
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)
Nanyang Technological University, Singapore.

Toward secure and efficient deep learning
inference in dependable IoT systems

Qiu, Han; Zheng, Qinkai; Zhang, Tianwei; Qiu, Meikang; Memmi, Gerard; Lu, Jialiang

2021

Qiu, H., Zheng, Q., Zhang, T., Qiu, M., Memmi, G. & Lu, J. (2021). Toward secure and
efficient deep learning inference in dependable IoT systems. IEEE Internet of Things
Journal, 8(5), 3180‑3188. https://dx.doi.org/10.1109/JIOT.2020.3004498

https://hdl.handle.net/10356/148325

https://doi.org/10.1109/JIOT.2020.3004498

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. The published version is available at:
https://doi.org/10.1109/JIOT.2020.3004498

Downloaded on 29 Mar 2024 08:13:03 SGT



1

Towards Secure and Efficient Deep Learning
Inference in Dependable IoT Systems

Han Qiu, Member, IEEE, Qinkai Zheng, Tianwei Zhang, Meikang Qiu, Senior Member, IEEE,
Gerard Memmi, Member, IEEE, and Jialiang Lu

Abstract—The rapid development of Deep Learning (DL)
enables resource-constrained systems and devices (e.g., Internet
of Things) to perform sophisticated Artificial Intelligence (AI)
applications. However, AI models like Deep Neural Networks
(DNNs) are known to be vulnerable to Adversarial Examples
(AEs). Past works on defending against AEs require heavy
computations in the model training or inference processes,
making them impractical to be applied in IoT systems. In this
paper, we propose a novel method, SUPER-IOT, to enhance the
security and efficiency of AI applications in distributed IoT
systems. Specifically, SUPER-IOT utilizes a pixel drop operation
to eliminate adversarial perturbations from the input and reduce
network transmission throughput. Then it adopts a sparse signal
recovery method to reconstruct the dropped pixels and wavelet-
based denoising method to reduce the artificial noise. SUPER-
IOT is a lightweight method with negligible computation cost to
IoT devices and little impact on the DNN model performance.
Extensive evaluations show that it can outperform three existing
AE defensive solutions against most of the AE attacks with better
transmission efficiency.

Index Terms—IoT, Deep Learning, Security, Adversarial Ex-
amples.

I. INTRODUCTION

The past decade has witnessed the revolutionary develop-
ment of Deep Learning (DL) technology with Deep Neural
Networks (DNNs). A variety of DL algorithms and mod-
els were designed to perform different Artificial Intelligence
(AI) tasks. For instance, Convolutional Neural Networks
(CNNs) [1] show great capability in handling computer vi-
sion tasks; Recurrent Neural Networks (RNNs) [2] power
the advance of natural language processing; Deep Reinforce-
ment Learning (DRL) [3] achieves very high performance in
robotics and autonomous driving. Those state-of-the-art mod-
els have been extensively commercialized in many products,
and they are continuously enhanced by experts from academia
as well as industry. Nowadays, new techniques have kept
emerging at surprising speed to enrich the DL community.

Meanwhile, DL also drives the growth of the Internet of
Things (IoT). Equipped with different sensors (e.g., cameras,
microphones, gyroscopes), IoT devices become appealing tar-
gets for DL applications. They keep sensing data and infor-
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Figure 1. Different scales of Artificial Internet of Things (AIoT) systems.

mation from various environmental contexts in a streaming
fashion. Then DL models are deployed in centralized servers
to process and understand the data. The integration of AI
and IoT leads to the era of Artificial Intelligence of Things
(AIoT), which have significantly changed our daily life (Figure
1): small-scaled AIoT systems are introduced to build smart
homes and increase the comfort and quality of life; medium-
scale AIoT systems are deployed in warehouses and factories
for higher efficiency and automation; large-scale AIoT systems
can contribute to the establishment of smart cities.

Two challenges need to be addressed for the deployment of
DL models in the AIoT systems. The first one is efficiency.
An IoT system can consist of a large number of edge devices
with high-quality sensors streaming information at a very
high rate (e.g. remote sensing [4]). This can result in a large
amount of data transferring between the sensor devices and the
model server [5]. There could be a performance bottleneck
if the network bandwidth of the AIoT system is not high,
or an energy bottleneck if the transmission energy budget is
low. Thus, it is necessary to have an efficient approach to
processing the data at the sensor device before sending them
to the model server, in order to reduce the throughput and
transmission energy dissipation.

The second challenge we need to consider is security.
Deep learning models are well known to be vulnerable to
Adversarial Examples (AE) [6]. An AE is created by adding
imperceptible perturbations to a clean data sample, which
can mislead the model to give a wrong decision. Past works
have demonstrated that an adversary can generate such AEs
of images [7], voices [8], and laser signals [9] to spoof the
IoT sensors and cause catastrophic consequences. It is of
paramount importance for the sensor devices to detect or
prevent such malicious samples for secure model inference.

To the best of our knowledge, currently, there are no existing
solutions that can solve both of the two challenges. The most
promising direction is to add a preprocessing step on the
input samples before feeding them into the model [10], [11],
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[12]. Such a step introduces non-differentiable transformations
on the inputs to obfuscate the gradients of the models, so
the difficulty of AE generation is increased and the impact
of the calculated perturbations is mitigated. However, such
defense approaches are still vulnerable as the adversary can
adaptively and statistically calculate the gradient based on the
preprocessing algorithms [13]. Besides, some preprocessing
operations can introduce heavy computation (e.g. sophisticated
quantization in image compression [12]), which are not appli-
cable to computing resource-constrained IoT devices.

In this paper, we propose SUPER-IOT: a secure and effi-
cient approach to deep learning inference for dependable IoT
systems, to overcome the two challenges. (1) The essential
component of our methodology is a pixel drop operation on the
IoT ends, which randomly selects and drops a certain amount
of pixels of the input images. Such operation can reduce the
data throughput between the IoT device and server to achieve
higher network efficiency. At the same time, it also gets a high
chance to invalidate the effects of AEs since it could drop the
added perturbations. (2) It is worth noted that the pixel drop
operation can affect the model accuracy, especially for the
clean samples, as it removes certain information which can be
critical for model prediction. To maintain high performance,
we adopt a novel pixel reconstruction algorithm, sparse signals
recovery, on the model server to recover the dropped pixels.
(3) To further enhance the performance of the model on
adversarial as well as clean samples, we integrate a wavelet-
based denoising operation on the model server to remove the
adversarial perturbations and artificial noises.

We conducted extensive evaluations to demonstrate the
effectiveness of SUPER-IOT. For security, we measured the
defense effects of our solution against 6 state-of-the-art ad-
versarial attacks. We also compared SUPER-IOT with three
existing defense methods (Shield [12], Pixel Deflection [10],
Feature Distillation [11]): SUPER-IOT can maintain higher
model accuracy and lower attack success rate than most
defenses. For network efficiency, we measured the size of
bitstreams with our preprocessing approach. SUPER-IOT can
effectively reduce as high as 25% transmission throughput,
while past works can hardly optimize network efficiency.

The major contributions of this paper include: (1) a pixel
drop operation to reduce the network throughput and mitigate
adversarial examples; (2) a pixel reconstruction algorithm to
recover the original input and maintain high model accuracy;
(3) a wavelet-based denoising operation to further remove the
adversarial perturbations and artificial noises.

This paper is organized as follows. Section II discusses the
research background and related works. Section III presents
the problem definition and threat model. Section IV describes
the design details of SUPER-IOT. Section V presents the
evaluation results. We conclude in Section VI.

II. BACKGROUND AND RELATED WORKS

In this section, we briefly present the background and
relevant works about AIoT systems, adversarial attacks on
DNN models, and preprocessing-based defensive strategies.

A. Artificial Intelligence of Things

Benefiting from the advance of DL technology, IoT sys-
tems are becoming more intelligent and multi-functional. A
typical IoT network can consist of an enormous amount of
IoT devices. They are connected via different communication
technologies (e.g., Ethernet, Wi-Fi). They collect sensory data
over time and transmits them to one or more centralized hosts.
These hosts can be remote cloud servers, local gateways, or
powerful edge devices. They run the DNN inference applica-
tions, interpret the received sensory data, and make control
decisions. Such IoT configuration has been widely adopted
in many scenarios, such as face authentication [14], vehicle
detection [15], and remote monitoring [4].

The sensory data generated from the IoT devices exhibit
some unique features. First, there can be a large quantity of
connected IoT devices generating real-time data continuously.
This leads to a huge volume of streaming data in the network.
Second, various IoT devices can collect different types of
sensory data and information, resulting in data heterogeneity.
Those data need to be transmitted to the DNN inference engine
and processed promptly to extract immediate insights and
make fast decisions. These requirements need to be achieved
from different perspectives. (1) At the host level, we can utilize
powerful cloud servers with high computing capability and
execution parallelism, or specialized hardware circuits [16]
to accelerate the DNN inference. (2) At the DNN algorithm
level, novel algorithms were proposed (e.g., OS-ELM [17],
Faster R-CNN [18]) to handle the data streaming for object
detection and video analytics. (3) At the network level, one
possible method is to preprocess and compress the sensory
data to reduce network throughput and communication costs.
This is also what we aim to optimize.

B. Adversarial Attacks on DNN models

An adversary can add human-unnoticeable perturbations
on the original input to fool a DNN classifier. Formally,
as in Eq. 1, the target DNN model is a mapping function
F . Given a clean input sample x, the corresponding AE is
denoted as x̃ = x+ δ where δ is the adversarial perturbation.
δ is constrained by certain metric (e.g. Lp norm) to make
it imperceptible. Then AE generation can be formulated as
the optimization problem in Eq. 1a (targeted attack where
l′ ̸= F (x) is the desired label set by the attacker, e.g. a
cat image is mis-classified specifically as a dog) or Eq. 1b
(untargeted attack, e.g. a cat image is misclassified as an
arbitrary class other than a cat.). In this paper, we only evaluate
the defense against the targeted attack and the untargeted
attack can be mitigated in the same way.

min∥δ∥, s.t. F (x̃) = l′ (1a)
min∥δ∥, s.t. F (x̃) ̸= F (x) (1b)

Various approaches were proposed to solve the optimiza-
tion problem and generate AEs. Fast Gradient Sign Method
(FGSM) [6] calculates the sign of the gradient of the classifi-
cation loss with respect to the input sample, which gives the
direction to modify input pixel values under Linf constraints to
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generate AEs. Later on, variations of FGSM were introduced
to iteratively calculate the perturbations with a small step or
with momentum, e.g., I-FGSM [7]. Some approaches use a
more advanced optimization algorithm to find the minimal
adversarial perturbation under L2 constraint, like LBFGS [19],
DeepFool [20], and Carlini & Wagner (CW) [21].
Attack scenarios. Generally, there are three attack scenar-
ios [22], determined by the adversary’s knowledge level of
the target DNN model. (1) White-box scenario: the adversary
knows every detail about the model including all the parame-
ters. He can directly adopt the above approaches to generate
AEs. (2) Black-box scenario: the adversary does not have any
knowledge about the target model. He has to use an alternative
model of the same task to generate AEs and attack the target
one. (3) Gray-box scenario: the adversary knows all details of
the model (e.g., training algorithms, network topology, hyper-
parameters) except the parameters. He can train another similar
model with the same configurations for AE generation. The
transferability property of AEs [23] can guarantee high success
rates for black-box and gray-box scenarios.

C. Preprocessing-based Defenses against AEs
Various defensive strategies have been designed to defeat

adversarial attacks. One direction is to train a more robust
model from either scratch or an existing model. Those ap-
proaches aim to rectify AEs’ malicious features by including
AEs into the training set [24], processing all the training
data [25], or revising the DNN topology [26]. However,
training a DNN model is very time and resource-consuming,
especially when the model is complicated. Besides, those
methods are not applicable when the DNN models are packed
as closed-source applications and cannot be modified. Most
of all, those methods are not secure: the adversary can still
generate adaptive AEs for the new models [27].

A more promising direction is to preprocess the input data
to eliminate adversarial influence without touching the DNN
model. Typical transformation methods include denoising,
compression, drop pixels, etc. These solutions are suitable in
AIoT systems, as it is feasible and efficient to preprocess
the sensory data on IoT devices. So here, we focus on
this preprocessing-based direction. Below we describe some
existing works and their limitations. We introduce our novel
preprocessing technique in Section IV, and empirically demon-
strate its advantages over those works in Section V.
Shield [12]. In this approach, JPEG compression is improved
by randomizing the quantization factors to different blocks
of image contents. Then the compression process consists of
the Discrete Cosine Transform (DCT) and lossy quantization.
This non-differentiable and irreversible transformation can
obfuscate the gradients of the DNN model with respect to
inputs from the adversary. However, this method can also
decrease the classification accuracy of clean samples.
Feature Distillation (FD) [11]. This approach uses a revised
JPEG compression based mechanism to defeat AEs. The
quantization step in the DCT process is modified to optimize
the reduction of the adversarial perturbations to improve the
robustness of the DNN model. However, FD is inefficient as
this revised quantization step can reduce the compression ratio.

Pixel Deflection (PD) [10]. The idea of this approach is
to combine the denoising algorithm with the operation of
dropping pixels. First, around 0.1% pixels of the input image
is dropped and replaced with a random pixel value within a
small range. Then, the denoising technique is applied to reduce
the adversarial perturbations. PD could provide robustness
against the adversarial examples. But the compression ratio
(i.e., dropped pixels) has to be very small in order to maintain
the model’s prediction accuracy.

III. PROBLEM DEFINITION AND THREAT MODEL

In this paper, we aim to design a novel methodology
for secure and efficient DNN inference for AIoT systems.
Specifically, we consider a distributed IoT system conduct-
ing computer vision tasks (e.g., image classification, object
detection). The sensor devices in the system keep collecting
the visual input at high sampling rates and sending them to a
centralized server for DNN inference. We focus on computer
vision applications for two reasons. First, vision sensors (e.g.,
cameras) are one of the most widely-used IoT devices in
our daily life. Computer vision tasks are also commonly
adopted in many scenarios, e.g., video surveillance [15], face
authentication [14], autonomous driving [28], etc. Second,
compared with other sensory data and tasks, vision sensors
can produce a larger volume of real-time streaming data with
higher throughput. So it is in a more urgent need for an
efficient inference solution in an IoT system.

We assume that the DNN model deployed in the IoT system
cannot be modified. In reality, the IoT administrator can
purchase the DNN model from a model vendor. He may not
be allowed to customize the model due to intellectual property
protection. He may not be able to alter the model either if it is
packed as a closed-source application. Then past approaches
to training or retraining models for better robustness cannot be
applied in our case. Designing new DNN hardware accelera-
tors for better performance is out of the scope of this paper, as
it requires drastic changes to the underlying infrastructure with
high cost. The administrator can only implement preprocessing
functions on the IoT devices or the server. Those functions
must meet the following requirements.

• Efficiency: they must be able to reduce the throughput of
the transmitted data from the IoT devices to the DNN server
to relieve the burden and stress of the network bandwidth.

• Lightweight: the preprocessing function on the IoT devices
should not be too heavy to impact the devices’ performance
or operations, considering the limited onboard computing
capabilities and resources.

• Functionality-preserving: they should not affect the predic-
tion accuracy of the DNN model on clean data samples.

• Security: they should be able to effectively remove the
adversarial perturbations and preserve the correct prediction
results from the model.

Threat Model. We assume the entire IoT system (e.g., sen-
sor devices, central servers, and communication channel) is
trusted. So we do not consider the security threats from IoT
botnet (e.g., Mirai [29], Hajime [30]) and man-in-the-middle
attacks. We also assume the target DNN model is correct
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without DNN backdoors [31]. The adversary is outside of the
IoT system, attempting to spoof the sensors and DNN model
by adding malicious perturbations on the physical objects or
spots on the lens of the cameras [?]. He has white-box access
to the DNN model and the preprocessing functions. We aim
to show that even the adversary knows all detail of the target
model and the defense mechanism, he can still not generate
AEs to bypass the defense to compromise the model.

IV. PROPOSED METHODOLOGY

In this section, we present our efficient and secure approach
for DNN inference in IoT systems. We give the methodology
overview in Section IV-A, following by the descriptions of
each operation in Sections IV-B, IV-C and IV-D.

Figure 2. Methodology overview.

A. Design Overview

Figure 2 shows an overview of our proposed methodology. It
consists of three steps across the IoT device and model server.
The first step is conducted on the IoT device, which randomly
drops some pixels from the input image. This operation can
remove the potential adversarial perturbations with a high
chance if the drop rate is high. Meanwhile, it can also increase
the transmission efficiency between the IoT device and the
model server as the image size is reduced after dropping
certain pixels. This operation is lightweight and incurs very
little computing costs on the IoT device. After this operation,
the image will be sent out to the model server.

On the server, the received image cannot be directly fed into
the DNN model, as a lot of information has been removed.
Then, the second step is to reconstruct the dropped pixels. This
operation can approximately recover the dropped pixels other
than the perturbations. It will increase the model’s prediction
accuracy on this image.

The last step is image denoising. This operation can remove
the malicious perturbations that are not dropped out at the
IoT side, and also the artificial noises introduced during the
reconstruction process. After that, the image can be sent to the
DNN model for classification. Below we detail the mechanism
and algorithm of each step.

B. Step 1: Pixel Dropping

In this step, the IoT device randomly selects a fixed ratio
r of pixels and remove them out of the image. This can

reduce the transmission throughput, and also remove adver-
sarial perturbations. Specifically, we first divide the raw image
into multiple blocks of N × N pixels. We denote one block
as f0(x, y), where (x, y) represents the coordinate of pixels.
Then, we randomly select n = r ×N ×N pixel inside each
block and set their values as zero. As shown in Eq. 2, n
pixels {(x1, y1), ..., (xn, yn)} are set to zero, while the rest
remains the same as f0(x, y). The resulting block is denoted
as f1(x, y). Finally, we concatenate the new blocks into one
output image and send it to the model server.

f1(x, y) =

{
0, if (x, y) ∈ {(x1, y1), ..., (xn, yn)}

f0(x, y), otherwise
(2)

Note that the value of r can determine the efficiency,
security, and also the model performance: a large r can
reduce more throughput and decrease the success rate of
adversarial perturbations. However, it can also decrease the
model performance on clean samples. So we must carefully
select r to balance such a trade-off. Figure 3 (first row)
shows the output images with different drop ratios. We will
empirically identify the optimal value in Section V.

C. Step 2: Pixel Reconstruction

When receiving the compressed image, the model server
adopts the pixel reconstruction algorithm inspired by sparse
signals recovery [32]. The algorithm is processed block by
block using 2D-DCT transform (Eq. 3).

F (u, v) =
2

N

N∑
i=1

N∑
j=0

αi,j(u, v)f(i, j)

αi,j(u, v) = Λ(i)Λ(j) cos[
πu

2N
(2i− 1)] cos[

πv

2N
(2j − 1)]

Λ(x) =

{
1√
2
, if x = 0

1, otherwise
(3)

The reconstruction algorithm is detailed in Algorithm 1:
given a block f1, for each dropped pixel at position (k, l)
((k, l) ∈ {(x, y)|f1(x, y) = 0}), we estimate a gradient to
modify its pixel value. We first perturb the pixel value in
two directions with a distortion level ∆ (lines 4-5). Then, we
calculate their 2D-DCT transform and L1 norm respectively
(lines 6-9). The gradient is calculated (line 10) and used to
update the pixel in block f1 with a step size of µ (line 11).
During this iterative process, we keep monitoring the changes
of reconstructed images using the metric Mean Square Error
(MSE), which is defined as the difference of output images
in two consecutive iterations (line 13). When MSE is hardly
changed, we dynamically reduce ∆ and µ to achieve better
reconstruction results (lines 14-18). This iterative process will
end until MSE is smaller than a threshold ϵ (line 21).

Figure 4 shows the trends of MSE, PSNR, and [∆, µ]
during the image reconstruction process. Initially, MSE keeps
decreasing while PSNR keeps increasing. When MSE becomes
too small, the reconstruction tends to converge and stops the
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Figure 3. Visual content evaluation of pixel drop with different ratio (r from 0.1 to 0.7) and the reconstruction results measured by PSNR.

ALGORITHM 1: Pixel Reconstruction
Input: a image block f1(x, y)
Output: the reconstructed image block f2(x, y)
Parameters: ∆ distortion level; µ step size; ϵ stop criterion.

/* Initialization */
1 d = 0, f0(x, y) = f1(x, y),MSEmax = 0;
2 do
3 for (k, l) in {(x, y)|f1(x, y) = 0} do

/* Perturb pixel value of missing pixel; δ Dirac function */
4 f

(k,l)
+ (x, y) = f1(x, y) + ∆δ(x− k, y − l);

5 f
(k,l)
− (x, y) = f1(x, y)−∆δ(x− k, y − l);

/* 2D-DCT transform */
6 F

(k,l)
+ (u, v) = 2

N

∑N
i=1

∑N
j=1 αi,j(u, v)f

(k,l)
+ (i, j);

7 F
(k,l)
− (u, v) = 2

N

∑N
i=1

∑N
j=1 αi,j(u, v)f

(k,l)
− (i, j);

/* L1 norm */
8 ∥F (k,l)

+ ∥1 =
∑N

u=1

∑N
v=1 ∥F

(k,l)
+ (u, v)∥1;

9 ∥F (k,l)
− ∥1 =

∑N
u=1

∑N
v=1 ∥F

(k,l)
− (u, v)∥1;

/* Estimate gradient */

10 grad(k, l) =
∥F (k,l)

+ ∥1−∥F (k,l)
− ∥1

2∆
;

/* Update pixel value */
11 fd+1(k, l) = fd(k, l)− µ× grad(k, l);
12 end

/* Dynamically update ∆, µ */
13 MSE = ∥fd+1(x, y)− fd(x, y)∥2;
14 if MSE < 0.01×MSEmax then
15 ∆ = ∆/10;
16 µ = µ/10;
17 MSEmax = 0;
18 end
19 MSEmax = max(MSE,MSEmax);
20 d = d+ 1;
21 while MSE > ϵ;
22 f2(x, y) = fd(x, y);
23 return f2(x, y)

modification of pixel values. To refine the reconstruction, when
MSE is smaller than 1% of the maximal MSE previously, ∆
and µ is updated dynamically (on the 13th and 17th iterations).
At the 20th iteration, MSE already becomes very small and
the reconstructed image has a good quality with PSNR bigger
than 30. Then, the iterative process stops.

The hyper-parameters used in this pixel reconstruction al-
gorithm can significantly affect the difficulty of the recon-
struction process and the quality of the output. So we need to
discover the optimal values.

First, for the initial values of distortion level ∆ and step size

Figure 4. Dynamic process of image reconstruction. (a) (MSE and PSNR)
versus iterations (b) [∆, µ] versus iterations.

µ, we tried different values within the range [0.01, 0.1] and
measured the quality of reconstructed images using the metric
Peak Signal to Noise Ratio (PSNR), which is defined as the
visual content deviation from the clean image. Figure 5 shows
the average PSNR for each configuration. We can choose ∆ =
0.03 and µ = 0.02 that lead to the best image quality.

Figure 5. PSNR of reconstructed images under different values of ∆ and µ.

Second, the stop criterion ϵ determines the number of
iterations during image reconstruction. As shown in Figure 4,
the MSE, and PSNR will become saturated after a certain
number of rounds. Then, it is not necessary to continue the
iteration, as the quality of the reconstructed image will not
change. So an appropriate threshold ϵ can guarantee the best
quality of output with the minimal number of iterations. We
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empirically identify the optimal ϵ = 10−5 from Figure 4.
Third, the pixel drop ratio r can also impact the image

reconstruction. Figure 3 (second row) shows the reconstructed
images and their PSNRs with different drop ratios. We observe
that larger r leads to smaller PSNR (i.e., worse quality).
Besides, the value of r can also determine the effects of ad-
versarial examples, and network throughput. More evaluation
results will be presented in Section V to show the trade-off
between those aspects, and discover the ideal drop ratio.

D. Step 3: Image Denoising

After the pixel reconstruction, the model server uses the
image denoising algorithm to further improve the image qual-
ity. On one hand, the pixel dropping and reconstruction can
introduce artificial noises. Then this denoising operation can
filter such new introduced noises [10]. On the other hand, this
denoising operation is non-differentiable. It can obfuscate the
DNN model gradients to further increase the difficulty of AE
generations via gradient-based approaches.

In this paper, we adopted the wavelet-based denoising
method named BayesShrink [33] from [10]. Other denois-
ing methods can be applied in a similar way. The denois-
ing method is performed in the frequency domain through
the wavelet transform. The image noise is always assumed
as the small perturbations on values in the high-frequency
domain. Therefore, these small values can be removed by
setting coefficients below a given threshold to zero (hard
threshold) or shrinking different coefficients toward zero by
a soft threshold. Firstly, we use the VisuShrink approach to
set a hard threshold. For an image X with N pixels, this
threshold is given by σ

√
2logN , where σ is normally smaller

than the true noise standard deviation. Then, we adopted the
BayesShrink algorithm [10] as an additional step to set a
soft threshold to further filter the wavelet coefficients. The
threshold Th ∗ (σx, β) is estimated on each wavelet sub-band
and the optimal threshold is calculated by minimizing the
expected mean square error. We model the threshold for each
wavelet coefficient as a Generalized Gaussian Distribution
(GGD). It can be approximated as σ2

σx
where σx and β are

parameters of the GGD for each wavelet sub-band (Eq. 4).

Th ∗ (σx, β) = argmin
Th

E(X̂ −X)2 ≈ σ2

σx
(4)

Normally, an approximation of Th, as shown on the right
side of Eq. 4, is used to adapts to the amount of noise in the
given image. The parameters for the denoising in this paper
are tuned to get the best performance.

V. EVALUATIONS

In this section, we comprehensively evaluate the efficiency
and security of our proposed methodology. We measure its
resilience against six popular adversarial attacks and compare
it with three existing preprocessing-based defense methods.
We also measure and compare the network throughput benefits
introduced by different approaches.

A. Experimental Configuration

We consider an image classification task on the CIFAR-
10 dataset. There are 50,000 images for training and 10,000
images for testing. Each image has a size of 32× 32× 3 and
belongs to one of ten classes. All pixel values are normalized
within the range of [0, 1].

We choose ResNet-29 [34] as the target model. It consists
of 29 layers for three bottleneck residual blocks with chan-
nel sizes of 64, 128, and 256, respectively. We use Keras
package with Tensorflow 1.14 [35] backend to implement the
model. Weights in all convolutional layers are initialized by a
truncated normal distribution proposed in [36]. The training
process is done via the Adam optimization algorithm [37]
with its hyper-parameters β1 = 0.9, β2 = 0.999. The model is
trained to reach the top-1 accuracy of 92.27% over the testing
set after about 150 epochs. Experiments are conducted on a
server with a CPU of Intel(R) Core(TM) i9-9900K@3.60GHz
and a GPU of NVIDIA GeForce GTX 2080 Ti.
Hyper-parameters. For the pixel drop and reconstruction
algorithms, we set N = 8 to have blocks with 8 × 8 pixels,
which is a typical configuration of DCT transform applied in
image compression. We set ∆ = 0.03, µ = 0.02 and ϵ = 10−5,
as discussed in Section IV-C.

B. Security Evaluation

First, we check whether our methodology can defeat ex-
isting adversarial attacks. We consider six well-known at-
tack techniques: FGSM [19], I-FGSM [7], DeepFool [20],
LBFGS [6], CW [21], and PGD [38]. We adopt the CleverHans
library (v3.0.1) [39] to generate AEs with those approaches.
We set the |L2| between AEs and original images to be within
0.5, to make the perturbation imperceptible. For FGSM and I-
FGSM, the scale of distortion is ϵ = 0.005 under the Linf

constraints. For PGD, the scale of distortion is ϵ = 0.01
and the number of attack iterations is 10. For the rest of the
attacks, the optimization process is iterated until the adversary
generates AEs of all samples. For all evaluations, we consider
the targeted attack, where a random label different from the
correct one is selected as the adversary’s target. The AEs are
generated under a white-box scenario.

Table I shows the prediction accuracy of the clean samples
as well as AEs when they are not preprocessed (Baseline col-
umn), or preprocessed by our methodology with different drop
ratio r. All average accuracy is measured for 100 images. We
observe that without any defense, all attacks can significantly
compromise the performance of the target model, even making
the accuracy drop to 0. With our preprocessing operation, the
prediction accuracy is significantly increased. The accuracy of
classifying AEs from FGSM, I-FGSM, and PGD will increase
first and then decrease which is different from the DeepFool,
LBFGS, and CW. This is due to the initial value r = 0.01
has been already effective to mitigate the DeepFool, LBFGS,
and CW attacks. Even lower r will see the same accuracy
trend of DeepFool, LBFGS, and CW compared with FGSM,
I-FGSM, and PGD. Then, continuing increase r after 0.25 will
lead to the decrease of model accuracy since and is a trade-off
between classifying clean samples and mitigating AEs.
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Table I
THE TOP-1 ACCURACY IN THE PRESENCE OF VARIOUS ADVERSARIAL ATTACKS ON SUPER-IOT WITH DIFFERENT PIXEL DROP RATIOS.

Attack Baseline r=0.01 r=0.05 r=0.10 r=0.15 r=0.20 r=0.25 r=0.30 r=0.40 r=0.50
Clean 1.00 1.00 0.99 0.99 0.93 0.94 0.88 0.86 0.60 0.43
FGSM 0.39 0.60 0.65 0.70 0.72 0.75 0.81 0.79 0.59 0.41

I-FGSM 0.21 0.45 0.54 0.65 0.78 0.79 0.79 0.71 0.64 0.42
PGD 0.05 0.30 0.39 0.51 0.67 0.69 0.72 0.72 0.56 0.51

DeepFool 0.00 0.99 0.98 0.97 0.92 0.89 0.85 0.83 0.60 0.44
LBFGS 0.00 0.95 0.99 0.97 0.92 0.89 0.85 0.82 0.59 0.37

CW 0.00 0.98 0.97 0.96 0.93 0.89 0.88 0.80 0.62 0.43

Next, we compare SUPER-IOT with existing state-of-the-art
solutions: Shield [12], Pixel Deflection (PD) [10], and Feature
Distillation (FD) [11]. Those preprocessing-based solutions
do not require the modification of DNN models and can be
applied to our IoT scenario. Due to the stochastic features
in these solutions, we repeat the experiments 10 times and
report the average prediction accuracy of each preprocessing
method for each attack technique, shown in Table II (We set
r = 0.1 in our method). We observe that our solution can beat
the other methods on the performance of AEs from DeepFool,
LBFGS, and CW. For AEs from FGSM, I-FGSM, and PGD,
the accuracy is higher than PD but slightly lower than Shield
and FD. However, Shield and FD have bad performance on
the clean samples, making them less practical.

Table II
THE TOP-1 ACCURACY IN THE PRESENCE OF VARIOUS ADVERSARIAL
ATTACKS ON BASELINE MODEL, SHIELD, FD, PD, AND SUPER-IOT.

Attack Linf L2 Baseline Shield FD PD SUPER
Clean 0.0 0.0 1.00 0.85 0.94 0.98 0.99
FGSM 0.005 0.28 0.39 0.78 0.85 0.57 0.70

I-FGSM 0.005 0.21 0.21 0.79 0.83 0.44 0.65
PGD 0.010 0.39 0.05 0.79 0.70 0.29 0.51

DeepFool 0.015 0.12 0.00 0.82 0.91 0.87 0.97
LBFGS 0.017 0.15 0.00 0.82 0.92 0.97 0.97

CW 0.115 0.09 0.00 0.82 0.93 0.94 0.96

C. Efficiency Analysis

We measure the efficiency of SUPER-IOT in terms of
reduced transmission throughput. By dropping certain pixels,
SUPER-IOT can effectively reduce the total bitstream for
transmission. This can save the energy cost of the IoT devices,
and relieve the stress of network bandwidth in IoT systems.

Figure 6 shows the compression ratio evaluated of SUPER-
IOT with different pixel drop ratio ranging from 0.01 to 0.5
(the bars). The evaluation here is made based on the bitstream
size before feeding into the compression algorithms. We can
see a larger r leads to a larger compression ratio for better
efficiency. This is straightforward: when r of the pixels are
dropped out, the size of transmitted data will also be reduced
by r. However, as we discussed in Section V-B, a larger r can
also affect the prediction accuracy of clean samples and AEs
(curves in Figure 6). So users need to carefully balance the
trade-off between efficiency, security, and functionality, and
consider their requirements when configuring the drop ratio.

In contrast, past works on AE defenses cannot achieve
throughput reduction. For PD, the optimal pixel drop ratio

r = 0.01 r = 0.05 r = 0.1 r = 0.15 r = 0.2 r = 0.25 r = 0.3 r = 0.4 r = 0.5
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Figure 6. Evaluation of SUPER-IOT on the DNN model classification accu-
racy (on both clean sample and AEs generated by two different approaches)
and compression ratio with different pixel drop ratio.

is between 0.1% to 1% in order to have a good model perfor-
mance for both adversarial and clean images. This ratio has
very little improvement in transmission efficiency. For Shield
and FD, there are no data reduction effects at the bitstream
level in their preprocessing operations. Thus, considering the
transmission efficiency, SUPER-IOT has an obvious advantage
over PD, Shield, and FD.

For the computation overhead, both PD and our SUPER-IOT
only require pixel drop operation on the IoT devices which
will add very limited additional computing overhead. For
comparison, Shield and FD have operations of modifying the
JPEG compression process with sophisticated randomization
or dedicated quantization tables, which are much heavier than
the pixel drop operation for IoT devices.

We adopt state-of-the-art configuration, where IoT collects
sensory data, and sends them to the server for inference. The
only computation cost introduced is the image reconstruction
at the server end, which is lightweight. However, we can save
the network throughput and transmission power from the IoT
end. Since IoT devices are more resource-constrained than the
server, such optimization is meaningful.

VI. FUTURE WORK AND CONCLUSION

For future work, we plan to explore better data drop and
reconstruction methods for higher classification accuracy on
both clean samples and AEs. With a larger drop ratio and
better reconstruction methods, the network throughput can be
further reduced. We will also explore more advanced defense
solutions for AIoT systems against more advanced attacks like
adaptive adversarial attacks.
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In this paper, we proposed a novel approach, SUPER-IOT,
to efficiently secure the inference of DNN models in AIoT
systems. We employ three techniques (pixel dropping, pixel
reconstruction, and image denoising) to defeat adversarial
examples and maintain good performance for clean samples.
Meanwhile, those operations can also achieve high efficiency
for network transmission in the IoT systems by reducing
the bitstream of transmitted sensory data. Our approach is
lightweight with little impact on the IoT devices’ performance
or operations. It is generic and can be applied to various
computer vision tasks without modifying the DNN models.
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