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Adaptive microservice scaling for elastic
applications

Nathan Cruz Coulson, Stelios Sotiriadis and Nik Bessis

Abstract—Today, Internet users expect web applications to be
fast, performant and always available. With the emergence of
Internet of Things, data collection and the analysis of streams
have become more and more challenging. Behind the scenes,
application owners and cloud service providers work to meet
these expectations, yet, the problem of how to most effectively
and efficiently auto-scale a web application to optimise for
performance whilst reducing costs and energy usage is still a
challenge. In particular, this problem has new relevance due
to the continued rise of Internet of Things and microservice
based architectures. A key concern, that is often not addressed
by current auto-scaling systems, is the decision on which mi-
croservice to scale in order to increase performance. Our aim is
to design a prototype auto-scaling system for microservice based
web applications which can learn from past service experience.
The contributions of the work can be divided into two parts
(a) developing a pipeline for microservice auto-scaling and (b)
evaluating a hybrid sequence and supervised learning model for
recommending scaling actions. The pipeline has proven to be
an effective platform for exploring auto-scaling solutions, as we
will demonstrate through the evaluation of our proposed hybrid
model. The results of hybrid model show the merit of using a
supervised model to identify which microservices should be scaled
up more.

Index Terms—Cloud computing, load balancing, microservices

I. INTRODUCTION

IT is well established that the related trends of rising Internet
of Things (IoT) and smartphone use [1], the ubiquity of

cloud computing [2], and the proliferation of digital content
and services have made the web application a staple in the
everyday lives of billions of people. [3]. The advent of cloud
computing and elastic web application architecture has allowed
application owners to manage the ”busty” and ”unpredictable”
workloads which are inherent in internet based services [4]
by provisioning or removing computing resources according
to demand in order to maximise performance (or minimise the
so-called service level agreement violations) while at the same
time reducing costs [5].

The most widely adopted elastic web application paradigm
involves splitting the application into different logical tiers,
including (a) the user presentation or web server tier, (b) the
business logic tier and (c) the database tier [4], [6]. Following
the standard monolithic architecture style, the business logic
tier would be able to process a wide range of different requests,
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or in other words, it offers a range of services within the scope
of the application [7], [8].

The elasticity of this multi-tier monolithic architecture is
achieved by utilising a load balancer to receive and distribute
HTTP web requests between a group of identical application
instances (called clusters or availability groups). The applica-
tion instances would normally consist of a combined user pre-
sentation and business logic layer hosted on a Virtual Machine
(VM) [5]. A ”horizontal” auto-scaling system would determine
if the application needed to add (scale-out) or remove (scale-
in) an instance in order to maintain performance or reduce
costs. It is also possible to reconfigure VMs by adding (scale-
up) or removing (scale-down) computing resources [9]. This
work focus on the more widely used horizontal auto-scaling
systems (henceforth just auto-scaling systems).

In recent years there has been a movement towards a
more distributed and service-orientated application architec-
ture style which involves breaking complex applications down
into logically distinct and complementary microservices [10].
These microservices can be full stack applications with a
dedicated data persistence tier or they can be stateless [8]. The
microservices architecture brings significant potential benefits
in terms of development and deployment agility, scalability
and robustness as demonstrated by its successful adoption
by many leading technology companies including Netflix,
Google, and Amazon [11]. However, the increased complexity
inherent in microservices architecture also presents us with a
new set of challenges with regards to how to most effectively
and efficiently auto-scale such an application. A key question
with regards to auto-scaling such applications, given that
nodes are heterogenous in a microservices architecture, is
”which microservice should be scaled?”. This work focuses
on the development of a solution to allow autoscaling of
microservices in an efficient way.

In this work we work towards these challenges, and we
focus on developing an autoscaling system for microservice
architectures. In the general case, an auto-scaling system
would respond to current (”reactive”) or predicted (”proac-
tive”) changes in workload or resource utilisation by adding
or removing applications instances (”horizontal scaling”) or
computing resources like CPU cores (”vertical scaling”) as
required to meet the SLAs [6], [12], [13]. For example, ”reac-
tive” threshold-based rules are the most commonly deployed
solution by Cloud Service Providers (CSPs) like AWS, Azure
and Google Cloud. In such a system, the workload or resource
utilisation metrics of the web application are monitored and
scaling actions are taken when those metrics breach or fall
below certain user-defined thresholds [5], [6], [14].

In the context of single or multi-tier monolithic application
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the question of ”What to scale?” is typically self-evident; an
application instance of the user-presentation and/or business
logic tier hosted by a VM. This is because, as per the
monolithic architecture style, most of the application logic and
processes occur in this tier. It is also relatively straightforward
to replicate identical instances of this tier on-demand because
they are normally stateless with regards to processing requests.
This node homogeneity, together with load balancing, is what
allows a web application to grow ”horizontally” by adding
new instances to a cluster in response to increased demand
[15], [16], [17]. In a microservices context the picture is more
complicated, there could be dozens of separately deployed
microservices which are unevenly stressed by workloads [18].

The aim of this work is to contribute to the relatively new
area of microservice based web application scaling by creating
a predictive auto-scaling system which addresses the question
of ”What to scale?” as well as ”When and how to scale?”.
Machine learning, in the context of auto-scaling applications,
is typically focused on the prediction of future application
load. If trends and spikes in load can be predicted through a
time series machine learning technique like a Long Short Term
Memory (LSTM) neural network, then the scaling system
can react proactively and provision resources ahead of time.
The same logic applies for predicting low load and thereby
reducing resources to save energy and costs [19].

II. LITERATURE REVIEW

There has been a significant amount of research done on
how to most effectively and efficiently auto-scale web appli-
cations. This area has been extensively studied because of the
sheer scale and importance of web applications in this current
cloud powered era [1]. Much of the research has focused on
the questions of ”When to scale?” and ”How to scale?” but not
so much on ”What to scale?”. As we have mentioned in the
introduction, the primary reason for this is that most studies
take a load balanced multi-tier web application architecture as
the model and a monolithic multi-service business logic layer,
hosted on a VM or a container, as the object of the scaling
decision [2], [5], [20], [21], [22]. In contrast, our work focuses
on the emerging research area of microservice based web
application scaling. The following sections present a literature
review analysis on (a) auto-scaling multi-tier web applications,
(b) time series analysis and machine learning approaches and
(c) auto-scaling microservice based web applications, that are
essential aspects of our work.

A. Auto-scaling multi-tier web applications

Threshold-based auto-scaling methods are the industry stan-
dard due in large part to their simplicity. The application
owner sets arbitrary scaling thresholds based on a particular
metric, usually CPU or request rate, if the average value in a
cluster exceeds or falls below a threshold for a given amount
of time, then a scaling decision is executed. Many authors
have commented on the advantages and disadvantages of this
approach [14], [5], [20], [6]. One of the main issues is that,
despite appearing simple, to set the right threshold requires a
deep knowledge of how the application operates [21]. Another

key issue is that due to the inherently ”reactive” nature of the
threshold-based approach and the fact that any scaling action
has some non-trivial delay attached to it (time-to-scale or TTS)
it is likely that the performance of the application will degrade
while the additional resources are being provisioned [22].

In their survey papers exploring application auto-scaling
both [5] and [2] identified the common usage of the Monitor,
Analyse, Plan and Execute (MAPE) pattern in the approaches
of several authors, so it is a useful way to frame our discus-
sions. In the monitoring phase of an auto-scaling system a
decision must be taken beforehand about what data to collect
and from where. The work of [2] categorised these metrics into
low-level (CPU, memory, disk I/O), high-level (request rate,
average response time, throughput), and hybrid (a combination
of both) [2]. Typically, these metrics would be collected from
the object of the scaling discussion which in the context of
a multi-tier web application is usually the business logic tier
[5]. The most common metrics used are CPU utilisation as
a general measure of the processing capacity of an instance
cluster and the undifferentiated request rate per second as
a measure of relative load [5], [2]. These general metrics
can work well under the assumptions that (a) on average all
requests place the same level of load on a system and (b) all
requests place this load on the same component of the system.

In [16] the authors note the significant difference in resource
utilisation between static and dynamic web page requests from
an efficient load balancing perspective. The literature around
microservices also suggests that dealing with highly differ-
entiated workloads, which can stress different microservices,
is a challenge [23], [18]. If we hope to accurately predict
the performance of a microservice based web application it is
therefore likely that we need to take a ”content aware” strategy
similar to that used in [16] for smart load balancing and in
[24] for web server performance prediction. It is likely that
we would take a similar data collection approach to Peng
et al by collecting and categorising requests by type and
number received in a given time period [24]. The analysis
phase is where we find the greatest variation between auto-
scaling approaches. Lorido et al categorised these approaches
into five groups [5] that include (a) threshold-based rules, (b)
reinforcement learning, (c) queuing theory, (d) control theory
and (e) time series analysis.

Threshold-based rules have been discussed already as set-
ting the standard benchmark for simple auto scaling. We will
not discuss reinforcement learning in this proposal but it is
worth noting that due to the long training times this method
is unlikely to be favoured in production environments. Queu-
ing and control theory approaches will also not be directly
addressed in this proposal however we can note that they do
provide powerful mathematical models which do seem suitable
for certain auto-scaling scenarios, however they can be difficult
to generalise across different systems [5]. We will focus on
time series analysis and machine learning approaches in a
separate section as this is the type of analysis that we will
utilise in our work.
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B. Time series analysis and machine learning approaches

The most common time series analysis techniques, that
are applied to predicting future values for workloads or
resource utilisation, belong to the Auto-Regressive (AR),
Moving-Average (MA) family of methods which include
ARMA (Auto-Regressive Moving Average) and ARIMA
(Auto-Regressive Integrated Moving Average) [5], [14], [25],
[4], [20]. Lorido gives a good theoretical overview of these
techniques in [5] and how different authors have applied them
to the prediction of application or resource level metrics.
Techniques like Exponential smoothing (ES) are similar in
that they also fall under the category of univariate analysis
using past values to predict future values with some error [5].
Broadly speaking, these techniques have performed well when
applied to predicting a single variable based on a relatively
small historical window [25], [4], [20].

The relative simplicity of this approach is one reason why
it has been successful in the context of a multi-tier monolithic
web application. If we are trying to predict the behaviour of a
complex interconnected system, for example a microservices
based web application, then we would need a technique
which can handle greater dimensionality and non-linearity
[26]. Techniques based on Recurrent Neural Networks (RNNs)
offer these capabilities and are designed to learn complex
patterns from a time series dataset. Furthermore, RNN-LSTM
(Recurrent Neural Network with Long Short Term Memory)
models have also demonstrated the ability to learn effectively
from long term as well as short term patterns in the data.

There are many variations of RNN based models such as
the Bidirectional Long Short Term Memory (BILSTM) model
used by Tang et al in [26] or the Deep Recurrent Neural
Network (DRNN) used by Peng et al in [24]. These models
attempt to capture relevant temporal and multivariate patterns
in the data the authors choose to collect. We have chosen to
focus our attention on RNN models in part due to the range of
network architectures and hyper-parameters we can tune for
our dataset. One of the key challenges for our work is to find
a model that can best capture the important relationships in
our dataset while remaining generalisable and avoiding issues
around overfitting. We are encouraged that in studies like [24]
RNN models have been used to accurately predict web server
performance using a similar dataset to the one we plan to
use: NGINX request logs. It is also promising that another
related problem, that of predicting container load, has been
successfully tackled with a BI-LSTM model [26].

C. Auto-scaling microservice based web applications

As is noted in [2] the work on service-based architec-
tures is still at an early stage despite the rapid adoption
of microservices by tech companies that need to operate
at scale. In [18] the authors explicitly address the question
of ”What to scale?” in a complex microservices context by
employing queuing and graph theory to dynamically model the
relationships between microservices. The research carried out
in [23] applies a variety of time series analysis and machine
learning techniques to a microservices workload to predict
future resource utilisation.

In this work we build on the early work done on auto-
scaling microservices and seek to extend it by looking at how
request differentiation as demonstrated in [24] can help use to
decide which microservice to scale and when. In deciding on
a methodology, we will apply the findings of the currently
available research to address some of the potential gaps
in the microservice auto-scaling literature. Specifically, we
will avoid the relatively targeted and rigid analytical models
demonstrated in [18] but using RNN based techniques to
capture long term patterns.

III. MICROSERVICE AUTO-SCALING PIPELINE

In our work we developed a prototype system to support
microservice based web application scaling to execute a vari-
ety of auto-scaling experiments. The requirements for the web
application were as follows:

• The application must accept a range of HTTP requests
(from a fixed set) and deliver a response.

• The application must consist of several microservices,
each with a distinct function which stresses the under-
lying resources to a greater or lesser degree.

• In response to an external HTTP request the application
should make internal HTTP requests to the required
microservices.

• The application should be scalable on a the microservice
level, for example we should be able to scale up one
microservice but not the others.

• The application must record all external HTTP requests
and log the request response time.

• The application should be simple to configure and deploy
in an agile manner.

For the web app stack we used the Flask web framework for
microservice and API development. For example, this request:
http://host/2/3-2-4-2/45 is received by App 1 (all requests go
through App 1 first) and then the integer parameter 42 is
passed to each of the apps in the path in order: 2, 3, 2, 4,
2. Each time the requests hits a microservices the specific
functions are carried out on the input integer and the output is
passed to the next microservice. The application is structured
in such as way as to make it very straightforward to change
any of the application functions or add new microservices, for
example one that queries a database, if that was required by a
different research scenario. Upon activation, the microservice
functions execute one of a range of operations which are
designed to utilise resources in different ways which are
covered below.

• App 1 is the simplest microservice. Like all the microser-
vices, the root domain returns a hello world statement,
what makes it unique is that all requests are sent from
the NGINX reverse proxy server to App 1 first and then
the request is routed to the next microservice specified in
the url.

• App 2 generates a list of random numbers five times
the size of the input integer and then sorts it using the
built in Python sort function which utilises the Tim sort
algorithm. The function returns a random number from
that list.
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• App 3 is similar to App 2 but uses an implementation of
the quick sort algorithm to sort the list.

• App 4 makes a request to an open API
(http://numbersapi.com) using the input number as
a parameter. Then returns the length of the response text
multiplied by 12.

We use NGINX for its reverse proxy capabilities. An NG-
INX instance receives and logs the incoming requests before
passing them on to App 1. Then, it records the response time
once the request comes back to be passed on to the client. We
used Docker and Docker Swarm as our container technologies.
Each microservice was deployed as a Docker ”service” and
connected on a common network. Each service can contain
one or more containers. Requests received by the service are
then load balanced, with Ingress, between the containers in
that service. The configuration of these connected services was
defined as a Docker ”stack”. This stack could be said to be
the top level microservice based application in deployment.
This setup, using Docker Swarm, allows us to deploy the
microservice application on any machine with Docker installed
and define the starting state i.e. App 1 = 2 containers, App 4 =
3 containers and so on. Furthermore, through the Docker API
we can manually, or automatically issue commands to take
scaling actions on an already deployed application i.e. scale
App 3 = 4 containers.

The following describes a simple microservice architecture
and the flow of events.

• A HTTP request is sent from a client to the microservice
VM: http://host/3/2-4/42

• The request is received by the NGINX container, it is
logged and then passed on to Microservice 1

• Microservice 1 parses the request and then passes the re-
quest to the next microservice in the chain: microservice
3

• Microservice 3 parses the request and then carries out
it’s functions on the input parameter, it then passes the
output to the next microservice: microservice 2

• Microservice 2 parses the request and then carries out
it’s functions on the input parameter, it then passes the
output to the next microservice: microservice 4

• Microservice 4 parses the request and then carries out it’s
functions on the input parameter, including a call to an
external API, it then passes the output response back to
NGINX

• The NGINX container received the processed request and
passes on the response to the client. The total time taken
to process this request is recorded in the NGINX logs.
In each instance that a request is received by a Docker
service, that service is load balancing between 1 or more
containers which are running the actual microservice.

Alongside creating the web application we also required a
limited request set which stressed different microservices in
different ways. Due to the way we designed our application,
it will accept any url of the form:

*host-ip-domain*/*appX*/*appX*-*appX*-appX*-
...*appXn/*integer-value*

It will be transparent from the URL text which microser-

vices will be stressed by the request (see Flask section above).
However this is usually not the case, the participation of
microservices in servicing a request can be entirely opaque to
the user. We will not know which microservices are stressed
by a request and so we will not encode this information in
the model. Instead we will one-hot-encode the requests. In
order for this to work we needed to generate a request pool
with subsets of requests that are ”biased” towards certain
microservices. This is because we need to create a sequence
pattern for the prediction algorithm to learn. We achieved this
by creating a simple function that generated valid URLs but
with some bias towards one or more microservices.

To simulate the HTTP request workload we used Locust.io,
which is a high performance configurable load testing tool
written in Python. The Locust.io tool allowed us to simulate
HTTP traffic to the web application. We were able to specify
the number of concurrent users and how often requests would
be made. This was kept constant in order to focus on the
question of which microservice was being stressed more by
changing request mixes. The Locust.io framework allowed us
to easily create functions which randomly picked from our
biased request subsets. By changing the ratio in which the
Locust script picked which HTTP request to make we were
able to ”bias” the traffic for a specific period toward one or
more microservices.

Once we had the web application deployed on one VM and
the locust application, equipped with a bias url list, on another
VM we were able to start our experiments. Our synthetic
data would need to meet certain requirements to test the
auto-scaler system’s predictive capabilities. The data would
have to contain some short and long term request sequence
patterns. We were able to achieve the short term sequence
pattern through the use of the URL bias as explained above.
For example, during the first run (the first line in the table
screenshot), the first 219,358 requests were biased towards
microservice 4. This means that a predictive model should
learn that certain URLs are more likely than others, given
the last 1000 requests seem to be biased towards this subset.
The long term pattern was achieved by repeating the same
pattern of bias: from 2 to 3 to 4 to 2, and so on, through
several cycles. If the request mix prediction model is able to
predict that certain periods of bias follow others this should
be reflected in predictions.

Once the log files were in place we developed an extraction
and cleaning method which transformed this data into our
experimental dataset with the following features.

• Request response time (resp time): the time in seconds,
as a float, that it takes for a request to be passed to the
microservice app and then return to the NGINX reverse
proxy server.

• Byte sent (bytes sent): the number of bytes sent in the
request as an integer.

• HTTP response code (resp code): the response code of
the specific request as a string i.e. 200 is ”successful”.

• URL (url): the url of the request as a string i.e. 2/3-2-4/45
• Number of containers in each microservice cluster

(app X container): four integer features denoting the
container allocation in each microservice cluster.
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• Timestamp of the event.

IV. EXPLORATORY DATA ANALYSIS: VISUALISING
PATTERNS IN LOG DATA

According to the previous section, the dataset size is
4,483,537 rows (requests) and 9 features. The key feature
of interest is request response time. We explored the overall
distribution in the dataset through a histogram. Figure 1,
presents the response time distribution with App 2 scaled 3X.
The mean of 2 scaling time is 17.7 seconds. Figure 2, presents
the response time distribution with App 3 scaled 3X. The
mean of 3 scaling time is 8.4 seconds. Figure 3, presents
the response time distribution with App 4 scaled 3X. The
mean of 4 scaling time is 17.8 seconds. Figure 4 presents
the response time distribution with all Apps scaled 3X. The
mean of all Apps scaling time is 10.9 seconds

Fig. 1: Histogram: Distribution across requests where App 2
was scaled up

Fig. 2: Histogram: Distribution across requests where App 3
was scaled up

We can observe the following findings:
• As we can observe, it seems likely from this initial

analysis that App 3 is a significant bottleneck within the
microservice. We can see this because when App 3 is
scaled the mean response time drops by over 50% and the
distribution definitively skews to the lower range with the
number of requests in the 60 second range significantly
dropping.

• When the other Apps are scaled without scaling App
3 the result is a higher response time. Interestingly, the

average request response time when all Apps were scaled
is actually higher than when only App 3 is scaled.

• This could be explained by the fact that there are less
bare metal resources available to the App 3 containers
due to overcrowding on the VM.

Fig. 3: Histogram: Distribution across requests where App 4
was scaled up

Fig. 4: Histogram: Distribution across requests where all Apps
were scaled up

V. AUTO-SCALING RECOMMENDATION SYSTEM

As discussed in literature review section, this work employs
a stacked LSTM model. In particular, we want to accurately
predict the composition or ratio of the next n requests in
order to recommend the appropriate scaling action. Given this
requirement, it is not actually important that our algorithm
predicts the next request with a great degree of accuracy,
what we are interested in is the composition of the next n
requests. As with any sequence or time-series problem the key
inputs are the previous time-steps. The key question for us is
how many time-steps should we include in the input vector?
The ideal answer to this question may vary from scenario to
scenario given the temporal structure of the data. In our case
we are focusing on a proof-of-concept system and we have a
good idea of the temporal structure due to the dataset being
synthetic. This, together with considering resource constraints
(the more timesteps are included the more computationally
expensive training becomes), lead us to decide to fix the
number of time-steps to 1000 requests.

In order to feed our request sequence into the model we
have to first encode it in some numerical fashion. We chose to
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create one-hot-encoded variables for each individual request,
so a total of 129 features. Our output variable, the request mix
we are trying to predict, will be a representation of the next n
requests. Since we are using this to make a scaling decision,
we are more interested in an overall pattern, or bias of, the
requests towards stressing one or more microservices so the
order of requests within the subset is not important to us.

The final step of the preprocessing stage is to split into
training and test sets by splitting the odd and even requests.
The upside of this strategy was that I could be relatively sure
that the distribution of requests in both the training and test
sets were very similar. The downside is that the model we train
may not be as robust on unseen data due to the potential for
data leakage. In a real world case we would recommend that
data is split by a logical temporal structure in order to preserve
distributions in training and test sets, i.e. four full weeks with
seasonal effects in the training set and two full weeks in the
test set. This would make the model more generalisable across
unseen, but still similarly distributed data.

The aim of our model is to predict a vector of real numbers,
the scaled cumulative sum of the next 250 requests, based an
input of the last 1000 requests as a sequence. This can be
described as a regression problem which seeks to minimise
the Mean Absolute Error (MAE) between the predicted and
actual request mix vector. For this reason we decide to use
MAE as the primary loss function. However we were not just
interested in whether or not the model was able to predict
the exact request mix by url. Due to the way we generated
the dataset, there are subsets of urls which are more likely to
appear together during certain periods, i.e. when we activated
the Locust script with a bias towards the subset of requests
which stressed microservice 3 more than the others.

With this is mind, we wanted to have another metric which
focused on the model’s ability to predict the bias of the request
mix as a whole. The way we did this was to create a set
of functions (see appendix Z) which summed the number of
requests for each bias in the predicted vector and compared it
to the actual bias in the observed vector. This method would
reward the model if it got close to the general bias of the
request set even if the exact request predictions were often
wrong. There are a large number of hyperparameters that one
can tune for a stacked LSTM model in Keras. However, given
our time and resource limitation we chose to focus on key
model architecture and training hyperparameters in order to
get a decent, if not optimal, model. We created a grid search
method which we ran over the following hyperparameters,
including (a) optimizers (Adam at lr = 0.05, 0.01, 0.001), (b)
epochs (1,2,4,8,10), (c) batches (64, 128), (d) number of units
(50, 75, 125) and (e) number of hidden layers (2,3,4,5,6).

The prediction element of this process can be formulated as
a regression problem. Given that a fairly simple relationship
could exist in the data (more resources for a microservice
during a period of stress for that microservice should intu-
itively reduce the average request response time), a linear
model may be reasonable successful. We selected a range
of, primarily, linear regression models to start our modelling
process including linear regression, ridge regression, lasso
regression, elasticNet and random forest regression. As in the

sequence prediction model we will also use a rolling sum
transformation to obtain two key feature sets: the request mix
over 250 time-steps and the average request response time
over that same period. The other primary feature set that we’ll
include in the predictive model are the resource allocation
features which indicate how many containers are active in
each microservice. In addition to these feature sets, we also
collected a number of other datapoints from the log data such
as (a) bytes sent, HTTP response code and timestamp. At this
point it would be possible to engineer some further features
that may be of interest for example (a) the error rate in last
250 requests (as indicated by HTTP response code) and (b)
the temporal and seasonal features (time of day or day of the
week as indicated by the timestamp).

In the case of error rate, we believe that this could be a
crucial feature for certain use cases i.e. if reducing error rate
is more important to the application owner than decreasing
response time. In fact, error rate could be an output variable
or a predictor. Given these feature selection decisions the
final feature set for the supervised regression modelling table
consisted of: container allocation data (scaled), cumulative
rolling sum of the next 250 requests (scaled), and the output
variable of the average request response time across those
250 requests (scaled). The aim of the supervised regression
model is to predict the average request response time with
the minimal possible error, hence we used the standard Mean
Absolute Error (MAE) as the main evaluation metric. In order
to optimise the model we developed a grid search function
which iterated through four different linear regression models:
vanilla linear regression, ridge, lasso and elastic net. For each
of the regression models we tried a range of hyperparameters.

Once the request mix is predicted our resource allocation
optimisation functions create a dataset of 360 rows in which
the request mix is kept constant but each possible resource
allocation is a separate row. We then use the predict method
on our training supervised model in order to predict average
response request time and finally order by predicted average
request response time. The output was initially a top 10 of
the most recommended configurations but we switched to an
average of the top 50 in order to see variations towards specific
App recommendations over multiple runs.

VI. EXPERIMENTAL ANALYSIS OF THE AUTO-SCALING
SYSTEM COMPONENTS

We deployed the microservice based web application on a
2 Core, 4GB ram Ubuntu VM using Docker Swarm node. We
deployed the Locust.io container which generated the traffic on
an identical VM. We deployed the machine learning pipeline
on another VM (32 cores, 128GB ram) so that the prediction
activities did not take place on the VMs participating in the
experiment. The experiments involved simulating traffic to the
microservice based web application in a pattern that is similar
to the pattern created in the training data but compressed and,
of course, subject to variation due to the randomness used
in the traffic generation process. The number of concurrent
users was 500 and each user made a request, on average,
every 4 seconds. The Locust.io app was activated for 3 X 30
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minute back to back load sessions in which requests were sent
to the microservice based web application. The first session
was biased towards requests which stressed App 2, then App
3 and finally App 4. This pattern roughly follows patterns
present in the training data. Our experiment was broken up
into four stages. During each of the stages the traffic pattern
and duration was kept fixed, as were the underlying resources.
The experiment stages are as follows.

1) All Apps were kept at scale 1 (a single container for
each service) with no scaling intervention taken

2) App 2 was scaled to 3 while the other Apps remained
at scale 1. This was the recommended scaling action

3) App 3 was scaled to 3 while the other Apps remained at
scale 1. This was not the recommended scaling action

4) App 4 was scaled to 3 while the other Apps remained at
scale 1. This was not the recommended scaling action

The result section focuses on the evaluation of each part of
the hybrid model as well as the efficacy of the auto-scaling
system as a whole. We were able to train LSTM models to
a good level of accuracy with regards to the MAE loss and
our custom metric. See top 10 best performing models and the
bottom 10 worst performing models below:

Fig. 5: Top 10 models by app-bias prediction metric

Fig. 6: Bottom 10 models by app-bias prediction metric

A clear pattern that you can see in the results is that models
that were trained over 10 epochs (the maximum) are over
represented in the top 10 models and those that were trained
over 1 epoch and over represented in the bottom 10 models.
Furthermore, the best models seem to favour relatively fewer
units. However we will be careful not to draw conclusive
insights from these results for several reasons:

• Our grid search was not exhaustive and was limited but
resource and time constraints

• Our test train split method is vulnerable to overfitting
• Our main objective is not to build a robust request

prediction model but to capture the pattern in our demo
application and demonstrate the pipeline

With these points in mind we will choose the 10th best
model for our final model since it was trained over only
one epoch and yet has broadly similar performance to other
models that may be more vulnerable to overfitting due to being
retrained over multiple epochs.

The model parameters include Optimizer: Adam (lr=0.05),
Epochs: 1, Batches: 128, Units: 50, Layers: 5. The stacked
LSTM model seemed to perform well with regards to it’s
standalone function of predicting the request mix of the next
250 requests. However, one of the reasons that the pipeline as
a whole might have failed is the choice of prediction window.
It may be that the input and output dimensions need to be
extended in order to capture enough data for the supervised
model to detect the signal in the data.

The next part of the hybrid model pipeline takes the pre-
dicted request mix over the next 250 requests, as predicted by
the LSTM model which looks for patterns over the last 1000
requests, and attempts to predict average request response time
over that predicted period. We were able to find a model
with decent performance, with regards to MAE, using our grid
search method. Each regression model achieved a similar level
of accuracy with regards to MAE and a similar R-Squared
value. See the best models in the table below:

Fig. 7: Request response time regression model metrics

However the relatively decent error score might be indica-
tive of a data set in which there is relatively low variance most
of the time i.e. the majority of requests fall within the 0-10
second band. However there are some requests that take up 60
seconds and are then terminated. If these requests are relatively
well dispersed in the data it is possible that the relationship
that is present between resource allocation and length of these
requests is missed by a model which is trained on a relatively
small rolling window.

In order to verify this window size hypothesis we ran a
supervised model on the entire static dataset but only looking
at the relationship between resource allocation (containers per
microservice) and request response time. We compared the
coefficients and feature importance vectors of the linear and
random forest models run on the rolling window and the static
data. We can see that the 3rd value is relatively large in
magnitude and negative as we might expect from our initial
EDA which indicates App 3 as a bottleneck. However, the
coefficients of some of the request type features are also of a
comparable size and so the predicted request response time via
permuting over resource combinations is likely to be relatively
static unless large numbers are used. As mentioned above we
trained a series of supervised models on just the App resource
allocation features and their ability to predict average request
response time at the per response level.
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The results are as follows, the Static Linear Regression has
a Mean Absolute Error: 0.125, Mean Squared Error: 0.029,
Root Mean Squared Error: 0.171, Coefficients: (App 1) 0.0095
(App 2) 0.02 (App 3) -0.109 (App 4) -0.054. The Static Linear
models coefficients with best models from grid search:

• (App 1) 0.009545 (App 2) 0.020500 (App 3) -0.109313
(App 4) -0.053224

• (App 1) 0.009510 (App 2) 0.020490 (App 3) -0.109238
(App 4) -0.053238

• (App 1) 0.009510 (App 2) 0.020490 (App 3) -0.109238
(App 4) -0.053238

• (App 1) 0.009742 (App 2) 0.017945 (App 3) -0.107034
(App 4) -0.051425

It can be observed that the linear models that App 3, and
to a lesser extent 4, are strongly linked to decreasing response
time. The near zero, yet positive, coefficient values for App 1
and 2 can be interpreted as taking underlying resources away
from the App 3 and 4 containers as they are hosted on the same
VM. The Static Random Forest results include Mean Absolute
Error: 0.123, Mean Squared Error: 0.029, Root Mean Squared
Error: 0.169, Feature importances: (App 1) 0.01699534 (App
2) 0.14090081 (App 3) 0.77981094 (App 3) 0.06229291. The
same pattern, in terms of relative importance, is also present
in the static Random Forest regression model.

VII. CONCLUSION AND NEXT STEPS

In conclusion, this work develops and tests a microservice
auto-scaling research pipeline for modern systems such as fog
and Internet of Things scenarios. Our work offers an evaluation
of a hybrid sequence and supervised learning model and also
provides a useful roadmap for developing, tuning and eval-
uating microservice auto-scaling solutions. The experimental
analaysis demonstrates that performance of different models
when modeling the microservice scaling problem.

VIII. APPENDIX

The App Manager and NGINX config of web app is
available at https://github.com/nathancoulson/app manager.
The other modules of the project are available from the
same repository under the names: prediction app, locust app,
micro-app-*1/2/3/4*-bbk.
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