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ABSTRACT

This paper presents PreVIous, a methodology to predict the performance of Convolutional Neural
Networks (CNNs) in terms of throughput and energy consumption on vision-enabled devices for
the Internet of Things. CNNs typically constitute a massive computational load for such devices,
which are characterized by scarce hardware resources to be shared among multiple concurrent tasks.
Therefore, it is critical to select the optimal CNN architecture for a particular hardware platform
according to prescribed application requirements. However, the zoo of CNN models is already vast
and rapidly growing. To facilitate a suitable selection, we introduce a prediction framework that
allows to evaluate the performance of CNNs prior to their actual implementation. The proposed
methodology is based on PreVIousNet, a neural network specifically designed to build accurate
per-layer performance predictive models. PreVIousNet incorporates the most usual parameters found
in state-of-the-art network architectures. The resulting predictive models for inference time and
energy have been tested against comprehensive characterizations of seven well-known CNN models
running on two different software frameworks and two different embedded platforms. To the best
of our knowledge, this is the most extensive study in the literature concerning CNN performance
prediction on low-power low-cost devices. The average deviation between predictions and real
measurements is remarkably low, ranging from 3% to 10%. This means state-of-the-art modeling
accuracy. As an additional asset, the fine-grained a priori analysis provided by PreVIous could also
be exploited by neural architecture search engines.
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PreVIous: A Methodology for Prediction of Visual Inference Performance on IoT Devices

1 Introduction

implementation of visual processing at the edge, as opposed to the cloud, presents remarkable advantages such as
reduced latency, more efficient use of bandwidth, and lessened privacy issues. These advantages are instrumental for
boosting the application scenarios of the Internet-of-Things (IoT) paradigm [1, 2]. Edge vision algorithms must provide
enough accuracy for practical deployments while making the most of the limited hardware resources available on
embedded devices. Concerning accuracy, Deep Learning (DL) [3] has recently emerged as the reference framework.
Deep Neural Networks (DNNs) resulting from training on massive datasets accomplish precise visual inference, greatly
improving the performance of classical approaches based on hand-crafted features. However, this accuracy has a cost.
The computational and memory requirements of DNNs are much more demanding than those of classical algorithms [4].
This constitutes a challenge when it comes to incorporating DNN-based inference in the processing flow of IoT devices,
which is already heavy because of other functions related to networking, power management, additional sensors, etc.

The success of DL in enabling practical vision algorithms and unifying the procedure for a number of tasks such
as image recognition, object detection, and pixel segmentation, has prompted research and development at various
levels [5]. At software level, various open-source frameworks, both from academia and industry, are accessible on the
internet; each of them exploits a particular set of libraries and core system functionalities. At architectural level, new
DNN models are ceaselessly reported aiming at enhancing specific aspects, e.g., higher accuracy, faster training, or
shorter inference time. Regarding hardware, the pervasiveness of DNNs is forcing the inclusion of ad-hoc strategies
that exploit different features of neural layers to speed up their processing. Overall, this extensive DL ecosystem is
making the optimal selection of inference components according to prescribed application requirements increasingly
difficult in vision-enabled IoT devices.

To assist in the aforementioned selection, we already proposed a methodology based on benchmarking and a companion
figure of merit in a previous study [6]. However, benchmarking entails a significant and non-scalable effort because of
the complexity and diversity of software libraries, toolchains, DNN models, and hardware platforms. In this paper, we
describe PreVIous, a novel methodology that removes the need of comprehensive benchmarking. This methodology is
based on the single characterization of PreVIousNet, a Convolutional Neural Network (CNN) specifically designed to
encode most of the usual parameters in state-of-the-art DNN architectures for vision. As a result of such characterization
on a particular software framework and hardware device, a prediction model is generated. This model provides a
precise per-layer estimation of the expected performance for any other CNNs to be eventually run on that software-
hardware combination. Seven CNN models on two different software frameworks have been thoroughly characterized
to demonstrate the prediction capacity of PreVIous. Regarding hardware, this study is focused on the multi-core Central
Processing Units (CPUs) available on two different low-power low-cost platforms, but the methodology could be
extended to other types of devices.

The manuscript is organized as follows. Section 2 summarizes related work and sets the context to point out the
contribution of PreVIous to the state of the art. An overview of CNNs is provided in Section 3, where their usual layers
and fundamental characteristics are briefly described. Section 4 elaborates on the main elements defining PreVIous and
how it has been applied in practical terms in this study. The core of PreVIous, i.e., PreVIousNet, is further described in
Section 5. The vast set of experimental results that confirm the modeling capacity of PreVIous is reported in Section 6.
Finally, we draw the most relevant conclusions arising from these results in Section 7.

2 Related Work

As previously mentioned, the implementation of CNNs on resource-constrained devices is a remarkable challenge that
has been addressed through various approaches. The common objective of all of them is to maximize throughput and
inference accuracy while minimizing energy consumption.

Architecture design. Several strategies have been investigated to boost inference performance of CNNs. For instance,
the well-known SqueezeNet model [7] features a massive reduction of parameters with respect to previous models while
still achieving a notable accuracy. Other architectures tailored for embedded devices have also been proposed [8–14].
These models were designed to alleviate their computational burden as a whole. In other words, they were not
specifically adapted for a particular platform. Therefore, their performance significantly varies depending on the host
system [15]. A preliminary evaluation could be conducted by simply comparing the number of operations required for
each network. However, this direct assessment does not usually translate into accurate values of measured performance
metrics, in particular power consumption [16].

Performance benchmarking. To select the optimal CNN according to performance requirements on a particular
platform, recent studies have carried out systematic benchmarking on several hardware systems [6, 17–19]. Notwith-
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standing, benchmarking has a limited scope, considering the rapid evolution and massive number of CNNs, platforms,
and software tools presently available.

Architecture optimization. Manual design of computationally efficient CNNs is time-consuming and requires experi-
ence. Several approaches for network compression have been investigated, ranging from network quantization [20–23]
and channel pruning [24–27] to special network implementations [28–33]. Alternatively, CNN design is currently mov-
ing from manual tuning towards automatic algorithms. Neural Architecture Search (NAS) or sequential model-based
optimization algorithms have been proposed to optimize metrics such as latency, energy, and accuracy on prescribed
platforms [34–44]. The incorporation of specific platform constraints to such automatic approaches involves modeling
how the network architecture relates with the optimization target. Inference performance modeling is highly valuable in
this context.

Performance modeling. Various reported methods aimed at an objective similar to that of PreVIous in terms of
performance prediction. We can classify them according to their particular research focus:

1. Hardware accelerators: to leverage the energy efficiency of CNN accelerators such as Eyeriss [45], an
energy estimation methodology was proposed [46], [47]. It relies on the energy costs of memory accesses
and multiply-accumulate operations (MACs) at each level in the memory hierarchy. This methodology also
includes an energy-aware pruning process for network optimization.

2. GPU-based systems: these platforms usually include power monitor tools, which facilitate modeling per-
formance. On the basis of energy measurements extracted with such tools and taking network metrics and
layer configurations as inputs, machine learning models targeting energy consumption and latency have been
investigated [48–50].

3. Cloud-mobile computing scenarios: characterization of layerwise network performance enables finding the
optimal DNN partition between the cloud and the mobile device while optimizing resources such as energy
consumption, latency, and bandwidth [51–53].

4. Automatic optimization algorithms: modeling is especially valuable to drive the design of highly efficient
convolutional and fully connected layers, thus accelerating optimization algorithms based on latency and
energy metrics [35, 37, 42–44]. Performance models leveraged by these algorithms comprise from simple
look-up tables to more complex machine learning models.

5. Training optimization: to reduce training costs, some works modeled the performance of high-end GPUs
during training [54, 55].

Most of the performance modeling studies mentioned above revolve around high-end systems or energy-demanding
platforms. However, IoT application scenarios clearly benefit from low-cost low-power devices. In addition, the
reported models present limitations. They either focus on particular types of layers or involve an extensive benchmark.
With PreVIous, we have addressed these key points. First, we have worked with inexpensive devices featuring enough
computational power to perform CNN-based inference. Second, the performance models provide fine-grained per-layer
information, covering many different types of layers with the characterization of a single CNN.

All in all, the main contributions of this study are:

• A methodology that allows to evaluate the performance of CNN models accurately layer by layer in terms of
throughput and energy consumption. The CNNs do not need to be actually run to obtain this evaluation, which
is automatically generated from a previously built predictive model.

• A neural network whose characterization enables the construction of the aforementioned prediction model.
This network incorporates a large variety of CNN layers and interconnections between them in order to achieve
fine-grained CNN profiling.

• Rapid identification of layers whose execution time or energy consumption is distinctively higher than others
on a particular software-hardware combination. Such layers would be the first ones to be modified by an
optimization procedure or a NAS engine.

• A broad analysis of CNNs running on different software frameworks and hardware platforms. This analysis,
which has served the purpose of gauging the goodness of the proposed methodology, it is intrinsically valuable
as an extensive set of measured performance metrics.

3 Overview of CNNs

Next, as a basis for subsequent sections, we summarize fundamental aspects of CNNs, including architectural details,
key network metrics, and typical implementation strategies.
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3.1 Common layers

CNN architectures usually comprise a heterogeneity of layers. In most architectures, the first layer is fed with a
3-channel input image, and the network progressively reduces the spatial dimensions (H ×W ) of feature maps (fmaps),
while increasing the number of channels C. Thus, each layer takes a 3D input tensor I, performs operations that involve
a set of learnt weights W, and generates output data O for the next layer. Typical layers included in the majority of
state-of-the-art CNNs, and covered by PreVIousNet, are briefly described below.

• Convolutional (CONV). Input data are convolved with a 4D tensor W composed of N kernels of dimensions
kh × kw × Cin. The n-th kernel W(n), n = 1, ..., N yields the n-th 2D output feature map in which the
activations are obtained from:

Ox,y,n =

Cin∑
c=1

kw∑
i=1

kh∑
j=1

W(n)
i,j,cIx+i,y+j,c. (1)

This convolutional layer requires khkwCinHoutWoutN MACs. In general, learnt biases, denoted by b(n),
are also added to each output, adding HoutWoutN MACs to the computation. The operation of this layer is
illustrated in Fig. 1.

• Fully Connected (FC). These layers are usually located at the end of the network to perform classification on
the extracted feature maps. Similar to classical neural networks, the operating data are arranged in 1D vectors.
A weight factor is applied to each connection between input and output activations. Additional biases can be
added. Generally assuming Nin inputs that yields Nout outputs, a FC layer involves a computational cost of
NinNout MACs.

• Pooling. This type of layer lowers the spatial dimensions of fmaps by applying a simple operation to each
kh × kw patch with a stride s. A total of khkwHoutWoutCout operations – not necessarily MACs – are
performed, with Hout = bHin−kh

s + 1c. Maximum and average are the most usual functions employed to
reduce dimensionality.

• Rectified Linear Unit (ReLU). To introduce non-linearities between layers, various functions are applied,
among which ReLU is the most popular one. It performs the simple operation of selecting the maximum
between each input activation Ii,j,c and 0. This simplicity speeds up the calculation of non-linearities with
respect to activation functions such as sigmoid and tanh. In addition, ReLU is more suitable for rapid training
convergence [56].

• Batch-Normalization (BN). Currently, this is the most popular normalization layer implemented in state-of-
art CNNs for training acceleration. It normalizes activations on the i-th channel in terms of zero-mean and
one-variance across the training batch [57]. Two weights per channel are learnt (scale and shift), and two
operations per activation are performed.

• Concatenation (Concat) of data from multiple layers, usually along the channel dimension, is convenient for
merging branches in the network. For instance, this is the last layer within the Inception module included in a
number of CNNs [58–60]. No mathematical operation is performed, only data reorganization.

• Element-wise Operation (Eltwise). This layer performs element-wise operations such as addition, product,
or maximum on multiple input activations.

Figure 1: Convolutional layers constitute the core operation of CNNs. Each kernel filter – depicted in green – operates
on sliding local regions of the input fmaps – receptive fields in light blue – to produce the corresponding output fmaps.
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• Scale. This layer multiplies each input activation by a factor, thus requiring HWC MACs. Optionally, biases
can be added.

• Softmax is the most notable loss function for classification tasks. It outputs a normalized probability distribu-
tion from a vector of N class predictions by applying the function softmax(Ic) = eIc∑N

p=1 Ip
.

3.2 Intrinsic CNN Metrics

For practical deployment of a network on resource-constrained devices, it is worth considering the following parameters:

1. Accuracy. Once trained on a dataset for a specific application, a CNN provides a particular inference precision.
In this regard, Top-N accuracy and mean Average Precision (mAP) are the most frequently applied metrics to
evaluate classification [61] and detection [62] tasks, respectively.

2. Computational Complexity (#OPs). A widely used metric to measure computational complexity is the
number of floating-point operations required by a network – or, at least, those required by CONV and FC
layers. The overall computational load can be determined by adding up the number of operations per layer –
previously detailed in Section 3.11.

3. Model Size. It refers to the total amount of learnable parameters of a network. The memory footprint may
preclude the execution of certain models on specific platforms.

4. Memory Accesses. In addition to network weights, relevant activations must be kept in memory during
inference. The minimum number of basic memory operations for a layer forward-pass will be2:

#memOPs = n(I) + n(W) + n(O) (2)

where n(X) denotes the number of elements in the tensor X. Thus, for example, n(I) is equal to HinWinCin.

Note that these intrinsic metrics do not directly reflect actual inference performance. However, they provide a preliminary
estimate of the resources required by a network.

3.3 Inference Metrics

Relevant metrics concerning inference performance must be measured during forward-pass:

1. Throughput. Real-time applications rely on processing images at a prescribed frame rate. CNN inference
runtime limits the maximum achievable throughput for the related computer vision algorithm.

2. Energy Consumption. Battery lifetime is one of the most critical constraints on embedded platforms.
Therefore, a key parameter is the total energy demanded by the system during inference.

3.4 CNN implementation strategies

The way in which the network architecture relates with inference metrics is highly dependent on the CNN implemen-
tation. The software libraries underlying a particular framework implement a diversity of optimization strategies to
accelerate matrix multiplication according to the available hardware resources. The most commonly implemented
approach is the so-called unrolled convolution, in which convolutions are performed through image-to-column transfor-
mation (im2col) plus General Matrix-to-Matrix Multiplication (GEMM). Thus, after im2col, convolution receptive fields
are unrolled into columns, whereas filters are unrolled into rows. As a result, the convolution becomes a matrix-to-matrix
product that can be highly-optimized through several libraries such as ATLAS [63], OpenBLAS [64], MKL [65], and
cuBLAS [66]. However, this performance optimization increases the allocated memory owing to the unrolled receptive
fields. This memory overhead must be taken into account in Eq. (2), where n(I) becomes (khkwCin)(HoutWout) for
CONV layers implementing this strategy. Other approaches that have been applied to accelerate matrix multiplication
include Fast Fourier Transform (FFT) [29], Winograd [28], and Strassen [30] algorithms.

1We provide a general estimation on the minimum number of operations required for inference. Ultimately, it will be the specific
interaction between hardware and software in the targeted system that will determine the actual computational complexity.

2This equation is again a plain estimation. The number of memory accesses will ultimately depend on the hardware platform –
memory word size, memory hierarchy, cache size, etc. – and the computational strategy for each operation – partial matrix products,
data access pattern, etc.
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4 PreVIous: a Framework for Modeling and Prediction of Visual Inference Performance

4.1 General Description

The a priori evaluation of CNN performance directly on the basis of network complexity is inaccurate, even when
considering only a specific hardware device [16]. For the sake of more precise and multi-platform modeling, two
important aspects must be stressed:

• Network inference involves numerous types of computational operations and data access patterns. For example,
FC layers include an elevated number of weights, thus requiring a great deal of memory operations, whereas
ReLU layers only perform a simple operation on activations.

• Energy consumption is also highly dependent on the particular characteristics of the layers and how they are
mapped into the underlying hardware resources. For instance, the energy cost of memory access varies up to
two orders of magnitude depending on the considered level within the memory hierarchy [5].

Therefore, we propose to characterize the expected performance of CNN inference through per-layer predictive
models. Not only does it make more sense according to the two aspects just mentioned, but also per-layer performance
assessment is valuable for network architecture design, layer selection, and network compression.

Fig. 2 illustrates PreVIous. Basically, it comprises a first stage where a prediction model is constructed upon the
characterization of PreVIousNet on the selected system, which is defined as a software framework implemented on a
hardware platform. This one-time constructed model is able to predict, in a second stage, the performance of any other
CNN to be run on such a system in terms of runtime and energy. Next, we describe this framework in detail.

4.2 Selected System

PreVIous is agnostic with respect to the software-hardware combination for modeling and prediction. In this study, we
focus on two popular software frameworks deployed on two low-cost hardware platforms. The baseline combination
integrates Caffe [67] and Raspberry Pi (RPi) 3 Model B [68]. This embedded platform (sized 85 × 56 × 20 mm3)
features a Quad Core ARM Cortex-A53 1.2 GHz CPU on a Broadcom BCM2837 System-on-Chip, 1 GB RAM
LPDDR2 at 900 MHz, different network interfaces, and an external micro-SD card to provide non-volatile storage
capacity. The operating system is Raspbian v9.4 Linux Kernel v4.14. All the measurements on this system were taken
after booting in console mode to boost CNN inference performance and reduce energy consumption.

Once confirmed the effectiveness of PreVIous on this baseline case, we extended our analysis by changing both software
and hardware in the selected system. First, we built OpenCV [69] v4.0.1 on the RPi. Second, we built Caffe on a
different hardware platform, namely Odroid-XU4 [70]. This CPU-based embedded system (sized 83× 58× 20 mm)
is more suitable for high-performance IoT applications. Its Exynos 5422 SoC implements the so-called big.LITTLE
heterogeneous technology, arranging its multi-core architecture into two clusters: four “big" Cortex-A15 2 GHz cores

PERFORMANCE MODELING  PERFORMANCE PREDICTION 

Figure 2: General overview of PreVIous. It comprises two stages: 1) performance modeling, where a prediction model
is constructed for the selected system through the characterization of PreVIousNet; 2) performance prediction, where
the performance of any CNN of interest to be run on the selected system is accurately predicted on the basis of the
previously constructed model.
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providing maximum computational performance and four power-efficient “LITTLE" Cortex-A7 1.4 GHz processors.
Odroid-XU4 features 2 GB LPDDR3 RAM at 933 MHz; the operating system is Ubuntu v16.04 Linux Kernel v4.14.
All the measurements were also taken in console mode while running CNNs on the cluster of cores clocked at 2 GHz.
This is the configuration achieving maximum throughput.

4.3 Network Profiling

This step involves the extraction of three sets of measurements during the modeling stage. The first set, i.e., architectural
metrics, is also extracted for network profiling during the performance prediction stage.

1. Architectural Metrics. Simply by parsing the network definition it is possible to extract per-layer architectural
parameters such as input/output dimensions (H,W,C), number of learnt weights, i.e., n(W), kernel sizes
(kh, kw), as well as estimates of computational (#OPs) and memory (#memOPs) requirements.

2. Time Profiling. Each layer composing PreVIousNet is individually run to produce per-layer runtime profiling
through software functions. Specifically, we employed the time.time() Python method to measure the elapsed
time. To ensure accurate empirical measurements, 50 layer executions were averaged.

3. Energy Profiling. The layers of PreVIousNet are also individually characterized in terms of energy consump-
tion. Some embedded platforms incorporate vendor-specific power meter tools to facilitate energy profiling.
Otherwise, a power analyzer must be connected to the power supply pins of the selected system. In our case,
we connected the Keysight N6705C DC power analyzer to the power supply pins of the aforementioned
hardware platforms. As an example, Fig. 3(a) depicts the complete power profiling of All-CNN-C [71], the
simplest among the seven networks characterized to assess the prediction capacity of PreVIous. A total of 50
executions per layer were carried out. The sampling period of the power analyzer was set to the minimum
possible value, i.e., 40.96 µs. For proper identification of the layers, a time interval of 300 ms was established
via software to separate each set of 50 executions. In addition, we used the previously obtained time profiling
to extract the portion of the power signal corresponding with the layer under characterization. For instance,
Fig. 3(b) shows the extracted signal for layer ‘conv2’ of All-CNN-C. Then, the energy consumption for each
layer is obtained by integrating its power signal and averaging over the 50 performed executions.

4.4 Model Construction

After network profiling, linear regression models per type of layer are constructed for both runtime and energy
consumption. In particular, PreVIous generates regression models for the diversity of layers listed in Section 3.1, all
of which are distinctively covered by PreVIousNet, as described in Section 5. Architectural metrics play the role of
predictors for such models. Thus, the performance prediction stage simply consists in parsing the definition of a CNN
of interest to extract its architectural metrics and apply them to the corresponding regression models for its constituent
layers.

For the sake of simplicity and reducing overfitting risk, we focused on linear models. Generally speaking, a linear
regression model aims at finding the best combination of a set of variables x = [x1, x2, ..., xp] to predict the observations
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Figure 3: (a) Power signal provided by a DC power analyzer when carrying out 50 consecutive executions of each layer
of All-CNN-C on the combination RPi-Caffe. A time interval of 300 ms was established via software to separate each
set of executions; (b) Portion of the power signal corresponding to layer ‘conv2’ of All-CNN-C. This extracted signal is
integrated and averaged over the 50 executions to obtain the energy consumption of the layer.
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of a response y with minimum error. Given n observations of such variables and response, {xi, yi}ni=1, the model can
be expressed as:

y = Xw + ε (3)
where X is the n× p matrix of predictor observations, w is the p× 1 vector of adjusted model coefficients, y is the
n× 1 response vector, and ε is the n× 1 error vector. Note that the observations for building the model are encoded by
each row xi of the observation matrix X.

According to this notation, PreVIous produces a regression model for each type of layer in Section 3.1 based exclusively
on architectural metrics (x) to estimate runtime or energy (y). We must point out that the observation set {xi, yi}ni=1
could be obtained by collecting performance data from many different CNNs. However, two undesirable facts arise
from this procedure: (1) the characterization of CNNs is time-consuming and burdensome; (2) different CNNs still
share many layers with similar parameters and therefore their characterization would be redundant. Alternatively, we
propose a simpler and systematic approach to produce the observation set. A single characterization is needed, i.e,
that of PreVIousNet, which is a new CNN that encompasses a large variety of layers and sweeps the most usual layer
parameters, features, and data dimensions. Hence, the architecture design space is comprehensively covered.

To make the most of simple linear regression models, two important points must be taken into account:

• Dimensionality reduction. The higher the number of predictors, the most likely the construction of an overfitted
model. Thus, only variables highly correlated with the target response y must be considered for the model.

• Model regularization. This allows to make predictions less sensitive to a reduced set of observations. In
particular, we apply standardized Ridge regularization in which the coefficients are obtained by minimizing
the following expression:

n∑
i=1

(yi − xiw)2 + λ

p∑
j=1

w2
j = ||y −Xw||2 + λ||w||2 (4)

where λ denotes the regularization tuning parameter for controlling the strength of the Ridge penalty term. We
set this penalty parameter to 1.

Considering these points, we selected n(W),#OPs, and #memOPs as the most meaningful predictors for building
both runtime and energy per-layer regression models. We chose these variables because they presented the highest
correlation in terms of Pearson correlation coefficient when analyzing architectural parameters vs. runtime/energy in our
baseline system, i.e., RPi-Caffe. Indeed, this inherent linear relation supports the decision of applying linear regression
models rather than more complex approaches such as Support Vector Machines, neural networks, or Gaussian process
regression.

5 PreVIousNet

As mentioned in previous sections, PreVIousNet is a full-custom neural network specifically conceived for modeling
the performance of a variety of layers on a selected system. Therefore, it is not applicable for vision inference. Below,
we first summarize common CNN architectural parameters and layer settings contemplated in PreVIousNet. Next, we
describe the designed architecture. Finally, the specific configuration employed for the performance modeling stage of
PreVIous is reported.

5.1 Layer Parameters

Concerning convolutions, PreVIousNet includes both typical settings and special cases of CONV layers implemented
in embedded CNNs:

• Standard CONV. Adjustable settings include:
– Kernel size (kh, kw): conventionally, an odd value is set for both dimensions. Besides, state-of-the-art

CNNs feature small kernel sizes to reduce the computational load.
– Number of kernels N : to expand the channel dimension, N > Cin kernels are normally applied.
– Stride s: in case of strided convolutions, the most common value is s = 2.

• Depthwise CONV. In this type of layer, computation is saved by applying one kernel filter to each input
channel.

• Pointwise CONV. This non-spatial convolution uses 1× 1 kernels. Two variants are possible:
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– Bottleneck. It reduces the computational load of subsequent layers by shrinking the channel dimension,
i.e., Cout < Cin.

– General. It increases the channel dimension without performing spatial operations. This type of layer is
applied either to revert the bottleneck channel-shrinking effect [72] or to build separable convolutions [10].

Concerning other types of layers, only Pooling layers have adjustable (kh, kw, s) parameters. In these layers, the
maximum operation is commonly performed over 2× 2 patches. In addition, some networks employ so-called global
average pooling to replace memory-intensive FC layers. In this particular case, an average operation is performed on
the entire input feature map.

5.2 Architecture

For each layer in a CNN, both input data dimensions and layer parameters determine the computational load and
memory requirements, thus affecting the execution performance. This is the fact that inspired the design of the main
architecture of PreVIousNet, denoted as PreVIousNet-01 in Fig. 4(a). We aimed at covering a wide range of possibilities
within the architecture design space. In this regard, note that:

1. Data dimensions and computational load progressively increase as the network goes deeper – i.e., moving
rightwards in Fig. 4(a) through the levels of the network. The network input dimensions at the first level – H ,
W , and C – are adjustable variables of PreVIousNet.

2. Various layers and parameters are contemplated in parallel branches inserted at each level – vertically displayed
in Fig. 4(a).

Based on these characteristics, PreVIousNet-01 was designed as follows. At each level, a cluster of parallel CONV
layers encompasses the aforementioned strategies: standard convolutions, pointwise, depthwise, and bottlenecks.
Concerning activation layers (BN, Scale, ReLU), they perform their operation on diversely shaped intermediate fmaps
of the network – i.e., at different levels and network branches. Likewise, Pooling layers with varied configurations are
introduced at different levels. Finally, Eltwise and Concat layers operate on equally sized pairs of tensors coming from
previous branches of the network. Overall, PreVIousNet-01 comprises 52 layers: 15 CONV, 7 BN, 7 Scale, 7 ReLU, 6
Pooling, 5 Eltwise, and 5 Concat.

Note that FC and Softmax layers are not included in PreVIousNet-01. These layers deal with a special case of data
structure: 1D vectors instead of 3D tensors. An additional observation is that FC layers consume a notable amount

Figure 4: Macroarchitecture of PreVIousNet [73] used in the modeling stage of PreVIous. Seven types of layers
with different configurations are contemplated by PreVIousNet-01 (a), whereas FC and Softmax layers are covered
by PreVIousNet-02 (b). The network input dimensions at the first level – H , W , and C – are adjustable variables of
PreVIousNet.
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of memory. Therefore, these layers are characterized through a different architecture, i.e., PreVIousNet-02, depicted
in Fig. 4(b). Thus, PreVIousNet comprises two compact specialized networks. In PreVIousNet-02, various clusters
of parallel FC layers deal with input and output vectors featuring diverse sizes. The network input is a 1 × 1× C
vector, where C can be adjusted. Then, various sizes of data are processed by the network layers: either resulting from
applying an expansion factor to the input (2C, 4C, etc.), or using customized vector lengths Ki. For instance, K1 = 10
and K2 = 1000 can be used as they are common output sizes in classification networks trained on ImageNet [74],
CIFAR [75], and MNIST [76]. Similarly, Softmax layers operate on vectors with varied dimensions. As a whole,
PreVIousNet-02 includes 44 layers: 32 FC and 12 Softmax.

PreVIousNet is publicly available in Caffe format [73]. Further details about the network can be observed from this
model definition. For instance, although no weight file is provided, loading the network in Caffe will automatically
initialize the weights according to the “MSRA" initialization scheme [77]. Remarkably, the proposed architecture is
not unique. It can be adjusted according to the specificity of the networks to be characterized during the performance
prediction stage of PreVIous.

5.3 Network Configuration

The input size of PreVIousNet-01 (H×W×C) can be properly set according to the most common tensor sizes handled
by CNNs. Let us consider SqueezeNet [7] as an example of embedded CNN. In this network, the number of input
channels ranges from 3 to 512, whereas height and width of fmaps decrease following the sequence 227, 113, 56, 28, 14.
According to this example, a characterization of PreVIousNet-01 with varied input tensor sizes is required to collect as
much information as possible to build accurate prediction models. In our experiments, we empirically set the following
four input dimensions: (1) 56 × 56 × 32, (2) 28 × 28 × 64, (3) 14 × 14 × 64, and (4) 7 × 7 × 64. Thus, we are
particularly sampling3 CONV layers with Hin = Win = {56, 28, 14, 7} and Cin = {32, 64, 128, 256}. Out of these
ranges, the predicted performance values must be extrapolated from the corresponding regression models. However,
this extrapolation is precise, as will be shown in Section 6.

Concerning PreVIousNet-02, we specifically run this network with an input vector sized 1× 1× 256. Consequently,
the following common vector lengths are considered Cin = {256, 512, 1024, 2048, 4096}, plus customized values
{K1,K2} = {10, 1000}. Other input configurations could be used, according to architectures of interest or device
limitations.

6 Experimental Results

As a first step, we completed the performance modeling stage of PreVIous to create the models for both runtime and
energy consumption on the IoT devices described in Section 4.2. In particular, prediction models were built upon the
performance profiling of PreVIousNet-01 and PreVIousNet-02 under the 5 configurations specified in Section 5.3 —
four for PreVIousNet-01 and one for PreVIousNet-02. Matrix X in Eq. (3) was obtained for each type of layer from the
architectural parameters of all the corresponding layers in the aforementioned configurations of PreVIousNet. Likewise,
response vector y in Eq. (3) was built for both runtime and energy consumption from the corresponding profilings
described in Section 4.3.

Then, we conducted the performance prediction stage of PreVIous on seven popular CNNs, most of them suitable for
embedded devices: AlexNet [78], All-CNN-C [71], MobileNet [10], ResNet-18 [72], SimpleNet [79], SqueezeNet [7],
and Tiny YOLO [80]. These networks were trained on ImageNet dataset [74] for 1000-category classification, except
for All-CNN-C and SimpleNet, which perform classification on CIFAR-10 and CIFAR-100 [75], respectively, and Tiny
YOLO, trained on COCO dataset [81] for object detection. As a whole, 399 CNN layers were assessed in this extensive
study.

6.1 Layerwise Predictions

To evaluate the precision of the per-layer prediction models resulting from PreVIous, we compared layerwise predictions
with actual profiling measurements of the corresponding layers in all the considered CNNs. As an example, Fig. 5
illustrates the high accuracy of the runtime predictions from PreVIous when compared to the empirical measurements
in our baseline system, i.e., RPi-Caffe.

3Note that in PreVIousNet-01, the number of channels increases over network levels, whereas the input fmap resolution remains
constant. The motivation is to build a simplified network to be evaluated under different configurations.
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Figure 5: Comparison between per-layer inference runtime predictions (y-axis) and actual measurements (x-axis) for
the baseline combination RPi-Caffe. Similar results are obtained for RPi-OpenCV and XU4-Caffe. The dashed line
depicts an ideal estimation in which predictions exactly match actual measurements.

A summary of the results in Fig. 5 is presented in Table 1. Each row reports the total time obtained by adding up the
runtime of all the layers composing the corresponding network, that is:

t =

Nl∑
l=1

tl t̂ =

Nl∑
l=1

t̂l (5)

where tl denotes per-layer measurements, t̂l denotes per-layer predictions, Nl is the number of layers in the CNN, t is
the total measured time, and t̂ is the total predicted time.

As an example of fine-grained performance assessment of a neural network, Fig. 6 shows the time actually required to
complete each layer of All-CNN-C [71] in RPi-Caffe compared with model estimations. Note that the prediction model
from PreVIous correctly identifies ‘conv2’ and ‘conv5’ as the layers demanding the majority of the inference time. This
identification is extremely useful to boost automatic optimization algorithms or NAS engines.

4The well-known AlexNet architecture also includes two Local Response Normalization (LRN) layers. These layers have not
been contemplated in our layerwise prediction because they have been superseded by BN.

Table 1: Per-layer runtime predictions on RPi-Caffe system. Detailed profiling is shown in Fig. 5.
Measured (ms) Predicted (ms) Error (%)

t t̂

AlexNet4 561.64 526.75 -6.21%

All-CNN-C 115.68 123.22 6.52%

MobileNet 943.73 908.74 -3.71%

ResNet-18 1032.84 1049.10 1.57%

SimpleNet 347.59 349.22 0.47%

SqueezeNet 348.15 343.54 -1.32%

Tiny YOLO 1691.37 1740.03 2.88%

Average (absolute values) 3.24%
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Figure 6: Layerwise runtime on All-CNN-C [71], trained for classification on CIFAR10 dataset [75]. Network profiling
measurements were taken on the baseline combination RPi-Caffe

Finally, Table 2 reports the average absolute error of per-layer performance prediction from PreVIous for the seven
considered CNNs on the three studied systems. Remarkably, high prediction accuracy is maintained in all the cases for
both runtime and energy, thereby validating PreVIous as a general framework for CNN performance modeling.

Table 2: Average per-layer absolute prediction error of PreVIous for the seven considered CNNs on the three studied
systems.

Runtime Energy
RPi3 - Caffe 3.24% 5.30%

RPi3 - OpenCV 4.08% 3.63%

XU4 - Caffe 3.82% 5.01%

6.2 Network Predictions

Note that Section 6.1 is focused on aggregated per-layer measurements. Indeed, a usual procedure followed in previous
works on network optimization or NAS [35, 37, 40, 43] consists in estimating the global forward-pass performance of a
network by adding up per-layer metrics, as expressed in Eq. (5) for runtime. In principle, this approach should be valid
given that layers are sequentially executed during CNN inference in many realizations. However, in practice, when
per-layer measurements have been independently taken, their direct addition may not coincide with the actual network
inference performance [48, 49, 53]. This mismatch arises from aspects such as software optimizations (e.g., layer fusion
or constant folding) and processor strategies (e.g., data prefetching or data re-utilization in the memory hierarchy). To
take this fact into account, we measured the performance of the complete forward-pass of PreVIousNet in terms of
runtime and energy. This forward-pass characterization allows us to write the following expression:

ŷ = c

Nl∑
l=1

ŷl (6)

where ŷ represents the total predicted runtime or energy, ŷl denotes the per-layer predictions either for runtime – t̂l in
Eq. (5) – or energy, and c is a coefficient resulting from linear regression between the direct addition of predictions and
the corresponding actual measurement for the complete forward-pass of the 5 configurations of PreVIousNet on each
software-hardware combination. The values of c for each case are reported in Table 3. Eq. (6) enables the comparison
of predictions from PreVIous for complete network inference against the corresponding experimental measurements.
This comparison is depicted in Figs. 7a and 7b for runtime and energy, respectively5. PreVIous also provides good
estimates of complete forward-pass inference, with deviations below 10% in 18 out of 21 studied cases for runtime and
15 out of 21 cases for energy.

5For AlexNet, profiling measurements of the deprecated LRN layers were added in the summation in Eq. (6) for the sake of fair
comparison.
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Table 3: Value of the empirical coefficient c in Eq. (6) for the three studied systems.
Runtime Energy

RPi3 - Caffe 0.88 1.08

RPi3 - OpenCV 0.85 0.89

XU4 - Caffe 0.93 1.09
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Additionally, we further analyzed the less accurate cases such as the predictions on AlexNet – specially for energy
modeling on Odroid XU4. Regarding this network, both runtime and energy consumption were underestimated by
PreVIous in all cases, as shown by the negative errors reported in Figs. 7a and 7b. The reason of this behavior lies in
the divergence between per-layer and complete-CNN inference performance. This divergence is due to the fact that, as
reflected in Table 3, we apply a single value for the c term in Eq. (6) per hardware-software combination for the sake of
simplicity and generalization. For instance, in the worst prediction case – AlexNet6 energy estimation on XU4-Caffe –,
the ratio between per-layer and complete-CNN forward-pass measurements is 1.60, which is notably higher than the
value of c resulting from linear regression for the combination XU4-Caffe, i.e., 1.09. The same situation was identified
in RPi-Caffe and XU4-Caffe for MobileNet energy consumption. By contrast, per-layer predictions of PreVIous were
certainly accurate, with absolute network errors below 5% in the vast majority of the 42 studied cases – see summaries
in Table 2.

6.3 Discussion

Some key points must be stressed about the results presented in this section:

6Note that the well-known AlexNet model can be considered the starting point in the evolution leading to current CNN models.
Therefore, its architecture somehow differs from modern ones, featuring deprecated layers and an elevated amount of learnt
parameters.
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1. We have intentionally assessed a diversity of network layers, as opposed to previous approaches, mostly
focused on CONV layers. Indeed, Fig. 5 highlights the non-neglibible – even dominant in some cases –
contribution of certain layers, e.g., Pooling in SqueezeNet or BN in MobileNet, to the total inference time.
This proves the importance of their consideration for performance modeling [13, 48, 82].

2. The proposed methodology has been validated on various systems suitable for IoT applications. This verifi-
cation includes the process of model construction and the prediction capacity of PreVIous. The remarkable
aspect here is that only five systematic network characterizations – i.e., the considered configurations of
PreVIousNet – suffice to build accurate prediction models for a particular system.

3. Our study is, to the best of our knowledge, the most comprehensive in the literature in joint terms of number
of CNNs, types of layers, performance metrics, and hardware-software combinations. The prediction accuracy
is also, in global terms, the highest among similar reported works. Table 4 presents a comparison of our study
vs. such similar works7. Note that most of them made use of high-end GPUs; in our case, we focused on
low-cost low-power small-sized IoT devices. The last column summarizes the prediction accuracy for each
case in terms of Mean Absolute Percentage Error (MAPE), which is defined over the considered CNNs as the
average of the absolute value of the difference between the complete network prediction and the corresponding
actual measurement divided by the measurement. Thus, the values of this column in our case are the average
of the absolute values in Figs. 7a and 7b for each selected system. Concerning related works, we calculated
the MAPE according to the individual errors reported for each characterized CNN. Note that we have covered
a much wider spectrum of layers than the other studies, i.e., 9 types of layers vs. 3 types at most. This is
the basis for achieving better predictions over a larger set of CNNs following a common procedure for both
runtime and energy.

7 Conclusions

This study demonstrates that it is possible to predict the performance of CNNs on embedded vision devices with high
accuracy through a simple procedure. Taking into account the growing and ever-changing zoo of CNN models, such

7Among the related studies described in Sec. 2, this table contains those which addressed global CNN performance modeling —
as opposed to single-layer characterization -– and reported numerical prediction results.

Table 4: Comparison of CNN modeling accuracy between this study and related works in the literature. MAPE stands
for Mean Absolute Percentage Error associated with complete network inference.

Network Runtime
Ref. System CNNs MAPE

[48]†

TK1 CPU – Caffe NIN, VGG19M 4.71%
TK1 GPU – Caffe 23.70%
TX1 CPU – Caffe NIN, VGG19M, SqueezeNet, MobileNet 39.91%
TX1 GPU – Caffe 31.51%

[49]‡
Titan X GPU – TensorFlow VGG16, AlexNet, NIN, Overfeat, CIFAR10-6conv 7.96%
GTX1070 GPU – TensorFlow AlexNet, NIN 12.32%
GTX1070 GPU – Caffe 16.17%

This studyz
RPi3 CPU – Caffe

AlexNet, All-CNN-C, MobileNet, ResNet-18, SimpleNet, SqueezeNet, Tiny YOLO
5.02%

RPi3 CPU – OpenCV 7.92%
XU4 CPU – Caffe 3.25%

Network Energy
Ref. System CNNs MAPE

[48]† TX1 CPU – Caffe NIN, VGG19M, SqueezeNet, MobileNet 39.08%
TX1 GPU – Caffe 15.30%

[49]‡
Titan X GPU – TensorFlow VGG16, AlexNet, NIN, Overfeat, CIFAR10-6conv 2.25%
GTX1070 GPU – TensorFlow AlexNet, NIN 8.40%
GTX1070 GPU – Caffe 21.99%

[50]§ TX1 CPU – Caffe AlexNet, ResNet-50, SqueezeNet, GoogLeNet, SqueezeNetRes, 12.26%VGG-small, Places-CNDS-8s, All-CNN-C, Inception-BN, MobileNet

This studyz
RPi3 CPU – Caffe

AlexNet, All-CNN-C, MobileNet, ResNet-18, SimpleNet, SqueezeNet, Tiny YOLO
8.52%

RPi3 CPU – OpenCV 7.24%
XU4 CPU – Caffe 10.46%

Types of assessed layers: † CONV; ‡ CONV, FC, and Pooling; § CONV; z CONV, FC, Pooling, ReLU, BN, Concat, Eltwise, Scale, and Softmax.
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a priori prediction is key for rapid exploration and optimal implementation of visual inference. The utility of the
proposed methodology, i.e., PreVIous, is two-fold. First, fine-grained layer performance prediction facilitates network
architecture design and optimization. Second, network performance estimation can assist in CNN selection to fulfill
prescribed IoT requirements such as latency and battery lifetime.

Simplicity is indeed a major asset of PreVIous. Only the characterization of a single architecture is required for
performance modeling. We also make use of linear regression to reduce model complexity. In addition, the procedure
does not rely on any specific measurement tool, being agnostic with respect to the selected hardware-software
combination.

Future work will address the design of further versions of PreVIousNet in order to consider new types of layers or even
entire building blocks. For instance, recurrent building blocks of highly optimized architectures can be characterized
as a whole, e.g., the Fire module of SqueezeNet or separable convolutions of MobileNets. This approach can also be
exploited by automatic algorithms to explore new architectures optimally adapted to specific embedded systems.
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