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Enabling Efficient Privacy-Assured Outlier
Detection over Encrypted Incremental Datasets

Shangqi Lai, Xingliang Yuan, Amin Sakzad, Mahsa Salehi, Joseph K. Liu, and Dongxi Liu

Abstract—Outlier detection is widely used in practice to
track the anomaly on incremental datasets such as network
traffic and system logs. However, these datasets often involve
sensitive information, and sharing the data to third parties for
anomaly detection raises privacy concerns. In this paper, we
present a privacy-preserving outlier detection protocol (PPOD)
for incremental datasets. The protocol decomposes the outlier
detection algorithm into several phases and recognises the
necessary cryptographic operations in each phase. It realises
several cryptographic modules via efficient and interchangeable
protocols to support the above cryptographic operations and
composes them in the overall protocol to enable outlier detection
over encrypted datasets. To support efficient updates, it integrates
the sliding window model to periodically evict the expired data in
order to maintain a constant update time. We build a prototype
of PPOD and systematically evaluates the cryptographic modules
and the overall protocols under various parameter settings.
Our results show that PPOD can handle encrypted incremental
datasets with a moderate computation and communication cost.

Index Terms—Outlier Detection, Secure Computation.

I. INTRODUCTION

The increasing demands of local and global secrecy and
private computations inside a cloud atmosphere reveal essen-
tial requirements and commitments to technologies attaining
a high level of security. In the past few years, the advances in
technologies related to the Internet of Things (IoT) has led to
a boom in a broad spectrum of areas such as cloud computing,
data mining, and information security. In particular, cloud ser-
vice providers are to remove the burden of data management
using cost-efficient data mining approaches. Hence, it is quite
natural for both individuals and organisations to outsource
their information data into a cloud server and allow this entity
to process the data and run different data mining algorithms on
the user’s behalf. However, storing/processing sensitive data on
untrusted cloud servers may raise serious privacy and security
concerns for time-series related data in IoT applications.

One of the significant data processing tasks in IoT appli-
cations is anomaly detection (outlier detection) Anomaly
detection is the process of finding unusual patterns in data,
and it has many applications in []1], intrusion detection [2]],
and fraud detection [3]]. In the context of IoT devices, the
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'We use these two terms interchangeably in our paper.

anomaly detection can be used to remotely detect the ma-
licious behaviours of IoT sensors, which are compromised
by attackers [4]. The generated data is incremental/temporal
(time-series data) and the volume of data to be analysed is
effectively large and unbounded [1], [5]. Hence, an anomaly
detection algorithm in this setting should be efficient in terms
of computational costs and effective in terms of detection
accuracy. While encryption can be used to address data
privacy issues, it prevents the server from mining/processing
the encrypted data unconditionally. In this paper, we shall
propose a new mechanism “Privacy-Preserving Outlier De-
tection (PPOD)” that addresses the problem of mining on
encrypted data efficiently and effectively. Moreover, in order
to make the process of anomaly detection more effective,
we aim to consider the temporal relationships in time-series
by leveraging the ideas in autoregression forecasting models
in the context of uni/multivariate time-series. These models
can detect deviation based anomalies by considering temporal
relationships of measurements in time-series [[6]. The privacy-
preserving anomaly detection is a significant area of research
and none of the state-of-the-art techniques has addressed it in
the presence of temporal data.

Our system architecture comprises of a user (Gateway) and
two honest but non-colluding servers in charge of performing
secure outlier detection (See Fig.[2). A PPOD for an incremen-
tal dataset D contains four algorithms: (1) Data Preprocessing:
to generate an encrypted incremental dataset ED and distribute
shares of received data points to servers. (2) Initialisation: to
apply forms of secure multiparty computations to model the
outliers of ED. This phase outputs the initial list of k-distances.
(3) Query: to run a data mining algorithm on servers and detect
anomalies associated with ED in a privacy-assured form. (4)
Update: to take into account the newly arrived data points,
compute their k-distances, and decide if they are anomaly
or not. Hence, the specific contributions of this work are as
follows:

o design a PPOD scheme based on well-known crypto-
graphic protocols/primitives such as additive secret shar-
ing and Yao’s garbled circuit and efficient data mining
anomaly detectors such as kNN suitable for current IoT
cloud services. We also prove that our PPOD scheme
is secure with a given leakage function in a hybrid
model, where parties are given access to the trusted
party computing the ideal function of oblivious transfer
(OT) [7].

o to handle incremental datasets efficiently, our PPOD
incorporates the sliding window model and adapts proper



plaintext outlier detection algorithms [8], [9] for streams
for efficient and secure outlier detection.

« implement such a construction using computer simula-
tions and analyse its accuracy and efficiency on incre-
mental datasets for different system parameters. Our eval-
uations on a real-world dataset with 4200 16-dimensional
data points show that PPOD has a practical performance:
it can answer outlier queries within 217 ms and take 9
s to update the outlier model after receiving a new data
point.

Organisation. The rest of this chapter is structured as follows.
We discuss related work in Section In Section we
introduce the background knowledge of distance-based outlier
detection algorithms and the needed cryptographic primitives.
Then, we describe the system overview and its threat model in
Section A detailed construction of cryptographic modules
and protocols is presented in Section In Section we
briefly discuss the security of PPOD. Next, we describe
our prototype implementation and evaluation results in Sec-

tion We give a conclusion in Section

II. RELATED WORK

Privacy-preserving outlier detection. The research
in privacy-preserving outlier detection has two main
streams, i.e., differential privacy-based approaches [10]-
[12] and cryptographic-based (secure computation-based)
approaches  [13]-[15]. The differential privacy-based
approaches rely on the data perturbation technique to
add noise to protect the inputs from the multi-party [10].
To address the collusion issue in [10], Random Multiparty
Perturbation (RMP) technique [12] is proposed to allow
each party to use a unique and different perturbation matrix
to randomise their data. A recent differential privacy-based
work [11] leverages a relaxed version of differential privacy
to process the data in data streams. However, the differential
privacy-based approaches lead to an accuracy loss in practice,
while our PPOD does not degrade the accuracy comparing
to the outlier detection algorithm for unencrypted datasets.
The secure computation-based approaches are devised via
Yao’s Garbled Circuit [|15]], Homomorphic Encryption [|13]]
and the hybrid approach like in this paper [[14]. Note that the
above approaches are designed for the multi-party setting,
i.e., each party has its private input, which are not suitable
in the application scenario of this paper (outsourced outlier
detection).

Distance-based Outlier detection for incremental datasets
(data streams). A large number of outlier detection algorithms
(e.g. [8], [9], [16]) are proposed to support efficient outlier
detection over the incremental datasets (or data streams).
However, all the above algorithms only can process the data in
an unencrypted form. Furthermore, these algorithms involve
range queries which has multiple dedicated attacks for its
encrypted version [17], [18] recently.

III. PRELIMINARIES

A. Distance-based Outlier Detection

We briefly review the formal definitions of distance-based
outlier detection. A more detailed introduction can be found

Fig. 1. An example of the distance-based outlier

in [19].

Distance-based outlier detection aims to detect an abnormal
data point (a.k.a., outliers) via a distance measure between the
target point and other points in a given dataset. In particular,
a neighbour of an n-dimensional data point p = (p1,...,Pn)
in the distance-based approach is defined as follows.

Definition 1 (Neighbour). Given a distance threshold R > 0,
a data point q is a neighbour of the target point p if the
distance d(p,q) between them is not greater than R, where
d(-,-) is a distance measurement function.

In the distance-based outlier detection approach, normal
data points are assumed to have a dense neighbourhood
while outliers are far apart from their neighbours (i.e., have
a sparse neighbourhood). Therefore, the distance-based ap-
proach utilises the number of neighbours to detect outliers
in a dataset.

Definition 2 (Distance-based Outlier). Given a dataset D and
a positive integer count threshold k, a data point p is a
distance-based outlier in D if it has less than k neighbours.
Otherwise, it is called an inlier.

Fig. depicts a scenario where the distance threshold
R is fixed and k£ = 5. According to the above definition, a
point p is an outlier if there are less than 5 points within the
distance R from p (excluding p itself). Thus, p; is an outlier
while p2 is an inliner in the example.

B. Outlier Detection for Incremental Datasets

The distance-based outlier detection can be exploited to
detect outliers in an incremental dataset too, where the dataset
is continuously updated with the newly-presented data points.
In this work, we adopt the so-called count-based window
model as in the previous works [8], [9].

Definition 3 (Count-based Sliding Window). Given a window
size W and a slide size S. Each window has a starting count
Cstart and an ending count Cepg = Cypart + W. The window
‘slides’ periodically after receiving a specific number of new
data points, causing Csioqrt and Cepq to increase by S.

In this sliding window model, each data point is associated
with a counting number Cp,. A data point p is active if its
counting number satisfies the following Csiort < Cp < Ceng
(i.e., W active points).



To detect outliers over incremental datasets, a naive solution
is to re-compute the neighbours for all active points when
the window slides, which can be computationally expensive.
Thus, recent studies devised incremental algorithms: during
the update, only the data points which have at least one
added/expired neighbour will be updated. In particular, those
algorithms [8]], [9] involve two steps:

« Expired slide processing: Data points in the expired slide
are removed from the outlier set O and data point set P.
However, the expired point can still resident in the neighbour
list of active points [§]].

o New slide processing: For each new data point p’, the algo-
rithm computes its neighbourhood information to determine
whether p’ is an outlier or not (# of neighbours of p’ > k).
Then, for each neighbour point p of p’, the neighbour
information will be updated regarding the newly-added
distance (if d(p,p’) < R, then p has one new neighbour).
Finally, the algorithm rechecks p to decide its outlier status
according to the new neighbourhood information of p.

Note that PPOD follows the above two steps to update the
outlier model securely. Thus, it will not incur accuracy loss
compared to the algorithms for plaintext data.

C. Secure Computation

We briefly review the secure computation technologies used
in this paper. Furthermore, we introduce the secure conversion
method, which helps to mix efficient, secure protocols for dif-
ferent computations (e.g., addition, multiplication and sorting)
together to support complex computations that involved in our
secure outlier detection protocol efficiently. Readers can find
a more detailed introduction in [20], [21].

Additive sharing and multiplication triplets. To additively
share (Shr?(-)) an /-bit integer a between two parties Py and
Py, the client generates ag € Zy uniformly at random and
computes a; = a — ag mod 2'. The first party’s share is
denoted by (a){' = ag and the second party’s is (a)i' = a1,
the modulo operation is omitted in the description later. To
reconstruct (Rec”(-,-)) a shared value (a)“, each party sends
its share to the client who computes (a){' + (a)f'. Given two
shared values (a)? and (b)#, Addition (Add?(-,-)) is easily
performed non-interactively. In detail, P; locally computes
(A = (a)? + () mod 2',i € {0,1}, which also can be
denoted by ()4 = (a)4 + (b)4.

To multiply (Mul(,-)) two shared values (a)” and (b)*,
we leverage Beaver’s multiplication triplets technique [22].
Assuming that the two parties have already precomputed and
shared (x)4, (y)* and ()4, where x, y are uniformly random
values in Zy, and z = -y mod 2. Then, P; computes
()2 = () — ()2 and (/)2 = (b)2 — (y)2. Both parties
run Rec”({e)§', (e)f') and RecA({f)4', (f){') to get e and f,
and P; lets (c) = i-e- f+f-(x)+e-(y) A +(2)2,i € {0,1}.
Garbled circuit and Yao’s sharing. Yao’s Garbled Circuit
(GC) is first introduced in [23]], and its security model has been
formalised in [24]]. GC is a generic tool to support secure two-
party computation. The protocol is run between a “garbler”
with a private input z and an “evaluator” with its private input
y. The above two parties wish to securely evaluate a function

Data points from DAUs

N Gateway

Server,

Secure Outlier Detection Protocols

loud,

Untrusted but non-colluding

Fig. 2. System Overview.

f(z,y). At the end of the protocol, both parties learn the value
of z = f(x,y), but no party learns more than what is revealed
from this output value.

In the rest of this paper and without loss of generality, we

assume that Py is the garbler and P; is the evaluator. GC
can also be considered as a protocol which takes as inputs
the Yao’s shares and produces the Yao’s shares of outputs.
In particular, the Yao’s shares of 1-bit value a € {0,1} is
denoted as (a)} = {Ko, K1} and (a)} = K,, where Ky, K;
are the labels representing 0 and 1, respectively. The garbler
runs a garbling algorithm GC to generate the garbled circuit
and its encoded inputs in the form of Yao’s shares. Then,
the garbler sends the Yao’s shares corresponding to its input
to the evaluator. Meanwhile, the evaluator runs an oblivious
transfer (OT) [25]] protocol with the garbler to acquire the
Yao’s shares corresponding to its input. Then, the evaluator
uses the received shares to evaluate the generated circuit and
gets the output shares (other labels).
Conversion. Secure computations based on the above two
schemes can be combined by converting one representation
of intermediate values to the other [21]]. Additive shares can
be switched to Yao’s shares (A2Y(-)) efficiently. To be more
precise, two parties share their additive shares ag = <a>6‘,
a; = {(a){" in a bitwise fashion via Yao’s sharing. The
evaluator then receives (ag)Y and (a;)¥ and evaluates the
circuit (ag)Y + (a1)Y to get the label of a. Similarly, Yao’s
shares of a can be converted to additive shares using a
subtraction circuit (Y2A(+)). In specific, the garbler chooses
a random value ag € Zy as (a)j and gives the Yao’s share
of ag to the evaluator, who evaluates the subtraction circuit
{a1)Y = {a)Y — (ag)Y. The evaluator can recover a; locally
and set it as (a)?.

IV. SYSTEM OVERVIEW
A. System Architecture

Fig. 2] shows the system architecture of the PPOD system.
There are two entities in the PPOD system: the private gateway
connected with data acquisition units (DAUs) and the server
with the outlier detection service in an untrusted cloud. Note
that this setting reflects the system model of many industrial



corporations such as AgentVi [26] and HoneyWell [27], who
provide data collection facilities and anomaly detection ser-
vices while outsourcing the computation part of the service to
the cloud service provider. In addition, popular cloud providers
start to offer the incremental anomaly detection services in
their dedicated data mining platform, e.g., Amazon Kine-
sis [28] and Azure Machine Learning Studio [29]. Our PPOD
system aims to protect the confidentiality of the outsourced
data in such a trend of using the data analysis cloud platform.
Our system flow involves four phases: (1) Data Preprocessing:
For each new data point from DAUSs, the gateway preprocesses
this point to meet the input requirement of the additive sharing
scheme and shares it between two untrusted but non-colluding
cloud servers Sy and S;. (2) Initialisation: During this phase,
the servers execute secure computation protocols to compute
k-nearest neighbours of each point and to determine the outlier
list based on the k-distance (i.e., the distance between the
data point and its k-th nearest neighbour). Additionally, each
server stores the computed k-nearest neighbours list and k-
distances as a reference for the update phase. (3) Query:
The user of the PPOD system can submit a query point to
the gateway to check whether the point is an outlier or not
regarding the current outlier model. The query point is also
preprocessed and shared by the gateway, and later the server
leverages the share to measure the distance between outliers
and the query point. The query point is an outlier in the current
model if the computed distance is not greater than an outlier
threshold, which is set by the system user. (4) Update: For
each new data point, the server follows the same procedure as
in the initialisation phase to find the k-nearest neighbours of
new point and to find the new outlier based on the distance
metric (d(-,-), R and k). Moreover, the server also updates
the k-nearest neighbours’ information of the new-coming data
points. In this stage, the server combines the pre-computed
information and new distance information to update the k-
nearest neighbours list for these affected points. At last, the
server refers to the new k-nearest neighbours information to
decide the status (i.e., outlier or inlier) of these points.

Our system considers a server-aid computation scenario
where the internal gateway distributes the computation tasks
to two untrusted but non-colluding cloud servers. Such a two-
server approach has been formalised [30] and widely utilised
in the literature [31]]-[34] to protect the data confidentiality in
the outsourcing computation context.

B. Threat Model

In this work, we assume that the gateway and the attached
DAUs are maintained by a data analytics service provider,
which is a trusted party. Meanwhile, we consider that the
two servers belong to two different semi-honest but non-
colluding parties (e.g., two cloud providers). They will follow
our protocol honestly, but they are interested in learning the
underlying private information, which, in our case, are the
coordinates of data points. In the rest of the paper, we use
A; to denote the adversary who compromises S;. In our
security model, we require that the A; is capable of seeing the
protocol messages in S; and tries to infer the user’s private

TABLE I
NOTATIONS FOR THE OUTLIER DETECTION ALGORITHMS.
Notation Meaning
P A data point with n-dimensional coordinates (p1, ..., pn)
d(p,q) The distance between data point p and q
p.id The identity of p
D The unordered list of the k-nearest neighbours of p
P in the form of {qj.id, d(p, Qi)}le
p.DF The distance between p and its k-th nearest neighbour
p’s secret shares (The coordinates, D, D and Cp are
(p) stored as secret shares)
P A data point set
(P) The data point set keeps the secret shares of data points
information. However, A; should not learn any information

about its counter-party’s data beyond the protocol output. This
model aims to protect the confidentiality of data points when
the data analytics service providers outsource the computation
task to the public cloud.

V. PPOD ProTOCOL CONSTRUCTION

We now explain the construction of PPOD in more details.
The notations we used for the algorithms are summarised in
Table [

A. Cryptographic Modules

In order to explain the design clearly, we break the protocol
into common used cryptographic modules implemented by the
cryptographic primitives (see Section for details). In this
section, we discuss the design and implementation of these
cryptographic modules.

1) Distance measurement: In this work, we leverage the
squared Euclidean distance to measure the distance between
two data points. Note that such a distance metric is commonly
used in outlier detection algorithms [35]], [36] as it requires less
computations (i.e., only addition and multiplication). However,
directly computing 1<, <, (p; — ¢;)? is not applicable in our
system due to the non-negative input restriction of additive
sharing scheme, i.e., if there exists an 1 < 7 < n such
that p; — q¢; < 0, the square operation will produce the
additive shares of an undesired result (2' — (p; — ¢;))%. A
naive solution for this issue is to make a comparison and
swap before computing p; —¢; to ensure that p; —g; > 0, yet it
requires additional steps to convert the additive shares to Yao’s
shares (for comparison) and convert it back (for computation),
which leads to extra computation and communication cost.
Therefore, the distance measurement function d(-,-) in our
system is defined as d(p, q) = S1<i<n((pi)?+(¢:)*—2-pi-q;),
which can avoid all negative results as well as the expensive
comparison and swap. Noted that this metric also works when
data points are secretly shared. In particular, the two servers
can run arithmetic operations to compute their shares as

(d((P), () = Sr<ica(((i)™) >+ (@) ) =2 (pi)*(a:) ™),

independently.



Algorithm 1 k-nearest neighbours

Input: Shared point set (Q), Shared point (p), Parameter k
Output: Yao’s shares of the unordered kNN list L
1: function KNN((Q), (p), k)

2 S+ {}

3 for each (q) € (Q) do

4 (d)* = (d((p), (@)

5: put {(q).id, (d)?} into S
6 end for

7 return SORTSHUFFLE(S, k)
8: end function

Algorithm 2 k-distance

Input: Yao’s shares of the kNN list L

Output: Yao’s shares of the maximum value in L
1: function KDIST(L)
2: return MAX(L)
3: end function

2) k-nearest neighbours (kNN) and k-distance: To detect
outliers in a given set of data points, PPOD employs the
distance metric in Section to compute the share of
distances and utilises these shares to compute the k-nearest
neighbours (kNN) and k-distance of each data point. Then,
it compares the k-distance with the parameter R; if the k-
distance is greater than R, the data point is an outlier in the
current model. Note that this approach can detect the outliers
defined in Section the k-distance of a data point is
greater than R is equivalent to the point has less than &
neighbours within the given range R, and it is an outlier.

The simplest way to securely compute the kNN list and k-
distance is to retrieve those information from a sorted point list
after evaluating a sorting circuit over the share of distances.
However, the above solution still has two security issues. First,
sorting reveals the order of data points, while some recent
works [17], [18]] demonstrated that it is possible to precisely
reconstruct the underling values (i.e., distances) if an adversary
knows the rank and some auxiliary information. Furthermore,
different kNN lists may include the same data point, which
means that the adversary can compare the identities/distance
shares in different kNN lists to learn extra information about
common neighbours for different data points. Thus, to protect
the privacy of data points, the procedures for kNN and k-
distance evaluation should not reveal the order as well as the
identities/distance shares.

Algorithm |1} and [2] outline the overall process of computing
kNN and k-distance for a point p. These algorithms em-
ploy two cryptographic sub-modules to implement the secure
sorting (SORTSHUFFLE) and comparison (MAX). Besides,
we provide two other cryptographic modules to preprocess
(RANDOMISE) and post-process (DERANDOMISE) the kNN
list and k-distance to hide the repeat patterns. Fig. 3 summa-
rizes these cryptographic sub-modules.

SORTSHUFFLE. Fig. shows the structure of the secure
sorting module for kNN computation, our system follows the
standard procedure (see Section for details) to evaluate
the circuit in Fig. [3a and receives an unordered kNN list as the

result. The secure sorting module inputs the shares of distance
to an A2Y(-) function implemented via an efficient scheme
in [21]] to convert the additive shares to Yao’s shares. It then
adopts the sorting circuit based on sorting network [37] to
sort the Yao’s shares from the A2Y(:) function. In addition,
the garbler concatenates the sorting circuit with a shuffling
circuit based on a pseudorandom permutation (PRP) [38]], and
the evaluator supplies a random key K to disrupt the order
of the kNN list and remove the remaining points. Finally,
the SORTSHUFFLE circuit outputs the Yao’s shares of the
unordered kNN list, which ensures that the order does not
reveal in the sorting procedure.

MAX. To retrieve the k-distance from an unordered kNN
list, the KDIST algorithm employs the MAX circuit shown in
Fig. The circuit takes as inputs a list of Yao’s shares (e.g.,
Yao’s shares of distances in the kNN list), and it consists of a
chain of MAX gates to compute the maximum value (e.g., the
k-distance in KDIST) of the given inputs. In order to protect
the underlying values (the distances), the output of the MAX
circuit is also in the form of Yao’s shares.
RANDOMISE/DERANDOMISE. Each entity in the kNN list
comprises two data types, i.e., the values that indicate the
computed distance, and the identities which assist the server
to work consistently. To hide the repeat patterns after kNN
and k-distance evaluations, we should protect the above two
data types when the server converts Yao’s shares back to
the additive shares for the storage purpose. We design a
RANDOMISE function (see Fig. to achieve the above goal:
To protect the distance value, the garbler generates a new
random value and garbles the circuit for Y2A(-) to re-share
the distance as the additive shares; To hide the identity on
servers, we introduce a flag independent from the data point
id to aid the server to find the position of corresponding shares
in its counter-party before starting the computations. More
specifically, the evaluator selects a magic number m to de-
identify its local points and leverages random numbers R™
generated by the gabler to mask m via xor operations. After
circuit evaluation, the garbler stores the generated random
vectors as its local data point shares and the evaluator takes
the output of the circuit as the new data point shares.

The DERANDOMISE function is used to pair the randomised
shares between two servers. As shown in Fig. for a
randomised list with n elements, the DERANDOMISE function
generates n? xor gates revealing the “paired” positions, i.e., the
position where the xor gate returns m. The server then exploits
its local shares to run the following secure protocols according
to the revealed position. After computing, two servers run
RANDOMISE function again to invalidate the revealed patterns.

B. Data Preprocessing

Overview. Input preprocessing runs for all data points receiv-
ing from some DAUS (e.g., sensors). As shown in Algorithm 3]
the gateway performs a two-step preprocessing over the re-
ceived data points before giving them to the server for secure
outlier detection. The first step is to dissolve the input format
mismatch between the client and the server. Namely, the data
point from DAUs consists of fractional numbers and may also
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Fig. 3. The circuit structure of cryptographic sub-modules.

Algorithm 3 Input Preprocessing Phase
Input: Data point set P

1: for each p € P do

2: p < NORMALISE(p)

3: [p] < ROUNDING(p,Ip)

4: for i=1 to n do

5 (IpD)* « Sher([pd)

6: end for

7. send (p)o = {p.id.([p])s'} to Po and (p); =
{p-id, ([p]){'} to Py

8: end for

include negative numbers, while the additive sharing scheme
in our protocol only works over non-negative integers. Thus,
the gateway should pre-process these received coordinates via
normalisation and rounding to meet the input requirement of
cryptographic primitives before it shares the data to servers
After preprocessing, the gateway generates the additive shares
for these adjusted data points and distributes the generated
shares to two cloud servers. The detailed construction of the
above two preprocessing steps are discussed below:

1) NORMALISE: This function runs to eliminate the negative
numbers in coordinates. For each coordinate, we assume that
the maximum/minimum values are fixed at the beginning of
data collection, as it is possible for the gateway to know these
parameters referring to the hardware specification of DAUSs.
Therefore, the gateway can store the maximum/minimum
values (d"** and d7"*™) for each i € [1,n]. When the gateway
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receives a data point p, it extracts its coordinate value p; and
computes (p; — d™™) - (d**® — @)=l which outputs a
value p; € [0,1] as the corresponding normalised coordinate
value for p;.

2) ROUNDING: After normalisation, the coordinates of a
normalised point p have only positive fractional numbers in
[0,1]. To handle fractional coordinate values, we introduce a
rounding factor [p to scale up the fractional number into an
integer [p;] = |p; - 27 |, while preserving 2P bits in the frac-
tional part of the original number. This is a common strategy
adopted in several prior works [31f], [39]. As illustrated in the
evaluation, the accuracy of the outlier model is not affected
under a deliberately selected [p.

Discussion. The input preprocessing should be applied to all
new arrival data points on the gateway before the gateway
gives it to the server. Nevertheless, this will not incur a
heavy workload on the gateway and lead to a noticeable delay
to the system performance for the following two reasons:
First, the input preprocessing phase can run independently
for each data point. Thus, the gateway can leverage parallel
processing to handle the received data points in a batch, which
can highly improve the preprocessing process. Besides, the
gateway does not involve any computation task other than
input preprocessing under the two-server setting. The main
computation of the outlier detection algorithm is located on
the server.

C. Initialisation

Overview. For the first batch of the preprocessed data points



Algorithm 4 Initialisation Phase

Algorithm 5 Query Phase

Input: Shared data point set (P), Parameter k, (R)*
Output: Shared outlier List (O)

1: for each (p) € (P) do

- (temp)”  KNN((P), (p), k)
(p).D + RANDOMISE((temp)¥)
(dist)Y < KDIST({temp)Y)
(p).D* « Y2A((dist)Y)

2
3
4:
5:
6
7
8
9

if (dist)Y > A2Y((R)*) then
Add (p) into (O)
end if
: end for

(their additive shares) from the gateway, the server invokes the
initialisation phase to create the outlier model. To realise this
phase, our system adapts the D¥ outlier detection algorithm
from [36] as it can be implemented via arithmetic operations
and sorting only, which perfectly suits the secure computation
model we used. In particular, the server uses the received data
points and some pre-set parameters to execute the algorithm
and gets the k-nearest neighbours of each data point as well as
the corresponding k-distance (denoted as D*). Consequently,
it compares D* with the distance threshold R to find the
outliers (i.e., if DF is greater than R, the point is an outlier).
The server also stores the computed information, i.e., k-
nearest neighbours, D* values and the distance threshold R (as
additive shares) to support the update phase (see Section [V-E).
The completed procedure of the DF-based privacy-preserving
outlier detection is shown in Algorithm [4]

Discussion. The initialisation is a time-consuming procedure,
as it follows a nested loop (NL) strategy, i.e., it traverses
each pair of data points, which infers an O(3%) computational
complexity, where [ is the number of data points in the
batch. Despite the relatively higher computation cost, we argue
that this phase only needs to run once for the entire outlier
modelling process, and the model can be updated within
O(S - W) (see Section for details).

In terms of security, the algorithm with the NL strategy
executes the same sequence of operations over all data points.
Hence, the initialisation phase is a data-oblivious process
under the two-party secure computation context, that is, the
initialisation phase only reveals the information about outliers.
Conversely, the other information, such as the coordinates,
kNN list, and the memory access pattern during the outlier
detection process, can be kept in secret.

D. Outlier Query

Overview. The system user can issue a data point query to
check whether the data is an outlier or not by referring to
the outlier model on the server side. The query consists of
a preprocessed data point and an outlier threshold. Once the
server receives a query, it evaluates the distance between the
query point and outliers using the given additive shares. Conse-
quently, it utilises the garbled circuit to compare the computed
distances and the threshold and produces the final assertion
without revealing any sub-result (i.e., which distance is smaller

Input: Shared query point (q) , Parameter (¢)%

Output: An assertion (True or False)

1: D+ {}

2: for each (o) € (O) do

3 Compute (d)? < (d({q), (0)))* and put (d)* into D

4: end for

5: C «+ {}

6: for each (d)4 € D do

7. Compute (r)Y < A2Y({d)?) < A2Y((e)*) and put
(r)Y into C

end for

9: return OR(C)

®

than the threshold). Algorithm [5] outlines the query process on
each server. Next, we present the detailed construction of the
assertion function.

Assertion function. In the assertion function , the server
makes a comparison between all distances and the given outlier
threshold (line 5 — 8 in Algorithm [5). If one of those distances
is not greater than the threshold, the query point is considered
as an outlier, so the server returns ‘True’; otherwise, it returns
‘False’. Finally, the output assertion is generated via an OR
gate, which mixes each pair of distance comparison as the
final output.

Discussion. Query phase is an efficient stage, as it only per-
forms arithmetic operations and comparison with the known
outlier list. Therefore, its computational complexity is bounded
by the size of the outlier list O, which is much smaller than the
other phases. In addition, Algorithm [3is also a data-oblivious
algorithm because it loops for each outlier to produce the
result. During this process, the server only knows the final
assertion, but not any intermediate result (e.g., each pair of
comparison result) and the input.

E. Model Update

Overview. In the model update phase, each server receives
a new batch of the preprocessed data points and computes
a new outlier model, which takes these new data points into
consideration. To ensure the efficiency of this phase, the update
protocol for PPOD uses the sliding window model and main-
tains a list of active points and only recomputes/reports the
outliers for the active points. Also, the update algorithm only
updates the data points that affect by the added/expired data
points, which is consistent to the incremental algorithms [8]],
[9] for the plaintext outlier detection scheme. In particular,
the update protocol removes the expired points from the active
point set P, and the outlier list O. Then, it computes the kNN
and k-distance information for the new data point by utilising
the remaining P, and determines whether the new point is an
outlier. Later, the protocol updates the points in P, which are
also in the kNN list of the new data point. The procedure of
the update phase is given in Algorithm [

Discussion. The simplest solution is to run the initialisation
protocol for the updated dataset. However, as mentioned in
Section [V-C| the initialisation is an inefficient phase (O(|P|?),



Algorithm 6 Update Phase

Algorithm 7 Ideal Function Fj,

Input: Active point set (P,), Incoming point set (Q), Param-
eter (R)4
Output: Shared outlier List (O)
1: Remove expired points from (P,) and (O)
2: for each (q) € (Q) do
3:  Compute (temp)¥ + KNN((P,),(q), k)
4: (dist)Y «+ KDIST((temp)Y)
5 (q).D* < Y2A({dist)Y)
6 if (dist)’ > A2Y((R)*) then
7 Add (q) to (O)
8 end if
9: Add (q) to (P,)
10:  for each (t)¥ € (temp)Y do

11: Recover t.id from (t.id)Y

12: Retrieve (a) from (P,) based on t.id

13: if (a) € (O) then

14: (a).D < DERANDOMISE((a).D

15: (a).D.ADD({q.id, B2A({t.d)¥)}))

16: (temp,)Y <+ SORTSHUFFLE((a).D, k)
17: (a).D + RANDOMISE((temp,)Y)

18: (a).DF «+ Y2A(KDIST({tempa)Y))

19: if KDIST(({temp,)Y) < A2Y((R)*) then
20: Remove (a) from (O)

21: end if

22: end if

23: end for

24: end for

where |P| is the size of dataset). Compared to the naive
approach in the above, the complexity of the proposed update
approach is lower: For each new data point, the update phase
only refers the active data points to compute the kNN list,
which takes O(W), where W is the sliding window size, and
O(k) to update the existing information. And the whole update
procedure runs for the new points after sliding (add S new
points), which indicates that the overall runtime complexity is
o(s-w)

In terms of the security, the update approach does not
guarantee the data-oblivious, because it retrieves the id of the
kNN list when it updates for the existing data points (line 11
— 12 in Algorithm @) Nevertheless, we stress that this is the
only additional leakage comparing with the other phases, and
it enables a more efficient update phase.

VI. SECURITY ANALYSIS

We give the security analysis following the classic paradigm
of comparing the real-world execution of the protocol to an
ideal-world execution where a trusted third party evaluates
the functions on behalf of the involved parties. The only
difference is that we consider an ideal world that the adversary
is allowed to learn the k-nearest neighbours of a new arrival
data point when adding it into the sliding window. Note that we
leverage an OT-hybrid model where parties are given access
to the trusted party computing the ideal function of OT. The
following theorem shows that the PPOD protocol is secure
with the given leakage function in this hybrid model. Thus, the

Parameters: Client C' and servers Sy, S7.

Input: On input (p);,i € {0,1} from C, stores it locally.
KNN,4: On input the query point (q);,7 € {0,1} and the
shared point set (P); from S;, the functionality returns an
unordered point list with id only.

KNNy;s:: On input the query point {q);,7 € {0,1} and the
shared point set (P); from S;, the functionality returns an
unordered list of the shared distances only.

kDist: On input the query point (q);,i € {0, 1} and the shared
point set (P); from S;, the functionality returns the shared
distance between the query point and its k' nearest neighbour.
Update: On input the kNN list (p),.D of point p and a shared
points (q); with the shared distance from S;, the functionality
updates (p);.D and returns an unordered list of the shared
distances only.

PPOD protocol remains secure if the trusted party is replaced
by the real OT.

To start with, we give a security analysis for the secure
kNN and k-distance modules in Section as our PPOD
protocol highly depends on these modules.

Theorem 1. Consider a protocol where clients distribute
shares of data points among two servers who run our PPOD
protocol from Section V] In the OT-hybrid model, the protocol
I, realises the ideal function Fy, in Algorithm[7] in presence
of semi-honest but non-colluding adversaries.

Proof. We denote the secure kNN and k-distance protocols as
I, and our proof shows that II; securely realises the ideal
functions Fj, in Algorithm [/} As the adversary in our model
only corrupts one server at most, and the view of two servers
are slightly different (one garbler and one evaluator), we sep-
arately consider the scenario that the adversary A;,7 € {0,1}
corrupts S;. For each A;, we describe how to construct a
simulator Sim; that simulates A; in the ideal model. For two
varieties of the kNN evaluations (i.e., KNN;4 and KNNg; ), the
only difference between them is how they handle the output
of SORTSHUFFLE. In particular, in kNN,4, Simg returns the
identities from the trusted party to Ay and Sim; should give
the simulated decoded information of identities to .4;. On the
other hand, in kNN, both simulators are only required to
return the random shares of distance to the adversary.

We claim that A;’s view in the real and ideal model is
indistinguishable for the kNN evaluations: Since the security
of the additive sharing scheme and multiplication triplets
ensure the randomness of distance shares, and the protocol is a
composition of a sequence of secure modules (SORTSHUFFLE,
RANDOMISE). It follows from the modular composition the-
orem [40] that the adversaries’ views are both identical. The
kDist function is almost identical to the kNN functions except
it connects the output of SORTSHUFFLE gate to a MAX gate
to retrieve the maximum distance in KNN list. Therefore, we
can follow the same path to show the security of the kDist
function, i.e., the modular composition theorem is applied for
SORTSHUFFLE gate, MAX gate, and Y2A gate to get the
same view in real/ideal models. The update function only



involves garbled circuit evaluation, and the security of the
garbled circuit ensures that no adversary can learn the input
(i.e., previous kNN list) from the output and the execution on
the circuit. [ |

Algorithm 8 Ideal Function F,

Parameters: Client C and servers Sy, S7.

Input: On input (p);,7 € {0,1} from C, stores it locally.
Initialise: On input the first batch of shared points (P);,i €
{0,1} from S;, the functionality initialises the shared outlier
list <O>7 .

Query: On input the shared query point (q) from C, and
the shared outlier list (O); from S;, the functionality returns
"True’ or ’False’ to indicate the query point is an outlier or
not.

Update: On input the active shared points (P,); and the new
batch of shared points (Q); from .S;, the functionality updates
the shared outlier list (O);. Besides, it returns the identities
of kNN of new arrival data point (q); € (Q); sequentially.

We now provide the security proof of the PPOD protocol.
The ideal function of our PPOD is given in Algorithm [§] The
following theorem demonstrates the PPOD scheme is secure
under the non-colluding semi-honest server model.

Theorem 2. Consider a protocol where clients distribute
shares of data points among two servers who run the PPOD
protocol in Section [Y] In the (Fy, OT)-hybrid model, the
PPOD protocol adopts the ideal function F, with leakage
consisting of k-nearest neighbours of new arrival data points
in Algorithm |8| in semi-honest but non-colluding adversarial
model.

Proof. We follow the same setting to prove the security of
the PPOD system. In the initialisation phase, Sim; runs A;
and sends randomly generated shares in Z, with identity
as the shared points to A;. Besides, the computation and
randomisation of kNN list and k-distance can be simulated by
calling the ideal function Fy.kNNg;s: and Fy.kDist. Finally,
Simg utilises a dummy circuit and simulates input labels and
plays the role of the trusted server to send the detected outlier
identities to simulate the view of Ay. On the other hand, Sim,
relies on Il to get the comparison result between k-distance
and threshold R and sends the simulated circuit with the same
output to A4; as its view.

Now, we illustrate the security of PPOD in each phase,
respectively: During initialisation, 4;’s view in the real and
ideal model is indistinguishable: Sim; provides the random
value as the shared points and simulates the garbled circuit
via the output of Fj for the corresponding A;. Besides, it
uses the ideal function F, to return the result to A;.

For the query phase, the simulator leverages the random
input to simulate the query points, and then, it can simulate
the adversaries’ view similarly as above. In particular, the
distance shares is also a random number as it leverages
the randomly generated multiplication triplets. Moreover, the
simulator utilises the simulator of garble circuit to simulate
the rest of the protocol and returns the assertion to the client.
Therefore, the modular composition theorem also implies that

the query protocol remains secure after combining the additive
sharing scheme and the garbled circuit.

The update phase is almost identical to the initialisation
phase, except that it additionally reveals the kNN list of
new arrival data, and there is an extra round to update the
information of these k-nearest neighbours. Specifically, the
update phase requires to call Fj.kNN;; and updates the
points with the returned id. As a result, the update phase is
secure with one extra leakage, as it is the composition of the
initialisation phase and the functionalities in JF3.kNN;; and
Fi.Update. As Il securely realises Fj, the PPOD scheme
also securely realises the F, with the leakage of k-nearest
neighbours of a new arrival data point in the (Fj, OT)-hybrid
model. [ ]

VII. EVALUATION

Implementation. We implement our PPOD system in Java.
To enable the efficient and secure two-party computation on
the cloud server, we first implement the additive sharing
scheme. The arithmetic operations in the additive sharing
scheme are computed by several regular addition and mul-
tiplication operations with the modulo operation over Java
primitive types. Note that the modulo operation implemented
via Java primitive types (e.g. long, int) is much faster than
the native modulo operation in Java BigInteger type (about
50x faster). For the oblivious transfer (OT) and garbled circuit
protocol, we leverage FlexSC [41]], which includes the imple-
mentation of extended OTs [25] and the optimised garbled
circuit scheme. To improve the runtime performance of our
prototype, PPOD system maintains a pool of pre-computed
multiplication triplets, and it periodically refreshes it to avoid
extra computation/communication cost on-the-fly.
Setup. The experiments are executed on two EC2 c5.4xlarge
instances running Ubuntu 18.04LTS. Each instance has 16
cores and 48 GB of memory. Besides, we create a c5.large
instance (4 cores and 8GB memory) serving as the client (i.e.,
gateway) in the PPOD system. It preprocesses and distributes
the dataset to the above two more powerful servers to execute
the PPOD protocol. Our servers are connected with a 10Gb
NIC. To evaluate the performance of PPOD, we use a real-
world dataset from UCI [42], which contains 4,200 records
of 16-dimension.
Parameters. There are four parameters in our PPOD system:
the window size W, the slide size S, the count threshold k
and the distance threshold R. We evaluate the PPOD system
under different W and k because they are the main factors
affecting the performance of our PPOD. In particular, W
determines the number of distance measurement functions to
be executed as well as the input size of the SORTSHUF-
FLE circuit. On the other hand, k£ determines the size of
RANDOMISE/DERANDOMISE and KDIST function, which are
frequently used during the update phase. By default, we set
W =400, S = 20, £k = 50 and R = 25,000 in our dataset.
Unless specified otherwise, all the parameters take on their
default values in the experiments.

In the rest of this section, we first benchmark the perfor-
mance of the kNN module, and then we report the runtime
performance of our PPOD.
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Fig. 4. CPU Time of the proposed secure kNN
module when varying k. Numbers on top of the bars
demonstrate the overhead ratio between red and blue
bars.

A. Performance of the kNN module

red and blue bars.

CPU Time. Fig. [VI| depicts the resulting CPU time of the
secure kNN module in different phases. In particular, Fig. 4a]
shows the CPU time when adding a new point into the current
model: despite the increasing of k, the CPU time of adding a
new point is a constant (around 12s). This is because the KNN
is executed during the initialisation phase and the update phase
to process the new arrival points, and it involves the distance
measurement computation and SORTSHUFFLE evaluation with
the existing data points (380-400 points). Compared to the
above two steps, the remaining steps, i.e., computing the
k-distance and RANDOMISE with k& inputs, can be done
efficiently (less than 17 ms according to our evaluation).

The CPU time of updating (see Fig. b) an existing point is
varying from 96 ms to 912 ms with the increasing of k. The
update function of the kNN module only runs in the update
phase to update the kNN list of the target point. The parameter
k affects the runtime performance of the update function, since
the parameter determines the size of kNN lists, and the server
takes more time to evaluate a larger circuit to update if the
size of kNN lists is larger. Finally, we examine the impact
of the proposed RANDOMISE/DERANDOMISE cryptographic
modules. As shown in Fig. the costs of using these two
modules are almost negligible (RANDOMISE: 0.6 - 5.7 ms,
DEANDOMISE: 0.03 - 1.28 ms), because they only include
simple circuit structure (i.e., Subtract gates and free xor gates).
Therefore, these two modules help our PPOD to achieve a
better security guarantee with a small cost when computing
the kNN .

Communication. Fig. [VI| demonstrates the communication
overhead of processing one data point via the kNN module.
It shows a similar pattern as in the CPU time evaluation.
Specifically, the garbler in the kNN module requires to send
a constant size of the input (90 MB) to the evaluator, because
the major part of the input is the SORTSHUFFLE circuit, and

Fig. 5. Communication overhead of the proposed Fig. 6.
secure KNN module with different k.Numbers on top initialisation phase with varying W.
of the bars demonstrate the overhead ratio between

TABLE 11
RUNTIME PERFORMANCE OF THE PPOD SYSTEM UNDER DEFAULT
PARAMETERS.
Phase | Preprocess | Initialisation | Query | Update
Time 46 ms 35 min 217 ms 9s

its size is dependent on k. The communication overhead of
the update function is relatively small (1 MB - 12 MB), but
it is proportional to k for the same reason as in the CPU time
evaluation, i.e., the generated circuit size is proportional to
k. The communication overhead slightly increases when the
system facilities the RANDOMISE/Derandomise cryptographic
modules to enhance the security of data points, especially
for the DERANDOMISE module, where the size complexity
is O(k?). As shown in Fig. it incurs at most 8% more
communication overhead when the randomisation is deployed.
Nevertheless, we claim that this overhead is affordable, as it
only consists of xor gates, which is a small object comparing
to the sorting circuit and it is easy to evaluate (free xor gates).

B. Performance of PPOD

First, we note that our proposed PPOD achieves the same
accuracy as running the plaintext outlier detection protocol [§]]
on the unencrypted dataset. Next, we illustrate the run-time
performance of each phase of PPOD in Table |lI} It shows that
the preprocess and query can be done in several milliseconds,
which indicates that the client (the gateway) can preprocess
the data point with small computational resources and get
a real-time query result regarding the current outlier model.
In addition, although the initialisation needs 35 minutes to
execute, it only runs for the first 400 data points. After
initialisation, the system can update the existing point only
in 9 s, which is a moderate runtime in the application context.
Impact of W. We further examine the runtime performance
and memory usage of the initialisation phase for different

The runtime and memory usage of the



W, as this phase highly depends on the window size W.
Fig. depicts the result runtime and memory usage re-
spectively. When W increases, the CPU time and memory
consumption are expected to increase as well. Besides, we
observe that the memory consumption increases sharply when
the W reaches 100 (see Fig. [6b). The increase of W not
only affects the size of the generated circuit and the number
of multiplication triplets but also the delay of evaluating the
circuit and computing distance via triplets. Therefore, there are
more objects residing in the memory for computation, and it
leads to the rapid growth of memory consumption. However,
such a memory consumption is in an acceptable level in our
evaluation platform (48 GB memory) and the other public
clouds such as Azure.

VIII. CONCLUSION

This paper presents a privacy-preserving outlier detection
(PPOD) protocol targeting the encrypted incremental dataset.
Our PPOD protocol leverages the advanced cryptographic
primitives (i.e., secure two-party computation protocols) to
build several secure and efficient modules. In addition, it
adopts the sliding window technique to ensure a practical
performance during the update phase with new arrival data
points. We implemented our PPOD as a prototype system, and
we provided a performance evaluation based on a real-world
dataset to demonstrates its accuracy and efficiency.
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