4)}. Next,
the dataset X is updated by X ← X −{x1, x2, x4} as shown
in Fig. 3(b). The object x3 is selected as the central object
to merge into the dominant dataset P , and the corresponding
target object x5 and the affine coefficient function (A5, b5)
are added into the set Pv and A, respectively. In Fig. 3(c),
X is further updated to X = {x6}, and x6 is added into P

because x6 is the last one object in the current X . So far, GSA
has been completed in the original X to obtain the dominant
dataset P = {x2, x3, x6} and the affine function coefficient
matrix set A = {(A1, b1), (A4, b4), (A5, b5)} for the target
objects x1, x4, x5.

Fig. 3. A sample for the dominant dataset selection process based on GSA.

The time complexity of Algorithm 2 is the sum of running-
time costs for each statement in it. In Line 1, the running-time
cost is O(m×n) for initializing the related variables. In Line
2-12, it is a nested for loop to determine the linear correlation
distance between any two target objects in X based on the con-
dition of DLCD (P,S) ≤ ε. According to the time complexity
analysis of Algorithm 1, DLCD (P,S) can be simplified to
calculate within the time complexity of O(n). Therefore, the
running-time cost of statements in Line 2-12 of the nested for
loop is O(n3). It is constant time for the assignment of the
related variables in Line 13. In Line 14-24, it is a nested while
loop to conduct the greedy selection of dominant dataset. It is
assumed that O(n× T ) is the running-time cost for the outer
while loop, where T is the computational cost of executing
the statements in Line 15-23. The time complexity is O(n)
to select the central object p supporting the largest size of
the target object subset Pv in Line 15. It is also constant
time to execute the statements of Line 16-17. For the inner
while loop in Line 18-23, it is assumed that O(n × Z) is
the running-time cost for it where Z is the computational
cost of executing the statements in Line 19-22. The running-
time cost is O(n2) for the statement Line 19 based on Eq.
(12) as the computational cost of E

RMSE
is O(n2), and it is

constant time for the update of A, X , and nδ in Line 20-
22. Therefore, Z = O(n2 + 1) = O(n2) and the running-
time cost for the inner while loop is O(n × Z) = O(n3).
So, T = O(n + 1 + n3) = O(n3) and the running-time
cost for the outer while loop is O(n × T ) = O(n × n3) =
O(n4). In summary, the total time complexity of GSA is
O(m× n) +O(n3) +O(n4), namely, O(n4).

C. Reconstruction of Target Object Dataset

The algorithm SSA or GSA outputs a dominant object
dataset P = {p1, p2, . . . , pk} and a affine transformation co-
efficient matrix set A = {Ap1 , Ap2 , . . . , Apk} for the dataset
X , where Api (1 ≤ i ≤ k) represents the affine transformation
coefficient matrix for the target objects corresponding to
the central object pi in P . The reconstruction method of
target objects based on the dominant dataset is proposed in
Algorithm 3.

According to Algorithm 3, the reconstruction for the target
dataset Xp can be obtained by the dominant dataset P through
computing the affine transformation function Faff with the
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Algorithm 3 Reconstruction of Target Object Dataset
Input: A dominant dataset P = {p1, p2, . . . , pk}, the affine
transformation function Faff , and the affine transformation
coefficient matrix set A = {Ap1 , Ap2 , ..., Apk} for P .
Output: The reconstructed target object dataset Xp.

1: Xp = ∅;
2: for i ∈ [1, k] do
3: qi ← Faff (Api , pi);
4: Xp ← Xp ∪ {qi};
5: end for
6: return Xp.

matrix set A. The time complexity for computing a target ob-
ject qi is O(m×n) based on the applied linear transformation
function Faff . Therefore, the time complexity of Algorithm 3
is O(m×n× k). Because m is always a constant and k ≤ n,
the time complexity of target objects reconstruction is O(n2).

The space complexity for the TSD matrix Xm×n is
O (m× n). When the size of the dominant dataset is k, the
size of the target object dataset is n − k. It means that the
size of TSD storage space can be greatly reduced by only
storing the dominant dataset in case that k � n. In addition,
the reconstruction of target objects can be implemented by
the the linear affine transformation function without high
computational cost. Based on Eq. (6), the next Rm+1 can also
be recursively derived from Rm. Therefore, it implies that the
proposed algorithms are also suitable to solve the related big
data issues.

VII. EXPERIMENTAL RESULTS AND ANALYSIS

We analyze the effectiveness and efficiency of the proposed
dominant dataset selection methods in this experiment. Based
on the (ε, δ)-solver, the performances of SSA and GSA
algorithms are evaluated by the affine linear correlation and the
least squares linear correlation measurements, respectively. In
addition, the reconstruction accuracy of target objects is also
analyzed in the experiment.

A. Experimental Setup

The proposed algorithms are implemented using Python
programming language on the Anaconda Navigator platform
[46]. The experimental computing environment is a Windows
PC with Intel i7-6770 CPU and 4GB RAM. The experimen-
tal dataset is derived from the real electricity consumption
dataset of Harbin city in China collected in July 2013. This
dataset consists of more than 6 million users and 7-day
power consumption data per user at least, including 130
million power consumption records in total. Each consumption
record contains the attributes of time, user number, power
station number, power supply bureau number, and electricity
consumption. According to the TSD model applied in this
work, the user number, station number, and power supply
bureau number attributes are redefined as the user ID (namely,
the target object ID). Therefore, the electricity consumption
attribute becomes the most valuable information of TSD in
the experiment. Table II presents a list of the description of

datasets DS0, DS1, DS2, DS3 and DS4 extracted from the
different power supply stations where dataset sizes increases
from DS1 to DS4 datasets.

TABLE II
THE DESCRIPTIONS OF THE EXPERIMENTAL DATASETS

Dataset Users Days Data records Description
(n) (m) (thousand)

DS0 1032 21 21.672 21-day consumption data
for each user

DS1 3000 7 21.000 7-day consumption data
for each user

DS2 6000 7 42.000 7-day consumption data
for each user

DS3 9000 7 63.000 7-day consumption data
for each user

DS4 12000 7 84.000 7-day consumption data
for each user

We mainly focus on the effectiveness and efficiency as-
pects of the proposed algorithms in the experiment. First,
whether the size of dominant dataset can be controlled by the
constraints. The size of dominant dataset meeting the (ε, δ)-
solver constraint is an important objective in the experiment.
Let DSN ratio be the ratio of the size of dominant dataset
to the number of sample objects. It means that the smaller
DSN ratio, the lower size of dominant dataset achieved.
Herein, the optimal dominant dataset is decided by the analysis
of DSN ratio. Second, the execution efficiency of the proposed
algorithms is further verified and analyzed when the recon-
struction accuracy of target objects is within an error range by
the given constraint. In the following experiments, we present
the experimental results to analyze the above two aspects with
the changing parameters of the (ε, δ)-solver constraint and the
size of experimental dataset.

B. Performance Analysis of the Proposed Algorithms

Based on the proposed SSA and GSA algorithms as well as
AFF and LS measures, we implement the dominant dataset
selection methods with the different measures, namely, the
SSA AFF, SSA LS, GSA AFF, and GSA LS methods. When
the values of error ε are respectively set as 1%, 3%, 5%,
8%, and 10% . The changes in DSN ratio achieved on the
DS0 dataset by the above four methods in the experiment
are plotted in Fig. 4. The DSN ratio results are also listed
in Table III. Fig. 4(a) indicates that the GSA methods achieve
lower DSN ratio than the SSA methods with the given errors
based on the same measure. Meanwhile, the AFF measurement
results in lower DSN ratio than the LS measurement based
on the same algorithm. Compared to other three methods,
therefore, the smallest dominant dataset is achieved by the
method GSA AFF.

We use the expectation of E RMSE to measure the recon-
struction accuracy of target objects in the experiment. Table IV
lists the mean RMSE results based on the above four methods
with different ε. Fig. 4(b) also depicts the above mean RMSE
results. The mean RMSE of the GSA AFF method is generally
less than that of other three methods as shown in Fig. 4(b).
It indicates that the proposed GSA AFF method achieves the
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best performance in terms of the size of dominant dataset and
the reconstruction accuracy.

TABLE III
THE DSN RATIO WITH DIFFERENT ε.

ε SSA AFF SSA LS GSA AFF GSA LS

1% 98.60% 99.50% 98.00% 99.50%
3% 87.98% 95.74% 83.20% 93.60%
5% 72.67% 86.43% 65.30% 82.30%
8% 51.45% 70.06% 43.30% 62.80%
10% 40.40% 58.72% 35.00% 50.80%

TABLE IV
THE MEAN RMSE WITH DIFFERENT ε.

ε SSA AFF SSA LS GSA AFF GSA LS

1% 0.50 0.48 0.49 0.42
3% 1.50 1.53 1.50 1.52
5% 2.44 2.60 2.46 2.62
8% 3.96 4.16 4.00 4.13
10% 5.03 5.17 4.96 5.20
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Fig. 4. The DSN ratio and mean RMSE results of the proposed dominant
dataset selection methods with different ε on DS0.

C. Effects of Parameter δ on the Dominant Dataset Selection

We further analyze the effects of parameter δ on the
dominant dataset selection. Fig. 5 illustrates the experimental
results of the proposed methods on the DS0 dataset under
the (ε, δ)-solver constraint where the error ε is fixed as 5%
and δ is respectively set as 1%, 3%, 5%, 8%, and 10%. The
related experimental results are also listed in Table V and VI,
respectively. As Fig. 5(a) illustrates, the lower DSN ratio with
the different values of δ is also achieved by the proposed GSA
method compared to other methods. For SSA, the dominant
objects are randomly selected when δ is greater than ε. From
Fig. 5(b), we can see that SSA makes the mean RMSE greater
than 5% when δ is greater than ε. This is because the number
of dominant objects allowed to exceed the error ε is large
based on SSA. It means that there are negative effects on
the reconstruction accuracy of target objects using the random
selection in SSA when δ is greater than ε. For GSA, the
object with the minimum mean of RMSE are selected as
the dominant object when δ is greater than ε. From Fig.
5(b), we can observe that it makes the mean RMSE smaller
based on GSA other than SSA. GSA meets the constraint
of ε = 5% with the different values of δ. The performance

of GSA is better than that of SSA under the (ε, δ)-solver
constraint. In addition, the greedy selection algorithm based
on the affine linear correlation measure, i.e., GSA AFF, is the
optimal proposed method as shown in Fig. 5(b).

We also conducted the aforementioned experiments on the
DS1-DS4 datasets, but, for brevity, we only present the exper-
imental results on the DS0 dataset. Although the correlation
between the TSD and the number of dominatant datasets in
the DS0-DS4 datasets are different, the experimental results
on the DS1-DS4 dataset are consistent with that on the DS0
dataset, which confirms that the proposed GSA AFF method
is better than other three methods.

TABLE V
THE DSN RATIO WITH DIFFERENT δ.

δ SSA AFF SSA LS GSA AFF GSA LS

1% 71.70% 85.66% 64.60% 81.40%
3% 70.40% 83.72% 63.37% 79.75%
5% 81.60% 81.60% 62.21% 78.10%
8% 65.20% 79.36% 59.69% 75.39%
10% 63.95% 76.94% 58.23% 73.84%

TABLE VI
THE MEAN RSME WITH DIFFERENT δ.

δ SSA AFF SSA LS GSA AFF GSA LS

1% 3.20 3.90 2.53 2.77
3% 4.50 6.60 2.63 3.06
5% 5.70 8.56 2.76 3.23
8% 7.50 11.40 2.97 3.60
10% 8.60 13.59 3.15 3.89

2 4 6 8 10
 (%)

55

60

65

70

75

80

85

90

95

DS
N_

ra
tio

 (%
)

SSA_AFF
SSA_LS
GSA_AFF
GSA_LS

(a)

1 3 5 8 10
 (%)

0

2

4

6

8

10

12

14

RS
M

E

3.20

4.50

5.70

7.50

8.60

3.90

6.60

8.56

11.40

13.50

2.53 2.63 2.76 2.97 3.15
2.77 3.06 3.23 3.60 3.89

SSA_AFF
SSA_LS
GSA_AFF
GSA_LS

(b)

Fig. 5. The DSN ratio and mean RMSE results of the proposed dominant
dataset selection methods with different δ on DS0.

D. Effects of Dataset Size on the Dominant Dataset Selection

We further implement the proposed dominant dataset selec-
tion methods on DS1, DS2, DS3, DS4 with ε = 5%. Table
VII shows that it is consistent with the experimental results in
Section VII-C, that is, the proposed GSA AFF is the optimal
method for the different size of datasets. As illustrated in
Fig. 6(a), the DSN ratios with the increasing size of datasets
show a descend trend. It implies that the potential number of
linear correlation relationships in TSD objects rises with the
increasing size of datasets. It relatively reduces DSN ratios
when Table VII is compared to Table III with ε = 5%.
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The number of target objects corresponding to the central
objects under the constraints increases to improve the ability
of representing target objects by the dominant objects. In Fig.
6(b), we can see that the mean RMSE of the different methods
changes moderately in the different datasets. From Table VIII,
we infer that the different dataset size has little effect on the
reconstruction accuracy based on the proposed methods.

TABLE VII
THE DSN RATIO FOR DIFFERENT DATASETS BASED ON THE

PROPOSED METHODS.

Dataset SSA AFF SSA LS GSA AFF GSA LS

DS1 29.67% 58.33% 24.00% 50.10%
DS2 22.33% 51.67% 19.00% 44.83%
DS3 19.56% 46.89% 16.22% 40.22%
DS4 16.75% 43.83% 14.17% 38.08%

TABLE VIII
THE RMSE FOR DIFFERENT DATASETS BASED ON THE

PROPOSED METHODS.

Dataset SSA AFF SSA LS GSA AFF GSA LS

DS1 3.69 5.10 2.30 2.69
DS2 3.71 4.66 2.35 2.64
DS3 3.50 5.35 2.33 2.64
DS4 3.52 4.83 2.30 2.64
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Fig. 6. The DSN ratio and mean RMSE results of the proposed dominant
dataset selection methods with the different dataset size.

According to the proposed algorithm analysis in Section
VI, the time complexity of SSA and GSA are O

(
n3
)

and
O
(
n4
)
, respectively. In the experiment, we further test the

time consumption of the proposed methods. The simulations
are implemented using the earlier computing environment.
Table IX lists the average time consumptions of SSA AFF,
SSA LS, GSA AFF, and GSA LS with the constraints of
ε = 5%, δ = 5% on the DS1-DS4 datasets. For SSA, the time
consumption based on the AFF measure is less than the LS
measure. For GSA, however, the time consumption based on
the LS measure is less than the AFF measure. It shows that the
time consumption of SSA is less than that of GSA in general.
With the increasing dataset size, the time consumption of SSA
has the obvious advantage over GSA. Therefore, to make the
trade-off between the time consumption and the reconstruction
accuracy, SSA AFF may also be worth considering for the
dominant dataset selection on large-scale datasets.

TABLE IX
THE AVERAGE TIME CONSUMPTION OF THE PROPOSED

METHODS (SECONDS)

Dataset SSA AFF SSA LS GSA AFF GSA LS

DS1 8.2 14.02 92.55 78.8
DS2 21.1 42.4 408.67 352.47
DS3 36.3 83.67 909.12 862.21
DS4 52.21 138.72 1650.76 1653.76

E. Discussion

Based on the affine relation model, the central objects
and the corresponding target objects can be identified by
the proposed SSA and GSA algorithms. Assuming that
the central objects are p1, p2, . . . , pk, the corresponding tar-
get object datasets are Sp1 , Sp2 , . . . , Spk and the sizes of
Sp1 , Sp2 , . . . , Spk are np1 , np2 , . . . , npk . The number distribu-
tion of np1 , np2 , . . . , npk is analyzed as follows:
• For SSA, the distribution of np1 , np2 , . . . , npk is con-

verged roughly in descending order. It is determined by
the mutuality of the linear correlation distance between
the target objects (namely, when i 6= j, Df (xi, xj) =
Df (xj , xi)). The central objects p1, p2, . . . , pk are se-
lected in order based on SSA. With the scanning to the
end, there are less probabilities of the identified target
objects that meet the requirements of the constraint.
Therefore, np1 , np2 , . . . , npk are generally arranged in
descending order. The above experimental results are
shown as Fig. 7.

• For GSA, the distribution of np1 , np2 , . . . , npk is con-
verged completely in descending order. The greedy se-
lection strategy for the central objects is executed by
selecting the central object that supports the maximum
number of target objects in order. As shown in Fig. 8, it il-
lustrates the sizes of target object datasets are completely
in descending order based on GSA. In addition, it also
indicates a case that the target objects are incompletely
selected by SSA. It implies that the greedy selection of
GSA is better than the sequential selection of SSA.

• According to the distribution of np1 , np2 , . . . , npk , there
are a certain number of central objects without supporting
the target objects. It shows that there is no linear cor-
relation between central objects and any target objects.
Therefore, when these objects are used as the central
objects, there are no corresponding target objects that
could be selected. It needs to be further explored whether
there are other nonlinear relationships between target
objects to reduce the number of the central objects in
our future work.

For the sake of fair assessment, the test dataset in Fig. 7 and
Fig. 8 are constructed by extracting the power consumption
data from other power supply bureaus that do not belong to
Table II. Additionally, this test dataset is constructed as the
same scale as DS0. Although the different linear correlation
relationships between the constructed test dataset and DS0, the
representative experiments lead to the similar results as shown
in Fig. 7 and Fig. 8.
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Fig. 7. The number distribution of target objects based on (a) SSA LA (b)
SSA AFF.
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Fig. 8. The number distribution of target objects based on (a) GSA LA (b)
GSA AFF.

VIII. CONCLUSIONS

This paper studies how to extract the dominant dataset
from electricity consumption time-series data. We prove that
the selection problem of the minimum dominant dataset is
an NP-complete problem. Based on the linear correlation
relationship between time-series data objects, we present a
recursive affine transformation function to realize the efficient
dominant dataset selection. In addition, the linear correlation
distance is applied as the constraint condition for the dominant
dataset selection. We further propose the dominant dataset
selection algorithms based on the scanning strategy and the
greedy strategy. The analysis and experimental results show
that the proposed algorithms have high performance in terms
of effectiveness and efficiency.

In the future, we will reinvestigate the dominant dataset
selection methods based on some linear and nonlinear relation
models between time-series data, and further evaluate the
proposed methods using the different types of time-series data
derived from Internet of Things such as pressure, temperature,
flow, etc.

IX. ACKNOWLEDGMENT

This work is supported by Heilongjiang Provincial Natural
Science Foundation of China (Grant NO. F2016035) and
Science and Technology Project of State Grid Corporation of
China (Grant NO. SGHL0000DKJS1900883).

APPENDIX
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