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Differentially Private High-Dimensional Data
Publication in Internet of Things

Zhigao Zheng, Member, IEEE, Tao Wang †, Member, IEEE,
Jinming Wen †, Shahid Mumtaz, Ali Kashif Bashir and Sajjad Hussain Chauhdary

Abstract—Internet of Things and the related computing
paradigms, such as cloud computing and fog computing, provide
solutions for various applications and services with massive and
high-dimensional data, while produces threatens on the personal
privacy. Differential privacy is a promising privacy-preserving
definition for various applications and is enforced by injecting
random noise into each query result such that the adversary with
arbitrary background knowledge cannot infer sensitive input
from the noisy results. Nevertheless, existing differentially private
mechanisms have poor utility and high computation complexity
on high-dimensional data because the necessary noise in queries is
proportional to the size of the data domain, which is exponential
to the dimensionality. To address these issues, we develop a
compressed sensing mechanism (CSM) that enforces differential
privacy on the basis of the compressed sensing framework while
providing accurate results to linear queries. We derive the utility
guarantee of CSM theoretically. An extensive experimental eval-
uation on real-world datasets over multiple fields demonstrates
that our proposed mechanism consistently outperforms several
state-of-the-art mechanisms under differential privacy.

Index Terms—Internet of Things, compressed sensing, differ-
ential privacy, high-dimensional data, synopsis, utility.

I. INTRODUCTION

W ITH the advancement of Internet of Things (IoT) and
data capture technologies, an unprecedented volume

and variety of data are genereted constantly, and compre-
hensive information recording about individuals are becoming
increasingly easy. An emerging wave of IoT services and
applications, for exmaple, smart grids, smart healthcare, and

The research work reported in this paper is supported by the National
Natural Science Foundation of China (No. 61861042 and 61701453), the
Fundamental Research Funds for the Central Universities (the China Uni-
versity of Geosciences (Wuhan), No. CUG190607, and Wuhan University),
the Natural Science Foundation of China (No. 41571426), and Wuhan Applied
Basic Research Program (No. 2017010201010114).
†: Corresponding author.
Zhigao Zheng is with School of Computer Science and Technology,

Huazhong University of Science and Technology, Wuhan, 430074, China (e-
mail: zhengzhigao@hust.edu.cn)

Tao Wang is with the School of Educational Information Technol-
ogy, Central China Normal University, Wuhan, 430079, China. (e-mail:
tmac@mail.ccnu.edu.cn)

Jinming Wen is with College of Information Science and Technology, Jinan
University, Guangzhou, 510632, China. J. Wen was partially supported by
NSFC (No. 11871248), Key Program of NSFC (No. 61932010) and “the
Fundamental Research Funds for the Central Universities” (No. 21618329).
(e-mail: jinming.wen@mail.mcgill.ca)

Shahid Mumtaz is with Instituto de Telecomunicaces, Lisboa, Portugal. (e-
mail: Dr.shahid.mumtaz@ieee.org)

Ali Kashif Bashir is with Department of Computing and Mathematics,
Manchester Metropolitan University, UK. (e-mail: Dr.alikashif.b@ieee.org)

Sajjad Hussain Chauhdary is with Department of Computer Science and Ar-
tificial Intelligence, College of Computer Science and Engineering, University
of Jeddah, Jeddah 23218, Saudia Arabia. (e-mail: shussain1@uj.edu.sa)

location-based services (LBS), increasingly rely on accurate
and complete data analysis, which drives much more types of
data to be measured. Meanwhile, some advanced computing
paradigms, for example, cloud computing [1] and fog comput-
ing [3] (a new paradigm that extends the cloud computing to
the edge of the network), offer powerful data processing and
analyzing plateforms for such data. Moreover, the number of
attributes is increasing, thus sharply elevating the data dimen-
sion. Such high-dimensional data are of significant prevalence
in many data mining and academic research domains [2], [33].
Nevertheless, reliable measures must be adopted to prevent
threats to the privacy of arbitrary institutions and individuals
while retaining the applicability of the published data to
the abovementioned purposes because individual data contain
sensitive information. A promising solution to this problem is
to sanitize data before sharing them such that the inference of
sensitive information by adversaries is resisted while retaining
the statistical properties of the high-dimensional data [4][5].

Numerous privacy mechanisms have been proposed for
privacy-preserving data publication. Among them, differential
privacy is an insightful and influential privacy definition [6]
that guarantees individuals’ privacy when releasing the statis-
tical information of sensitive data regardless of the arbitrary
background knowledge of the adversary. Informally, differen-
tial privacy states that the deletion, addition, or modification of
a single record in datasets or results by injecting random noise
whose magnitude is controlled by a user-specified parameter
(privacy budget) has a trivial effect on statistical query results.
Hence, differential privacy can guarantee the privacy of an
individual if given access to the sanitized data about all
subjects but the individual. In this situation, an adversary
cannot determine the individual’s private value.

A plethora of variations and adaptations of differential
privacy has been proposed for low-dimensional data publi-
cation with different types of input databases and application
domains [8][9][18]. Nevertheless, when the input dataset has
high dimensionality and many attributes, such as set-valued
data [10], existing differentially private solutions must inject
a prohibitive amount of noise, thereby failing to provide
useful results. We focus on linear counting queries, which
are essential operations in various analytical tasks. A naive
differentially private mechanism injects i.i.d. noise to a query
result or an attribute value with a variance of 2∆2/ε2 using the
Laplace mechanism, where ∆ is the sensitivity of the query.
If the input dataset of the counting query poses d attributes
(i.e., dimensions) and r values in each attribute, then the
size of the entire output domain is rd , which is excessively
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high, and ∆ increases in a high-dimensional dataset, thereby
requiring an increased magnitude of noise. Moreover, sen-
sitivity ∆ increases with the probability for batch counting
queries. Executing such a query set on a high-dimensional
dataset will introduce added errors and severely degrade utility.
Therefore, existing solutions for low-dimensional data are
either inefficient or ineffective and suffer from the curse of
dimensionality.

Efforts have been exerted in attempts to solve the prob-
lem, which include decomposing high-dimensional data into
a set of low-dimensional marginal tables, along with an
inference mechanism that infers the joint data distribu-
tion from low-dimensional output. PriView [11], PrivBayes
[12][13], sampling-based testing framework [14], DPCopula
[15], DPSence [16], and DPPro [17] are representative differ-
ential privacy solutions for releasing high-dimensional data.
DPPro projects a high-dimensional dataset to a randomly
selected low-dimensional subspace to preserve pairwise L2
distances and relevant user segmentation, thereby minimizing
the magnitude of noise injection while enforcing differential
privacy regardless of the background knowledge of the adver-
sary and the underlying distribution of the dataset. However,
these mechanisms demand an inference mechanism and pos-
sess comparatively high computation complexity.

The idea behind another class of solutions, which includes
random (linear or affine) transformation [19], Fourier trans-
formation [7], [20], wavelet transform [21], hierarchical trees
[4], compressive mechanism [22], and principal component
analysis [23], is to establish a synopsis of the original high-
dimensional dataset with a small size. Through releasing a
noisy synopsis under differential privacy, these mechanisms
can answer an arbitrary number of linear queries while main-
taining good utilization by reducing the magnitude of noise
necessary to satisfy the differential privacy of the dataset.
These solutions offer significant information for our work.
However, most of these solutions effectively respond to multi-
dimensional continuous data only.

To sum up, two fundamental challenges should be addressed
to achieve the secure and efficient differentially private high-
dimensional data publication. First, the sensitivity function
should be calculated to determine the size of the injected noise,
particularly when the data dimensionality is relatively high.
Second, the data utility should be ensured and the privacy-
preserving mechanism cannot cause an apparent influence
on query outputs. In this paper, we propose the compressed
sensing mechanism (CSM) under differential privacy, which
leverages the compressed sensing framework, an universal data
compression scheme, to reduce the data dimensionality, so that
CSM can promise ε-differential privacy while maintaining a
high utility.

Our key contribution is a novel universal solution for
publishing high-dimensional data under differential privacy.
More specifically,

• we design a compressed sensing mechanism to reduce
data dimensionality while enforcing differential privacy,
which is built on the universal comrpressed sensing
theory.

• we propose a novel sensitivity definition, sensing sensi-
tivity, for properly determining the amount of noise for
each measurement coeffcient, and we further theoretically
analyze the utility of CSM under an active utility measure,
namely (α,η)-usefulness.

• we conduct extensive experiments over four high-
dimensional datasets for two different types of queries to
evaluate the performance of CSM comprehensively. We
demonstrate that CSM is superior by orders of magnitude
to several state-of-the-art solutions in terms of result
accuracy.

The rest of this paper is organized as follows. Section
II reviews and summarizes previous studies on differentially
private mechanisms for high-dimensional data publication.
Section III describes notations and preliminaries. Section IV-A
presents the CSM framework under ε-differential privacy and
analyzes the privacy and utilization of CSM. The superiority of
the CSM mechanism is demonstrated in Section V and through
extensive experiments on real datasets, and the conclusions and
suggestions for future work are in Section VI.

II. RELATED WORKS

Differential privacy was formally proposed by Dwork et al.
[25], and numerous previous works have been designed in
the manner of differential privacy for the publication of low-
dimensional data. Differential privacy has two key advantages.
First, differential privacy defines the maximum background
knowledge that the adversary knows all the information about
the individuals, except one sensitive record. Consequently, the
adversary is powerful and can launch an arbitrary privacy
attack; nevertheless, differential privacy can still guarantee the
privacy of the individual. Second, differential privacy is built
on a statistical probability model and thus can quantitatively
analyze the risk of privacy disclosure. Therefore, differential
privacy is an influential privacy definition and has substan-
tial research value, thereby drawing significant attention in
the disciplines of computer science, database systems, data
mining, and machine learning. These fields generally utilize
the Laplace mechanism [6], which is the basic implementation
mechanism, to enforce ε-differential privacy, which is the
original definition of differential privacy.

The extensive applications of high-dimensional data drive
the growing research on differentially private high-dimensional
data release. Mohammed et al. [5] presented the use of proba-
bilistic generalization to eliminate the curse of dimensionality,
which compounds rapidly at high dimensionality. Xiao et al.
[26] proposed the DPCube, which is based on KD-tree par-
titioning, for high-dimensional healthy data; this mechanism
generates a differentially private cell histogram by partitioning
the noisy cell histogram mixed with Laplace noise. However,
the high level of partitioning and the skewed distribution
of each distribution increase the errors of perturbation and
estimation, respectively, due to the large attribute domain
in high-dimensional data. Qardaji et al. [11] investigated a
mechanism for binary data, PriView, which uses a covering
design to select a group of low-dimensional marginal tables
as views and produces k-way marginal ones on the basis of
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maximum entropy optimization. Zhang et al. [12] proposed
PrivBayes, which iteratively learns the parent sets of the
attributes in a Bayesian network by applying an exponential
mechanism with a surrogate function for mutual information.
The performance of PrivBayes is greatly susceptible to the
randomly selected initial attribute and requires the parent sets
of the attributes to have identical sizes. Similarly, Su et al.
[27] developed DP-SUBN, which is based on PrivBayes; this
mechanism explores a non-overlapping covering design to
produce two-way marginal tables of a given set of attributes to
enhance the adaptability of the Bayesian network and reduce
communication cost. Li et al. [15] proposed a differentially
private mechanism called DPCopula for multi- and high-
dimensional data; it uses the copula function to generate a
multivariate joint distribution by describing the dependencies
between multivariate random vectors. Drawn on such idea,
Chen et al. [14] proposed a sampling-based framework that
was constructed by a generic threshold mechanism to feature a
systematic inquiry on pairwise attribute dependencies and infer
the joint distribution by applying the junction tree algorithm.
This mechanism performs well on binary and non-binary
data. However, the sampling-based inference mechanism may
produce a maximum final error while minimizing the resul-
tant error. Recently, Xu et al. [17] designed DPPro, which
projects a high-dimensional dataset to a randomly chosen low-
dimensional domain to preserve pairwise L-distances between
individuals and address dimensionality. Thus, the magnitude of
the added noise depends on the projection dimension instead of
the size of the original dataset, thereby maximizing utility. Day
et al. [16] presented DPSense for high-dimensional data; it
uses a sensitivity control mechanism for differential privacy to
publish the statistical information of the input data. Ren et al.
[19] developed a local differentially private high-dimensional
data publication algorithm (LoPub) by using distribution es-
timation techniques. Nevertheless, inferior utility and high
computation complexity limit the application of DPSense. In
summary, high computation complexity is a common problem
among this type of differentially private mechanisms.

Several researchers have investigated the mechanisms of
synopsis establishment for maximizing the utility of queries
under differential privacy requirements. Rastogi et al. [20]
constructed synthetic data from the original data in the Fourier
domain to preserve all low-dimensional marginal data by
adding Laplace noise to the discrete Fourier transformation
coefficients. Then, Acs et al. [28] improved the Fourier-based
mechanisms via a rigorous utility analysis. Nevertheless, the
extremely large number of bins in the original histograms
causes poor accuracy and a computation complexity that is
proportional to the quadratic number of bins in the worst-
case scenario. Privelet, which was proposed by Xiao et al.
[21], is a widely adopted synopsis-based mechanism that maps
multi-dimensional data to a frequency matrix and converts
this matrix into a coefficient matrix via wavelet transforms.
Then, Privelet adds Laplace noise to the coefficient matrix,
thereby obtaining a noisy frequency matrix through inverse
conversion. However, this mechanism works only for ordinal
data. Hay et al. [4] proposed a hierarchical tree approach,
and Cormode et al. [29] designed a statistical process for

computing a private summary for sparse data without gener-
ating the entire contingency table by solely considering the
scalability of the problem. The work of Li et al. [22] is
the most relevant; however, it focused on the problem of
privacy budget exhaustion, especially for continuous obser-
vation of datasets. However, their motivation opposed that of
compressed sensing, in which reconstructing sparse data is
undesirable and considered breach of privacy. These efforts
benefit multi-dimensional data but pose limitations for high-
dimensional data. Alternatively, these mechanisms provide
significant information for designing an effective and efficient
differentially private mechanism for high-dimensional data
release.

III. NOTATIONS AND PRELIMINARIES

This section describes the notations and preliminaries un-
derlying our problem. Assumptions and formal definitions are
also provided.

A. Notations

Individuals intend to release a high-dimensional dataset (or
table) D with n tuples and d distributes A = {A1, A2, ..., Ad},
each of which is either numerical or categorical and either
ordinal or nominal, respectively. The domain size of D is
denoted as N =

∏d
i=1 |Ai |, which is extremely large.

The linear counting query Q is a linear combination of the
statistics (counts) of the attributes in the data domain, denoted
as c1, c2, ..., cd , and it is expressed as Q(D) = q1c1+q2c2+ ...+
qdcd , where qi is the weight of the queried attribute result.

Individuals utilize a sanitization mechanism M to generate
and publish a sanitized version of the query result M(D) to
protect the privacy of D. Table I summarizes the frequently
used notations in the article.

TABLE I
SUMMARY OF FREQUENTLY USED NOTATIONS

Symbol Description
D,D ′ input datasets
M sanitization mechanism
ε, δ privacy parameters

d,r,N dataset parameters
Q query function
Q(D) exact result of Q over dataset D
S sanitized output results of M corresponding to Q
ξ, η utility parameters
L laplace mechanism

∆Q,∆SS sensitivity
Φ Dictionary basis
X sparse representation of D
K Sparsity
Ψ measurement matrix

I and I∗ measured non-noisy and noisy matrices
D∗ noisy reconstructed dataset
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B. Differential Privacy

Differential privacy is motivated by the intuition that the
sanitized output generated by the input of a database is
approximately indistinguishable from that generated by the
input of its neighbor database. A pair of datasets, D and D ′,
is called neighbor datasets i f f D ′ can be produced by adding,
removing, or modifying exactly one tuple from D.

Definition 1. (ε-differential privacy). A sanitization mecha-
nism M satisfies ε-differential privacy if it holds for any pair
of neighbor datasets D and D ′ that

Pr(M(D) ∈ S) ≤ eεPr(M(D ′) ∈ S) (1)

where S denotes all possible outputs ofM and ε is the privacy
budget, which is mainly restricted by M.

The inequality indicates that an adversary can possess a
narrow confidence for inferring the either/or input dataset from
D and D ′ (that is, the presence or absence of exactly one
tuple in the input dataset) only by observing regardless of the
adversary’s background knowledge. Consequently, differential
privacy guarantees the privacy of any individual with sensitive
attributes in the dataset.

In practical applications, ε-differential privacy is generally
enforced by a fundamental mechanism, the Laplace mecha-
nism, which relies on the important parameter of L1sensitivity.

Definition 2 (L1-sensitivity). Given a query function Q, its
L1-sensitivity ∆Q is the maximum L1 distance between the
results of Q over any pair of neighbor datasets D and D ′; it
is denoted as

∆Q = max
D,D′

‖Q(D) − Q(D ′)‖1 (2)

where ∆Q is characterized by the query function Q and its
output domain rather than the input dataset D.

L1-sensitivity underlies the Laplace mechanism, which is
formally given by Definition 3.

Definition 3. (Laplace mechanism). Given dataset D and
query function Q, the Laplace mechanism obtains sanitized
outputs S by injecting i.i.d. Laplace noise L to the exact
query result with a mean of 0 and scale λ = ∆Q/ε and is
thus defined as ML(D) = Q(D) + L.

The variance of the added Laplace noise L to a query
result or an attribute value is 2∆2

Q
/ε2, and the overall

expected squared error for Q, obtained by ML(D), is
2d∆2

Q
/ε2(2rd∆2

Q
/ε2) when each attribute has only one value

(when each attribute has r values). Excessive amounts of
independent Laplace noise are bound to be added into a high-
dimensional dataset.

C. Compressed Sensing

This article focuses on establishing synopsis of the orig-
inal high-dimensional dataset via compressed sensing (CS).
The entirely personalized and customizable data processing
framework, which samples and compresses the original data
by selecting the best-matched domains of sparse transform

and compressed projection, accurately reconstructs the original
data from the measured data of small size. This section
provides a brief description of CS. The theory was discussed
in detail in previous studies [30][31].

A major premise of CS is that the data are sparse or
compressible, which is not always true. To overcome this
obstacle, CS converts the original data into sparse data through
sparse representation, an operation that seeks few vectors from
a dictionary basis to represent the entire information of the
original data. The sparse representation of any given dataset
D ∈ Rd×n, which is denoted as a d × n matrix, is

D = ΦX, s.t .‖xi ‖ ≤ K&i ∈ [1,n], (3)

where Φ ∈ Rd×n is the dictionary basis, which is either orthog-
onal d = m or non-orthogonal d , m; X = [x1, x2, ..., xn] ∈
Rm×nis the sparsely represented matrix of dataset D under
the dictionary basis Φ; and K << d. Consequently, vector
xi is K-sparse if it has K non-zero items at most. If Φ is
orthogonal, then the objective function has a unique solution,
that is, X = Φ−1D. If Φ is non-orthogonal (which is a more
common case), then X is approximately obtained by solving
the following L0-norm minimization equation:

X̂ = argmin ‖X‖0 , s.t.D = ΦX (4)

Subsequently, by using measurement matrix Ψ ∈ Rs×d , a
K-sparse dataset D can be projected into measured matrix
I ∈ Rs×n with a considerably reduced dimensionality, where
I = ΨD. The data projection under the measurement matrix
is exactly the data compression, and the dimensionality of Ψ
is substantially less than that of D (i.e., s << d). Equivalently,
the mathematical equation of the entire CS process is as
follows:

I = ΨD = ΨΦX = ΩX (5)

where Ω = ΨΦ ∈ Rs×m is the sensing matrix. Therefore,
the customized data sampling and data compressing can be
executed concurrently owing to the sensing matrix. The re-
construction of X can be rewritten as the following L0-norm
minimization:

X̂ = argmin ‖X‖0 , s.t .I = ΩX (6)

Candès and Tao [13] have proved that sensing matrix ΩX
must fulfill the restricted isometry property (RIP) to allow the
original dataset D to be reconstructed accurately.

Definition 4. (RIP). Given a restricted isometry parameter
ϕK , a sensing matrix satisfies the RIP if it holds for any sparse
data that

(1 − ϕK ) ‖X‖22 ≤ ‖ΩX‖2 ≤ (1 + ϕK ) ‖X‖
2
2 , ϕK ∈ (0,1) (7)

‖ΩX‖22 and ‖X‖22 are the energies of the observation and
the original data, respectively, and remain unchanged after
orthogonal transformation. In addition, they are the squares
of L2-norms, which are Euclidean distances from the original
point. The energies of the observation and original data are
approximately identical if approaches zero.

However, in real-life applications, the measured data may
be corrupted by an unknown noise e and are described as

I ′ = I + e = ΩX + e (8)
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It has been proved that [32] the noisy sparse data X′ recon-
structed from I ′ and the expected sparse data X reconstructed
from I via matching pursuit algorithms are approximately
identical with a high probability.

Theorem 1. Suppose that a sensing matrix Ωx×n satisfies RIP
and the noise ‖e‖ ≤ θ. Then, we hold

‖X − X′‖ ≤
C ‖X − XK ‖1
√

K
+ C′θ (9)

for constants C and C′, where XK is obtained by replacing
the n−K coefficients with the smallest absolute value of X by
zero.

Additionally, given sparse data X with magnitude R, we
indicate that ‖X − XK ‖1 ≤ CpRK1− 1

p for the constant p ∈
(0,1). Then, the measured data I ′ can be reconstructed by
I ′ = ΩX′, and we hold ‖I − I ′‖2 = ‖X − X′‖2.

CS converts a dataset D of size d × n into a measured
matrix I of size s × n using sensing matrix Ω. Subsequently,
we add noise to measured matrix I instead of the original
data. The added noise can diffuse in the entire dataset after
the reconstruction, thereby affecting privacy preservation (e.g.,
satisfying differential privacy) in a nearly similar manner as
do primitive methods but with a substantially smaller amount
of noise.

We focus on coping with the publication of high-
dimensional data due to the increasing computation com-
plexity and deteriorating utility caused by dimensionality. We
aim to answer one or a batch of linear counting queries
with the most rudimentary operation in various data statistics
and analytical applications and a maximum overall utility
while ensuring differential privacy. Particularly, our proposed
CSM uses the fundamental Laplace mechanism to enforce ε-
differential privacy.

IV. CSM FRAMEWORK

This section presents a detailed description of our proposed
CSM framework. We first illustrate the overview of CSM in
Section IV-A and then provide analyses of the privacy and
utility of CSM in Sections IV-B and IV-C, respectively.

A. Overview of CSM

The main idea of the proposed CSM is to exploit the
dimensionality reduction property of CS to reduce the amount
of noise required to satisfy differential privacy. CSM provides
the expected privacy guarantee with a small privacy budget
(and thus reduced noise injection), thereby providing accurate
statistical query results after reconstruction. The proposed
CSM regards a dataset D of size d×n and privacy parameters
ε as the input to and outputs of a noisy version D∗ of D.
Roughly, CSM has four steps, as described in figure 1.

First, CSM implements a sparse representation of D (that
is preprocessed generally) and maps D to another matrix X
via a dictionary basis Ω. If the dictionary basis is orthogonal,
then each entry in X can be seen as a linear combination
of the entries in D, and D can be losslessly obtained from
X by a linear inverse operation. Conversely, if the dictionary

Original dataset

Preprocess

Sparse 

Representation

d n
CSM

d m

m n

Compression s d

s n

Noise 

injection

* s n

* d n

Reconstruction

Synthetic dataset

Matching pursuit 

algorithm

Postprocess

differential privacy

Fig. 1. CSM framework

Algorithm 1 CSM
Input: D, ε , Φ, Ψ, and OMP algorithm
Output: D∗

1: Compute D = ΦX to generate a sparse representation X
via the dictionary basis Φ;

2: Project X into a measured matrix I via a measurement
matrix Ψ;

3: Select noise parameter λ;
4: Acquire a noisy version I∗ by adding the noise based on

privacy parameters ε ;
5: Reconstruct X∗ via OMP algorithm;
6: Compute D∗ = ΦX∗

7: return D∗

basis is non-orthogonal, then each entry in X can be seen as
a random affine combination of the entries in D, and D can
be approximately obtained from X by greedy algorithms [13].
The entries in X are the sparse coefficients.

Second, CSM projects X into a measured matrix I via a
measurement matrix Ψ. The entries in I are defined in this
article as the measure coefficients.

Third, CSM adds i.i.d. Laplace noise to each measurement
coefficient in a manner that enforces ε-differential privacy,
thereby generating a new matrix I∗ = I + L with noisy
coefficients.

Finally, CSM post processes I∗ and then converts I∗ back
to noisy dataset D∗, which is returned as the output. The
reconstruction step of CSM relies only on I∗, thereby ensuring
that CSM does not disclose any information about D, except
that in I∗. The detailed procedure of CSM is presented in
Algorithm 1.

Proposition 1. CSM enforces ε-differential privacy.

Proof. The compression process of CS can be characterized
as a sanitization operation K : X → Rn. For any dataset
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D ∈ X, K(D) = ΨD. The measurement matrix Ψ, which
is generally a random matrix, is produced by sampling i.i.d.
entries from a probability distribution (such as Gaussian and
Bernoulli), or a matrix (such as Fourier and Hadamard). Then,
the sensitivity of K is regarded as the distribution parameter or
the number of vectors selected from the matrices. The Laplace
mechanism ML embedded in the CS framework enforces ε-
differential privacy in accordance with Definition 3. Moreover,
the subsequent data reconstruction is deterministic without
involving probability calculation. Therefore, we can infer that
CSM enforces ε-differential privacy. �

B. Privacy Analysis

Intuitively, the privacy guarantee of CSM depends on the
third step, in which CSM injects specific noise into the
measurement coefficients of matrix I. I is compressed with
the dimensionality of ( is considerably smaller than d.). Thus,
arbitrarily changing one attribute value of one tuple or an entire
tuple will change the entire measurement coefficients in the
corresponding row of I. Such changes can be concealed with
the addition of an appropriate amount of noise to I.

The response of each measurement coefficient to changes
in varies, and so does the noise required for each coefficient.
Drawing on the idea of Xiao et al. [21], CSM generates
the amount of noise for each measurement coefficient by
a magnitude function H , which alters each coefficient to a
positive real number. Accordingly, the magnitude of noise on
a coefficient of I is ∆Q/εH(J), where J is an arbitrary
measurement coefficient. Then, we provide a new sensitivity
definition, that is, sensing sensitivity.

Definition 5. (Sensing Sensitivity). Given a query function Q
that inputs a matrix and outputs a real number, the sensing
sensitivity ∆ss of Q with respect to magnitude function H is
expressed as

∆ss = max
D,D′
(
1
τ
H(I) |Q(D) − Q(D ′)|) (10)

where τ is the compression coefficient and τ ∈ (0,1].

The sensing sensitivity acquires the intention of L1-
sensitivity as a special case. Specifically, for any query, the
L1-sensitivity of Q equals the sensing sensitivity with respect
to H , which assigns each measurement coefficient the same
magnitude, and τ = 1.

Theorem 2. Given a query function Q with the sensing
sensitivity ∆ss , a sanitization mechanismM satisfies 2τε/∆ss-
differential privacy if it holds for any D and D∗ that

MCSM = sup
D,D′

ln
Pr(Q(D) ∈ Y)
Pr(Q(D∗) ∈ Y)

≤
2τε
∆ss

(11)

where D∗ =MCSM (D,L(
∆ss
ε )), and Y is the possible output

space

Proof. Suppose D, D ′ be any two datasets that differ in only
one column vector, and correspondingly I, I ′ be the measured

matrix that also differ in only one column vector. Since Q has
a sensing sensitivity ∆ss , we have∑

q∈Q

1
τ
H(I) |Q(I) − Q(I∗)|) ≤ τ ‖I − I ′‖1 = τ (12)

Then, let qj ( j ∈ [1, |Q|]) be the j-th query in Q and Y is the
possible output space. We have

MCSM : = sup
D,D′

ln
Pr(Q(D) ∈ Y)
Pr(Q(D∗) ∈ Y)

=
Pr

(
MCSM (D) = [yj]

)
Pr

(
MCSM (D

∗) = [yj]
)

=

∏ |Q |
i=1

(
H(I)

2λ · exp
(
−H(I) ·

��yj − qi (I∗)
�� /λ) )∏ |Q |

i=1

(
H(I)

2λ · exp
(
−H(I) ·

��yj − qi (I)
�� /λ) )

≤
∏ |Q |

i=1
(exp (−H(I) · |qi (I) − qi (I∗)| /λ))

≤ 2
∏ |Q |

i=1
(exp (− |qi (I) − qi (I∗)| /λ))

≤
2τε
∆ss

,

thereby proving that CSM fulfills differential privacy. �

C. Utility Analysis

In real-life applications, individuals generally cannot set the
desired privacy parameters involved in differential privacy and
prefer to set the intuitive utility level of the query results. A
small indicates strong privacy preservation. Hence, this section
analyzes the utilization of released data by the definition of
(µ,η)-usefulness [24] for CSM that satisfies the given utility
requirement.

Definition 6. ((µ,η)-usefulness) A mechanism M has (µ,η)-
usefulness with respect to query function Q and dataset D
under the ‖•‖1-norm if it holds for parameters µ > 0 and that
0 < η < 1 that

Pr(‖M(Q,D) − Q(D)‖1 ≥ η) ≤ µ (13)

Proposition 2. Given query Q, dataset D, and user-specified
parameters µ > 0 and 0 < η < 1, CSM returns
(µ, 1

2 exp(− µε
s∆ss
)) -useful results of Q on D.

Proof. We first use U to represent the error introduced by
CSM such that

Pr(‖MCSM (Q,D) − Q(D)‖1) ≤ Pr(U > µ) (14)

On the basis of the characteristics of the Laplace distribution
involved in Proposition 2, we have

Pr(U > µ) =

∫ µ

−∞

f (x)dx = 1 −
1
2

e−
µε

s∆ss (15)

Then, we obtain

Pr(U ≤ µ) = 1 − Pr(U > µ) =
1
2

e−
µε

s∆ss (16)

Therefore, given µ, η is expressed as

η =
1
2

exp(−
µε

s∆ss
) (17)
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The sensing sensitivity will be remarkably high when the
queried dataset comprises several attributes. The utility of
CSM is positively relevant to the dimensionality of compressed
data, thereby guaranteeing a significantly lower noise level
than do standard differentially private mechanisms on high-
dimensional datasets.

V. EXPERIMENTS

This section experimentally evaluates the performance of
CSM under -differential privacy. The privacy strength, result
accuracy, and computation complexity of CSM and the impact
of several core parameters are evaluated in comparison with
those of state-of-the-art representative mechanisms. Laplace
mechanism (LM) [6], Privlet [21], hierarchical mechanism
(HM) [4], Fourier mechanism (FM) [28], PrivBays [12][13],
and DPPro [17] are selected for comparison.

A. Experimental Configurations and Datasets

We perform all experiments on a desktop PC with an Intel
quad-core i7-4790 @ 3.6 GHz CPU and 8 GB RAM. In each
experiment, every algorithm is executed 20 times, and the
average indicators are reported.

We use four datasets in our experiments [12][17], namely,
AOL, Retail, UCI Adult, and TPC-E, to demonstrate CSM.
These real-world datasets contribute to our evaluations and
illustration of the effectiveness of our proposed mechanism in
real-life applications.

AOL: This dataset is a search log that includes search
keyword statistics and contains 45 different attributes after our
preprocessing.

Retail: This dataset contains information about a retail
market basket in which each record consists of diverse items
purchased in a shopping operation. It contains 50 different
attributes after our preprocessing.

UCI Adult: This dataset originally involves information
about 45,222 individuals; these data were extracted from the
1994 U.S. Census and have 14 attributes of which six are
continuous and eight are categorical. We consider 30,162
records after preprocessing.

TPC-E: This dataset contains the information in the
“Trade”, “Security”, “Security status” and “Trade type” tables
in the TPC-E benchmark. We summarize the statistics of the
datasets in Table II.

TABLE II
DATASET CHARACTERISTICS

Datasets Cardinality Dimensionality Domain Size
AOL 619,418 45 245

Retail 88,162 50 250

UCI Adult 45,222 15 252

TPC-E 40,000 24 277

(a) AOL (b) Retail

(c) UCI Adult (d) TPC-E

Fig. 2. Effect of s on different datasets

B. Experimental Evaluation Methodology

Over each dataset, we generate and execute 10,000 random
queries, which comprise only linear counting and linear range-
counting queries. For linear range-counting queries, each query
Q j sums the counts in a range [ai, bi]. Starting and end
points ai and bi , respectively, are randomly generated and
follow a uniform distribution. The utility is measured by
two performance metrics, namely, (µ,η)-usefulness and mean
squared error (MSE). The scalability of the mechanisms is
weighed by the running time. Specifically, the MSE is the
mean squared L2 distance between the exact and noisy query
answers. The experimental results offer crucial insights into
the adaptation of privacy parameters for maximizing the utility
of CSM.

C. Impact of Compressed Dimensionality on CSM

The compressed dimensionality s is an important parameter
in CSM. It determines the dimensionality of matrices I and
I∗, thereby determining the necessary magnitude of noise.
An excessively small s leads to increased pressure on data
reconstruction, thereby degrading the computing efficiency and
reconstruction accuracy, whereas an extremely large s leads
to a large amount of necessary noise and consequently poor
accuracy of queries. Then, we set ε to 1, 0.5, and 0.1, measure
CSM with varying s by controlling the compression ratio (ratio
of compressed dimensionality to original dimensionality) on
the four datasets, and record the MSE of CSM. Fig. 2 indicates
that with the compression ratio increase, the MSE of CSM first
declines, and then stabilizes, and finally increases. This result
is consistent with our analysis in Subsection IV.C.
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(a) AOL (b) Retail

(c) UCI Adult (d) TPC-E

Fig. 3. Effect of domain size N on different datasets

D. Impact of Varying Domain Size on CSM

We evaluate the utility of all mechanisms with the varying
domain size N from 128 to 8192 at interval of 128 and
fix privacy parameter ε to 0.1 and s to 0.3. The MSE of
each mechanism in the four datasets is reported in Fig. 3.
Intuitively, LM outperforms all others when the domain is
relatively small partly because these counting queries are
generally random and independent. Meanwhile, all other data-
independent mechanisms incur an error linear to domain size
N . The errors of DPPro and CSM remain the same because
their errors rely on data dimensionality (after projection or
compression) that is smaller than the domain size.

E. Utility Evaluation

We measure utility performance by (µ,η)-usefulness and
MSE on the four datasets. In this experiment, the compressed
dimensionality s and the domain size N are set to 0.4 and
256, respectively. As shown in Fig. 4, where ε = 1, our
proposed CSM has a considerably lower η than do the other
mechanisms, indicating a higher probability 1 − η under the
same µ and ε , than the other mechanisms. The usefulness
of CSM increases with the privacy guarantee level ε . Equiv-
alently, under the same utility requirement, CSM provides
a significantly preferable privacy guarantee over the other
mechanisms. Hence, CSM exhibits apparent superiority of
utilization and privacy over state-of-the-art mechanisms.

Fig. 5 illustrates that CSM poses a considerably lower MSE
than the other mechanisms and outperforms them in answering
many queries. CSM achieves the expected privacy-preserving
level for high-dimensional data by introducing a small amount
of noise. With the privacy parameter ε varying from 0.1
to 0.9, the corresponding MSE of each mechanism, except
LM, decreases slowly because LM was designed without
any optimization on high-dimensional data. The MSEs of the
mechanisms decline as ε increases from 0.1 to 0.5 more no-
tably than that with ε increasing from 0.5 to 0.9. This finding
indicates that a large amount of noise is required to obtain a

(a) AOL (b) Retail

(c) UCI Adult (d) TPC-E

Fig. 4. (µ, η)-usefulness in different datasets

(a) AOL (b) Retail

(c) UCI Adult (d) TPC-E

Fig. 5. MSEs in different datasets

strong privacy guarantee. CSM presents a comparatively stable
utility when ε exceeds 0.5 and accordingly indicates that CSM
maintains a high-level data utility while satisfying the expected
privacy requirement of individuals.

F. Scalability of CSM

We finally demonstrate the scalability and efficiency of
CSM. Fig. 6 illustrates the average running time (ART) of
CSM for the two types of queries with the domain size
N varying from 128 to 8192 and the number of queries
Q varying from 64 to 256. Roughly, the logarithmic scale
of the ART of CSM increases linearly with the logarithmic
scale of the domain size. In all experimental scenarios, CSM
always terminates within 17 min for each experiment, which
is sufficient for achieving adequate query result accuracy.
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Fig. 6. MSEs in different datasets

VI. CONCLUSIONS

This article presents the compressed sensing mechanism
(CSM), an optimization framework that addresses the chal-
lenges in differentially private high-dimensional data publica-
tion. It can minimize the overall error of query results under
ε-differential privacy by injecting the minimum amount of
noise into the compressed data with CS. Extensive experiments
demonstrate that CSM significantly outperforms other state-
of-art differentially private mechanisms for high-dimensional
data publication by orders of magnitude.

The next step is to extend this work to correlated datasets
with high dimensionality and large domain sizes. Given that
data correlations distinctly result in high-complexity privacy-
preserving mechanisms, particularly on high-dimensional
datasets with large domain sizes, an inappropriate data process
may generate unacceptable computation overhead. In addition,
we will extend CSM to (ε, δ)-differential privacy.
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