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Abstract—Internet of Things (IoT) has emerged as one of the
key features of the next generation wireless networks, where
timely delivery of status update packets is essential for many real-
time IoT applications. To provide users with context-aware ser-
vices and lighten the transmission burden, the raw data usually
needs to be preprocessed before being transmitted to the destina-
tion. However, the effect of computing on the overall information
freshness is not well understood. In this work, we first develop an
analytical framework to investigate the information freshness, in
terms of peak age of information (PAoI), of a computing enabled
IoT system with multiple sensors. Specifically, we model the
procedure of computing and transmission as a tandem queue, and
derive the analytical expressions of the average PAoI for different
sensors. Based on the theoretical results, we formulate a min-
max optimization problem to minimize the maximum average
PAoI of different sensors. We further design a derivative-free
algorithm to find the optimal updating frequency, with which the
complexity for checking the convexity of the formulated problem
or obtaining the derivatives of the object function can be largely
reduced. The accuracy of our analysis and effectiveness of the
proposed algorithm are verified with extensive simulation results.

Index Terms—Internet of things, information freshness, peak
age of information, data preprocessing, derivative-free optimiza-
tion.
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I. INTRODUCTION

Being one of the key technologies of the next generation

(5G) wireless networks, Internet of Things (IoT) has attracted

significant attentions from both academia and industry alike in

recent years. In particular, IoT aims at enabling the ubiquitous

connectivity among billions of things, ranging from tiny,

resource-constrained sensors to more powerful smartphones

and networked vehicles [2]–[4]. With the help of IoT, devices

can sense and even interact with the physical surrounding

environment, thereby providing us with many valuable and

remarkable context-aware real time applications at an efficient

cost, such as automatic control of electric appliance [5],

intelligent transportation network [6], and event monitoring

and predication for health safety [7]. For these applications,

the staleness of obtained information at destinations inevitably

deteriorates the accuracy and reliability of derived decisions,

and even compromises in safety and security. In order to

quantify the information freshness, age of information (AoI)

[8] and peak age of information (PAoI) [9] have been recently

introduced. Particularly, AoI measures the time elapsed since

the latest received update packet was generated, while PAoI

provides information about the maximum value of AoI for

each update and captures the extent to which the update infor-

mation is stale. Unlike many conventional metrics, e.g., delay

or throughput [10]–[12], AoI and PAoI are affected not only

by the transmission delay but also by the update generation

rate, and hence they are more essential and comprehensive for

information freshness evaluation [13].

In conventional IoT networks, due to the limited com-

munication resource, a significant delay may occur during

the packet transmission phase, which largely deteriorates the

information freshness at the receiver side. As discussed in a

line of existing work [14]–[16], to lighten the transmission

burden and provide the end users with better context-aware

services in IoT networks, it is preferable to first process the

collected raw data with the edge/fog computing technique

[17]–[19], and then transmit the resultant packet, which has a

large reduction in size, to the actuator or monitor. However,

the effect of such a data preprocessing procedure on the

information freshness has not been fully understood.

In this paper, we consider a computing enabled IoT network,

which consists of multiple sensors, a data aggregator, and

a destination. The aggregator first preprocesses the status

updates generated from sensors with different priorities and

then forwards the processed data to the destination via a

wireless channel according to the first-come-first-serve (FCFS)
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discipline. By modeling the system as a tandem queue, we

analytically derive the expressions of the average PAoI for up-

dates from different sensors, accounting for the joint effect of

data preprocessing and transmission. Furthermore, we develop

a Generating set search based Average PAoI minimization

(GAP) algorithm to optimally control the generation rate of

updates from different sensors to achieve the best information

freshness. The accuracy of our analysis and the effectiveness

of our proposed GAP algorithm are verified with extensive

simulations. The main contributions of this work can be

summarized as follows.

• We establish a mathematical framework to model the

joint effect from data preprocessing and transmission

on the information freshness of an IoT network. Our

framework is general and captures many key features in

IoT networks, including the prioritized data processing,

queueing, and wireless channel fading. We respectively

derive a closed-form expression and an information the-

oretic approximation of the expectation of waiting time

for the data processing queue and transmission queue.

Based on these, we obtain the analytical expressions

of the average PAoI for packets from different sensors.

The accuracy of our analysis is verified via simulations,

which shows a good match between the simulation and

theoretical results.

• We develop a derivative-free GAP algorithm to search

for the solution of the formulated min-max program-

ming, which minimizes the maximum average PAoI for

updates from different sensors. Particularly, with GAP,

the problem can be solved by getting around of the

difficulty of checking the convexity of the formulated

problem or resorting to the derivatives of the object

function. Due to this features, our proposed algorithm

is still available when other penalty functions (instead of

the maximum of average PAoI) are incorporated. Besides,

the global convergence of GAP is also presented. The

convergence rate of GAP is acceptable and does not

exponentially increase with number of sensors. Hence,

it still works when the number of sensors becomes

large. Moreover, compared with the baseline strategies,

the achieved maximum average PAoI can be effectively

reduced by implementing our proposed GAP algorithm.

The outline of this paper is as follows. In Section II, a

brief survey of related work is presented. The description

of system model and mathematical definitions of AoI and

PAoI are given in Section III. In Section IV, we analyze the

average PAoI for updates from different sensors and verify

the accuracy of our analysis via simulations. In Section V,

based on the obtained analytical results, we formulate a min-

max programming to minimize the achieved maximum average

PAoI of sensors, develop the GAP algorithm to solve it,

and conduct simulations to validate the effectiveness of this

algorithm. Finally, conclusions are drawn in Section VI.

II. RELATED WORK

Ever since the concept of AoI was introduced, a variety of

researches have been carried out to understand and/or optimize

the information freshness of the delivered update packets in

single sensor systems [8], [9], [20]–[27]. Authors in [8] con-

sidered the system where a sensor generated and transmitted

update packets to its destination with the FCFS principle

and derived the expression of average AoI by resorting to a

queueing theoretic approach. Then, AoI of the last-come-first-

served (LCFS) queueing based system was further studied in

[20], and it demonstrated that the AoI was improved compared

with the FCFS based system. In [9] and its journal version

[21], the effects of packet preemption on both AoI and PAoI

were respectively analyzed by considering three distinct pre-

emption policies. Authors in [22] further considered a symbol

erasure transmission channel and studied the effect of packet

preemption on the average AoI when adopting two hybrid

ARQ protocols. For IoT networks with arbitrary distributions

of the update inter-arrival time and service time, the relation

among the distributions of the AoI, PAoI and system delay

was derived in [23], while the effect of packet preemption

on the AoI was investigated in [24]. Focusing on the one

hop transmission from a data source to a destination, authors

in [25] introduced a general penalty function to characterize

the effect of AoI, and developed efficient algorithms to find

the optimal update policy for minimizing the average penalty

among all causal update policies. In [26] and [27] the effects of

sampling strategies on the tradeoff between the achieved AoI

and estimation accuracy for remote estimation problems was

addressed, where the environment related state was assumed

to be generated from a discrete Markov process and Wiener

process, respectively.

Apart from the point-to-point scenario [8], [9], [20]–[27],

a line of recent studies turned their attention to addressing

the information freshness related issues in IoT networks with

multiple sensors [28]–[34]. In particular, authors in [28] con-

sidered that one transmitter sent status update packets gener-

ated from multiple sensors to the destination, and analyzed the

average AoI for updates allowing the latest arrival to overwrite

the previous queued ones. Focusing on the PAoI metric, work

[29] analyzed the system performance by considering a general

service time distribution, and tried to optimize the update

arrival rates to minimize its defined PAoI-related system cost.

In [30] the AoI was thoroughly studied for systems with three

different serving policies, i.e., FCFS, LCFS with preemption

in service, and LCFS with preemption only in waiting. Fur-

thermore, in [31] preemption of pacckets were allowed for

FCFS based transmission when the transmitter was busy, and

expressions of both the average AoI and PAoI were derived.

Although the priority issue was not specifically addressed, the

authors in [31] deduced that updates from one sensor can be

prioritized from the age point of view by increasing their gen-

eration rate. Authors in [32] considered the interactions among

transmission links and proposed link scheduling algorithms to

minimize the maximum PAoI of update packets from different

sensors. For multi-sensor multi-destination networks, the AoI

oriented optimal scheduling policy was studied in [33] and

[34], which considered the scenario with one transmitter and

multiple transmitters, respectively.

As mentioned above, valuable performance analysis on

information freshness and efficient control strategies for min-
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imizing the system AoI or PAoI in various IoT networks with

multiple sensors have been presented in the literature [28]–

[34]. However, they commonly treated the data aggregator

purely as a transmitter and thus do not apply to the case, where

update packets would be preprocessed (e.g., data compression

and aggregation) to reduce the redundancy or even extract the

“intrinsic content” from the collected raw data, before any

transmission procedure begins. Actually, the joint operation

of data preprocessing and transmission has been regarded

as a promising solution for providing better context-aware

services to users and meanwhile, overcoming the resource

limitations on transmission capacity inherent in traditional IoT

networks [14]–[16]. As such, it calls for additional efforts to

study and optimize the information freshness when the data

preprocessing and transmission are successively conducted.

The most related work to this topic comes from [35], which

studied the wireless camera networks consisting of multiple

sensors and fog nodes, and proposed a modular optimization

algorithm to minimize the achieved maximum PAoI by opti-

mally assigning processing nodes and scheduling transmission

links. However, the joint effect of the processing procedure

(e.g., processing policy and time) and update arrival rates on

information freshness has not been investigated in [35] nor, to

the best of our knowledge, in other existing researches.

We note that there are some available work recently focus-

ing on studying and/or optimizing AoI and/or PAoI for status

updates in multi-hop IoT networks, e.g., [36]–[40], which

are also relevant to our work. Particularly, authors in [36]

considered a multi-hop networks with an external source, and

proved that, among all causal policies, the preemptive Last

Generated First Served (LGFS) policy and non-preemptive

LGFS policy minimized the age processes at all nodes for

the exponentially distributed and generally distributed packet

transmission times, respectively. Authors in [37] focused on a

line network with one sensor, one destination, and multiple

relay nodes, and studied the effect of preemption on the

average AoI at each node. The energy and data causality

constraints in a two-hop network were considered in [38],

and the optimal scheduling policy was proposed to minimize

the total AoI of a session. Considering multi-hop networks

and utilizing graph theory, the optimal scheduling policies for

the networks with and without pre-defined source/destination

pairs were investigated in [39] and [40], respectively. However,

the aggregator considered in our work plays different roles

to those relay nodes studied in [36]–[40]. Particularly, the

aggregator not only forwards the packets, but also regenerates

the packets with different sizes, which would alter the service

time of the second queue. This makes the interaction between

the aggregator and transmitter more complicated than that

between relay nodes purely for data retransmission. In this

light, our concerned problem, formulated mathematical model,

derived analysis results and proposed optimizing algorithm are

all different from those presented in existing researches [36]–

[40].

Fig. 1. Illustration of the tandem queueing model for the considered IoT
network.

III. SYSTEM MODEL

A. Network Model

We consider an IoT system which consists of J sensors,

denoted by S = {S1, S2, · · · , SJ}, a data aggregator that

is able to perform data processing as well as transmission,

and a destination node, as depicted in Fig. 1. Each sensor

keeps collecting information from the ambient environment

and periodically updates the status to the aggregator, whereas

the update packets from sensor Sj arrive at the aggregator

according to an independent Poisson process with parameter

λj , ∀j ∈ J = {1, 2, · · · , J}. Upon receiving the status

updates, the aggregator preprocesses the data packets with

different priorities and then forwards them to the destination

node. Without loss of generality, we assume the data from Si

has a higher priority than that from Sj if i < j. In this regard,

a generic update packet can only be processed if, in front of

it, there is no packet with a higher or equal priority being or

waiting to be processed.

For an incoming update packet with the j-th priority, we

denote Cj and C̃j (C̃j < Cj) as the size before and after

data processing, respectively, and τj
Cj−C̃j

r
the corresponding

processing time. Here, r is the CPU’s computational speed of

the aggregator with the units CPU cycles per second, while

τj is a scaling parameter depends on the specific operation

made on the packet and with the units CPU cycles per bit.

For instance, data mining may be more complicated than data

compression and would be endowed with a larger τ . We note

that the similar computation model has been widely used for

data processors as shown in [41] and references therein. As

such, the preprocessing subsystem is formulated as a priority

M/G/1 queue where the size of buffer is infinite.1

After being preprocessed, each update packet will be pushed

into an infinite-size queue at the transmitter according to the

FCFS discipline. We term this buffer the transmission queue.

The transmitter sends each packet with a constant power pA
through a channel with bandwidth of B Hz. The channel is

subjected to a small scale Rayleigh fading with unit mean and

a large scale path loss that follows power law, with path loss

1It should be noted that the following analysis also holds when we consider
another processing model mapping each (Cj , C̃j) to a positive real number
(i.e., the processing time) since a priority M/G/1 queue can also be formulated
in that scenario.
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Fig. 2. Example of the AoI evolution process for sensor Sj at the destination
node. The time instant of packet arrival at the aggregator and the destination
node are marked as N and •, respectively.

exponent α > 2. Both the processing queue and transmission

queue are considered to be non-preemptive.

B. Age of Information

We denote tj,n the time instant when the n-th packet from

Sj arriving at the aggregator,2 and denote with t̂j,n the time

instant that this packet arrived at the destination node. The

AoI of sensor Sj is defined as ∆j(t) = t−uj(t), where uj(t)
is the generation time of the most recently received packet

from Sj until time instant t [28]–[31]. An example of the

AoI evolution process ∆j(t) for the j-th sensor is illustrated

in Fig. 2. It can be seen that after one packet arrived at the

destination node, the AoI increases linearly in time until a

new data packet is received. In other words, the n-th peak

value of ∆j(t) is achieved just before the n-th update packet

arrives at the destination node, which is defined as the PAoI

and denoted by Aj,n as shown in Fig. 2. Formally, the PAoI

evolves as follows

Aj,n =

{
∆j (0) + t̂j,n, n = 1

Xj,n + Yj,n, n > 1
(1)

where ∆j(0) denotes the initial age of the last received data at

the start time, Xj,n represents the time interval between tj,n
and tj,n−1, and Yj,n represents the time interval between t̂j,n
and tj,n, i.e., Xj,n = tj,n − tj,n−1 and Yj,n = t̂j,n − tj,n.

It is worth noting that while the inter-arrival time Xj,n only

relates to the sensor Sj , the system time Yj,n is determined

by many factors, including the packet arrival processes from

Sj and S−j = {S1, S2, · · · , Sj−1, Sj+1, · · · , SJ}, and the

preprocessing and transmission processes in the aggregator.

As such, we can write Yj,n as the sum of the time that the

packet n spent in the preprocessing stage Y P
j,n and that in the

transmission stage Y T
j,n, i.e., Yj,n = Y P

j,n + Y T
j,n.

The central thrust of this work is to design a scheme that en-

sures the received packets contain the most fresh information.

2Similar as previous studies [28]–[31], we consider the time spent on the
transmission from sensors to the aggregator negligible since they are generally
integrated as a whole system and connected via high speed wired links.

TABLE I
DESCRIPTION OF IMPORTANT NOTATIONS.

Notation Description

J Number of sensors

S Set of sensors

λj Arrival rate of packets from sensor Sj

Cj Size of the original packet for sensor Sj

C̃j Size of the processed packet for sensor Sj

r
τj

Equivalent data processing rate for packets from

sensor Sj

pA Transmit power of the aggregator

B Transmission bandwidth

d Distance between the aggregator and destination node

α Path loss exponent

σ2 AWGN power at the destination node

∆j(t) AoI for sensor Sj at time t

Aj,n
PAoI associated with the n-th packet arriving at

the destination from sensor Sj

Aj Average PAoI for packets from sensor Sj

E
[
Xj

]
Expected inter-arrival time of packets from sensor Sj

E[ZP
j ] Expected processing time for packets from sensor Sj

E
[
ZT
j

]
Expected transmission time for packets from sensor Sj

E
[
WP

j

] Expected waiting time in the data processing queue for

packets from sensor Sj

E
[
WT

j

] Expected waiting time in the data transmission queue for

packets from sensor Sj

PAP ,B Busy probability of the data processor

µj
Ratio of the expected waiting time for packets from sensor

Sj to that from sensor S1 in the transmission queue

Λ Vector of update arrival rates from sensors

Ã (Λ) Achieved maximum average PAoI associated with Λ

I (Λ, ε) Set of indexes of ε-binding constraints associated with Λ

N (Λ, ε) Cone generated by the set of vectors in I (Λ, ε)

T (Λ, ε) ε-tangent cone for the polar of the cone N (Λ, ε)

ST (Λ,ε) Set of candidate searching directions in T (Λ, ε)

Φsl
Adopted searching step-size along the direction sl

To achieve this goal, we first derive an analysis and then con-

duct optimization on the achieved average PAoI for updates.

In the following, we provide detailed analyses for the joint

effects of the preprocessing and transmission procedures on

the achieved average PAoI for updates from different sensors

in Section IV. Based on the analytical results, to minimize the

achieved maximum average PAoI by controlling the update

generation rates of individual sensors, we formulate a min-

max programming and devise a derivative-free algorithm to

solve it in Section V. Some important notations used in this

paper are summarized in Table I.

IV. AVERAGE PEAK AGE OF INFORMATION

In this section, we analyze the average PAoI for different

sensors, which facilitates the subsequential optimizations. To

start with, the following lemma presents a general form of the

average PAoI for each sensor.
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Lemma 1: Assuming that the whole queueing system is

ergodic, we can express the average PAoI attained for sensor

Sj as

Aj =
1

λj

+ τj
Cj − C̃j

r
+ E

[
WP

j

]
+ E

[
ZT
j

]
+ E

[
WT

j

]
, (2)

where E[WP
j ] and E[WT

j ] respectively represent the expected

time spent in the preprocessing queue and the transmission

queue for an arbitrary update packet generated from the sensor

Sj , and E[ZT
j ] denotes the expected transmission time.

Proof: By ergodicity, the average PAoI for sensor Sj can

be calculated as

Aj = lim
t→∞

1

Nj (t)



∆j (0) + t̂j,1 +

Nj(t)∑

n=2

(Xj,n + Yj,n)





(a)
= E [Xj + Yj ] = E

[
Xj

]
+ E

[
Y P
j

]
+ E

[
Y T
j

]
, (3)

where (a) follows from the fact that the effect of the sum

∆j(0) + t̂j,1 vanishes as t goes to infinity. Nj(t) denotes the

number of update packets until time instant t, and Xj , Y P
j

and Y T
j are random variables respectively denoting the inter-

arrival time, system time spent in the preprocessing queue and

that in the transmission queue of an arbitrary update packet.

Recalling that the packet arrival from sensor Sj follows

exponential distribution with parameter λj , we thus have

E
[
Xj

]
= 1/λj . Moreover, for each packet, the system time

spent in the aggregator consists of the queueing time and

serving time. Hence, Eq. (3) can be written as

Aj =
1

λj

+ E
[
ZP
j

]
+ E

[
WP

j

]
+ E

[
ZT
j

]
+ E

[
WT

j

]
(4)

=
1

λj

+ τj
Cj − C̃j

r
+ E

[
WP

j

]
+ E

[
ZT
j

]
+ E

[
WT

j

]
,

where E[ZP
j ] is the average time spent for data preprocessing

and is given as E[ZP
j ] = τj(Cj − C̃j)/r. Besides, for an

arbitrary update packet, E[WP
j ], E

[
ZT
j

]
and E[WT

j ] denote

the expected waiting time in the preprocessing queue, the

expected transmission time, and the expected waiting time in

the preprocessing queue, respectively.

In the following, we detail the analysis to each individual

elements in (2), i.e., E[WP
j ], E[ZT

j ], and E[WT
j ].

A. Calculation of E
[
WP

j

]

Due to prioritized processing, a newly arrived packet with

priority j has to wait till the completion of data processing

for the following packets:

1) The packet that is currently occupying the processor.

2) The packets with priorities from 1 to j in the processing

queue when the packet arrives.

3) The packets with priorities from 1 to j − 1 that arrive

while the typical packet is waiting for its service.

We denote by PAP ,B the probability that the processor

is busy. Using the Little’s law [42], we have the following

equation

PAP ,B =

J∑

j=1

λjE
[
ZP
j

]
=

J∑

j=1

λjτj
Cj − C̃j

r
. (5)

Based on the above analysis and definitions, we are now ready

to derive E[WP
j ].

Theorem 1: For packets from sensor Sj , the expected

waiting time in the processing queue is given by

E
[
WP

j

]
=

∑J
j=1 ρj

2/λj

2
(
1−

∑j
i=1 ρi

)(
1− χ{j>1}

∑j−1
i=1 ρi

) , (6)

where ρj = λjE[Z
P
j ] denotes the load contributed by the data

packets from sensor Sj , and χ{·} is the indicator function, i.e.,

χ{j>1} = 1 if j > 1 is true; otherwise, χ{j>1} = 0.

Proof: The proof is given in Appendix A.

B. Calculation of E
[
ZT
j

]

During the transmission stage, the time spent for transmit-

ting the processed data packet is directly related to both its

size and the transmission rate. In particular, the instantaneous

transmission rate is given by

RD = Blog2

(
1 +

pAhd
−α

σ2

)
, (7)

where B is the bandwidth of the channel, h is the channel

power gain, d is the distance between the aggregator and

destination node, and σ2 is the noise power. Considering a

Rayleigh fading, we note that the transmission rate RD is a

random variable. Then, we derive the expected service time

in the transmission subsystem for the data packet from each

sensor in the following theorem.

Theorem 2: The expected transmission time for successfully

delivering a data packet originally generated by sensor Sj is

given as

E
[
ZT
j

]
=

ξjσ
2dα

pA

∫ ∞

0

exp


ξj

t
+

1− exp
(

ξj
t

)

pAσ−2d−α


 dt

t
, (8)

where ξj = C̃j ln 2/B.

Proof: The proof is given in Appendix B.

C. Calculation of E
[
WT

j

]

For the transmission subsystem, we can model it as a G/G/1

FCFS queueing system by considering that the inter-arrival

time and service time follow different general distributions.

The exact analytical results are usually unavailable for the

G/G/1 queue, especially for the case where the distribution

about the arrival or departure is unknown [43]. For our

concerned problem, the output of the processing queue is

the input of the transmission queue. Although the average

waiting time of update packets spent in the processing queue

can be obtained according to Theorem 1, the high-order

statistics for the inter-departure times of the processing queue

are troublesome to derive due to the complexity. In this

light, for the data transmission queue, it is inconvenient to

get the distribution of the inter-arrival time of packets and

further derive the expectation of the waiting time with classical

approaches presented in [43].

In this subsection, we resort to implementing the princi-

ple of maximum entropy (PME) and getting an information
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TABLE II
DEFAULT SIMULATION PARAMETERS

Parameter and description value

Number of sensors, J 3

Size of original packets, {C1, C2, C3} {10, 7, 5} Mbits

Size of processed packets, {C̃1, C̃2, C̃3} {2, 2, 2} Mbits

Transmit power of the aggregator, pA 100 mW

Distance between A and D, d 300 m

The transmission bandwidth, B 100 KHz

The path loss exponent, α 3

The AWGN power density, -174 dBm/Hz

theoretic approximation of the expected waiting time spent

in the transmission queue. Concretely, we have the following

theorem.

Theorem 3: In the transmission queue, the expectation of

waiting time for packets from sensor Sj can be mathematically

approximated by

E
[
WT

j

]
≈

µj

(∑J
j=1 λjE

[
ZT
j

])2

∑J
i=1 λiµi

(
1−

∑J
j=1 λjE

[
ZT
j

]) , (9)

where µ1 = 1 and µj is given in (10), ∀j ∈ {2, 3, · · · , J},

which represents the ratio of the expectation of waiting time

for packets from sensor Sj to that for packets from sensor 1

in the transmission queue, i.e., µj =
E

[
WT

j

]

E

[
WT

1

] . In Eq. (10), we

have HP
j,i = λi

(
E
[
WP

i

]
+ E

[
WP

j

])
, ∀i ∈ {1, 2, · · · , j − 1},

and HP
j,j = λjE

[
WP

j

]
.

Proof: The proof is given in Appendix C.

Remark 1: We note Eq. (10) implicitly means that for a typ-

ical packet, its expected waiting time in the transmission queue

is approximately proportional to the difference between two

parts: 1. The overall transmission time of packets processed by

the processor when it waited for its service in the processing

queue; 2. Its experienced system time (i.e., the sum of waiting

time and service time) in the data processing system. More

details can be found in Appendix C.

Based on the analyses made in the above three subsections,

we can obtain the expression of the average PAoI for packets

from each sensor Sj by combining Eq. (4), (6), (8), and (9).

D. Validation

We now verify the accuracy of our analysis via simulations.

Specifically, we set the arrival rate of update packets from

sensor Sj as λj = (J − j)λb, where λb can be regarded

as the basic arrival rate with the units packets/second. This

setting means that the packets with a higher processing priority

would also have a larger arrival rate. Other parameters are set

according to Table II. In this subsection, all the simulation

results are obtained by averaging over 106 realizations, i.e.,

by averaging the PAoI for 106 update packets. We note that

by introducing the basic arrival rate λb, the comparison of

simulation and theoretical results for different sensors can be

clearly presented in one figure, as shown in Fig. 3.

Fig. 3(a) compares the simulation and theoretical results on

the average PAoI for different sensors, where the equivalent

processing rate, r
τj

, ∀j ∈ {1, 2, 3}, is 5 Mbits/s, and the data

processing time dominates transmission time, i.e., E
[
ZP
]
=

1.200 s and E
[
ZT
]
= 0.384 s. The results show a close match

for all sensor, which validate the our mathematical analysis. It

can be observed from Fig. 3(a) that even the traffic load is high,

e.g., λb = 0.13, the average PAoI for packets from sensor S1 is

still kept low, i.e., about 6.4 s, while those for sensor S2 and S3

are about 20.1 s and 94.8 s, respectively. This is due to the fact

that the priority based processing subsystem will try its best to

first provide required service to update packets with the highest

priority even in the case where the resource is not enough to

provide good service to all sensors. In other words, the average

PAoI for the packets with the lowest priority will first suffer

significant performance degradation as the traffic load becomes

heavy, while the packets with the highest priority would be

delivered timely. Hence, to make the whole system working

in a stable state we need to properly control the packet arrival

rates for all sensors, which will be presented and studied in

detail in Section 4.

To see what happens when the data processing time is

comparable to or even dominated by the data transmission

time, we respectively set the equivalent processing rate, r
τj

,

∀j ∈ {1, 2, 3} to 15 Mbits/s (i.e., E
[
ZP
]

= 0.400 and

E
[
ZT
]
= 0.384) and 25 Mbits/s (i.e., E

[
ZP
]
= 0.240 and

E
[
ZT
]
= 0.384) in Fig. 3(b) and Fig. 3(c). In these two

figures, the simulation results match well with the theoretical

results in the low traffic load region, while, in the heavy

load region, the theoretic results is slightly higher than the

simulation results. This is mainly due to the fact when the

transmission subsystem gradually acts as the bottleneck, the

waiting time in the transmission queue brings more obvious

effects to the average PAoI. However, according to the proof

of Theorem 3, for the transmission queue, only the first

moment of the number of waiting packets is incorporated when

adopting the principle of maximum entropy, which makes

the obtained average waiting time undervalued, i.e., higher

than that in practice. This could be more obviously observed

in Fig. 3(c) where the data transmission time dominates the

data processing time. Particularly, as the load increase, the

waiting time gradually beats the inter-arrival time and plays

a pivotal role in determining the information freshness, and

the difference between the simulation results and theoretical

results becomes larger. Nevertheless, the variation trend of the

average PAoI could be well captured by our theoretic analysis.

Besides, by combining Fig. 3(a)-(c), it can be seen that, given

the arrival rate λb, the advantage brought by data preprocessing

is more significant when the processing rate is higher. This is

because, for the same λb, the system time could be decreased

if the aggregator is equipped with a faster data processor, since

the time spent in the data processing queue is reduced.

In conclusion, it’s feasible to obtain the average PAoI and

further derive the optimal data arrival rates for distinct sensors

with our theoretical analysis presented in this section, when

the processing time is dominating or comparable with the

transmission time. On the other hand, for the case that the
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µj ≈
PAP ,BE

[
ZT
]
+max

{∑j
i=1 H

P
j,iE
[
ZT
i

]
− (E

[
WP

j

]
+ E

[
ZP
j

]
), 0
}

PAP ,BE
[
ZT
]
+max

{
HP

1,1E
[
ZT
1

]
− (E

[
WP

1

]
+ E

[
ZP
1

]
), 0
} (10)
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Fig. 3. Average PAoI for packets from different sensors, where the equivalent processing rate, r
τj

, ∀j ∈ {1, 2, 3} is: (a) 5 Mbits/s, i.e., E
[
ZP

]
= 1.200

and E
[
ZT

]
= 0.384; (b) 15 Mbits/s, i.e., E

[
ZP

]
= 0.400 and E

[
ZT

]
= 0.384; (c) 25 Mbits/s, i.e., E

[
ZP

]
= 0.240 and E

[
ZT

]
= 0.384;.

processing time is extremely short and there is no queueing

for the processing subsystem, our formulated tandem queue

(Fig. 1) degrades into a M/G/1 queue where the packet arrival

from each individual sensor is delayed for a fix time for data

processing. Then, it can be regarded as one special case that

studied in available work [29], [30].

V. PROBLEM FORMULATION AND ALGORITHM DESIGN

The analysis derived in Section IV allows us to perform

further control on the update frequency so as to optimize

the information freshness. Specifically, using the analytical

expressions, we can formulate the problem into the following

min-max programming [29], [32]

P : min
Λ

max {Aj | j ∈ {1, 2, · · · , J}} (11)

s.t.

J∑

j=1

λjE
[
ZP
j

]
< 1, (12)

J∑

j=1

λjE
[
ZT
j

]
< 1, (13)

λj > 0, ∀j ∈ J (14)

where Λ = (λ1, λ2, · · · , λJ ) represents the vector of update

arrival rates and Aj denotes the average PAoI for updates

from sensor Sj . The constraints (12) and (13) guarantee the

stability of the processing and transmission subsystems, re-

spectively. Additionally, the non-negativity of each individual

variable is guaranteed with constraint (14). Here, we consider

the case that the above two constraints (12) and (13) are

linearly independent, i.e.,
(
E
[
ZP
1

]
,E
[
ZP
2

]
, · · · ,E

[
ZP
J

])
6=

ς
(
E
[
ZT
1

]
,E
[
ZT
2

]
, · · · ,E

[
ZT
J

])
where ς ∈ R is a constant.

Otherwise, only the tighter one needs to be addressed and the

problem degenerates into that with J + 1 constraints.

While problem P looks simple as incorporating only linear

constraints, solving it is actually non-trivial. Because the

common processing and transmission resources are shared by

different sensors, their achieved average PAoIs are closely

correlated and have no closed-form expression. Hence, the

convexity of this problem can not be readily established and

traditional efficient algorithms resorting to the derivatives of

the object function is prohibitive to be applied. In this regard,

we adopt the derivative-free optimization methods [44], [45]

to address our formulated problem P.

Motivated by the recent work [46], we develop a Gen-

erating set search based Average PAoI minimization (GAP)

algorithm to solve problem P. In general, generating set

search, introduced in [47], is one of frameworks for globally

convergent directional direct-search methods, with which some

feasible points (trial points) are selected and evaluated in

each iteration, and the solution is finally obtained when the

stop criterion is satisfied. For each optimization programming

with constraints, to guarantee the global convergence3 of the

developed generating set search based algorithm, two key

issues have to be well addressed in each iteration: 1. how

to select a suitable set of searching directions; 2. how to

choose an appropriate step-size for each individual searching

direction. Next, we would provide clues about how to address

these two issues for our concerned problem in Section V-

A, present the details of the devised algorithm as well as

its convergence analysis in Section V-B, and finally give the

numerical results and discussions in Section V-C.

A. Preliminary on GAP Algorithm Design

Here, based on the problem P, we introduce some pre-

liminary knowledge about the principle of selecting available

searching directions and corresponding step-sizes, which is

the fundamental basis of the further algorithm design in the

3For one algorithm, the global convergence means that a stationary point
can be finally achieved from an arbitrarily chosen starting point.
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following subsection. For the sake of presentation, we first

rewrite problem P as the following equivalent problem:

P1 : min
Λ

Ã (Λ) (15)

s.t. ZΛT < bT (16)

with Ã (Λ) = max {Aj |j ∈ {1, 2, · · · , J}} and

Z =
[
zT1 zT2 zT3 · · · zTJ+2

]T
=

[
Z1

−I

]
. (17)

Wherein, Z denotes a J×(J+2) parameter matrix associated

to the J + 2 inequality constraints presented in Eq. (12)-

(14), and (·)T denotes the transpose operation. Particularly,

the matrix Z1 and vector b can be expressed as

Z1 =

[
E
[
ZP
1

]
E
[
ZP
2

]
· · · E

[
ZP
J

]

E
[
ZT
1

]
E
[
ZT
2

]
· · · E

[
ZT
J

]
]

(18)

and

b =
[
b1 b2 b3 · · · bJ+2

]
=
[
1 1 0 · · · 0

]
(19)

respectively, and I is a J × J unit matrix.

Hereafter, we focus on solving P1 and introduce some

basic notations and definitions as follows. Let Ω ={
Λ
∣∣ZΛT < bT

}
and Υl =

{
Λ
∣∣zlΛT = bl

}
denote the

feasible region and set where the l-th constraint is (virtually)

binding, respectively. Given a feasible point Λ ∈ Ω, the set of

indexes of the ε-binding constraints is defined as [46]

I (Λ, ε) = {l |D (Λ,Υl) ≤ ε} (20)

where D(Λ,Υl) represents the distance from Λ ∈ Ω to the

boundary face of Ω according to the l-th constraint.

Accordingly, each vector with the index belonging to

I(Λ, ε) is the outward-pointing normal to one boundary face

of Ω which is within distance ε from point Λ. Meanwhile,

for one feasible point Λ ∈ Ω, we can define the ε-normal

cone N (Λ, ε) to be the cone generated by the set of vectors

{zl |l ∈ I(Λ, ε)} ∪ {0}, i.e.,

N (Λ, ε) (21)

=





{
∑

l∈I(Λ,ε)

̟lzl |̟l ≥ 0, l ∈ I (Λ, ε)

}
, I (Λ, ε) 6= ∅

{0} , I (Λ, ε) = ∅

where {0} and ∅ represent a 1× J zero vector and the empty

set, respectively. Furthermore, we coin the term ε-tangent cone

T (Λ, ε) for the polar of the cone N (Λ, ε), i.e,

T (Λ, ε) =
{
x
∣∣xyT ≤ 0, ∀y ∈ N (Λ, ε)

}
(22)

where each element x in set T (Λ, ε) is a 1×J row vector. It

should be noted that if N (Λ, ε) = R
J then T (Λ, ε) = {0}.

Meanwhile, if N (Λ, ε) = {0} then T (Λ, ε) = R
J .

In fact, if T (Λ, ε) 6= {0}, then from the point Λ and along

all the directions specified by T (Λ, ε), other feasible points

(i.e., staying in the feasible region) can be achieved, and the

distance between Λ and each feasible point is not greater

 

Fig. 4. An example illustration of sets N (Λ, ε) and T (Λ, ε) in R
2 space,

where three different cases with distinct values ε1, ε2 and ε3 (ε1 < ε2 < ε3)
are presented. We note that when ε is small enough (e.g., ε3) then N (Λ, ε) =
{0} and T (Λ, ε) = R

2.

than ε.4 To ease the understanding, we present an example

illustration of sets N (Λ, ε) and T (Λ, ε) in R
2 space in Fig.

4, where the whole feasible region is a rectangle with dashed

edges labeled by Ω. As shown in Fig. 4, as ε varies from ε1
to ε3, the size of set N (Λ, ε) gradually becomes small while

that of T (Λ, ε) is larger. According to this trend, given Λ

as the starting point and ε as the upper bound of the step-

size for searching, more directions endow us feasible points

lie in Ω. We note that if ε is small enough (e.g., ε3) then

N (Λ, ε) = {0} and T (Λ, ε) = R
2, i.e., there is no infeasible

points lie within the distance less than ε3 from the starting

feasible point Λ.

As discussed above, starting from any feasible point Λ,

the suitable searching directions and step-sizes could be

determined based on the ε-tangent cone T (Λ, ε) and its

parameter ε, respectively. The developed algorithm GAP and

its convergence analysis will be presented in detail in the

following subsection.

B. GAP Algorithm for Solving Problem P1

Based on the preliminary presented in the previous subsec-

tion, here we develop GAP algorithm to solve problem P1

(equivalent to the original problem P) as shown in Algorithm

1, where Λ(t) denotes the feasible solution Λ chosen in the

t-th iteration. In this algorithm, the loop is repeated until the

searching step-size is small enough, i.e., 0 < Φ(t) < Φmin

with Φmin → 0+ (e.g., Φmin = 10−5).

At the beginning of GAP, the starting point (initial guess)

Λ(0) is randomly selected from the feasible region Ω. Mean-

while, the potential step-size for searching is initialized as

Φ(0) > Φmin > 0. For instance, we could set it as

Φ (0)=max

{{
1

E
[
ZP
j

] |j ∈ J

}
∪

{
1

E
[
ZT
j

] |j ∈ J

}}
.

(23)

4This proposition is always true for the case that the feasible region is
specified by linear constraints [46].
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Algorithm 1 Generating set search based Average PAoI

minimization (GAP) algorithm.

1: Initialization:

2: Set t = 0 and Φ(t) with Eq. (23) as the initial value of

the potential step-size for searching. Randomly generate

a point Λ(t) ∈ Ω as the initial guess.

3: Go into a loop:

4: Set Λ = Λ(t) and ε = min{εmax,Φ(t)} .

5: Searching directions and step-sizes generation:

6: Derive the set of candidate searching directions ST (Λ,ε)

with Eq. (25). Adopt Φsl
(with Eq. (27)) as the searching

step-size for each direction sl.

7: Evaluation for trial points:

8: Set Λ(t+ 1) = Λ and put Λ into the candidate set Ot.

9: for Each direction ∀sl ∈ ST (Λ,ε) do

10: if Ã(Λ+Φsl
sl) < Ã(Λ)− 10−4(Φsl

)
2

then

11: Put Λ̌sl
= Λ+Φsl

sl into the candidate set Ot.

12: end if

13: end for

14: Set Λ(t+ 1) = arg
Λ̌sl

min{Ã(Λ̌sl
)
∣∣∀Λ̌sl

∈ Ot }.

15: Potential searching step-size update:

16: if Λ 6= Λ (t+ 1) then

17: Set Φ(t+ 1) = Φ(t).
18: else

19: Set Φ(t+ 1) = 1
2Φ(t).

20: end if

21: Termination checking:

22: if Φ(t) < Φmin then

23: Go to 27.

24: else

25: Set t = t+ 1 and go to 4.

26: end if

27: Output: Λ∗ = Λ(t+ 1).

After that, the algorithm goes into a loop. At each iteration

t, with the current feasible point Λ(t) as the origin, we will

first determine the candidate searching directions and corre-

sponding step-sizes. Then, we calculate the function values

for generated trail points and get the best solution obtained

after this iteration. In the sequel, we introduce these two parts

in detail.

As presented in the previously subsection, we note that

staring from a feasible point Λ and searching along any

direction (vector) in the ε-tangent cone T (Λ, ε), we can

always get a feasible point with the step-size less than ε.

Hence, if T (Λ, ε) is {0} then only {0} is the feasible

direction, i.e., no other feasible points can be find starting

from Λ. In addition, if T (Λ, ε) = R
J then, as for the tradi-

tional programming without constraints, the set of candidate

searching directions could be a positive basis in R
J , e.g.,

P = {e1, e2, · · · , eJ ,−e1,−e2, · · · ,−eJ}, where ej denotes

a 1 × J row vector with the j-th element being 1 and other

elements being 0.5 In cases T (Λ, ε) is neither R
J nor {0},

the set of candidate searching directions ST (Λ,ε) could be

constructed with a set of generators of T (Λ, ε).
Proposition 1: Denote F as a matrix whose rows consist of

the linearly independent generators of N (Λ, ε), and D as a

matrix whose rows constitute a positive basis for the null-space

of FT . Then, we have the matrix

S =

[
D

−F
(
FTF

)−1

]
=




I− FT
(
FFT

)−1
F

FT
(
FFT

)−1
F− I

−
(
FFT

)−1
F


 (24)

whose rows are the generators of the polar cone T (Λ, ε).
Wherein, I denotes a J × J unit matrix.

Proof: Readers are referred to the proof of Proposition

8.2 in [48] for the similar processes by just taking ε as

the maximum allowed distance from the feasible point to

constraints in each iteration. The details are omitted here due

to space limitations.

To construct the matrix F, one promising and feasible option

is to set its rows as the elements in {zl |l ∈ I(Λ, ε)}. Then,

according to Proposition 1, ST (Λ,ε) can be set as follows

ST (Λ,ε)=






P , T (Λ,ε) = R
J

{0} , T (Λ,ε) = ∅
{
s1,s2,· · · ,s2J+|I(Λ,ε)|

}
, otherwise

(25)

where sl, ∀l = {1, 2, · · · , 2J + |I(Λ, ε)|}, denotes the l-th
row of the matrix S in Eq. (24), i.e.,

S =
[
sT1 , s

T

2 , · · · , s
T

2J+|I(Λ,ε)|

]T
, (26)

and |·| represents the cardinality of a set. Accordingly, along

each direction sl the adopted searching step-size is set as

Φsl
=

ε

‖sl‖
, ∀sl ∈ ST (Λ,ε). (27)

where ‖·‖ denotes the Euclidean norm of a vector.

It should be noted that, as suggested in [46], besides the

directions shown in ST (Λ,ε) the generators of N (Λ, ε) should

also be chosen as searching directions by utilizing appropriate

step-sizes, which may accelerate the convergence especially

when the optimal solution is near the boundary of the feasible

region. However, for our concerned problem, we can see that

if the feasible point is close to the boundary of Ω, then the

system approaches the unstable state, i.e., the average PAoI

becomes extremely large. In other words, the optimal solution

of problem P1 is surely an interior point and generally “far"

away from the boundary of Ω. Hence, to avoid unnecessary

calculations and accelerate the convergence of the algorithm,

we only adopt vectors belonging to ST (Λ,ε) as the candidate

searching directions.

After that, we evaluate all obtained trial points. The trial

points yielding the function value less than Ã(Λ) − 10−4ε2

5We note that a positive spanning set in R
J is a set of vectors whose

cone is R
J . Moreover, if every vector in a positive spanning set is positively

independent of others, this positive spanning set is a positive basis for R
J .

In fact, for R
J the positive basis is not unique and P is a maximal positive

basis. Please see [44] for details.
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(c)

Fig. 5. Convergence of our proposed algorithm GAP when the number of sensors is set as: (a) J = 2; (b) J = 6; (c) J = 10, while the size of processed
data packets is identical and set to 4 Mbits.

are regarded as potential starting points for the next iteration.

Among them, that yielding the smallest Ã is chosen as

the best solution after the current iteration to accelerate the

convergence, while the potential step-size is kept the same, i.e.,

line 14. If there is no such a potential point being found, Λ will

be still adopted as the starting point for the next iteration, while

the potential step-size is halved, i.e., line 19. When Algorithm

1 is terminated, one feasible point Λ∗ is finally outputted.

The global convergence of our proposed GAP algorithm is

guaranteed according to Theorem 4.

Theorem 4: For our proposed GAP algorithm, when given

a Φmin and arbitrary initial guess Λ(0), there always exists a

positive constant t0 when t > t0 the condition Φ(t) < Φmin

can be satisfied. In other words, the global convergence of this

algorithm can be guaranteed.

Proof: To prove this theorem, we refer to Theorem 5.1

given in [46], which presents the sufficient conditions for the

global convergence of a generating set search based algorithm.

Actually, it could be readily proved that all such requirements

on the adopted searching directions, step-sizes and forcing

function (i.e., conditions 1, 2, 4, 5 and 6 specified in [46])

are satisfied by our developed algorithm GAP. Hence, the

global convergence of our proposed GAP algorithm can be

guaranteed. Readers are referred to the proof in [46] for detail,

which are omitted here due to space limitations.

It should be noted that, according to Theorem 6.5 [46], if

more stringent requirements on the Lipschitz continuity for

the gradient of Ã (Λ) can be satisfied, then our proposed

algorithm can globally converge to a local optimal point.

However, it is extremely hard to mathematically prove whether

such a condition can be met or not, due to the complicated

expressions of average PAoI for packets. Even though, the

effectiveness of our proposed algorithm could be validated

with numerical results in the following subsection.

C. Numerical Results and Discussions

We now conduct simulations to evaluate the performance

of our proposed algorithm. In particular, we vary the number

of sensors J from 1 to 10. Meanwhile, the original size of

update packets from sensor Sj is set as 24− (j−1)∗2 Mbits,

∀j ∈ J , e.g., C6 = 24−(6−1)∗2 = 14 Mbits. The equivalent

processing rate is the same, 5 Mbits/s, for all update packets,

i.e., r
τj

= 5, ∀j ∈ J , and the parameter Φmin is set to 10−5.

Furthermore, we set all the processed data packets to the same

size, i.e., C̃j = C̃, ∀j ∈ J , which varies in distinct simulation

scenarios. The other parameters are given in Table II. Here,

all the simulation results are obtained by averaging over 103

independent runs, and for each run the the potential step-size

for searching is initialized with Eq. (23).

Fig. 5 illustrates the convergence property for various num-

ber of sensors. From this figure, two observations are due: 1)

for randomly selected feasible points (i.e., Λ(0)) the resulted

maximum average PAoI Ã is extremely high, i.e, the whole

system approaches the instable state, especially when more

sensors are incorporated. This is mainly due to the fact that

compared with the region of update arrival rates with an ac-

ceptable lower Ã, the “undesired” region is much larger, where

the randomly selected Λ(0) is likely to lie. Thus, making the

arrival rate profile Λ = (λ1, λ2, · · · , λJ ) lie in a “preferable"

region to keep the obtained information fresh is very necessary.

2) the convergence rate of GAP is acceptable and does not ex-

ponentially increase with the number of sensors. Particularly,

when there are 6 sensors our algorithm converges in about 90

iterations. However, when about 67 percent more sensors (i.e.,

10 sensors) are incorporated, about 56 percent more iterations

(i.e., 140 iterations) are needed before the convergence is

achieved. Besides, we note that during the first a few (about 5)

iterations no improvement can be made. This is due to the fact,

compared with the size of the feasible region Ω of Problem

P1, the adopted initial potential searching step-size is too large.

Hence, before it is reduced to a suitable value, the searching

direction makes all constraints be violated, i.e., N (Λ, ε) = R
J

and T (Λ, ε) = {0}. In other words, during these iterations,

no other feasible trial points could be found and hence, no

performance improvement can be made. However, when the

size of Ω is not easy to be evaluated, adopting a larger initial

searching step-size is recommended, since it can be quickly

(exponentially) decreased down to some proper value (seeing

line 19 in Algorithm 1).

To evaluate the performance of our proposed algorithm in
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Fig. 6. Performance comparison in terms of ∆̃ where the size of each processed data packet C̃ is: (a) 4 Mbits; (b) 1 Mbits.

terms of the achieved maximum average PAoI Ã (Λ), the

performance of a Proportion to the Processing and Trans-

mission rate (PPT) algorithm are considered as the baseline.

Concretely, by utilizing the PPT algorithm, the data arrival

rates are set as

λj =
1

KJ
min

{
1

E
[
ZP
j

] , 1

E
[
ZT
j

]
}
, ∀λj ∈ Λ (28)

where K > 1 is a constant affecting the obtained Ã (Λ). Ob-

viously, the adopted point is feasible, since
∑J

j=1 E[Z
P
j ]λj ≤

1/K and
∑J

j=1 E[Z
T
j ]λj ≤ 1/K . In other words, we can con-

trol the upper bound of the achieved loads in both processing

subsystem and transmission subsystem by adjusting the value

of K , i.e., a smaller K results in a higher upper bound on

loads.

The simulation results are presented in Fig. 6 (a) and

(b), where the size of each processed data packet is set

to 4 Mbits and 1 Mbits, respectively. We can observe that

our developed GAP algorithm can significantly reduce the

achieved maximum average PAoI even when the number of

involved sensor is large, although the performance of PPT is

occasionally close to that of GAP in some scenarios (e.g.,

J = 5 and K = 1.3 in Fig. 6 (a)). For instance, when there

are 10 sensors, the performance improvement is up to 53.13%
(reducing from 85.58 s to 40.11 s) and 49.72% (reducing

from 97.54s to 49.04s) in Fig 6 (a) and (b), respectively. The

main reason for this improvement lies in the fact that based

on the analytical results derived in the previous section, we

can essentially capture the joint effect of data preprocessing

and transmission on the information freshness, and therefore

control the generation rate of updates more efficiently.

VI. CONCLUSIONS

In this paper, we took a fresh look at the problem of

optimizing information freshness in computing enabled IoT

networks. Considering a system that allows the collected raw

data to be preprocessed before transmission, we modeled it

as a tandem queue and derived an analytical expression for

the average PAoI. Based on the analytical results, we closely

examined how computing and transmission affect the infor-

mation freshness. Furthermore, we developed an algorithm to

minimize the achieved maximum average PAoI for updates

from different sensors. Our algorithm is derivative-free and

hence applicable to a host of different penalty functions,

besides of the maximum of average PAoI. Simulations showed

that our algorithm is both efficient and effective, whereas it

takes a few steps to converge and largely outperforms the

benchmark.

Following our developed framework, several extensions are

possible. For instance, when the packets belonging to different

sensors are correlated, the framework can be used to develop

more advanced processing and optimization schemes. Another

future direction is to investigate the scenario where multi-

ple aggregators coexist in the network. Then, an interesting

problem is how to align interference and meanwhile maintain

information freshness.

APPENDIX A

PROOF OF THEOREM 1

Proof: We denote the average number of update packets

with priority j in the processing queue by E[NP
j,Q] and the

expectation of the remaining processing time of a packet in

service by E[ZP
R ]. The expectation E[WP

1 ] can be expressed

as

E
[
WP

1

]
= PAP ,BE

[
ZP
R

]
+ (1−PAP ,B)· 0+E

[
NP

1,Q

]
E
[
ZP
1

]

= PAP ,BE
[
ZP
R

]
+ λ1E

[
WP

1

]
E
[
ZP
1

]

=
PAP ,BE

[
ZP
R

]

1−λ1E
[
ZP
1

] =
PAP ,BE

[
ZP
R

]

1−ρ1
(29)

where PAP ,B is expressed in Eq. (5) and ρ1 denotes the load

in the processing subsystem caused by packets with priority
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1. Similarly, for j > 1 we have

E
[
WP

j

]
=PAP ,BE

[
ZP
R

]
+(1−PAP ,B) · 0+

j∑

i=1

E
[
NP

i,Q

]
E
[
ZP
i

]
+

j−1∑

i=1

λiE
[
WP

j

]
E
[
ZP
i

]

=PAP ,BE
[
ZP
R

]
+

j∑

i=1

λiE
[
WP

i

]
E
[
ZP
i

]
+

E
[
WP

j

] j−1∑

i=1

λiE
[
ZP
i

]

=
PAP ,BE

[
ZP
R

]
+
∑j−1

i=1 ρiE
[
WP

i

]

1−
∑j

i=1 ρi
. (30)

Directly substituting Eq. (29) into Eq. (30) and setting j = 2,

we have

E
[
WP

2

]
=
PAP ,BE

[
ZP
R

]
+ ρ1

PAP ,BE[ZP
R ]

1−ρ1

1−
∑2

i=1 ρi

=
PAP ,BE

[
ZP
R

]
(
1−

∑2
i=1 ρi

)
(1−ρ1)

. (31)

Similarly, for ∀j > 2, we have
(
1−

j∑

i=1

ρi

)
E
[
WP

j

]
= PAP ,BE

[
ZP
R

]
+

j−1∑

i=1

ρiE
[
WP

i

]

= PAP ,BE
[
ZP
R

]
+

j−2∑

i=1

ρiE
[
WP

i

]
+ ρj−1E

[
WP

j−1

]

(a)
=

(
1−

j−1∑

i=1

ρi

)
E
[
WP

j−1

]
+ ρj−1E

[
WP

j−1

]

=

(
1−

j−2∑

i=1

ρi

)
E
[
WP

j−1

]
. (32)

where (a) follows Eq. (30). Substituting (31) into the recursion

formula in (32), we can express the expectation E
[
WP

j

]
as

E
[
WP

j

]
=





PAP ,BE[ZP
R ]

1−ρ1

, j = 1

PAP ,BE[ZP
R ]

(1−
∑

J
j=1

ρi)(1−
∑J−1

j=1
ρi)

, j > 1
(33)

where E
[
ZP
R

]
is the expectation of the remaining processing

time of a packet in service. By applying the renewal-reward

theory [42], we have

E
[
ZP
R

]
=

E

[ (
ZP
)2 ]

2E
[
ZP
] (34)

where

E
[
ZP
]
=

J∑

j=1

λj∑J
i=1 λi

E
[
ZP
j

]
=

∑J
j=1 ρj∑J
j=1 λi

(35)

and

E

[(
ZP
)2]

=

J∑

j=1

λj∑J
i=1 λi

(
E
[
ZP
j

])2
=

∑J
j=1 ρ

2
j/λj

∑J
j=1 λi

. (36)

Finally, combining from Eq. (33) to (36) and introducing the

indicator function χ{·}, we can draw the conclusion shown in

Theorem 1.

APPENDIX B

PROOF OF THEOREM 2

Proof: We note that the expected transmission time varies

for data packets from different sensors. According to Eq. (7),

we have the transmission time of one data packet from the

aggregator to destination node given by

ZT
C̃
=

C̃

RD

=
C̃ ln 2

B

1

ln
(
1 + pAhd−α

σ2

) (37)

where C̃ ∈ {C̃1, C̃2, · · · , C̃J} denotes the size of the con-

cerned packet. Note that ZT
C̃

is a random variable due to the

random channel gain. Moreover, ZT
C̃

monotonically decreases

with respect to the channel gain h with the expression given

by

h =
σ2(exp( C̃ ln 2

B
1

ZT

C̃

)− 1)

pAd−α
= f(ZT

C̃
) (38)

where f(ZT
C̃
) is the function inversely mapping from ZT

C̃
to h. In consequence, we obtain the cumulative distribution

function (CDF) and probability density function (PDF) of ZT
C̃

,

respectively, as follows

FZT

C̃

(t)=P
(
ZT
C̃
≤ t
)
=

∫ ∞

f(t)

exp (−x) dx (39)

= exp



σ2
(
1− exp

(
C̃ ln 2
B

1
t

))

pAd−α




and

fZT

C̃

(t) = − exp (−f (t))
df (t)

dt
(40)

=
C̃ ln 2σ2

BpAd−α

exp

(
C̃ ln 2
Bt

+
σ2

(

1−exp
(

C̃ ln 2

Bt

))

pAd−α

)

t2
.

As such, for packets originally generated from sensor Sj ,

the expectation of transmission time can be attained as

E
[
ZT
j

]
= E

[
ZT
C̃

∣∣∣C̃=C̃j

]
=

∫ ∞

0

tf
ZT

C̃
|C̃=C̃j

(t)dt. (41)

Finally, by substituting (40) into (41) we can draw the con-

clusion in Theorem 2.

APPENDIX C

PROOF OF THEOREM 3

Proof: We adopt the principle of maximum entropy

(PME) to derive an approximation of the expectation E
[
WT

j

]
,

∀j ∈ J . The interested readers are referred to [49]–[52] for

more details about PME and its applications for performance

analysis in various types of queueing systems.
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In the transmission queue, the expectation of the waiting

time for a typical data packet in the queue can be expressed

E
[
WT

]
=

J∑

j=1

PT
j E
[
WT

j

] (a)
=

J∑

j=1

λj∑J
i=1 λi

E
[
WT

j

]
(42)

where PT
j denotes the probability that there is one packet

arriving at the transmission queue originally from sensor Sj ,

and E
[
WT

j

]
is the expectation of its waiting time. In addition,

(a) holds under the condition that the previous processing

subsystem is stable, i.e., the arrivals are all processed on

average. Moreover, from Theorem 2 we have that for a typical

packet, the average time spent in the transmission subsystem

can be expressed as

E
[
ZT
]
=

J∑

j=1

E

[
ZT
C̃

∣∣∣C̃=C̃j

]
P
(
C̃=C̃j

)
(43)

(a)
=

J∑

j=1

λj∑J
i=1 λi

E

[
ZT
C̃

∣∣∣C̃=C̃j

]
=

∑J
j=1 λjE

[
ZT
j

]
∑J

j=1 λj

where (a) holds under the condition that the previous pro-

cessing subsystem is stable, and the expectation E
[
ZT
j

]
is

given in (8). Then, by applying Little’s law to the transmission

subsystem and combining the result with (42) we have

E
[
WT

]
=

E
[
NT
]

∑J
j=1 λj

− E
[
ZT
]

(44)

=

J∑

j=1

λj∑J
i=1 λi

E
[
WT

j

]
=

J∑

j=1

λjµj∑J
i=1 λi

E
[
WT

1

]

where E
[
NT
]

denotes the expectation of the total number

of packets in the transmission subsystem, E
[
ZT
]

is given by

(43), and µj represents the ratio
E

[
WT

j

]

E

[
WT

1

] , ∀j ∈ {1, 2, · · · , J}.

According to Eq. (44), we can obtain E
[
WT

j

]
if E

[
NT
]

and

µj , ∀j ∈ {2, · · · , J}, are derived.

As NT is an integer-value random variable, we use the PME

to express its probability mass function as follows

P
(
NT = n

)
=

1

G
exp

(
−
∑M

m=1
βm(n)

m

)
(45)

(a)
≈

1

G
exp (−β1n) , ∀n ∈ {0, 1, 2, · · · }

where

G =
∑∞

n=0

(
−
∑M

m=1
βm(n)m

)
(46)

(b)
≈
∑∞

n=0
exp (−β1n) = (1− exp (−β1))

−1
.

Wherein, βm is the introduced Lagrangian multiplier associ-

ated with the m-th moment of the random variable NT , while

(a) and (b) hold due to the first moment approximation6.

By applying Little’s law to the transmission queue and

combining the result with (45) and (46) we have the following

P
(
NT = 0

)
= 1− ρT ≈ (1− exp (−β1)) (47)

6Note that the accuracy of the approximation improves when more moments
of NT are incorporated, giving rise to a higher complexity.

where ρT =
∑J

j=1 λjE
[
ZT
j

]
denotes the probability that the

server is busy. As such, using the PME for another time, we

have

E
[
NT
]
≈

∂ ln (1−exp (−β1))

∂β1
=

∑J
j=1 λjE

[
ZT
j

]

1−
∑J

j=1 λjE
[
ZT
j

] .

(48)

Next, we analyze the ratio µj . In the transmission queue, the

waiting time of one arriving data packet is related to the num-

ber and kinds of packets (i.e., the profile of packets) waiting in

front of it, which are determined by the output of the previous

processing queue and are extremely difficult to obtain. This

is due to the fact that, as previously stated, deriving the PDF

of the inter-departure time of packets in the previous priority

M/G/1 queue is hindered due to the complexity. Next, we

derive an approximation of ratio µj , ∀j ∈ {2, 3, · · · , J} by

recalling the analysis for E
[
WP

j

]
in Appendix A. Particularly,

for one typical packet originally generated by sensor Sj,

during its waiting time in the processing queue, the profile

of packets which are severed before it can be statistically

expressed as

HP
j = (HP

j,1, H
P
j,2, · · · , H

P
j,j−1, H

P
j,j), ∀j ∈ J (49)

where HP
j,i = λi

(
E
[
WP

i

]
+ E

[
WP

j

])
, ∀i ∈ {1, 2, · · · , j− 1}

and HP
j,j = λjE

[
WP

j

]
. We note that when this typical packet

is waiting or being served in the processing queue, packets in

front of it would be sequently sent into the transmission queue

and served by the transmitter. Hence, recalling the analysis for

E
[
WP

j

]
in Appendix A, we can derive an approximation of

ratio µj , ∀j ∈ {2, 3, · · · , J} as shown in (10). It intuitively

means that for a typical packet its waiting time spent in

the transmission queue is approximately proportional to the

difference of its experienced system time (sum of waiting

time and service time) in the processing system and the total

transmission time of packets described by Eq. (49).

Finally, substituting (48) and (10) into (44) we can draw

the conclusion shown in Theorem 3.
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