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Abstract — Cloud computing, despite its inherent 

advantages (e.g., resource efficiency) still faces several 

challenges. The wide area network used to connect the 

cloud to end-users could cause high latency, which may not 

be tolerable for some applications, especially Internet of 

Things (IoT) applications. Fog computing can reduce this 

latency by extending the traditional cloud architecture to 

the edge of the network and by enabling the deployment of 

some application components on fog nodes. Application 

providers use Platform-as-a-Service (PaaS) to provision 

(i.e., develop, deploy, manage, and orchestrate) 

applications in cloud. However, existing PaaS solutions 

(including IoT PaaS) usually focus on cloud and do not 

enable provisioning of applications with components 

spanning cloud and fog. Provisioning such applications 

requires novel functions, such as application graph 

generation, that are absent from existing PaaS. 

Furthermore, several functions offered by existing PaaS 

(e.g., publication/discovery) need to be significantly 

extended in order to fit in a hybrid cloud/fog environment. 

In this paper, we propose a novel architecture for PaaS for 

hybrid cloud/fog system. It is IoT use case-driven, and its 

applications’ components are implemented as Virtual 

Network Functions (VNFs) with execution sequences 

modeled as graphs with sub-structures such as selection 

and loops.  It automates the provisioning of applications 

with components spanning cloud and fog. In addition, it 

enables the discovery of existing cloud and fog nodes and 

generates application graphs. A proof of concept is built 

based on Cloudify open source. Feasibility is demonstrated 

by evaluating its performance when PaaS modules and 

application components are placed in clouds and fogs in 

different geographical locations.  

Keywords— Platform-as-a-Service (PaaS), Internet of 

Things (IoT), Cloud Computing, Fog Computing, Network 

Functions Virtualization (NFV) 

I.  INTRODUCTION  

 Cloud computing [1] comes with several inherent 

capabilities such as scalability, on-demand resource 

allocation, and easy application and services provisioning. It 

comprises three key service models: Infrastructure-as-a-

Service (IaaS), Platform-as-a-Service (PaaS), and Software-

                                                           
 

as-a-Service (SaaS). However, cloud computing still faces 

some challenges. The connectivity between the cloud and the 

end-users is set over the Internet, which may not be suitable 

for a large set of cloud-based applications such as latency-

sensitive Internet of Things (IoT) applications. Well-known 

examples of such latency-sensitive IoT applications include 

but are not limited to disaster management, healthcare, smart 

traffic/accident management, and autonomous driving 

applications. The IoT, according to the definition considered 

by a recent survey [2], is “A global infrastructure for the 

information society enabling advanced services by 

interconnecting (physical and virtual) things based on existing 

and evolving, interoperable information and communication 

technologies”. To address the limitation of cloud computing,  

fog computing [3] has been introduced. It is a novel 

architecture that extends the traditional cloud computing 

architecture to the edge of the network. This extension results 

in a hybrid cloud/fog system.  

Application providers use PaaS to provision (i.e., develop, 

deploy, manage, and orchestrate) applications in the cloud. 

However, existing PaaS solutions (including IoT PaaS 

solutions) usually focus on cloud computing and do not enable 

the provisioning of applications with components spanning 

both cloud and fog, e.g., references [4]-[5]. Provisioning 

applications that span the cloud and fogs requires novel 

functions such as application graph generation, which are 

absent from existing cloud PaaS solutions. These applications 

are composed of a set of components that interact with 

different sub-structures such as sequence, parallel, selection, 

and loop structures [6]. Such applications must be modeled as 

graphs with these sub-structures, and chains need to be created 

between the components to define the relationship between 

them. Furthermore, several functions offered by these existing 

PaaS systems need to be significantly extended in order to fit 

in a hybrid cloud/fog environment. This includes, but is not 

limited to, publication/discovery and migration functions. Fig. 

1-b shows a structured graph representation of an IoT 

application, a smart parade application. The application 

captures the parade footage and derives visible patterns from 

the footage. These patterns are analyzed later to identify 

certain events of interest, such as security threats, ethnicities 

and the ages of the parade participants. Fig. 2-b shows a 

structured graph representation for a smart accident 

management application. This application enables innovative 
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services related to accident management. It decreases the time 

required for an ambulance to reach the scene of an accident 

and suppresses the sounds of sirens which can be stressful for 

the elderly or for infants. With such hybrid cloud/fog systems, 

some of these IoT applications’ components; e.g., latency-

sensitive ones, can be hosted and executed in the fog at the 

edge of the network. These components include the Capture 

Parade Footage in the smart parade application and the 

Collision Detection in the smart accident management 

application. Meanwhile, other components, e.g., those that are 

delay-tolerant and computationally intensive, can be hosted 

and executed in the cloud, such as the Historical Storage and 

the Diagnostics and Prognostics in the smart parade and smart 

accident management applications, respectively.  
In this paper, we propose a novel architecture for a 

Network Functions Virtualization (NFV)-based PaaS for a 

hybrid cloud/fog system. NFV is an emerging paradigm that 

employs virtualization as a key technology. Its goal is to 

decouple network functions from the underlying proprietary 

hardware and run them as software instances on general-

purpose hardware [7][8]. The proposed architecture is IoT use 

case-driven, and its applications’ components are 

implemented as Virtual Network Functions (VNFs) with 

execution sequences modeled as graphs. Therefore, the 

                       
(a)                                                                                                                             (b) 

Fig. 1 Smart parade application                     

(a) Component-based application 

(b) Structured VNF-FG representation  
 

 

 

                         
(a)                                                                                                                              (b) 

Fig.  2 Smart accident management application 

(a) Component-based application 

(b) Structured VNF-FG representation  
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structured graphs representing the applications are VNF 

Forwarding Graphs (VNF-FG); sets of VNFs chained in a 

specific order. The proposed PaaS architecture provides full 

support for the whole provisioning cycle of the application, 

including development, deployment, management, and 

orchestration. It automates the provisioning of the applications 

with components spanning both the cloud and the fog. In 

addition, it enables the discovery of existing cloud and fog 

nodes and generates parses application graphs. Moreover, 

considering a set of interacting components, the proposed 

architecture enables the creating and updating of chains 

between application components to keep the application 

working properly.  

The rest of this paper is organized as follows, Section II 

introduces the two motivating scenarios, describes the 

challenges and discusses the state-of-the-art. The proposed 

high-level architecture is presented in Section III, followed by 

the implementation details, the prototype, and the performance 

results in Section IV. In the last section, we conclude the paper 

and outline future work.  

II. STATE OF THE ART 

A. Motivating Scenarios 

This section introduces two illustrative motivating 

scenarios; a smart parade scenario and a smart accident 

management scenario. These scenarios present in more detail 

the application graphs depicted in Fig. 1 and Fig. 2. The 

scenarios highlight the need for an IoT PaaS solution that 

enables the provisioning of these applications with 

components spanning both cloud and fog. 

1) Smart Parade Scenario 

We consider a smart parade application to illustrate the 

motivation behind our work. The application captures parade 

footage and analyzes it to identify some patterns and/or 

security threats. The application can be composed of several 

components, as shown in Fig. 1-a. For instance, the Capture 

Parade Footage component derives visible patterns from the 

parade footage and sends those patterns to the Parade Footage 

Analyzer for analysis. It can, for instance, identify the clothing 

brands of most of the people, and send advertisements of those 

brands more frequently to those people’s phones. The 

application uses Facial Recognition techniques to identify the 

ethnicities and the ages of the various parade participants. This 

allows advertising companies (through the Advertisement 

Issuer component) to release ads targeting those age groups 

and ethnicities.  

Analyzing the parade footage can also help in identifying 

security threats. For instance, Visible Pattern Deriver can 

detect any sudden scattering of the crowd, which could be an 

indication of an altercation/physical fight between a few 

individuals. Another example is being able to detect if parade 

participants enter any restricted areas. In such cases, the 

suspected patterns can be sent to the Warning Alert Issuer, 

where the latter notifies the respective authorities (Ambulance, 

police, etc.). In addition, all the derived patterns can be sent to 

a Historical Storage system for long term storage and to a 

Results Displayer component to display results relevant to the 

parade (such as the total number of participants). 

2) Smart Accident Management Scenario 

Smart transportation is an important pillar for the quality 

of life of citizens in a city. According to the World Health 

Organization (WHO) 2013, the total number of road traffic 

deaths is 1.24 million per year worldwide, while the number 

of injuries caused by crashes is more than 20 million [9]. 

Accordingly, we consider a smart accident management 

application that offers innovative services related to accident 

management. This application decreases the time needed for 

an ambulance to reach the scene of an accident and omits the 

sounds of sirens, which can be stressful for the elderly and for 

infants.  

This application can be composed of several components, 

as shown in Fig. 2-a. For instance, a Collision Detector can 

detect collisions/crashes and share the location of the crash to 

an Alert Issuer on the nearest Road Side Unit (RSU). The Alert 

Issuer informs the Emergency Planner for real-time 

emergency response management.  

The application can also find the shortest path between the 

accident scene and the emergency vehicle through a Road 

Planner component. This component shares the real-time 

location of the ambulance with a Car Detector & Notifier 

component, which is originally hosted on the RSU closest to 

the ambulance’s initial location. The Car Detector & Notifier 

keeps migrating to RSUs one step ahead of the ambulance in 

order to detect all the cars on the same street and direction as 

the ambulance. It sends a message to cars to move to the right 

so that the ambulance can move easily. The Car Detector & 

Notifier can also coordinate with a Traffic Light Manager 

component to facilitate and accelerate the movement of the 

ambulance. In addition, all the accident data can be sent to a 

Diagnostics & Prognostics component for further analysis and 

long-term storage.  

B. Challenges 

The identified challenges cover the whole IoT 

application’s lifecycle, i.e., development, deployment, 

execution, management, and orchestration. 

1) Development Phase Challenges 

Developing IoT application components that can be 

hosted and executed in either a cloud or a fog is one of the 

major challenges in the application development phase. In the 

smart parade application, the Visible Pattern Deriver is 

latency-sensitive and so it may be better to host it in the fog, 

while the Historical Storage component is delay-tolerant and 

thus can be hosted in the cloud. Similarly, in the smart accident 

management application, the Collision Detector can be hosted 

in the fog, while the Diagnostics & Prognostics component 

can be hosted in the cloud. 

Generating application graphs pose another challenge. 

The main reason is that the application is composed of a set of 

interacting components that can be executed in sequence, 
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parallel, selection, and loop, as in the smart parade scenario. 

Accordingly, they need to be modeled as graphs with these 

substructures. Specifying the applications’ QoS requirements, 

such as the deadline threshold, is another challenge. 

2) Deployment Phase Challenges  

Discovering the cloud and the fog nodes by the PaaS is 

one of the challenges in the deployment phase. The PaaS 

should be aware of existing cloud and fog nodes (joining and 

leaving) with their specifications (e.g., capacity, cost, latency) 

in order to generate efficient placement plans. Determining 

such optimal placement plans for application components, 

given a set of objectives and constraints, is another challenge. 

For instance, in the smart accident management application, 

one may envision placing the Alert Issuer component in the 

fog and the Diagnostics & Prognostics component in the 

cloud.  

3) Execution and Management Phase Challenges  

The PaaS needs to interact with both cloud and fog nodes. 

This is a particular requirement when the PaaS wants to deploy 

and migrate application components between the cloud and the 

fog. Accordingly, ensuring there are appropriate control 

interfaces to enable interoperability at the level of providers 

and architectural modules is one of the challenges in this 

phase. 

Generating and executing the best migration plans (from 

cloud to fog and vice versa, also from fog to fog) is another 

challenge. For instance, in the smart parade scenario, the 

Capture Parade Footage component needs to be migrated 

between fog nodes along with the parade movement. 

Similarly, in the smart accident management scenario, the Car 

Detector & Notifier component needs to be migrated between 

fog nodes (i.e., RSUs) one step in advance of the ambulance 

to clear the way for the ambulance to pass swiftly. 

 Creating and updating chains between the components is 

another challenge. For instance, if a component is migrated to 

another fog node, there is a need to update the chain to keep 

the application working properly. 

4) Orchestration Phase Challenges 

The first challenge in this phase is to have an orchestrator 

in the PaaS for coordination purposes. This is required in order 

to orchestrate the cloud/fog resources and manage the 

application’s lifecycle including deployment, chaining, 

execution, monitoring, and migration. In addition, the 

orchestrator needs to execute different orchestration plans 

such as deployment plans, migration plans, etc. Yet another 

challenge is to parse the application graph and derive the 

chaining plan.  

C. The State-of-the-Art and its Shortcomings 

In this section, we review the relevant literature on 

architectures for hybrid cloud/fog systems. In the first 

subsection, we review the proposed PaaS architectures for 

hybrid cloud/fog environments. We then review the proposed 

architectures for fog systems where the proposed architectures 

are either fog architectures or architectures spread over the fog 

and the cloud. Table I provides a summary of the papers 

reviewed in this section, in which we outline the challenges 

addressed by each paper. 

1) Architectures for PaaS for Hybrid Cloud/Fog Systems 

Relatively few works have proposed PaaS architecture for 

hybrid cloud/fog systems. Yangui et al. [4] propose a PaaS 

architecture for a hybrid cloud/fog system composed of four 

layers: development, deployment, hosting and execution, and 

management. Their proposed architecture is able to specify the 

applications’ QoS requirements using the SLA Manager 

module. It also has appropriate control interfaces to enable 

TABLE I. SUMMARY OF THE RELATED WORKS 
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Yangui et 
al. [4] 

✓ x ✓ x x ✓ ✓ x ✓ x 

Pahl et al. 

[10] 
✓ x x x x x x x ✓ x 

Liyanage 

et al. [5] 
✓ x ✓ ✓ ✓ x x x x x 
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Yigitoglu 

et al. [11] 
✓ x ✓ x ✓ x x x ✓ x 

Saurez et 

al. [12] 
✓ x ✓ ✓ x ✓ ✓ x ✓ x 

Tao et al. 

[14] 
x x x ✓ x ✓ x x x x 

Tuli et al. 

[15] 
✓ x ✓ x ✓ ✓ ✓ x x x 

Donassolo 

et al. [13] 
x x ✓ x ✓ x ✓ x x x 

Liu et al. 

[16] 
✓ x ✓ x ✓ x x x ✓ x 
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interoperability between the PaaS and the fog. For the 

development phase, their proposed architecture provides an 

Integrated Development Environment (IDE) to enable the 

development of application components that can be hosted on 

either the cloud or the fog. However, this IDE uses existing 

application development frameworks to provide developers 

with the tools facilitating such development. Moreover, the 

proposed PaaS does not enable the discovery of newly joining 

or leaving cloud and fog nodes. The existing cloud/fog nodes 

are pre-configured. It also does not enable the optimal 

placement plan for these components to be determined. Pahl 

et al. [10] present a container-based edge cloud PaaS 

architecture. Their proposed architecture enables fog nodes to 

run their applications in containers as well as the orchestration 

of the deployment of those containers. While their proposed 

architecture includes a development layer to provision and 

manage applications over cloud/fog nodes, it does not support 

the discovery of cloud/fog nodes or the generation of the best 

deployment plan. The proposed architecture enables the 

migrating of containers, but it does not enable the best 

migration plans to be generated.   

In contrast to Yangui et al. [4] and Pahl et al. [10], the PaaS 

architecture proposed by Liyanage et al. [5] enables generating 

the best deployment plan by proposing a component 

distribution scheme. In addition, they incorporate a 

publication/discovery mechanism for the underlying node’s 

specifications using Service Description Metadata (SDM). 

Their main contribution is proposing a service-oriented PaaS 

architecture that allows users to deploy and execute their own 

applications on cloud and mist resources. Mist was proposed 

to reduce the burden on the fog. The proposed architecture 

supports resource-aware autonomous service configuration 

and takes the QoS requirements of an application into 

consideration. Although the publication mechanism is based 

on RESTful services, the interfaces between the remaining 

architectural modules are not discussed.  In addition, none of 

the remaining challenges discussed in our paper are addressed 

by this proposed architecture.  

2) Architectures for Fog Systems 

Several works have proposed architectures for fog systems. 

Most of these architectures are designed to span the cloud and 

the fog, such as the architectures proposed by Yigitoglu et al. 

[11] and Saurez et al. [12]; only one architecture is strictly fog 

architecture, the architecture proposed by Donassolo et al. 

[13]. Yigitoglu et al. [11] propose a framework called Foggy 

that facilitates dynamic resource provisioning and automates 

application deployment in fog computing architectures. Foggy 

assumes that IoT devices can host Docker containers. It has 

three-tier architecture: edge devices (e.g., fog nodes), a 

network infrastructure to connect the edge devices to the 

cloud, and cloud services. The focus of the proposed 

framework is on the deployment and the orchestration phases. 

For example, it enables determining an optimal deployment 

plan for an application. However, it does not enable the fog 

nodes to be discovered dynamically and instead assumes a pre-

configured list of the nodes. Moreover, creating chains 

between different application components and migrating 

application components among different nodes are not 

discussed. In the development phase, the developers push their 

containerized application packages and their specifications to 

the orchestrator to ensure the QoS for each application. The 

orchestrator is a central entity and is in charge of monitoring 

the nodes’ resources. 

Saurez et al. [12] propose a framework called Foglet that 

facilitates distributed programming across the resources from 

IoT devices to the cloud. Their proposed framework provides 

communication APIs for discovering fog resources. It also 

enables QoS-aware incremental deployment over different fog 

nodes via containerization. Foglet first places application 

components at the lowest layer, and gradually finds the best 

candidates in upper layers; hence it does not enable any 

determining of the optimal deployment plan. In the proposed 

Foglet framework, fog provides interfaces that allow its 

computing instances to be managed. Migrating application 

components among fog nodes is also supported. The 

orchestrator is responsible for the deployment and migration 

of the application components. However, it is not capable of 

parsing application graphs. In addition, there is no discussion 

on how to create or update chains among different application 

components. Tao et al. [14] propose an architecture called 

Foud that can facilitate the growth of Vehicle to Grid (V2G) 

services and applications. Their proposed architecture is 

organized over three layers: the user layer, which is composed 

of different types of end-users in V2G systems, the service 

layer, which is divided into two sub-layers: cloud and fog, and 

the network layer. The network layer provides an 

interconnection between the cloud and the fog. It basically 

provides protocol, interface, and security techniques. 

Accordingly, interoperability between the two sub-models is 

achieved. However, most of the execution and management 

layer challenges are not discussed, such as migrating 

applications/components between cloud/fog nodes (which is 

critical to support the mobility of end-users and fog nodes), 

and chaining application components. In addition, 

orchestrating the cloud/fog resources and managing 

applications’ lifecycles are not discussed in this proposed 

architecture. Finally, the proposed architecture does not ensure 

the applications’ desired level of QoS.   

Tuli et al. [15] propose a lightweight framework called 

FogBus to integrate IoT, fog, and cloud infrastructures. Their 

proposed framework uses blockchain mechanisms to provide 

secure and authenticated data transfer between IoT devices, 

fog nodes, and cloud data centers. It also enables 

implementing resource management and scheduling policies 

for applications spanning the cloud and the fog. The proposed 

FogBus framework can generate optimal deployment plans 

using the resource manager module. This module identifies the 

requirements of different applications and selects the suitable 

resources to execute the applications accordingly, thereby 

determining optimal application placement plans. This 
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framework is also capable of monitoring the applications to 

ensure the QoS requirements are met. In the case of QoS 

violation, the framework initiates application migration. 

However, creating and updating chains between the 

components is not discussed. The applications’ details are 

maintained in a catalog that contains information about 

different applications, including their operations, resource 

requirements, and dependencies. However, it is not mentioned 

if this catalog supports application graphs with interacting 

components using different substructures. The proposed 

FogBus framework has REST-based interfaces to exchange 

data and share information among different nodes. Hence, it 

enables interoperability. Finally, the proposed framework does 

not enable the discovery of the underlying joining and leaving 

fog nodes.  

Donassolo et al. [13] propose an orchestration framework 

for the automation of the deployment, the scalability 

management, and the migration of component-based IoT 

applications. Their proposed solution offers a general 

centralized framework for holistic fog resource orchestration 

and application orchestration. Using this framework, 

application components can be deployed on either the end-

devices or the fog nodes. It is not discussed if the components 

can be deployed over the cloud nodes. The framework also 

includes a module called a service descriptor that describes the 

application, its components, and the components’ 

requirements. However, it is not clear if this module can 

describe application graphs with interacting components using 

substructures such as selection and parallel. The service 

manager module of the proposed framework can deal with 

dynamic applications and trigger migration actions when 

necessary. However, generating and updating chains between 

the components is not discussed. In addition, having 

appropriate control interfaces to enable interoperability is not 

supported. The proposed framework proposes a strategy to 

determine the optimal placement plans of IoT-based 

application components such that a guaranteed QoS can be 

ensured. However, it is not capable of discovering the 

underlying fog nodes (joining/leaving) when generating the 

placement plan.  

Liu et al. [16] propose a fog computing architecture for 

resource allocation. It considers latency reduction combined 

with reliability, fault tolerance, and privacy. This fog 

computing architecture is elaborated in two parts: computing 

and networking. Four layers are considered for the computing 

part: a hardware platform, a software and virtualization 

platform, functional components, and a fog computing 

applications interface. The networking side is composed of 

three layers: wireless technology, single-hop/ad-hoc 

communications, and a software-defined network concept. 

The authors formulate the resource optimization problem 

considering the QoS in terms of latency and use a genetic 

algorithm to solve it. Hence, this approach supports generating 

the best deployment plan. In addition, they consider both the 

fog and the cloud for hosting application components. The 

proposed architecture includes an orchestration that is 

responsible for analyzing, planning, and executing a task. 

However, none of the remaining challenges presented in our 

paper is addressed by the proposed fog computing 

architecture. 

It should be noted that none of the works presented here 

enable generating or parsing application graphs to model the 

interactions between different components of an application. 

In contrast, we introduce a novel module that can generate 

application graphs as well as model the interactions between 

the different application components. In addition, none of the 

presented papers enable the creating or updating of chains 

between the application components. These chains are 

necessary when, for instance, a component is migrated from 

one node to another, where the chain needs to be updated such 

that the application works properly. Moreover, several 

functions offered by existing PaaS need to be significantly 

extended in order to fit in a hybrid cloud/fog system, such as 

the publication/discovery function proposed in [5] [12] [14]. 

III. PROPOSED IOT PAAS ARCHITECTURE FOR NFV-

BASED HYBRID CLOUD/FOG SYSTEMS 

This section presents a high-level architecture of the 

proposed IoT PaaS for hybrid cloud/fog systems. An overview 

of the designed architecture is first introduced, followed by a 

discussion of the architectural modules and the interfaces. This 

section ends with the presentation of an illustrative sequence 

diagram.  

A. Architecture Overview 

A high-level view of the proposed architecture is depicted 

in Fig. 3. It includes the PaaS, the Cloud Domain(s), and the 

Fog Domain(s). It should be noted that the PaaS could be 

running in the Cloud Domain, in the Fog Domain, or be 

provided by a third party. It can also be distributed across 

several domains. For instance, if we take the smart parade 

application, cameras could be distributed along the roads of 

the parade route to capture parade footage. Accordingly, some 

of the application components (e.g., Capture Parade Footage) 

will be distributed to improve its effectiveness. In such cases, 

it is better to distribute the PaaS across several domains to ease 

the development, the deployment, the management, and the 

orchestration of the application. The IoT PaaS is distributed 

over four layers: An Application Development layer, an 

Application Deployment layer, an Application Execution and 

Management layer, and an Application Orchestration layer.  

We present the modules in each layer of the PaaS and the 

modules in the cloud and fog domains below. This is followed 

by a presentation of the interaction interfaces between the 

different modules and a description of the main procedures. It 

should be noted that some of the modules of the proposed 

architecture are novel, such as the App. Graph Generator and 

the Infrastructure Repository. These modules are depicted in 

yellow in Fig. 3. Some other modules are extended modules 

from traditional PaaS architecture, shown in blue. 
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1) Architectural Modules  

a) Modules in the PaaS 

Application Development Layer 

This layer contains two modules: The App Development 

Tools and APIs and the App Graph Generator. The App. 

Development Tools and APIs module includes different tools 

and APIs to give developers an environment for developing 

IoT applications. It is an extended module of traditional PaaS, 

as it provides developers with tools to facilitate the 

development of applications that span both the cloud and the 

fog. This module can provide standard/industrial development 

tools and APIs such as Eclipse, as well as proprietary 

development tools and APIs. For instance, Google Compute 

Engine binds the developer to a specific platform offered by 

the vendor. An application developed using the Google API 

can only run on a particular environment, and so the 

possibility of extensibility beyond a specific vendor’s support 

is quite limited. In contrast, Cloud Foundry supports 

applications developed in any of the standard development 

tools. The App. Graph Generator is a novel module. It 

generates a graph for an application and a description of each 

component. The graph models the interaction between 

different application components. For instance, in the case of 

a scenario presented in Section II; the smart accident 

management application, the App. Graph Generator will 

generate as output a graph as shown in Fig. 2-b.  

Application Deployment Layer 

This layer includes the Infrastructure Repository, the 

Deployment Engine, and the Publication/Discovery Engine. 

The Infrastructure Repository is a novel module that allows 

the storage of graph-like data. It uses a graph structure with 

nodes, edges, and properties to represent and store data. This 

data includes information about the cloud and the fog nodes, 

such as their capacity and relationships.  

TABLE II. EXAMPLES OF SOME OF THE API OPERATIONS EXPOSED BY THE 

PUBLICATION/DISCOVERY ENGINE TO THE ORCHESTRATOR 

REST 

Resource 
Operation HTTP Action and Resource URI 

List of 

Domains 

Get list of 

domains 
GET:/domains 

List of 

fog nodes 

SUBSCRIBE 

to the 

information 
of a list of 

fog nodes 

POST:/fognodes?fromuri={subscriberuri} 

 

List of 
fog nodes 

Unsubscribe 
from the 

information 

of a list of 
fog nodes 

DELETE:/fognodes?fromuri={subscriberuri} 
 

 

 
 

Fig.  3. High-level architecture of IoT PaaS for hybrid cloud/fog system  
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The Deployment Engine is an extended module of regular 

PaaS in terms of considering the fog infrastructure. It is 

responsible for finding the optimal deployment plan of IoT 

application components over the cloud and fog infrastructures. 

To that end, it runs a placement algorithm, such as the one 

presented in [4]. For instance, let us consider both applications 

presented in Section II, the smart parade application and the 

smart accident management application. They consist of a set 

of interacting components that represent a VNF-FG. The 

placement algorithm presented in [4] finds the near-optimal 

placement of this VNF-FG over the cloud and fog 

infrastructures (i.e., NFVI) such that the application execution 

time and cost are minimized. The Deployment Engine 

instantiates the cloud/fog resources required for hosting and 

executing the applications’ components (e.g., service 

containers) and processes the deployment of the application’s 

components over these resources. The Publication/Discovery 

Engine another extended module, is responsible for the 

publication and discovery functions that locate the cloud 

nodes/resources as well as the fog nodes/resources. 

Accordingly, it constructs a graph structure representing the 

relations among the cloud and the fog nodes.   

Application Execution and Management Layer 

Four modules are included in this layer: The Monitoring 

Engine, the Migration Engine, the Execution Engine, and the 

Cloud/Fog Domain Handler. It should be noted that all the 

modules in this layer are extended modules from a traditional 

PaaS in terms of handling the fog infrastructure. The 

Monitoring Engine monitors the cloud/fog resources to detect 

mobility, bottlenecks, etc. The Migration Engine runs a 

migration algorithm, similar to the one presented in [17]. 

Considering the smart parade application, when the Capture 

Parade Footage component needs to be migrated between the 

fog nodes, the algorithm finds the best node to migrate to, and 

in an acceptable time. The Migration Engine also performs the 

actual migration of application components. The Execution 

Engine is responsible for creating or updating chains between 

application components as well as for executing the 

application components. The Cloud/Fog Domain Handler is 

an extension of the IaaS communication component in 

conventional PaaS architectures. It handles all the 

communications between the PaaS and the cloud and fog 

infrastructures.  

Application Orchestration Layer 

This layer includes the Orchestrator which is in charge of 

orchestrating the cloud/fog resources. It is also an extended 

module of traditional PaaS architecture. It is responsible for 

managing the lifecycle of the application, including 

deployment, chaining, execution, monitoring, and migration. 

It can execute different orchestration plans according to the 

requests it receives, such as a Deployment Orchestration Plan 

and a Migration Orchestration Plan.   

b) Modules in the Cloud/Fog Domains 

The Publication/Discovery Engine is responsible for the 

publication and discovery function of the nodes in its domain. 

The Execution Engine provides the necessary execution 

environment (e.g., containers) for the cloud and fog nodes to 

execute the application components. 

 
Fig.  4. Sequence Diagram for the Orchestrator Deployment Plan (Application deployment procedure) 
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2) Interfaces 

The general principle for designing the interactions 

between the different modules and the different domains is the 

use of the REpresentational State Transfer (REST) 

architectural style. All of the interfaces expose CRUD (i.e., 

Create, Read, Update, and Delete) operations. Table II gives 

some examples of the proposed REST interface for the 

interactions between the Orchestrator and the 

Publication/Discovery Engine modules. This interface defines 

the resources on the Publication/Discovery Engine and allows 

the Orchestrator to (un)subscribe to the information of a list 

of fog nodes hosting application components. It also allows the 

Orchestrator to get the list of cloud/fog domains along with 

their cloud/fog nodes. 

3) Procedures 

The proposed architecture includes the following 

procedures: application development, application deployment, 

and application migration. We describe the application 

deployment and migration procedures below. 

a) Application Deployment  

The process is initiated when the Orchestrator receives a 

request from the Application Development layer to deploy an 

application. This request includes the IoT application 

descriptor (i.e., the application graph and the descriptor of 

each component). The Orchestrator, as part of the 

Deployment Orchestration Plan, first gets the cloud/fog 

infrastructure information from the Infrastructure Repository. 

It then sends the infrastructure information along with the 

application descriptor to the Deployment Engine. The latter 

runs a placement algorithm to generate a deployment plan. 

According to the deployment plan, the Deployment Engine 

instantiates the cloud/fog resources required for hosting and 

executing the application’s components (e.g., service 

containers) and processes the deployment of the application’s 

components over these resources. The Orchestrator then asks 

the Execution Engine to generate a chaining plan. The latter 

chains the application components according to the chaining 

plan and begins executing the components. Once the execution 

of the application is initiated, the Monitoring Engine starts 

monitoring the application components.  

It should be noted that the proposed IoT PaaS architecture 

supports the on-demand discovery of the cloud/fog resources. 

This process is initiated when the Orchestrator receives a 

request from the App Development layer to deploy an 

application. In response, the Orchestrator asks the 

Publication/Discovery Engine to discover the cloud/fog 

resources and then gives that information to the Deployment 

Engine along with the application descriptor to generate a 

deployment plan. 

b) Application Migration 

This process is initiated when the Orchestrator receives a 

request from the Monitoring Engine. The Orchestrator, as part 

of the Migration Orchestration Plan, first processes the request 

and decides which component needs to be migrated. It then 

sends a request to the Migration Engine to generate the best 

migration plan. The Migration Engine runs a migration 

algorithm [17] and finds the best node to migrate the 

application component. Once the component has migrated, the 

Orchestrator sends a request that includes the new node 

hosting the application component to the Monitoring Engine 

so that it can monitor all the application components.   

B. Illustrative Sequence Diagram 

Fig. 4 illustrates a sequence diagram of the interactions of 

different architectural modules during the application 

deployment phase. It is assumed that an initial discovery of 

cloud/fog nodes has already been done and that their 

information is in the Infrastructure Repository. During the 

deployment, the App Graph Generator sends the IoT 

application descriptor to the Orchestrator and requests it to 

deploy the application (Fig. 4, actions 1, 2, and 3). The 

Orchestrator then gets the information about the cloud and fog 

nodes and sends it to the Deployment Engine to generate a 

deployment plan (actions 4 and 5). The Deployment Engine 

generates a deployment plan, instantiates the cloud and fog 

resources, and performs the actual deployment of the 

application components (actions 6 and 7). Once the 

components are deployed, the Orchestrator sends a request to 

the Execution Engine to generate a chaining plan. The latter 

then chains the application components (actions 8 and 9). 

Execution of the application components is then started by the 

Execution Engine (actions 10 and 11). Finally, the 

Orchestrator sends a request to the Monitoring Engine to 

monitor the application components (actions 12 and 13). 

IV. IMPLEMENTATION AND EXPERIMENTATIONS 

A. Implementation Scenario 

The smart parade application presented in Section II.A-1 

was implemented in a prototype.  The application captures 

parade footage and sends it for analytics, in which facial 

recognition techniques are utilized to identify and display each 

person’s ID, age, and gender. In the fog domains, only the 

information received from the cameras in the same fog domain 

is displayed. However, the footage received from all the fog 

domains is displayed in the cloud. In other words, the cloud 

acts as a centralized displayer for the information displayed at 

each fog domain. The reader should note that the identification 

of gender and ages could trigger several value-added services, 

as explained in section II.A-1. It should also be noted that, as 

the parade moves, the application migrates the application 

components residing in the fog, namely the machine learning 

module that is responsible for facial recognition analysis of the 

people captured in the video footage, and the results displayer 

that displays the results of the machine learning module.  

Accordingly, the following application components are 

implemented as VNFs:  

(1) Capture Parade Footage - where the camera manager 

resides; it starts/stops/pulls out footage from the camera;  
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(2) Parade Footage Analyzer - includes a machine learning 

(ML) module that can determine the ID, gender, and the age 

of the participants; and 

(3) Results Displayer - displays the ID, age, and gender for 

each face captured by the cameras. 

 Two IP cameras are used to capture the parade footage. 

One is an Axis M1031 network camera2 with IEEE 802.11b 

and IEEE 802.11g network interface, and the other is an Axis 

M1065 LW Network Camera3 with IEEE 802.11b, IEEE 

802.11g, and IEEE 802.11n network interface. Both support 

wired and wireless communication and each contain a 

microphone and a speaker.  

B. Prototype Implementation 

Fig. 5 shows the PaaS prototype architecture. The 

software architecture of Cloudify is reused for our PaaS 

implementation. As shown in Fig. 5, the Application Graph 

Generator, the Publication/Discovery Engine, the Deployment 

Engine, the Orchestrator, and the Migration Engine are 

implemented, but the Monitoring Engine and the Execution 

Engine modules are not implemented.  

 The parade scenario presented in Section IV.A is 

implemented in this prototype using the Parade Footage 

Analyzer component and the Results Displayer component. 

Cloudify4 is an open-source cloud orchestration 

framework that enables modeling applications and services 

and automates their entire life cycle. An application 

in Cloudify is described in a blueprint and its DSL (Domain 

Specific Language) is based on the TOSCA standard. The 

blueprints are YAML documents and are used to describe how 

the application should be deployed, managed, and automated. 

                                                           
2 /axis.com/en-ca/products/axis-m1031-w 
3 /axis.com/en-ca/products/axis-m1065-lw 

Nodes can be defined in the blueprints. These nodes represent 

the services. Each node has its own properties and some 

unique features. In this prototype, we define the following 

nodes in the blueprints: the graph generator node, the 

deployment node, the publication/discovery node, the 

orchestrator node, and the migration node. Accordingly, using 

the blueprints, Cloudify orchestrates the execution of the App. 

Graph Generator, the Deployment Engine, the 

Publication/Discovery Engine, and the Migration Engine. 

These nodes act as REST clients using the Cloudify REST 

plugin in order to communicate with different architectural 

modules and nodes.  
The Application Graph Generator is implemented using 

Java Swing libraries. We implemented it as a simple Java 

desktop application that generates description files based on 

the user input. This input contains various information about 

the application and the relationship between its components, 

including information about performance requirements of the 

application (e.g., required traffic, memory size, disk size, etc.)      

For the Publication/Discovery Engine, a publication node 

in a Cloudify blueprint acts as a REST client using the 

Cloudify REST plugin. It sends a request to the 

Publication/Discovery Engine in each fog domain in order to 

get the most updated fog nodes’ information. It then stores this 

information in a runtime property inside the Cloudify 

framework.  In the prototype, we assumed that we have one 

cloud node, hence no need to discover it.  

For the Orchestrator, the orchestrator node (a Cloudify 

blueprint) uses the Cloudify REST plugin to communicate 

with different architectural modules and to cooperate among 

4 /cloudify.co/ 

 
Fig.  5. The prototype architecture 
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them. It receives the application description from the App 

Graph Generator. This information includes the interaction 

between different components and the description of each 

component. It also uses the same plugin to receive the 

underlying cloud/fog nodes’ information from the 

Publication/Discovery Engine. It then merges this information 

in the blueprint, and, using the REST plugin of Cloudify, sends 

this information to the Deployment Engine.  
 The Deployment Engine is implemented as a python-

based web application using the python web framework Flask. 

The deployment process relies on a couple of Docker 

containers to launch both the results displayer and the Machine 

Learning module on the target fog node. This node, described 

in a Cloudify blueprint, uses the Cloudify REST plugin to 

receive data (i.e., the application descriptor and the cloud/fog 

nodes information) from the Orchestrator. It then sends a 

request to the Deployment Engine to deploy the application 

components (implemented as VNFs) on the cloud/fog nodes. 

This blueprint uses the Cloudify Fabric plugin to communicate 

with the Deployment Engine. The Fabric plugin enables 

Cloudify to SSH into the respective fog node in order to deploy 

the application component on it. In addition, this blueprint 

contains additional details about the nodes and the scripts 

needed during the deployment process.  

For the Migration Engine, the migration node in the 

Cloudify blueprint sends a request to the Migration Engine 

using the Cloudify REST plugin to start migrating the Capture 

Parade Footage and the Results Displayer components from 

one fog node to another. The Migration Engine is 

implemented using the python web framework Flask, relying 

on Docker containers to migrate both components residing on 

                                                           
5 /data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/ 

fog nodes (i.e., Results Displayer and Parade Footage 

Analyzer) from one fog node to another. 

Fig. 6 demonstrates a prototype view of the 

implementation scenario. The application components are 

implemented as VNFs. The VNFs are packaged in Docker 

containers and are pushed to the DockerHub repository. 

Whenever a VNF needs to be migrated from one fog node to 

another, the Migration Engine sends a request to the first fog 

node to stop the container. The fog node then pushes the 

container image to the DockerHub repository, from which the 

second fog node pulls the container image and runs the 

container.  
For the Parade Footage Analyzer (ML Module) 

component, we used a python application that can directly 

access the IP camera by specifying the camera’s URL and thus 

obtains real-time video streams56. This ML application 

recognizes the age and the gender of the people in front of the 

camera and tags each face with the detected age and gender. 

The photo is taken from the live camera stream by 

the cv2 module (a python library designed to solve computer 

vision problems), which then converts the image to grayscale 

to detect faces. The cropped faces are used later to feed the 

neural network model for prediction purposes.  These results 

are then sent from the Parade Footage Analyzer to the Results 

Displayer via a REST API (Flask-REST app). Flask is a 

lightweight WSGI web application framework, and Flask-

REST is an extension for Flask that adds support for building 

REST APIs. The Results Displayer component is implemented 

using Flask. It exposes a REST API implemented as a Flask 

web app to the Results Displayer (on the cloud) and to the 

Parade Footage Analyzer. 

6 /lology.com/blog/easy-real-time-gender-age-prediction-from-webcam-

video-with-keras/ 

 
Fig.  6. A prototype view of the implementation scenario  
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C. Setup 

The PaaS runs on a machine with dual 2X8-Core 2.50GHz 

Intel Xeon CPU E5-2450v2 and 40GB of memory in one 

setting and it is distributed between the local machine and 

Microsoft Azure cloud in another setting. In a distributed PaaS 

setting, the machines used (in Virginia and Iowa) in Microsoft 

Azure have 4Go of RAM with 2 vCPUs Intel® Xeon® CPU 

E5-2660 0 @ 2.20GHz and Ubuntu Server 18.04. The 

prototype includes one cloud node and two fog nodes.  The 

cloud node is a Virtual Machine (VM) on the Microsoft Azure 

cloud. The VM has an Intel® Xeon® CPU E5-2660 0 @ 

2.20GHz (2 CPUs) with Windows 10 Pro 64-bit. The first fog 

node (i.e., fog node 1) is a laptop with an Intel® Core i7-

2620M 2.70GHZ CPU with 8GB of RAM running Ubuntu 

18.04.2, and the second (i.e., fog node 2) is another laptop with 

an Intel® Core i5-2540M 2.60GHz CPU with 4GB of RAM 

running Ubuntu 18.04.2. 

 

D. Performance Evaluations 

1) Performance Metrics 

Orchestration Latency - measured from the time a 

request to deploy an application to the orchestrator is initiated 

to the time the acknowledgment of orchestration is received. 

Orchestration latency is measured for executing both the 

deployment plan and the migration plan. The deployment plan 

includes the discovery of cloud/fog nodes, application 

deployment, chaining, execution, and monitoring. The 

migration plan includes application migration and monitoring. 

In addition, the orchestration latencies for centralized and 

distributed PaaS are also calculated considering different 

distributions of the PaaS modules. For executing the 

deployment plan and the migration plan, different test cases 

have been considered (i.e., test cases 4, 5, and 6). 

End to End (E2E) delay – measured from the time the 

cameras send footage to the time the cloud Results Displayer 

displays the final results. We vary the placement of the 

components and show the effect of changing the placement.  

2) Test Cases  

The first three test cases consider the PaaS as a 

centralized entity, where all its modules are deployed on a 

local machine in our lab in Montreal. However, they consider 

different distribution of application components. The 

remaining test cases consider a distributed PaaS with a 

different distribution of its modules (mainly the Deployment 

Engine and the Migration Engine). However, they consider 

application components running on the same node.  
Test Case 1 –This test case considers an environment 

composed of two fog nodes and one cloud node. Similar to the 

description of the prototype architecture, the Parade Footage 

Analyzer (ML Module) and the fog’s Results Displayer are 

each deployed on a fog node (i.e., a laptop), while the cloud 

Results Displayer is deployed in the cloud.   

Test Case 2 – This test case considers an environment 

with only two fog nodes. All the components are deployed on 

the fog nodes. The first fog node runs the fog Results 

Displayer while the second fog node runs the cloud Results 

Displayer and the Parade Footage Analyzer. 

Test Case 3 – This test case considers an environment 

with one fog node and one cloud node. The Parade Footage 

Analyzer runs on the fog node, while both Results Displayers 

(the one designed for the fog and the one designed for the 

cloud) run on the cloud. 

Test Case 4 – This test case considers that the Migration 

Engine and the Deployment Engine are deployed on Microsoft 

Azure in Virginia while Cloudify and the remaining PaaS 

modules are deployed on our local machine in Montreal. In 

addition, it considers all the application components are 

initially hosted on Microsoft Azure in Iowa and need to be 

migrated to Microsoft Azure in Virginia.  

Test Case 5 – This test case considers that the Migration 

Engine and the Deployment Engine are deployed on our local 

machines in our lab in Montreal, while Cloudify and the 

remaining PaaS modules are deployed on another machine in 

our local network in Montreal. Application components are 

initially running on Microsoft Azure in Iowa and need to be 

migrated to Microsoft Azure in Virginia, 

Test Case 6 – This last test case considers that the 

Migration Engine is deployed on Microsoft Azure in Virginia 

while Cloudify and the remaining PaaS modules are deployed 

on our local machines in our lab in Montreal. The application 

components are initially hosted on Microsoft Azure in Iowa 

and need the be migrated to Microsoft Azure in Virginia. 

 

3) Results and Discussion  

Orchestration Latency for Executing the Migration 

Plan - Fig. 7 indicates the average latency for executing the 

migration plan in a centralized PaaS over 15 consecutive 

experiments conducted for test case 1. We assume that the fog 

Results Displayer and the Parade Footage Analyzer are 

migrated from fog node 1 to fog node 2. The Linux built-in 

tool time is used again, this time to get the time required to 

execute the migration plan. The average latency for executing 

the migration plan is 36.26 sec.  

Fig. 8 shows the average latency for executing the 

migration plan in a distributed PaaS over 15 consecutive 

experiments for test cases 4, 5, and 6. In test case 4, the 

Migration Engine is close to the destination node (where we 

want to migrate the application components) and far from the 

remaining PaaS modules and the source node hosting the 

application components. In test case 5, the Migration Engine 

is closer to the other PaaS modules and far from the source and 

destination nodes. Finally, in test case 6, the Migration Engine 

is close to the source node and far from the other PaaS modules 

and the destination node. The performance results show that 

the placement of the Migration Engine close to the destination 

node results in lower latency. Although the difference with the 

measurements made for the other test cases (Test Cases 5 and 
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6) was not very big, the PaaS architecture still needs to be 

combined with a placement algorithm for its modules as well 

as the application components in order to obtain optimal 

results in terms of latency.  

Orchestration Latency for Executing the Deployment 

Plan - Fig. 7 also indicates the average latency for executing 

the deployment plan in a centralized PaaS for test case 1, the 

only test case conducted for this experiment. We used the 

built-in Linus tool time to get the time required to execute the 

deployment plan. The results are provided for 15 consecutive 

experiments. The average latency for executing the 

deployment plan was 50.09 sec.   

Fig. 8 indicates the average latency for executing the 

deployment plan in a distributed PaaS over 15 consecutive 

experiments for test cases 4 and 5 only. The same logic for 

migration was followed for deployment, where the 

Deployment Engine was first placed closer to the application 

than the PaaS (test case 4) and then closer to the PaaS modules 

than the application (test case 5). The results obtained were 

similar, which shows that the placement of the deployment 

engine does not influence the execution of the deployment 

plan for our proposed PaaS architecture. 

The procedure for executing the deployment plan 

involves two additional modules than the procedure for 

executing the migration plan, hence, the longer average 

latencies make sense.  More specifically, for deployment, the 

orchestrator has to first communicate with the 

Publication/Discovery Engine and the App. Graph Generator 

before sending a request to the Deployment Engine to deploy 

the application components. However, executing the 

 
Fig.  7. Orchestration latencies for executing the deployment plan and the migration plan for the parade application considering a centralized PaaS 

 

 
Fig.  8. Orchestration latency for executing the deployment plan and the migration plan for the parade application considering a distributed PaaS 
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migration plan only involves sending a request from the 

Orchestrator to the Migration Engine, which proceeds to 

migrate both components (i.e., Capture Parade Footage and 

fog Results Displayer) from one fog node to another. It should 

be noted that for the deployment plan execution, Cloudify 

orchestrator needs to install two blueprints (one for 

Publication/Discovery Engine and the App. Graph Generator, 

and another one for the Deployment Engine). Meanwhile, 

Cloudify only installs one blueprint for the migration process, 

since only a single request to the Migration Engine component 

is needed for this process to take place.  
It should also be noted that the latency for the execution 

of the migration plan considering a distributed PaaS is lower 

than the latency in a centralized PaaS. This lower latency is 

mainly due to the increased networking capabilities of 

Microsoft Azure compared to the local machines in our lab. 

The same conclusion can also be made for the difference 

between the latency for the execution of the deployment plan 

in a centralized and distributed PaaS.  

End to End Latency - Fig. 9 shows the end to end latency 

for executing the implementation scenario presented in 

Section IV.A. This experiment was conducted over the three 

test cases (i.e., test case 1, test case 2, and test case 3). The 

results for 15 consecutive experiments are provided in Fig. 9. 

The latency is measured via timestamps in the ML module of 

the Parade Footage Analyzer and in the cloud’s Results 

Displayer components. The end to end latency can thus be 

obtained by calculating the time difference between these two 

timestamps. The lowest latency is obtained in test case 2, 

where all the components are deployed on the fog nodes. This 

result is as expected; all the fog nodes are in the same LAN 

and hence there is very low latency (9.87 msec). Test case 1 

shows a relatively low latency (67.73 msec), which can be 

explained by the fact that two of the 3 components are 

deployed on the same machine, while only the cloud’s Results 

Displayer is placed in the cloud. Finally, while in test case 3, 

two of the components are deployed on the same node, the fact 

that the ML module (i.e., Parade Footage Analyzer) is the only 

component on the fog node resulted in a very high latency (~ 

1s). These results could mean that the original test case chosen 

for this work (i.e., test case 1) is a good compromise to reduce 

the end-to-end latency. In particular, test case 1 is suitable 

even for more complicated scenarios, where computationally 

intensive components (compared to our simple results 

displayer) must be placed in the cloud.  

V. CONCLUSION  

This paper proposes a novel IoT PaaS architecture for 

NFV-based hybrid cloud/fog systems. The proposed PaaS is 

driven by two IoT scenarios; a smart parade scenario and a 

smart accident management scenario. The proposed PaaS 

architecture automates the provisioning of IoT applications 

over cloud and fog resources. In contrast to the existing IoT 

PaaS solutions, the proposed solution enables the discovery of 

existing cloud and fog nodes as well as the generation of 

application graphs with different sub-structures (e.g., 

selection, parallel). The proposed PaaS architecture is 

implemented as a Proof-of-Concept prototype for a smart 

parade scenario, and a set of experiments are conducted to 

evaluate the feasibility of the architecture. The results show 

the higher latency of executing the deployment plan compared 

to the migration plan. In addition, the end-to-end latency was 

analyzed over three different test cases with a different 

distribution of the application components over the cloud and 

the fog nodes. The performance of distributed and centralized 

PaaS was also analyzed considering the placement of PaaS 

modules in clouds and fogs in different geographical locations. 

The results show that the PaaS needs an efficient placement 

algorithm for its modules as well as for the application 

components in order to obtain optimal results in terms of 

latency. 

 
Fig.  9. End to End latency for executing the smart parade application 
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