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Abstract—With the everyday growth of the Internet of Things
(IoT), the number of connected sensor devices increases as well,
where each sensor consumes energy while being constantly online.
During that time, they collect large amounts of data in short
intervals leading to the collection of redundant and perhaps irrel-
evant data. Moreover, being commonly battery powered, sensor
batteries need to be frequently replaced or recharged. The for-
mer requires smarter and less frequent data collection, while the
latter being complementary to the former requires putting them
to sleep while not being used in order to save energy. The focus
of this article is low-cost gas sensors as they need to preheat for
several minutes to reliably collect gas concentration. However,
instead of waiting for a sensor to heat up, a transient, i.e., a data
trend that the sensor collects while heating up is analyzed. It
is shown that long short-term memory (LSTM) neural network
can be used to learn and later predict the actual gas level from
a part of the transient. This way, instead of being constantly
online or fully preheating, the sensor needs to be turned on
for only 20 s and then sleep for 120 s. With high accuracy, our
approach decreases energy consumption by up to 85% compared
to a system where sensors are constantly online, and more than
50% compared to a system where a sensor collects actual values
instead of a part of the transient.

Index Terms—Energy efficiency, gas sensor, Internet of Things
(IoT), long short-term memory (LSTM).

I. INTRODUCTION

YEAR after year, the Internet of Things (IoT) is growing,
along with the number of sensors collecting the data and

the amount of data itself. Ericsson forecasts that the number of
devices connected by Massive IoT and other emerging cellular
technologies will reach 4.1 billion by 2024 [1]. According to
Cisco predictions, there will be 847 ZB of collected data, out
of which 1.3 ZB will be stored in data centers by 2021 [2].
However, a large portion of that data is redundant and perhaps
irrelevant, which costs money and creates unnecessary over-
heads and thus should be eliminated early in the process [3].
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In order to eliminate such data in time, preprocessing on the
edge of an IoT network is required, namely, on sensors and
gateways. Eliminating “garbage” data before they are moved
to cloud helps keeping data centers less loaded and future data
analysis more efficient [4].

Processing data on the IoT edge can be achieved in sev-
eral ways [5]. Data collected by sensors can be compressed,
aggregated, and/or correlated on IoT gateways and only then
transferred to the cloud. To move even closer to the edge,
data can be filtered on sensors themselves in order to forward
only relevant information to an IoT gateway [6]. However,
although the amount of data is decreased, sensors are still
constantly turned on and consume energy. To reduce sensors’
online time, they can be put to sleep for a longer time period
and turned on for a very short period just to collect data. The
challenge with this approach is sensors that require preheat-
ing such as gas sensors, which cannot collect data at the exact
moment they are turned on.

In the context of gas sensors, it is important to detect
hazardous gases on time [7] using sensors with low power [8]
and low cost [9], due to the rising scale of IoT. However,
when a circuit is turned on and off, voltages and currents
take time to stabilize to obtain readings of the actual gas
concentration. A momentary variation in the current or the
voltage during this preheating transition is called a transient,
only after which an actual value can be read. However, tran-
sients in low-cost sensors can take minutes, which consumes
a significant amount of energy from battery-powered sensors.
Therefore, instead of waiting for the sensors to fully preheat,
only parts of the transient can be collected. Jia et al. [10]
showed in their research, energy can be saved if gas values
are predicted from a part of the transient.

In this article, instead of a high-precision sensor as used
in [10], low-cost MQ-2 [11], MQ-5 [12], and MQ-6 [13] gas
sensors are used. The goal is to investigate if an actual gas
concentration can be predicted from the transient of a low-
cost sensor and thus achieve low cost but reliable IoT gas
sensor network. On the one hand, the online period of the
sensors must be long enough to provide a sufficient amount
of data to distinguish one gas level from another. On the other
hand, it should be short enough for the prediction process to
be energy efficient. The resulting approach gives a minimized
online period without significantly reduced accuracy.

Long short-term memory (LSTM) neural network (NN) is
used to predict the actual value from the transient. An LSTM
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network is suitable for predicting time-series data, as it can
distinguish and eliminate irrelevant and redundant data from
the relevant one. In order to prepare the LSTM algorithm that
predicts actual values from the transients, data are collected
with an MQ-2 gas sensor. The collected data are normalized
in a range between 0 and 1. A threefold validation method is
used to split the data and train LSTM NN. Finally, algorithm
parameters and the entire approach prepared for the MQ-2
sensor are later evaluated on two other MQ sensors, namely,
MQ-5 and MQ-6.

Results show that the MQ-2 gas sensor can predict values
with a root mean-square error (RMSE) 0.05938. When using
parameters that provide the best results for the MQ-2 gas sen-
sor, RMSE of the MQ-5 sensor is as low as 0.07002, but it is
slightly higher for MQ-6 with a value of 0.1293. With high
accuracy, this solution can save up to 85% energy compared to
a system where sensors are constantly online, and more than
50% compared to a system where sensors heat up to collect
actual gas concentrations instead of a part of the transient.

The remainder of this article is organized as follows. The
introduction is followed by the related work where LSTM NN
applications are shown. Section III describes the preliminary
analysis and methodology used in this article, while Section IV
explains our implementation and results. Section V gives the
evaluation of our approach on MQ-5 and MQ-6 sensors with
discussion. Section VI concludes this article.

II. RELATED WORK

Jia et al. [10] proposed a new, low-power, automatic, accu-
rate, and wireless ammonia monitoring approach that uses
metal–oxide sensors. This approach does not wait for equilib-
rium as this consumes a significant amount of energy, rather it
tries to predict the resistance at equilibrium using the sensor’s
transient measurements in the short heating window (as short
as 200 ms) to predict the actual value. A prediction model
is built on LSTM NNs. The proposed model accurately pre-
dicts the equilibrium state resistance value with an average
error rate of 0.12%. The final average estimation error for the
ammonia concentration level is 9.38 ppm.

Salhi et al. [14] proposed implementation of a preventive
system for gas leakage and fire incidences in a smart home
environment to enhance safety using low-cost and low-energy
consumption devices through M2M standard communication
protocols. They applied supervised machine learning on sev-
eral algorithms and predicted the level of risks for gas leakage
and fire and alerted responsible person.

Chen et al. [15] used the LSTM network as a method to
predict the mechanical state. The simulation results of the
LSTM network are compared with the results obtained with
a support vector regression machine (SVRM). A computation
study is carried out to verify the algorithms. It is found that
using the same window width, the MSE network test results
of LSTM are smaller than the results of SVRM, making the
LSTM model better than the SVRM model in the field of
mechanical state monitoring and prediction.

Wang et al. [16] predicted water quality that is signifi-
cant not only for the management of water resources but

also for the prevention of water pollution. Since it is a time-
series prediction problem, LSTM NN is used. Data set of
water quality indicators in Taihu Lake measured monthly from
2000 to 2006 years is used for training the model. LSTM
is compared with two methods, namely, backpropagation NN
(BP NN) and online sequential extreme learning machine
(OS-ELM). Several simulations and parameter selections are
carried out in order to improve model accuracy. Results show
that compared with BP NN and OS-ELM, the predictive
accuracy of LSTM NN is higher and more generalized.

Yu et al. [17] used LSTM NN for spectrum prediction.
The LSTM network is compared to the backpropagation (BP)
network results. They also study the influence of different
LSTM NN depth and width on prediction accuracy. The results
show that LSTM has better performance than BP in case of
the same number of hidden layers and neurons.

Liu et al. [18] used LSTM NNs to analyze and predict
stock transaction data. The results show the accuracy of about
72% for the short period of data. Furthermore, Yao et al. [19]
proposed an LSTM network combined with the fuzzy-rough
set (FRS) theory for short-term wind speed prediction. The
usage of FRS reduces input. The experimental results show
that the FRS-LSTM model has about 40% higher prediction
accuracy than the traditional BP NN.

Kim et al. [20] proposed a short-term electricity consump-
tion prediction method. The LSTM network is used to predict
month-ahead electricity consumption. The results on the real
data show that the proposed method performs well with accu-
racy above 80%. They also state that the test accuracy can be
improved with a longer period of training time and a deliberate
hyperparameter setting.

Qian and Chen [21] conducted a stationary analysis of the
stock’s time-series data and then used the LSTM network to
predict stock data under different stationary conditions. The
results are compared with the ARIMA algorithm results. As
shown on a large number of experimental results, the error rate
of the LSTM algorithm is 66.78% lower than that of ARIMA.
They also point out that the main disadvantage of the LSTM
algorithm is that it takes a lot of time to train the model and
requires a large sample of data.

Finally, in this article, the energy consumption of the gas
sensor is considered, as well as the consumption for data trans-
mission. While the focus is given on the gas sensor due to its
higher consumption, there is also a large body of work focus-
ing on energy consumption optimization in wireless sensor
networks [22], [23] as a forerunner of IoT. There is also a num-
ber of researches focusing on energy consumption optimization
in IoT systems addressing other power-hungry components such
as radio [24], [25]. These approaches can be further used for
decreasing the overall power consumption of such IoT systems.

III. GAS SENSOR CHARACTERIZATION

In order to collect the actual value representing the gas
concentration, a gas sensor needs to heat up. During this pre-
heat time, a voltage needs to stabilize, where a set of unstable
values during this period are referred to as a transient. Once
sensor readings are stabilized, the sensor can periodically read
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Fig. 1. Three scenarios for sensors setup, namely, (a) always online, (b) with
full preheat and sleep period, and (c) with prediction based on a partial preheat
and sleep period.

data while continuously being online as shown in Fig. 1(a).
In case the sensor is put to sleep to save energy, it has to
preheat after every sleep and then read the last value of the
transient, i.e., the actual value of gas concentration. This
scenario is shown in Fig. 1(b). Our approach is depicted in
Fig. 1(c), where a sensor reads multiple values from the first
part of the transient, while the actual value is estimated from
that part using machine learning. This way, the sensor will
have a longer sleep period, while more values are read in its
short online period.

A. Environment Setup

We utilize low-cost MQ gas sensors, more specifically
MQ-2 for defining our methodology. An MQ-2 sensor detects
multiple hazardous gases, such as liquefied petroleum gas
(LPG), methane (CH4), Alcohol, Smoke, and Propane, where
we use LPG in this article. Since the goal is to predict the
actual value from the transient and turn the sensor off, two
sensors are used, namely, a test sensor for predicting the actual
values and a control sensor for the ground truth.

The two sensors are connected to an Arduino Uno board
that collects actual gas concentration values and then sends
them via serial communications to the computer as shown in
Fig. 2. The control sensor MQ-2(1) is always online without a
sleep period. The test sensor MQ-2(2) has a predefined sleep
period after which it wakes up upon receiving a signal from
the real-time clock (RTC) DS3231 [26]. In order to turn off
the test sensor completely during the sleep period, a power
MOSFET IRFZ44N [27] is used. Finally, to reduce external
influences the entire setup, depicted in Fig. 2, is placed in a
sealed plastic container.

The data are collected with both sensors to find their cor-
relation as they do not have the same nominal readings in

Fig. 2. Setup scheme with the test and control sensors, and RTC for turning
on and off the test sensor.

Fig. 3. Transient for different online (O)–sleep (S) ratios (without gas).

the same environment. Therefore, linear regression is used to
correlate their readings. The control sensor is left to collect
the data continuously, while the test sensor collects only tran-
sients. The expected values of the test sensor are calculated
from the known correlation with the control sensor. Finally,
since MQ-2 sensors collect the data in a range of 0–5 V, the
data are normalized on a scale between 0 and 1. The high-
est value obtained for LPG gas during the experiments is 0.8
(4 V) due to the specifics of MQ-2 sensors [11].

B. Online Period Characteristics

Prior to collecting a data set used for building the LSTM
prediction model, a preliminary analysis is performed in order
to characterize the behavior of the transient. During online
periods, the sensor is warming up, while during sleep periods,
it is cooling down. That said, transients for different online–
sleep ratios in the atmosphere without gas are compared in
Fig. 3, where online periods of 10, 15, 20, 30, 40, and 60 s
are considered, in combination with 60 and 120 s of sleep
period, respectively.

As depicted in Fig. 3, MQ-2 sensor transients in the envi-
ronment without gas reach their maximum in the first 15 s and
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Fig. 4. Correlation of transients in case of different online/sleep ratios.

the actual gas concentration (ground truth) in approximately
40 s. Regardless of the sleep periods, the readings stabilize
at the actual gas level within those 40 s, where both sleep
and online periods affect only the maximum value, which is
then regulated with its climbing and falling slopes to again
reach their actual values after 40 s. Consequently, we select
an online period of less than 40 s in order to achieve savings
with LSTM predictions. However, further experiments show
that periods shorter than 20 s have high variance. As seen
from Fig. 4, in the case of 10-s period, consecutive readings
result with inconsistent transients during longer runs, while the
actual gas concentration remains the same. Thus, 20 s for the
online period is selected, which shows stable readings during
longer periods as depicted in Fig. 4 where multiple continuous
readings show a correlation above 95%.

C. Sleep Period Characteristics

Further data collection is performed with 20-s online period
and again 60- and 120-s sleep periods, as well as with dif-
ferent gas levels inside the sealed container. Fig. 5 shows
transients for five different LPG gas levels. The higher the gas
concentration, the higher the transient maximum. However,
transients in the highest gas concentrations exhibit different
patterns than the ones in lower ones, or without the gas at all.
In the first 20 s, the value jumps to 0.2 (1 V), after which
it starts to rapidly increase for the next 1.5 min, as seen in
Fig. 6. However, the initial jump is still significant enough
to be distinguishable from lower gas levels, thus the online
period of 20 s remains valid.

As depicted in Fig. 6, the MQ-2 sensor requires over 120 s
to reach the actual value in the environment with high gas
concentrations. Consequently, any use of sleep functionality
in such an environment would require a preheat time of more
than 120 s in order to read correct values. Therefore, we select
120 s for our sleep period along with 20 s for the online period
and thus get gas sensor readings approximately every 140 s.

D. Collection of Transients

In order to collect a data set comprising a set of transients,
previously defined online–sleep period is used, along with
different gas concentrations. For the 20-s online period, data
are collected ten times in a second (i.e., every 100 ms)

Fig. 5. Transients in different gas levels.

Fig. 6. Low versus high gas-level transients.

resulting in 186 values in a single transient (186 instead
200 since every reading takes 0.15 ms). The total data set
contains 381 transients with their matching actual values,
hence resulting in a total of 70.866 values. The entire data
set is visualized in Fig. 7.

Furthermore, gas concentrations are classified in eight
classes listed in Table I, where the entire data set C com-
prises all classes, namely, C = c0, c1, c2, c3, c4, c5, c6, c7. It
is important to highlight that class c5 contains the most ele-
ments since 0.5 value is recognized as a border between the
environment with and without significant gas concentration.
Therefore, the classification is used for even stratification of
transients when applying the threefold validation approach
during LSTM model training and testing, i.e., to even out the
presence of all classes in training as well as in the test data sets.

IV. LSTM MODEL TRAINING AND VALIDATION

In this section, we explain the configuration and usage of
LSTM NN for predicting readings of the MQ-2 gas sensor
based on its initial transient. The LSTM algorithm and the data
set stratification and diversification are explained. Afterward,
LSTM parameters are selected based on the best model accu-
racy and used for selecting the read frequency for input data
as well as for testing model’s performance with scarce data.
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TABLE I
GAS CONCENTRATION CLASSES

Fig. 7. Actual values for 381 transients (top figure) grouped in eight classes
(bottom figure).

A. LSTM Algorithm

LSTM NNs [28], [29] are used to predict actual values from
transients. LSTM is a type of recurrent NN (RNN) that has
a feedback connection. Along with single data points, it can
process data sequences as well (e.g., gas transient values). A
common LSTM cell contains an input gate, an output gate, and
a forget gate, as depicted in Fig. 8. The cell remembers the
values over a time period and the three gates (input, output,
and forget gates) regulate the data flow in and out of the cell.
The forget gate decides which information will be removed
from the cell state. The input gate decides which states will
be updated and the output gate decides which part of the cell
states will be outputted. Therefore, LSTM has the ability to
remove or add information to the cell state, instead of a mech-
anism that completely overrides cell states taken by classical
RNN [15].

LSTM cell state is split in two vectors: 1) h(t) and 2) c(t);
h(t) stands for short-term state while c(t) stands for the long-
term state. On the one hand, an input vector x(t) and a previous
short-term state h(t−1) are used as inputs to four different fully
connected layers, namely, f(t), g(t), i(t), and o(t) depicted in
Fig. 8. The main layer that analyzes x(t) and h(t−1) outputs
g(t), which is used for calculating h(t) and the output vector
y(t) expressed with

g(t) = tanh
(
Wxg

T ∗ x(t) + Whg
T ∗ h(t−1) + bg

)
. (1)

On the other hand, a previous long-term state c(t−1) enters the
cell and goes through the forget gate, which defines parts of
the long-term state that should be forgotten, and is controlled

Fig. 8. LSTM cell [29].

by the output of the f(t) layer expressed with

f(t) = σ
(
Wxf

T ∗ x(t) + Whf
T ∗ h(t−1) + bf

)
(2)

where bg and bf are the bias terms, Wxg and Wxf are the
weight matrices of the input vector x(t), and Whg and Whf are
the weight matrices of the previous short-term state h(t−1).

Other layers also give logistic output, namely, 0 or 1, which
controls the closing and opening of the gates, respectively.
Layer i(t) controls the input gates, while o(t) controls the output
gates, and both can be expressed with

i(t) = σ
(
Wxi

T ∗ x(t) + Whi
T ∗ h(t−1) + bi

)
(3)

o(t) = σ
(
Wxo

T ∗ x(t) + Who
T ∗ h(t−1) + bo

)
(4)

where bi and bo are again the bias terms, while pairs of Wxg

and Wxf , as well as Whg and Whf are the weight matrices of
the input vector x(t) and the previous short-term state h(t−1),
respectively.

When some long-term memories are removed, output from
the forget gate is combined with g(t), which gives a long-term
state

c(t) = f(t) ⊗ c(t−1) + i(t) ⊗ g(t). (5)

Additionally, the output from g(t) goes through the input gate,
which defines what part of it should be combined with a
duplicate of the long-term state c(t). Such, they enter the tanh
function and go through the output gate, which defines what
part of it should be outputted as both h(t) and y(t), expressed
with

y(t) = h(t) = o(t) ⊗ tanh
(
c(t)

)
. (6)

Output y(t), as well as the short-term state h(t) and the long-
term state c(t) are given for each input x(t), which is represented
in a form of time-series data.

That said, LSTM is suitable for our application as the tran-
sient represents time-series data. While LSTM NN handles
time-series data very well, it is still important to carefully
select parameters, as well as a data set. In order to find the
best parameters, different combinations of a number of neu-
rons, learning rates, and epochs are tested. More neurons can
help in case of underfitting, reducing the number of epochs
helps in case of overfitting, while a smaller learning rate helps
to eliminate exploding gradients. The LSTM network used in
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TABLE II
PARAMETER COMBINATIONS FOR BUILDING LSTM

this article contains one LSTM layer, Relu activation function,
Adam optimizer, and MSE loss calculation with the fixed seed
(= 123). The fixed seed is used in order to be able to repro-
duce the results. Different combinations of neurons, learning
rates, and epochs listed in Table II are used in order to obtain
the best results.

B. Data Set Stratification and Diversification

To train the LSTM algorithm for an MQ-2 gas sensor, 304
transients out of 381 from the data set shown in the previous
section are used. This leaves 77 transients for the test set,
which is around 20% of the whole data set. The training set
is further split using the stratified threefold algorithm, which
selects one third of transients from each class to validate the
LSTM algorithm.

In order to diversify the training set and reduce data trans-
mission, other combinations are considered as well besides
186 values long transient.

1) Analyzing all 186 values collected during 20 s (∼ 9
readings per second).

2) Analyzing 20 values collected during 20 s (reading every
second).

3) Analyzing only 10 values collected during 20 s (the sen-
sor still has to be online for 20 s, otherwise it will not
heat up enough). Here, we include three combinations:

a) data collected every 2 s;
b) data from the first 10 s (every second);
c) data from the first second (collected every 100 ms).

Furthermore, to test how the best of these solutions deal
with scarce data, i.e., missing entire classes of readings,
the algorithm is executed on the training set without data
from every class (c0–c7), as defined in Table III. Finally,
the results are discussed and compared using RMSE [30].
Since RMSE reflects the distance between real and pre-
dicted values, it is used to evaluate the performance of
predictions, i.e., smaller RMSE implies higher prediction accu-
racy. Equation (7) defines a formula for RMSE, where e is the
error between the predicted and the actual value

RMSE =
√√√√1/n

n∑

i=1

e2. (7)

C. LSTM Parameters Selection

As described in the previous section, LSTM is created
based on the LPG gas concentration collected by the MQ-2
sensor. Table IV shows the results of different combinations of
cell numbers, epochs, and learning rates with their respective
RMSE. Some large updates to weights during training cause a

TABLE III
SETS OF DATA SETS WITH INCLUDED/EXCLUDED CLASSES

TABLE IV
SELECTING OPTIMAL PARAMETERS FOR LSTM NN

numerical overflow or underflow often referred to as exploding
gradients, which results with NaN values for some combina-
tion of parameters, especially in case of a larger learning rate.
Nevertheless, 50 cells, 500 epochs, and the learning rate of
0.0001 give the best performance during training. This set of
parameters also outperforms others when applied on the test
set by giving even better results, hence confirming that it does
not either overfit or underfit.

Fig. 9(b) shows a histogram of errors for 186 values long
transients for the MQ-2 sensor on the test set. Most errors are
below 5% although RMSE is 0.06829. There are few errors
above 30%, however, as visible from Fig. 9(a), those errors
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(a) (b)

Fig. 9. Comparison of predicted and expected values for MQ-2 gas sensor. (a) Absolute values (MQ-2). (b) Errors histogram (MQ-2).

TABLE V
MQ-2 RMSE FOR DIFFERENT TRANSIENT SIZES

occur for high gas concentrations. Since predicted values are
above 0.5 (2.5 V), they are still classified as the dangerous
gas level.

D. Frequency Selection for Input Data

In further analysis, we use the algorithm configuration that
gives the best results for 186 values long transient and test it
on a smaller number of transient values. The results in Table V
show that more data are not necessarily better than less data.
Despite expectations that a larger transient will result in better
predictions, the best predictions are in the case when values
are evenly sampled at 1 Hz. If the algorithm learns from the
data that contains a large number of features, it often overfits
the noise and does not work well on real-world data.

E. Performance Testing With Scarce Data

To test how the models deal with scarce data, the algorithm
is executed without transients from every class in the train-
ing set and then tested on the train test that contains excluded
classes. The results given in Table VI show that some classes
are smaller in both train and test sets, hence they do not affect
the results significantly, while the largest c5 class affects results
significantly. The algorithm also tries to learn behavior from
the first and two last classes, however, results are not promis-
ing. When the biggest c5 class is included in the training, the
test set RMSE is 0.16624, which is a satisfying result in terms
of machine learning.

Since 20 values long transients show better results than 186
values long one, similar tests are performed with such setup

TABLE VI
RMSE FOR DIFFERENT CLASSES (TRANSIENT SIZE 186)

TABLE VII
RMSE FOR DIFFERENT CLASSES (TRANSIENT SIZE 20)

as well. The results in Table VII show that it is possible to
train data only with the first, last, and biggest class c5 with
RMSE of 0.116627. In general, using 20 values long transient
outperforms 186 long one.

V. EVALUATION AND DISCUSSION

In order to evaluate our methodology, the approach is tested
on the MQ-5 and MQ-6 gas sensors to verify its applicability
on different low-cost sensors. The same online–sleep ratio of
20 s for an online and 120 s for a sleep period is used for
testing MQ-5 and MQ-6 sensors.
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TABLE VIII
MQ-5 RMSE

(b)

(a)

Fig. 10. Comparison of predicted and expected values for MQ-5 gas sensor.
(a) Absolute values (MQ-5). (b) Errors histogram (MQ-5).

A. MQ-5 Sensor Results

After data are collected with an MQ-5 gas sensor following
the same approach described in Section III, NN with param-
eters that provide the best results for the MQ-2 gas sensor
are used. The collected data set contains 223 transients in the
train set and 70 transients in the test set (∼24%). In the case
of 186 values long transient, RMSE on the test set is 0.10801,
while in the case of 20 values long transient that has better
results for MQ-2, the test set RMSE is better as well with the
value of 0.07002, as shown in Table VIII. As it is visible from
Fig. 10(a) and (b), the most errors are less than 10%, with two
predictions from class 0.3–0.4 with the error above 20%.

B. MQ-6 Sensor Results

The same procedure is used for the MQ-6 gas sensor.
However, in this case, the results are only slightly worse than
the ones for MQ-2 and MQ-5. The used data set contains

(b)

(a)

Fig. 11. Comparison of predicted and expected values for MQ-6 gas sensor.
(a) Absolute values (MQ-6). (b) Errors histogram (MQ-6).

TABLE IX
MQ-6 RMSE

216 transients in the train set and 59 transients in the test
set (∼27%). Again, the test set results are acquired for both
186 and 20 values long transients. As with MQ-2 and MQ-5
gas sensors, MQ-6 also gives better results with 20 values long
transients having RMSE of 0.1293, while 186 values long tran-
sients give RMSE of 0.1405, as shown in Table IX. Fig. 11(a)
and (b) depicts that more than 85% of predicted values have
an error lower than 15% with the maximum error of 25%.

C. Discussion on Energy Efficiency

The results presented in this article show that the LSTM
prediction model can be used with low-cost gas sensors,
such as MQ-2, MQ-5, and MQ-6 with sufficient accuracy.
Predictions for MQ-2 give the best accuracy measured with
RMSE of 0.05938067 as the model is calibrated for the spe-
cific sensor. In the case of the MQ-5 sensor, RMSE is 0.07002,
which is almost as good as in the case of the MQ-2 sensor,
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TABLE X
ENERGY CONSUMPTION

while the results for MQ-6 are slightly worse with the RMSE
value of 0.1293 that is still acceptable in terms of machine
learning. Note that parameters that give the best results for the
MQ-2 sensor are used as is without the calibration for MQ-5
and MQ-6, which implies that the model could be further
tweaked to obtain better results.

Putting sensors to sleep only makes sense when trying to
achieve energy savings. Energy consumption is described with
the following expression:

E = PTx · TOA + PMQ · TA + PMA · (TOA + TA) + PMS · TS

(8)

where:
PTx is the power consumed by a LoRaWAN module used

for data transmission [31];
PMQ is the power consumed by an MQ-2 sensor [11];
PMA is the power consumed by a microcontroller during

online period [32];
PMS is the power consumed by a microcontroller during

sleep period [32];
TOA is time on air calculated based on calculations shown

in [33] using LoRaWAN with code rate = 1, spreading
factor = 10, and bandwidth = 125 kHz;

TA is the online period;
TS is the sleep period.
Energy consumption is calculated for three sensor setups

described in Section III-A (Fig. 1) and results are shown in
Table X. Since the transmission interval is less than a sec-
ond, when combined with transmission power, it results in
insignificant energy consumption compared to large power
and intervals of online and sleep periods. The most significant
energy consumer is a gas sensor which requires up to 900 mW
(Fig. 12). Note that a microcontroller consumes energy dur-
ing both periods; online and sleep. However, energy consumed
during the sleep period is ∼ 4.5 times lower compared to the
power consumed during the online period. Energy saving can
be even bigger when using other microcontrollers instead of
Arduino Uno. That said, energy consumption highly depends
on the online period; the longer the online period, the higher
the power consumption. Due to specifics of MQ gas sensors
explained in Section III-C, the shortest online period that is
suitable for such predictions is 20 s, followed by 120-s long
sleep period.

As it is shown in Fig. 12 and Table X, our solution uses
∼80% less energy compared to Scenario a) when the sensor is
always online, while the online period is decreased by ∼85%.
Since the MQ-2 sensor needs at least 40 s to read the actual
value in the atmosphere without gas, and around 120 s in the
conditions with high gas concentration, our approach can be

Fig. 12. Energy consumption compared to the sensor that is always online
(*Transmission energy is insignificant compared to others, thus not visible in
this figure).

compared to the best and the worst case. As it is visible from
Fig. 12 and Table X, comparing our solution to Scenario b-1)
with full preheat and sleep period—the best scenario (40 s
online–100 s sleep); our solution consumes ∼40% less energy
while collecting ∼50% less data. Note that Scenario b-1) will
miss large gas concentrations. In the worst case, the sensor is
online for 120 s and sleeps 20 s, which is the exact opposite
of our approach, meaning that the sensor will reduce the data
amount for ∼15% with ∼13% energy savings.

To sum up, the longer sleep period results with higher
energy savings. In our case, the sensor is online for 20 s and
then asleep for 120 s, resulting with approximately 500–520 s
(∼8.5 min) of online time per hour, while sleeping for 3000–
3120 s (∼51 min). Therefore, it is being online ∼3.5 h a
day; 1 day a week; 4.5 days a month; or 52.15 days in a
year. That said, our solution significantly reduces the amount
of data with a duty cycle of (∼85%) while increasing energy
efficiency for ∼80%.

Comparing our solution to a scenario with the full preheat
and sleep period [Fig. 1(b)], one tradeoff has to be noted. Our
solution sends 20 values toward a gateway and the prediction
is calculated on the gateway side, while the sensor in the sce-
nario in Fig. 1(b) sends only a single value. As it is visible
from Fig. 12 and Table X, transmission energy in case of 1
and 20 B is almost the same and it can be ignored compared
to the energy consumed by the gas sensor and Arduino Uno.
However, TensorFlow light for microcontrollers (including the
Arduino platform) [34] is now available and machine learn-
ing models can be deployed on the edges of an IoT system,
i.e., a gateway. Using this approach, another potential tradeoff
is the amount of energy consumed when the machine learn-
ing algorithm is deployed on a battery-powered sensor as the
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energy consumption can be higher than the energy savings
gained with 120-s long sleep period. Although this is out of
our research scope in this article, it is important to be aware
of the potential challenges and tradeoffs.

VI. CONCLUSION

In this article, we used LSTM NN to predict the actual val-
ues of gas concentration from the transient of the MQ-2 gas
sensor acquired during its preheat period. Furthermore, we
evaluated our approach on two different gas sensors, namely,
MQ-5 and MQ-6. In the case of MQ-2 gas sensors, the
obtained RMSE is 0.05938067. The optimal LSTM param-
eters used for MQ-2 were applied on MQ-5 and MQ-6 as
well. Predictions for the MQ-5 sensor give an RMSE value
of 0.07002, while only slightly higher for MQ-6 with a value
of 0.1293.

The main contribution of this article is the investigation of
the MQ-2 sensor behavior, as well as the methodology for
building a prediction model based on LSTM that we applied
on two additional low-cost gas sensors. The results show that
in order to extend battery life, a sensor should wake up peri-
odically to collect data and sleep in the meanwhile. In the case
of sensors that require heating up before collecting the actual
value, only the beginning of the transient can be collected and
the actual value predicted on the gateway side using LSTM
NN. This way, instead of being continuously online, the sen-
sor collects data for 20 s and sleeps for 120 s. Compared to
the solution when the sensor is online until the actual value
is reached (up to 2 min) and then being sent to sleep, our
approach collects half as much data in the same 140-s period.

Our future work includes investigating the energy consump-
tion in terms of data transmission. We also plan to implement
a machine learning algorithm on the Arduino board and inves-
tigate its energy consumption compared to the energy savings
achieved with 120-s sleep period.
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