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Abstract—For sustainable Internet of Things (IoT) systems,
solar-power prediction is an essential element to optimize per-
formance, allowing devices to schedule energy-intensive tasks in
periods with excess energy. In regions with volatile weather, this
requires taking the weather forecast into account. The problem is
how to provide such solar energy predictions with high accuracy
for large-scale IoT systems with various devices in an autonomous
way, without manual adaptation effort. We present a detailed
study on machine-learning approaches for the prediction of solar
power intake for large scale IoT systems. We examine which
machine learning models, feature sets and sampling rates gain
the best results for a medium-term forecasting horizon. We also
explore an operational setting in which devices are deployed
without prior data and machine learning models are re-trained
for each sensor continuously as a form of online learning. Our
results show that prediction errors can be reduced by 20 %
compared to the state of the art, despite strong weather volatility.

Index Terms—Device Management, Energy Harvesting, Solar
Energy, Machine Learning.

I. INTRODUCTION

ENERGY HARVESTING via solar panels allows wireless
devices to replenish their energy buffers and is thus

one element towards a sustainable, maintenance-free Internet
of Things (IoT) with perpetual operation, as it removes or
reduces the need to switch batteries [1]. Use cases where solar
power has great potential cover a wide range of domains,
like smart cities [2], [3], harbors [4] and agriculture [5].
Rainforest Connection [6], for example, creates acoustic mon-
itoring systems to detect illegal deforestation, using recycled
phones powered by solar panels. Operating sustainably, with
minimal or no maintenance, is crucial for the feasibility and
economic aspects of such use cases. The better the predictions,
the more strategically, and hence optimally, IoT devices can
act: Apart from adjusting their sensing intervals, they can
schedule energy-intensive tasks in periods of energy surplus.
Such tasks can include software updates, transmission of
aggregated sensing data, or re-training of machine learning
models. Improved energy management helps to minimize the
required energy buffer and solar panel size of IoT devices,
making them simpler, easier to deploy and less obtrusive.
This makes systems cheaper, or possible at all, and further
facilitates approaches that even integrate solar energy supplies
directly onto chips [7].
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To plan energy budgets effectively also under volatile
weather conditions, Sharma et al. [8] and Renner et al. [9]
argue that IoT devices require access to solar energy pre-
dictions that also take the weather forecast into account.
With the availability of new machine learning methods and
computational power in general, this leads to the question
of how these methods can improve the prediction of solar
energy intake. While machine learning has been applied for
that purpose in the domain of renewable power, less attention
has been paid to solar prediction for IoT nodes, which require
medium-term predictions (up to several days ahead) for energy
budget planning. There is also the challenge of heterogeneity
in large-scale deployments, where devices operate in different
settings, for example regarding their position towards the sun
or local obstacles such as trees or buildings. To avoid manually
modeling these differences, which is prohibitive for large IoT
installations, prediction models should hence be individual,
that is, per IoT device and work autonomously. We envision
that IoT devices are supplied with solar energy predictions
as part of the device management, offered by edge or cloud
services. For such an approach to work efficiently at scale, it is
required that the operation of the prediction models is feasible.
Instead of manual adjustment and tuning, predictions must
refer directly to individual sensors’ expected energy, based
on the previous energy intake and on features that are easy to
acquire, like a public weather forecast.

In this work, we explore the use of various machine learning
techniques combined with public weather forecasts for the
prediction of solar energy. This is the first work that discusses
the issue of machine learning for medium-term solar energy
prediction for IoT devices, paying the necessary attention
to operational aspects. We have previously examined how
different machine learning methods can be used in a con-
strained sensor setting [10]. We now go further and (i) present
the performance of various machine learning techniques, (ii)
conduct an ablation study to identify the most useful features,
(iii) introduce scaled forecast metrics that allow us to compare
prediction performance independent of seasonal changes, (iv)
study the influence of sampling frequency (i.e., how often
solar energy should be sampled as training data), and (v)
investigate how the accuracy of the predictions develops after
a deployment in an operational setting. Our results show
that the machine learning models based on weather forecasts
outperform other methods by more than 20 %.

We start with an introduction to solar harvesting in IoT in
Sect. II that also provides the system context, and a study
of related work around energy planning and solar energy
prediction in Sect. III. This is followed by the discussion of
our method, which highlights the techniques for model and
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feature selection and introduces the metrics for our evaluation.
We then systematically analyze the type of machine learning
models, the suitability of features for the predictions, and the
sensitivity to the sampling frequency in Sect. V. In Sect. VI,
where we combine all insights, we explore and discuss the
performance of the prediction models in an operational setting,
and compare them to the state of the art.

II. SOLAR ENERGY HARVESTING PREDICTION IN IOT

We first provide an overview of the significance of solar en-
ergy prediction in IoT and explain then how energy predictions
can be integrated into device management that constitutes our
system context.

A. The Need for Solar Energy Predictions

The challenge with energy harvesting is its stochasticity,
and that energy is not always available when needed by an
application [11]. Some of the stochasticity is compensated
by energy buffers like batteries or super capacitors. But this
only helps to a certain degree, as the required capacity of the
buffers must be limited to reduce device cost and physical
dimensions [12]. Therefore, energy planning is required [13],
[14], [15], aiming at aligning the application energy demand
closer with the availability of harvestable energy. This can
be achieved for instance by adjusting the duty cycle of
the application, allocating tasks to nodes with better energy
budgets [13], or allowing a tradeoff between sensing accuracy
and energy consumption [16]. Some tasks, such as training
of machine learning models, are also tolerant to delays and
can hence be scheduled in time slots where more energy is
available or when the demand from other tasks is lower.

A basis for effective energy budget planning is the availabil-
ity of highly accurate predictions for the incoming energy [3],
[12], [13], [14], [15], [17]. Available solar energy often follows
quasi-cyclic diurnal patterns [11], which motivates approaches
that estimate the incoming solar energy based on historic data,
which we will review in Sect. III. While such approaches may
be suitable for short time horizons (up to 3 hours) or long-
term horizons (beyond several days), they are not sufficient
for medium-term horizons (3 hours to 3 days), as Sharma et
al. [8] and Renner [9] conclude. This is because the arriving
energy is not only dependent on the position of the sun relative
to the solar panel but also the coverage of the sky with clouds
at various levels, which can vary considerably with the local
weather conditions. Sharma et al. [8] and Renner [9] therefore
highlight the importance of also taking the weather forecast
into account, and report significant improvements in accuracy
compared with approaches that only rely on historic data.

Another aspect of sustainable and cost-efficient IoT solu-
tions is operational: due to the system scale, devices must
operate autonomously. Prediction models must not require
manual fitting or oversight for the individual devices. We
therefore turn our attention to off-the-shelf machine learning
methods and want to explore how they can improve the pre-
diction accuracy of solar prediction when taking the weather
forecast into account. We focus in our study on a medium-
term time horizon, as this time horizon is significant for
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Fig. 1. Operational setting, including IoT device and device management
platform.

energy budget planning in devices with typical energy buffer
sizes, and approaches based soley on historic data do not
perform well for this horizon. The novelty of our work is the
thorough exploration of machine learning options, selection of
features and sampling frequencies to achieve better prediction
performances than the current approaches as the basis for IoT
device energy budget management.

B. System Context and IoT Device Management

We suggest to include the weather forecasts into prediction
models as part of the device management [18]. This allows
the training of machine learning models for solar energy
prediction and the actual prediction to be executed off-device,
in cloud or edge hardware. Fig. 1 provides an overview of the
system, explained in the following. To allow the device man-
agement to be specific to the individual IoT devices’ settings
and micro-environments, the device management distinguishes
different device instances:
• IoT devices record their individual solar intake observa-

tions and send them to the device management module.
In Sect. V-C, we will discuss the significance of the
reporting frequency.

• The data aggregation step combines the solar intake
observation with the weather forecast data of a region
covering a device, further explained in Sect. V-A.

• This data is the input for training prediction models,
which is the main focus of our work. Which input features
to use is discussed in Sect. V-B, and the amount of
training data to store is discussed in Sect. VI-A. In
principle, models can be retrained with the arrival of
every new observation, but for most use cases a daily
training is sufficient, as shown in our final evaluation
Sect. VI-B. We note that the computational effort for
retraining a model is manageable compared with the
typical tasks of device management, further discussed in
Sect. VI-C.

• The trained model is then used to provide solar energy
predictions to the device, taking weather predictions as
input. The computational effort for this prediction is neg-
ligible. Depending on the planning mode of the device,
predictions can be provided every hour, or for instance at
midnight for the entire next day.

In this paper, we focus on the performance of the prediction
models and which features and frequency of data they require
as input.
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III. RELATED WORK

There is a wide range of approaches for solar power
prediction, which vary in terms of input data, forecast horizon
and temporal resolution. Wireless sensor nodes are typically
constrained in computation, which motivates approaches that
use the exponentially weighted moving average (EWMA), like
Kansal et al. [12]. They divide a day d into N time slots (for
instance N = 48) and observe the energy intake x in each
time slot n. For each time slot n they iteratively compute the
EWMA x̄ using

x̄(d)n = αx̄(d−1)n + (1− α)x(d)n ,

where x̄(d−1)n is the averaged value of time slot n from the
previous day. The prediction of a slot in the future is the
EWMA of the observations for that slot on previous days,
making use of the diurnal pattern of outdoor solar energy. This
type of model is attractive for embedded systems as it only
requires previous observations that can be accumulated locally,
and the EWMA only requires to store one value for each of the
N time slots. However, the performance of such approaches
depends on the stability of weather conditions. As an improve-
ment, Piorno et al. [19] propose a weather-conditioned mov-
ing average (WCMA), which corrects EWMA-based average
values with a factor that indirectly depends on the weather.
This factor is calculated based on the solar intake of the
day so far, compared to that of the previous days, and hence
limits the prediction to a short-term horizon, only a few time
slots ahead. UD-WCMA [20] poses another improvement by
choosing weighting parameters autonomously. However, the
short forecasting horizon remains. Saidi et al. [21] use a
Kalman fiter with an autoregressive model to predict solar
energy intake, but also this approach only considers a short
forecasting horizon, until the next time slot.

Persistence models are another type of forecasting model
only considering past observations, which are used as baselines
in solar forecasting for the power grid [22], [23]. Instead of
averaging over past observations, they take the value from
the previous day d − 1 as forecast for day d. The smart
persistence model corrects the historic observations with the
diurnal variance of the solar irradiance [24]. The global
horizontal irradiance (GHI) represents the potential amount
of energy that can be harvested by a solar panel. It depends
on the angle between the sun and the plane of the solar panel
and the travel length through the atmosphere. The GHI can
be calculated by using a model that estimates the clear sky
global irradiance directly, such as the simplified Solis model
described by Ineichen et al. [25], which is coherent for the
solar elevation angles at most latitudes and calculated as

GHI S = I ′o · e(
− τ

sing(h) ) · sin(h), (1)

where I ′o is the extraterrestial irradiance modified by the at-
mospheric radiation component, h is the solar elevation angle,
τ is the global total optical depth, and g is the corresponding
fitting parameter for the GHI. Therefore, future energy intake
can be predicted using

Êin(t+24h) =

{
Ein(t)GHIS(t+24h)

GHIS(t)
, GHI S(t) > 0.1

Ein(t), GHI S(t) ≤ 0.1
(2)

where Ein is the observed energy intake at a given time t,
and GHIS is the irradiance given by the simplified Solis clear
sky model. The used threshold of 0.1 can be adjusted to avoid
unrealistic high levels of irradiance at sunrise and sunset.

The above-mentioned techniques, which only rely on past
observations, do not perform well in locations with volatile
weather and for medium-term prediction horizons, as Sharma
et al. [8] point out. They instead propose the inclusion of
weather forecasts in the form of cloud coverage C for the
prediction of solar power P , and formulate a model Psun =
Pmax · (1 − C), where Pmax is approximated by a quadratic
model with coefficients for each month, that are derived by
manually selecting sunny days. While this work indicates the
benefits of including weather forecasts, it has the drawback of
manually fitting models, which is not realistic in a large-scale
IoT setting with heterogeneous devices and environments.

Renner [26] combines cloud-cover information of the
weather forecast with an EWMA-based model. This combi-
nation is similar to that of WCMA, but uses actual weather
forecasts. IoT devices are provided with access to the cloud
coverage forecast (CCF) for each time slot, and use this value
to determine what corresponds to the clear-sky value for each
time slot. The EWMA of these values is then used as basis
that is again combined with the CCFs to compute the actual
predictions. Together with the previously described methods
EWMA and smart persistence (SP), we use this approach –
CCF – as another baseline in Sect. VI.

Another domain for which solar energy prediction is rele-
vant is the power grid and renewable energy. In this domain,
machine learning techniques are much more common, and
used at different forecasting horizons, from short-term pre-
diction in terms of minutes to react to fluxes of solar power,
to long-term predictions to reason about the feasibility of
solar installations. Voyant et al. [27] provide a comprehen-
sive review of machine learning methods for solar radiation
forecasting. For instance, Bacher et al. [28] use autoregressive
models and find that for medium-term horizons, numerical
weather predictions increase the accuracy considerably. Many
approaches employ various machine learning techniques with
the use of distinct prediction variables as input. Yadav et
al. [29] provide an overview of neural networks as prediction
models, while Sharma et al. [30] study machine learning based
on weather forecasts, including the sky coverage, using support
vector machines. Alternatively, Dahl and Bonilla [31] use
Gaussian Processes as a forecasting model, which can also
quantify the confidence level in the prediction estimate. Benali
et al. [32] use separate models for the different components of
radiation. Similarly, the use of blended learning with a mixture
of models has been addressed by several authors [33], [34],
[35].

Tang et al. [36] use an approach based on the least absolute
shrinkage and selection operator (LASSO) for the short-term
solar prediction. In Wang et al. [37] this approach is extended
by long short-term memory units (LSTM) of neural networks
into a mixture model based on different weather types. They
use weather observations instead of the public weather fore-
casts, and identify temperature and humidity as valuable fea-
tures. This is probably due to their short forecasting horizon,
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and the absence of cloudiness in the weather observations, as
these turn out to be the most important prediction features for
medium-term horizons in our analysis.

Altogether, while there is considerable attention on solar
forecasting, there is a lack of discussion on the operational
aspects of the prediction models relevant for IoT, which are
crucial for making them work in a scalable and autonomous
way for constrained devices.

IV. METHODOLOGY

The main goal of our work is to identify machine learning
models and corresponding features to increase the performance
of solar energy prediction models. To that end, we start with a
set of standard machine learning models which we test on an
exhaustive set of feature combinations, resulting in a selection
of models and features based on their performance. In the
following, we discuss the significant aspects of our research
method. This includes data collection, the chosen metrics, and
the approaches for feature selection, prevent data leakage and
ensure results under realistic conditions.

A. Solar Energy Data Collection

We use real data that we collected over more than two years,
so that we were able to cover all seasons throughout a year
more than once. The source of our training data is a solar
panel with horizontal orientation on the top of a university
building in Trondheim, Norway. We measured the voltage on
a resistor and logged the data every minute, which resulted in
a data set covering two years, starting in October 2017.1 We
denote each measurement with a

(d)
i , where d is the day and

i ∈ Id the index of the value within the day. Fig. 2 shows the
solar energy intake over three days, which also shows their
extreme volatility from day to day.

Since measurement values are taken in regular intervals ∆t
(one minute in our raw data), the total energy collected during
a day can be approximated by summing over the individual
values a(d)i ,

E(d) = γ ·∆t
∑
i∈Id

a
(d)
i ,

where γ is a factor including the solar panel’s size, its
efficiency, and the efficiency of the power converter. The
specific value of this factor is not relevant here, as it depends
on each individual IoT device and is an internal variable in
the prediction process. Fig. 3 shows E(d) over two years and
reveals large seasonal difference between winter and summer.
We also calculate the exponentially weighted moving average
(EWMA) of the solar intake Ē(d) for each day

Ē(d) =

{
E(d), d = 1

α · E(d) + (1− α) · Ē(d− 1), d > 1.
(3)

Fig. 3 shows Ē(d) with α = 0.095, which also illustrates
the differences within the same month from year to year. The
average energy harvested in June 2018, for example, deviates
significantly from the same period in the year 2019.

1The data set of this study is available at https://github.com/falkr/
iot-solar-energy-prediction.
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Fig. 2. Three days in June 2018 illustrating the volatility of solar energy
intake from day to day.

B. Prediction Metrics

Although various metrics to evaluate solar energy forecast-
ing exist [38], their scaling is significant to ensure compa-
rability, as we will show next. Two standard metrics for the
prediction performance on a day d are the mean absolute error
(MAE) of the individual prediction values, as well as the total
absolute error for the entire day (TAE):

MAE (d) =
1

|Id|
∑
i∈I
|a(d)i − p

(d)
i | (4)

TAE (d) =

∣∣∣∣∣∑
i∈Id

a
(d)
i −

∑
i∈Id

p
(d)
i

∣∣∣∣∣ . (5)

As the MAE also considers intra-day accuracy, a good score
with the MAE also implies a good TAE. Yet, considering the
TAE could reveal good predictors for the overall day that are
just imprecise with their timing. For IoT energy management,
we will in the end address how we can combine these two
aspects, but we first need to address the problem of seasonality.

Fig. 4 shows the MAE for the smart persistence prediction
model from in Sect. III. (The TAE shows similar behavior.)
Both metrics are scale-dependent (see [39] for a discussion),
and vary with the seasons. This is problematic for our pur-
poses, as we do not know whether to attribute changes in
the score of a prediction to changes of a predictor’s quality
or just seasonality. To eliminate this scale-dependency and
seasonality, we consult the corresponding relative percentage
errors MAPE and TAPE, which scale the error to the actual
value a(d)i :

MAPE (d) =
100

|I∗d |
∑
i∈I∗

d

∣∣∣a(d)i − p
(d)
i

∣∣∣
a
(d)
i

(6)

TAPE (d) =
100∑

i∈I∗
d
a
(d)
i

∣∣∣∣∣∣
∑
i∈I∗

d

a
(d)
i −

∑
i∈I∗

d

p
(d)
i

∣∣∣∣∣∣ (7)

The modified set I∗d includes only the indices of obser-
vations that are non-null, to prevent division by zero in (6).
These percentage errors prevent seasonal variations, but have
the drawback that errors on days with very little energy get
very large, as the high variation in Fig. 4 for the MAPE shows.
In line with the normed errors RMSE and ME in [26] we
introduce the scaled mean absolute percentage error (SMAPE)
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Fig. 3. Measured daily solar power intake over two years. The solid black line shows the exponentially weighted moving average (EWMA) of the daily
intake with α = 0.95, corresponding to a span of ca. 20 days. Daily values and average show the high daily and seasonal variations.
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Fig. 4. Mean absolute error (MAE), mean absolute percentage error (MAPE), scaled mean absolute percentage error (SMAPE) of the smart persistence
predictor. The corresponding TAE, TAPE and STAPE metrics are not shown here for brevity, but they exhibit the same characteristics as their counterparts.

and the scaled total absolute error (STAPE), which are scaled
to the moving average introduced in (3)

SMAPE (d) =
100

Ē(d)

∑
i∈Id

∣∣∣a(d)i − p
(d)
i

∣∣∣ (8)

STAPE (d) =
100

Ē(d)

∣∣∣∣∣∑
i∈Id

a
(d)
i −

∑
i∈Id

p
(d)
i

∣∣∣∣∣ . (9)

Neither of them exhibit the challenges of the previous metrics.
STAPE is hence a measure of how many percent, relative to
the average intake during that time, the total energy for a day
is off, while SMAPE is also taking into account how accurate
the prediction is within a day. Taking percentages instead of
absolute values, as in [26], has the benefit that scores can
be also compared across different IoT devices. As a single-
number metric we use the arithmetic mean between SMAPE
and STAPE, which we for simplicity call the scaled absolute
percentage error, SCAPE:

SCAPE (d) =
1

2
(SMAPE (d) + STAPE (d)). (10)

This metric balances between the total prediction and the intra-
day accuracy.

C. Prevention of Data Leakage

A proper split between training and test data is important
to prevent data leakage and ensure applicability and general-
ization of the results. Since the observed solar energy intake
tends to be similar from one minute to the next, a standard
randomized training/test split would effectively result in data
leakage. For example, a measurement from 12:00 could serve
as training data and an almost identical entry from 12:01 could
end up as test data. We therefore only assign only entire days

to the test set. For that, days of 2018 (which we use for the
first parts of the experiment) are numbered consecutively, and
every fourth day is taken into the holdout test set. Data from
these days will not be used to train models or tune parameters,
they are only used to validate the results after models have
been developed. The days for validation are evenly assigned
into two of ten cross-folds.

D. Feature Selection Method

Feature selection is one of the core concepts in machine
learning and involves selecting the most relevant features that
yield the best model performance. In an IoT setting, omitting
irrelevant features is especially interesting since it may reduce
training and inference time and requires to store and transmit
less data.

Many different feature selection methods exist in literature
and they are being widely used [40]. An optimal feature
selection method is the exhaustive feature search [41]. The
main strength of the exhaustive feature selection algorithm is
that it is guaranteed to find the best set of features. However,
the main drawback of this algorithm is the complexity cost.

In our context, the size of the dataset, the number of required
features, and the computing resources allow the exhaustive
feature selection to be computationally feasible. Therefore, to
identify the best set of features, we employ an exhaustive
feature selection algorithm to evaluate all possible feature
combinations. More specifically, we train several thousand
prediction models and evaluate them independently. Following
that, we conduct a study of different features, referred to as
ablation study, to evaluate the performance impact of removing
a given feature from the machine learning model.
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Fig. 5. Example weather forecast values for three days, together with the
observed solar energy. The heatmap at the top shows the cloudiness overall
and at the three levels high, medium and low. Darker shades imply more
clouds.

E. Evaluation in Operational Settings

To ensure the relevance of our approach, we carried out
the main evaluation of our work as a case study under quasi-
realistic conditions, in an operational setting further detailed
in Sect. VI-B. This means that we train the selected machine
learning models with the same data they would receive if
deployed in reality, and evaluate them with the metrics from
Sect. IV-B.

For a comparison of our work with current state-of-the-art
solutions, we selected the baselines introduced in Sect. III.
Smart persistence (SP) is the standard reference for solar
energy forecasting [22], [23], and EWMA is a fundamental
prediction technique in wireless sensor networks [12]. The
cloud coverage forecast (CFF) itself outperforms other tech-
niques as shown in [26]. Together, these different forecasting
techniques constitute a relevant baseline for our approach.

V. WEATHER-BASED MACHINE LEARNING MODELS

In the following, we will discuss the preparation of training
data in more detail and then proceed with the identification
of suitable machine learning models and selection of the most
valuable features, and close with the condsideration of the
significance of the sampling intervals for the solar intake
observations.

A. Weather Forecast Data

We use the weather forecast provided by the public appli-
cation programming interface (API) of the Norwegian Meteo-
rological Institute [42]. Weather forecasts are usually issued
three times a day, around every 5 to 8 hours. Each issue
contains a forecast for the upcoming 60 hours with an hourly
resolution. We extract, for each hour, the publication and fore-
cast timestamps, temperature, humidity, pressure, precipitation
and the amount of clouds covering the sky. Fig. 5 illustrates
the weather data for three sample days. Cloudiness is provided

at several levels. Internally, the weather model calculates the
amount of clouds at 65 vertical levels in the atmosphere. In the
forecast, we use the cloudiness at four different aggregation
levels: low clouds (below 2.5 km), medium clouds (2.5–5 km),
high clouds (above 5 km) as well as a total cloudiness percent-
age, calculated from the entire stack of cloud levels.

We merge the solar data collected every minute with the
hourly slots of the weather forecast. We clean the data by
dropping a negligible number of days where the weather
forecast could not be collected or the solar panel was out of
order. Based on the timestamp, we add the solar angles zenith
and azimuth for our location. This results in a data set with the
features f1 . . . f10 ∈ F that represent zenith, azimuth, temper-
ature, precipitation, pressure, humidity, cloudiness, lowclouds,
mediumclouds and highclouds. The truth value for the data set
is the observed solar energy intake.

B. Feature Selection
For the exhaustive search, we use machine learning models

from Scikit-Learn [43], and specifically a random forest re-
gressor (RFR) with 30 estimators, an artificial neural network
(ANN) with a single hidden layer of 100 perceptrons, and a
deep neural network (DNN) with three hidden layers of 30
perceptrons each. For both neural networks, we used ReLU
activation functions.

We check the performance of all the three base models
on different feature sets, i.e., combinations of the features f1
to f10 from F . As the zenith (feature f1) is the dominating
variable describing the position of the sun, we include it in all
feature sets. The set FS of all feature sets that include f1 is
then described by

FS = {x |x ∈ P(F ) ∧ f1 ∈ x}, (11)

where P(F ) is the power set of F . This results in a total of
29 = 512 feature sets.

For each model and feature combination, we calculate the
performance with at least 3 crossfolds and take the average of
them. Fig. 6 shows the results for all models and all feature
sets. Each point shows the performance in terms of SMAPE
and STAPE for a specific combination of machine learning
model and feature set. The different colors distinguish the
different models (RFR, ANN, DNN). We observe that there
is in general a strong correlation between the SMAPE and
STAPE metric. The magnification to the right shows that
RFR produces the best results. This is also confirmed by the
histograms in Fig. 7, which shows the distribution of errors of
the different models trained with different feature sets. RFR
manages to achieve the best mean and median results over all
feature sets.

We have tried to improve the scores of the neural networks
by tuning their hyper-parameters and applying different acti-
vation functions, optimizers, and architectures regarding the
hidden layers. However, we have not been able to achieve the
same robust and consistent performance as with the relatively
simple RFR model, which is why we continue with the RFR
models in the following.

For the ablation study, we use the RFR model due to its
general good performance as shown above. Based on each of
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ANN, DNN) for all 512 combinations of features. Mean SCAPE (dashed) and
median (solid) errors are also shown.

the optional features f2...f10 we define pairs of feature sets,
(F+,F−) ∈ PFS fi , where the first set F+ includes feature
fi and the second feature set F− does not, that means

PFS fi = {(F+,F−) |F+, F− ∈ FS ∧ fi ∈ F+

∧ fi /∈ F−

∧ F+ \ {fi} ≡ F−}. (12)

With the total of 512 feature sets in FS , there are 256 pairs
for each of the optional features fi. We then compute the mean
performance of the prediction models for all pairs, using 10
crossfolds, and consider scatter plots as shown in Fig. 8. Each
scatter plot includes 256 pairs. The x-coordinate is given by the
mean SCAPE of the models trained using feature sets F+ with
fi included. Correspondingly, the y-coordinate shows the mean
SCAPE of the models trained on the feature sets F−, i.e.,
without fi. If a feature is useful, its inclusion should reduce the
SCAPE value. Hence, points above the identity line indicate
pairs where including fi improves performance, while points
below correspond to pairs where removing fi is detrimental.
Points close to the identity line show that the given feature fi
has little influence on performance. The mean SCAPE for each
plot is depicted by a black cross in the intersection between
the two dashed lines.

1) Humidity: For the humidity feature in Fig. 8, feature
pairs are close to the identity line, especially for good models.
There are some improvements for models that score worse in
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Fig. 8. Ablation study for the humidity feature. Each point denotes a feature
set pair, the x-coordinate showing the SCAPE with humidity, the y-axis
without. The dashed lines and cross show the mean values.

general, however they yield significantly poorer results than
the best feature sets not including this feature. This reveals
that humidity is not a useful feature.

The scatter plots for the other features are shown in Fig. 9.
2) Precipitation: Similarly to humidity, the results for the

precipitation feature ablation lie mostly on the identity line,
with the exception for very few of the worse performing
models. This is also confirmed by the mean SCAPE result
which coincides with the identity line, proving that precipita-
tion should not be considered as a feature.

3) Pressure: The pressure feature has most pairs along or
even below the identity line, indicating that this feature has
little usefulness, being even responsible for decreasing per-
formance in some feature combinations. In fact, the obtained
mean SCAPE is located below the identity line, confirming
that using pressure as a feature is overall detrimental to the
models’ quality.

4) Azimuth and Temperature: Azimuth and temperature are
both valuable features, showing loss of performance when
removed from the feature set. In particular, we found a
dependency between these two features. In the azimuth plot,
the orange markers are of model pairs that do not include
temperature as a feature. Similarly, in the temperature feature
plot, the orange markers indicate pairs where no azimuth was
present. This means that the azimuth feature is especially
valuable if temperature is not a feature, and vice versa. We
attribute this to the often observed pattern of both the azimuth
and the temperature raising in the morning (see Fig. 5). Since
the temperature feature is obtained from an uncertain weather
forecast while the azimuth can be calculated precisely, we
consider the azimuth to be the better feature of the two and
discard temperature.

5) Low-Clouds: When the low-clouds feature is removed,
the mean SCAPE of the RFR models increases from ap-
proximately 31 to almost 35. In addition, the variability of
results increases, which explains the appearance of two vertical
columns, with the SCAPE being as high as 45. The coloring
of the plot distinguishes the presence of the general cloudiness
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Fig. 9. Ablation study for the remaining features. Different colors are used to distinguish further certain subsets to show feature dependencies.

feature, but interactions between the two features are not
obvious here.

6) Medium-Clouds: The impact of removing the medium-
clouds feature is not as significant as with low-clouds but the
mean SCAPE still increases when this feature is not used. The
resulting variation also improves slightly, suggesting that the
medium-clouds should be considered as a feature.

7) High-Clouds: The obtained performance by removing
the high-clouds feature is similar to the medium-clouds fea-
ture, except that a smaller variation occurs. By analyzing this
third cloud-related feature we can conclude that they com-
plement each other, even though low-clouds have a stronger
correlation to the overall performance of the model.

8) Cloudiness: As shown in the ablation plot, having the
overall cloudiness feature improves the performance of our
model similar to the low-clouds feature. We explain this with
the fact that the densest clouds are found in the lower levels.
If a large proportion of the sky is covered by clouds in this
layer, clouds in the medium or high layers have significant
influence on how much light reaches the ground.

The dependencies between the different cloudiness features
are not obvious in the pairwise comparison above, which is
why we also computed the performance of all combinations
of cloudiness-features, shown in Table I. Each row shows the
mean performances and variation of the models matched with
the combination of cloudiness features given to the left. The
table reveals that models score similarly if they have at least
three cloud-related features included. When the three cloud-
levels (low, medium high) are present, the overall cloudiness
feature does not contribute to any improvement. If we only
want to select two cloud-related features, highClouds and
lowClouds combined score best. If only one cloud-related

TABLE I
AVERAGE SCORES OF ALL MODELS GIVEN THE AVAILABILITY OF THE
VARIOUS CLOUDINESS FEATURES. USING THE RFR MODEL WITH 30

ESTIMATORS, 10-FOLD CROSS-VALIDATION.
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SCAPE SMAPE STAPE

X X X 3 30.0 (0.3) 37.7 (0.3) 22.3 (0.3)
X X X X 4 30.0 (0.3) 37.7 (0.3) 22.3 (0.3)
X X X 3 30.3 (0.3) 38.0 (0.3) 22.7 (0.3)
X X X 3 30.4 (0.3) 38.2 (0.3) 22.6 (0.3)

X X 2 30.6 (0.3) 38.5 (0.3) 22.7 (0.2)
X X X 3 30.8 (0.3) 38.7 (0.3) 22.9 (0.3)
X X 2 30.9 (0.3) 38.7 (0.3) 23.1 (0.3)

X X 2 31.1 (0.3) 38.8 (0.3) 23.4 (0.3)
X X 2 31.9 (0.3) 39.9 (0.3) 23.9 (0.3)
X X 2 32.2 (0.3) 40.1 (0.3) 24.3 (0.3)
X 1 33.1 (0.3) 41.3 (0.4) 24.9 (0.3)

X 1 33.9 (0.3) 41.8 (0.3) 26.0 (0.2)
X X 2 35.1 (0.4) 42.9 (0.4) 27.2 (0.4)
X 1 35.9 (0.5) 44.0 (0.5) 27.8 (0.4)

X 1 37.5 (0.5) 45.7 (0.6) 29.3 (0.5)
0 40.9 (0.6) 49.4 (0.6) 32.5 (0.6)

feature should be taken into account, it should be cloudiness,
but it scores ca. 10% worse than the best combinations.

C. Training Sample Intervals

We now examine how sensitive the machine learning models
are to the intervals in which training samples are collected.
Longer intervals are desirable since they reduce (i) the amount
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Fig. 10. Scores for models trained with data sampled at different rates. While
the STAPE is fairly unaffected once sampling intervals are longer than 10
minutes, the SMAPE is getting better in the range between 30 and 50 minutes.

of data to transfer from the IoT devices to the machine learning
models in the edge or cloud, (ii) how much data needs to be
stored, and (iii) the runtime of the model fitting, i.e., training
time.

For the sensitivity analysis, we prepared data sets with
different sampling intervals, ranging from data sampled every
minute (the original rate), to data sampled every 180 minutes,
by resampling and taking the mean values. For each sampling
rate, we trained RFR models for each of the 10 crossfolds,
using the feature sets consisting of zenith, azimuth and all
cloudiness features. We evaluated the resulting models with the
test data from the original 1-minute sampled raw data. Fig. 10
shows the mean SMAPE and STAPE for the 10-folds including
their standard error. Interestingly, the lowest sampling interval
of 1 minute does not result in the most accurate models
measured by either SMAPE or STAPE. Instead, we see an
optimum for the SMAPE in the range between 30 to 50
minutes, before the accuracy of the prediction decreases again
with growing sampling intervals. We attribute this to the short-
term fluctuations in the cloud coverage that are present in the
more fine-grained data, which are not represented in the hourly
weather forecast. For an operational setting, this is significant:
more data does not imply higher accuracy, and by choosing a
sampling interval closer to 30 minutes we can both increase
the accuracy of the prediction and save costs in transmission,
data storage and training time.

VI. DAY-TO-DAY OPERATION AND EVALUATION

To ensure the relevance of our results, we now study the
performance of the prediction in an operational setting. That
means that devices are newly deployed without prior data,
and machine learning models are re-trained continuously as
training data becomes available. In the previous sections, we
analyzed suitable machine learning models, feature sets and
sampling frequencies. For the operational settings, we chose
trade-offs that allow for quick computation and good perfor-
mance. We hence chose the random forest regressor (RFR),
with zenith, azimuth, cloudiness, lowClouds, mediumClouds,

highClouds, as features, and a 30-minute sampling frequency.
As training and test data we use the so far unused data of the
year 2019.

We assume that an IoT device n is newly deployed on day
dndep and use dni to describe the i-th day since the deployment
of n. At the end of each day dni , the device manager computes
a new model Mn

i with the training data from the previous days
since deployment, i.e.,

trainni = {d | d ≥ ddep ∧ d ≤ di + ddep

∧ d ≥ di + ddep − trainmax}.

The last conjunct constraints the use to only the last trainmax

days for training data. Since a device is deployed without
prior knowledge, the model Mn

i only contains training data
collected from dndep to dni . The model Mn

i created for device
n at the end of day dni is then used to create a new energy
prediction for day dni+1, using the public weather forecast and
the solar angles that are calculated from time and location.
To ensure a realistic and causal setting, we only use weather
forecasts for day dni+1 that were published on the previous day
dni . We then calculate error metrics for all days dni , i > 0.

A. Amount of Training Data

As the computational effort of model fitting increases with
the number of training samples and hence with increasing
trainmax , we examine first how the prediction quality of Mn

i

develops with the number of included training days. For that,
we calculate the results for n = 365 devices, each deployed at
a different day in 2019,2 and study the results of M355

i when
predicting day d365i for increasing trainmax. Fig. 11 shows
how the SCAPE reduces with a growing number of training
days trainmax. Mean and median error reduce quickly with
an increasing amount of training data. Already after around
30 to 50 days with training data the SCAPE is on a level that
only marginally reduces with further data.

We have also experimented with data augmentation, similar
to [44], which takes the existing training data and generates
additional data points through various techniques. However,
this approach could not further reduce the number of required
training days as desired.

B. Operational Setting and Comparison

For the final evaluation and comparison with other baselines,
we now examine how the metrics evolve over time, i.e.,
starting with one day of training data on deployment day
d1, and going forward using a maximum of trainmax = 30
days. Figure 12 shows the results of the operational setting.
Again, we simulated N=365, corresponding to the deployment
of devices at different days of the year 2019.

Table II compares the results of our proposed approach
(RFR) with the approaches described in Sect. III. For the
EWMA-based approach based on [12] we used 48 timeslots
and α = 0.7. Similarly, we used the same setting for the
approach using cloud-cover forecasts (CCFs), as they provided

2We arranged the days of the year in a circular way, so that periods going
beyond the year end draw their days from the beginning of the year.
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Fig. 12. Distribution of SCAPE for N=365 nodes starting without prior data
with growing days di since deployment, and a maximum of trainmax = 30
training days.

the best results in [26]. (SP) denotes the smart persistence
model. The numbers show the mean and the median of
the metrics over all 365 prediction days. As expected, the
methods only relying on past data (EWMA and SP) perform
worst. The results of CCF show the benefit of taking cloud
coverage forecasts into account. The consistently best results
are achieved by our proposed RFR model, which scores more
than 20 % better than the CCF model for the median SCAPE.

RFR and CCF receive the same weather forecast, but CCF
only utilizes the overall cloudiness feature while RFR also
takes the other cloudiness features and solar angles into
account. The remaining error for RFR is comparatively low,

TABLE II
RESULTS OF THE PREDICTION MODELS IN THE OPERATIONAL SETTING.

SCAPE SMAPE STAPE
mean median mean median mean median

SP 44.79 38.84 50.56 47.67 39.01 32.96
EWMA 40.30 33.19 45.48 41.06 35.13 27.16
CCF 34.49 30.63 41.53 38.47 27.46 21.11
RFR 31.20 24.10 38.00 31.50 24.40 16.10

Error Reduction -9.54 % -21.32 % -8.50 % -18.12 % -11.14 % -23.73 %
from CCF to RFR

and we suspect that most of it is due to imprecission of the
weather forecast, i.e., an inherent problem that only reduces
with more accurate weather predictions.

C. Computational Effort

One argument for the EWMA-based approaches is their
computational simplicity. We argue, however, that the compu-
tational effort needed for the RFR is insignificant in a modern
IoT system with device management. The effort for storing
training data and training the models is low on cloud- or edge-
platforms, especially when compared with computation and
storage needed for the actual application data in an IoT system.
For example, with the setting chosen above (trainmax = 30,
sampling rate 30 minutes and all cloud-related features),
training time on a PC-grade CPU is on average below 400 ms
per day and per device. The prediction time for a single day
with 48 time slots is on average below 9 ms. This seems to
be acceptable given the potential gains in prediction accuracy
that further increase the energy efficiency of the IoT device,
which is a much more urgent problem.

VII. CONCLUSION

We presented and evaluated an approach for solar power
energy prediction that is suitable for the application in solar-
powered IoT systems. The median prediction scores are more
than 20 % better than the current state of the art for IoT energy
prediction, which we consider significant for the effectiveness
of energy budget planning. The input for the prediction models
only uses the public weather forecast and solar angles derived
from the current time and location, that means, only data
that is easily available. The approach scales well in an IoT
setting. No manual tuning is necessary for the individual IoT
devices despite any differences, for instance in solar panel
size, as these differences are learned by the individual machine
learning models. The problem of individual adaptation is hence
solved by individual but autonomously learning models.

Once part of the device management, energy harvesting
models with better performance open up for more strategic
energy planning. As indicated in the introduction, IoT de-
vices can then more proactively schedule energy-intensive
tasks in predicted periods of energy surplus, avoiding over-
dimensioning of systems. This has the potential to reduce the
size of solar panels and energy buffers that IoT devices need
to operate in a perpetual way, further advancing sustainable
operation.
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