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Abstract—The combined cooling, heating and power (CCHP)
system is a typical distributed, electricity-gas integrated energy
scheme in a community. First, it generates electricity by use of
gas, and then exploits the waste heat to supply community with
heat and cooling. In this paper, we consider a smart city consisting
of a number of communities (CCHPs) and an agent of power grid
(APG), where CCHPs can sell energy to the APG according to
its bid. To study all utilities of entities in such a city from energy
trading, a noncooperative Stackelberg game between APG and
CCHPs is formulated. Here, the APG gives a bid for buying the
energy from CCHPs, then CCHPs respond to the APG with their
optimal energy supply that maximizing their utilities according
to this bid. We show that the maximum profit to the APG
and utilities to the CCHPs can be obtained at the Stackelberg
equilibrium, which is guaranteed to exist and unique. Because
the complete information about energy supply of each CCHP
is unknown to the APG in advance, we propose a distributed
algorithm that is able to find the point of equilibrium through
a limited number of iterations. Taking privacy protection and
transaction security into consideration, we design a blockchain-
enabled energy management system. This system is composed of
Internet of Energy (IoE) sub-system and blockchain sub-system,
where the information interactions as well as energy transactions
between APG and CCHPs can be carried out effectively and
safely. Finally, security analysis and numerical simulations show
the effectiveness and accuracy of our proposed mechanism.

Index Terms—CCHP system, Distributed energy manage-
ment, Smart city, Stackelberg game, Internet of Energy (IoE),
Blockchain, Privacy and Security

I. INTRODUCTION

TO reduce the cost of energy and emission of greenhouse
gas, distributed energy system (DES) combined with

multiple energy sources have been developed effectively in
the last decades. Not only can this energy generated by DES
by used by the residents in the local community, but also it can
be integrated into the grids. Even though renewable energy [1],
such as wind energy, hydro energy and solar energy, is gaining
popularity, they have not yet become the mainstream methods
for supplying energy because of the restrictions on various
conditions. Thus, fossil Energy still dominates in the current
energy supply. Integrated community energy system (ICES) is
an integrated energy system on the user side, which can be
considered as a node in a large DES. ICES undertakes the
task of satisfying local users’ all the energy demands, and can
make full use of local natural resources [2]. ICES is formed

J. Guo and W. Wu are with the Department of Computer Science, Erik
Jonsson School of Engineering and Computer Science, Univerity of Texas
at Dallas, Richardson, TX, 75080 USA; X. Ding is with the School of
Information, Renmin University of China, Beijing, CHN

E-mail: jianxiong.guo@utdallas.edu
Manuscript received April 19, 2005; revised August 26, 2015.

by the coupling of energy supply networks such as medium
and low voltage power distribution systems, medium and low
voltage natural gas systems, heating systems, and cooling
systems [3]. The joint operation of multiple kinds of energy
is of great significance for building an Internet of Energy,
improving energy efficiency, and building an environment-
friendly society together.

The combined cooling heating and power (CCHP) system
is a typical ICES that uses gas turbines or internal combustion
engines to generate electricity, heat exchangers to provide heat,
and absorption refrigerators to provide cooling. The combined
operating efficiency can reach more than 80%, which is one
of the most promising operating modes in today’s integrated
energy systems [4] [5] [6]. One of its advantages is that it
can make full use of the local rich natural resources. For
example, if coal is produced locally, use coal as fuel; if
gas is produced locally, use gas as fuel; wind, hydro and
solar energy can do the same thing. Thus, it avoids some of
the inherent shortcomings of centralized energy system. In a
traditional power grid, the electric energy generated from the
centralized node, such as power plant, has to be transmitted
by a complex mesh, which results in high losses during
transmission and thus low efficiency [7] [8]. Typically, in a
community, it is equipped with a CCHP system that meets all
energy supply, including cooling, heating, and electricity, for
the local residents, and remaining energy can be sold to the
power grid or heat/cooling station.

Consider a smart city, it consists of an agent of power
grid (APG) responsible for collecting electricity from CCHPs
and a number of communities, each of which is equipped
with a CCHP system. In this paper, we study the energy
trading between APG and CCHPs using noncooperative game
theory. As far as we know, this is the first time to consider
the energy trading problem in the scenarios of ICES. First,
creative utility and profit functions for CCHPs and APG in a
city are proposed, which consider both real-world scenarios
and mathematical operability. For each CCHP in this city,
its utility consists of two parts: one is to serve the residents
living in the community it serves by providing them with
the energy needed for life, and the other is sold electricity
to the APG of its corresponding city for gaining revenues.
For the APG in this city, its utility is from the difference in
price between market price of electricity and bid for buying
electricity from CCHPs belonging to this city. Assume that the
production capacity for a day is fixed, a natural problem for
each CCHP is how much energy should be sold to the APG.
The more it sells, the less it leaves for itself. To encourage
the CCHPs to sell more energy, the AGP should offer them
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a higher price. But like this, it has the potential to make
less profit because of the higher cost of buying energy from
CCHPs. Thus, this is a dilemma. Then, due to the multilevel
decision-making processes of APG and CCHPs in a city, we
formulate a Stackelberg game to model the bargain between
them, where the AGP is leader and CCHPs are followers. The
leader offers a price for buying energy from followers, such
that its profit to meet the day’s electric load can be maximized.
At the same time, the CCHPs respond to the APG with the
amount of electricity they are willing to sell given the price
offered by APG to maximize their utilities. The properties of
this Stackelberg game are analyzed in this paper, and we prove
the Stackelberg equilibrium (SE) exists and unique. Because
the responses of CCHPs are unpredictable in advance, we
propose a distributed algorithm that is guaranteed to reach
the unique SE by limited information interactions.

Then, let us imagine a larger area, such as a country,
which consists of a number of cities, and each city is covered
by an APG responsible for collecting electricity from all
communities (CCHPs) in this city. From this, an Internet of
Energy (IoE) is formulated. Now, the core of the problem is
how to protect privacy in the process of information interaction
and how to record transactions safely and effectively. With the
rise of blockchain technology, it is widely used as a technical
means in energy trading because of its decentralization, se-
curity, and anonymity. Blockchain is a distributed ledger that
is able to record transactions in a permanent and verifiable
manner. Combined with blockchain technology, we propose a
blockchain-enabled energy management system, where energy
trading is paid by energy coins. This system can be divided
into two sub-systems, called IoE sub-system and blockchain
sub-system. The IoE sub-system is made up of the P2P
network that connects between APG and CCHPs in a city.
It is formed in units of cities, whose main task is to complete
the information exchanges and generate transactions between
APG and CCHPs within the city. However, the blockchain
sub-system is based on the P2P network that connects all cities
(APGs) in the whole country. Each APG in the country can
be regarded as a node in the blockchain sub-system, which
stores complete information about the blockchain distributedly.
Thus, the blockchain is established on all APGs in the country
to share and verify energy transactions that occurred in this
system without third trusted institutions. Here, we can notice
that these APGs play the role of both a trader in IoE sub-
system and a storer (validator) in blockchain sub-system. They
are performed independently by different servers in the APG
and do not interfere with each other.

The rest of this paper is organized as follows: Sec. II
discusses the-state-of-art work. Sec. III introduces background
knowledges about CCHP and defines utility functions. Sec.
IV presents Stackelberg game and distributed algorithm. Sec.
V describes blockchain-enable energy management system in
detail. Sec. VI analyzes security of our system and conducts
numerical simulations. Sec. VII is conclusion.

II. RELATED WORK

CCHP system and its varieties have been applied widely in
many situations to save energy, cost and reduce emissions of

greenhouse gas [4] [5] [6]. Cardona et al. [9] explored the eco-
nomics of CCHP preliminarily, and proposed electric/thermal
demand management. The choice between them was deter-
mined by a set of complex factors, such as motivation, ability
to sell back to the grid and so on. Mago et al. [10] constructed
a complete framework to analyze and optimize CCHP system
following electric load and the thermal load strategies based
on their fuel consumption, operation cost, and carbon dioxide
emissions. Cho et al. [11] gave us a comprehensive survey
through summarizing more than 170 existing papers, which
covers all aspects of CCHP system basically.

Energy management problems about how to integrate DES
into a smart grid have been studied intensively. Georgilakis
et al. [12] summarized the optimally distributed generation
placement problem systematically, classified and analyzed cur-
rent and future research about it. Zhang et al. [13] considered
microgrid as a local energy supplier for domestic buildings
by utilizing DES, and stuidied optimal scheduling of energy
consumption through mixed-integer programming. Cecati et
al. [14] exploited DES to make the cost of power delivery
minimized by use of an efficient smart grid management sys-
tem. In addition, the Stackelberg game is suitable for analyzing
and designing an energy management system. Maharjan et al.
[15] addressed the demand response management problem by
means of establishing a Stackelberg game between multiple
utility companies and customers to maximized the profit of
each company and utility of each customer. Meng et al. [16]
studied a Stackelberg game between electricity retailer and
customers. They adopted genetic algorithms for the retailer to
maximize its profit, and developed an analytical solution for
customers to minimize their bills. Bu et al. [17] considered
a real-time pricing problem for the electricity retailer in the
demand-side management, proposed a four-stage Stackelberg
game and solved it by a backward induction process. Tushar
et al. [18] proposed an energy management scheme, and
formulated a Stackelberg game between residential units and
the shared facility controller that can buy energy from resi-
dential units or grids. Other researches about game in energy
management are shown as [19] [20] [21].

To deal with the transaction security issues in P2P energy
trading, many latest works about it adopt the blockchian tech-
nology. Kang et al. [22] put forward a localized P2P electricity
trading pattern based on consortium blockchain among plug-in
hybrid electric vehicles. It was achieved by giving rewards to
discharging, thereby balanced the local electricity demand. Li
et al. [23] proposed a P2P energy trading architecture based
on consortium blockchain for the industrial Internet of Things.
To reduce the transaction confirmation delay, they produced
a credit-based payment scheme. Liu et al. [24] designed an
adaptive blockchain-based charging scheme to reduce power
fluctuation in the grid and cost of electric vehicle users.
Aggarwal et al. [25] proposed an EnergyChain that permits
energy trading between grid and home in a secure manner,
including miner choice, transaction verification and block
adding. Zhou et al. [26] considered the scenario of vehicle-to-
grid, and developed a secure energy trading mechanism based
on consortium blockchain. Even though that, the design pattern
of our blockchain system is different from them.
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Fig. 1. The architecture of combined cooling, heating and power (CCHP) system.

III. CCHP SYSTEM MODEL

The combined cooling, heating and power (CCHP) system
is the newest technique of distributed energy utilization. It
exploits the recoverable waste heat generated by the electrical
power system for the purpose of space cooling, heating, and
hot water. In this section, we describe how to model the CCHP
system. The architecture of CCHP system is shown in Fig. 1.
The fuel, referred to as natural gas in this paper, is inputted
into the power generation unit (PGU). It generates electricity
that is required to be used in building for lighting, electronic
equipment, etc., or sell part of extra electricity to the agent of
power grid (APG). Thermal PGU will emit high-temperature
smoke gas after generating electricity, called “waste heat”,
which can be used for heating by heating component (heating
coil) or cooling by cooling component (chiller). When the
waste heat is insufficient for supply to building, it can be
replenished by the input of boiler. Then, we talk about the
basic properties of CCHP first in this section.

A. Basic Properties of CCHP

The CCHP system model we describe here follows the
electric load, thus the total electricity required by the building
can only be supplied by PGU. Thus, we have

Epgu = Ebuilding + Eexc (1)

Measured in days, the units of Epgu, Ebuilding and Eexc
are J/day. From the PGU, the electric energy demand is
equal to electric energy consumption per day. Here, we define
a partition coefficient β = Ebuilding/Epgu. The PGU fuel
consumption can be defined, that is

Epgu = ηpgu · (q · Fpgu) (2)

where q (J/m3) is the calorific value of given fuel and, hence
the total thermal energy generated by PGU per day is q ·Fpgu
definitely. For the natural gas, we have q = 3.6 × 107 J/m3.
The unit of gas intake Fpgu is m3/day. The ηpgu is the
conversion efficiency of PGU, percent energy that transferred
from heat to electricity. Given a specific CCHP system, its
conversion efficiency is assumed to be a constant.

The waste heat Qw can be computed by the thermal energy
generated by fuel Fpgu and electric energy Epgu. After passing
the heat recovery system, we have Qr as follows:

Qr = ηrec ·Qw = ηrec(1− ηpgu) · q · Fpgu (3)

where the Qr is the recovered thermal energy, and the units
of Qw and Qr are J/day. The ηrec is the efficiency of heat
recovery system. Considering the heat energy supplied by
boiler, we have

Qboi = ηboi · (q · Fboi) (4)

where ηboi is the thermal efficiency of boiler. To handle the
cooling load, the input of thermal energy Qcc to cooling
component can be defined as Qc = COPcc · Qcc, where
Qc (J/day) is cooling load and COPcc is the coefficient of
performance of chiller. Similarly, to handle the heating load,
the input of thermal energy Qhc to heating component can be
defined as Qh = ηhc ·Qhc, where Qh (J/day) is heading load
and ηhc is the thermal efficiency of coil. By the heat balance,
we can know that

Qr +Qboi = Qcc +Qhc (5)

However, it is complex to determine how to distribute the
total thermal energy, Qr+Qboi, to cooling component Qcc and
heating component Qhc. For example, in summer, the cooling
load is significantly heavier than in other seasons due to the hot
weather; but in winter, heating demand is higher because need
to heat the space of buildings. Apart from this, in different
regions, such as tropical or temperate regions, even at different
times of the day, the requirements for cooling and heating are
different as well. Thus, the allocation of total thermal energy to
cooling and heating component depends more on experience.
Even though that, we can observe a rule that the peak time
of the cooling and heating load. For simplicity, we consider
the cooling and heating load as a whole (a control body), and
consider its comprehensive thermal efficiency, that is

Qcom = Qc +Qh = ηcom · (Qr +Qboi) (6)

where Qcom (J/day) is the sum of cooling load and heating
load, and ηcom is its comprehensive thermal efficiency, such
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that ηcom ∈ [min{COPcc, ηhc},max{COPcc, ηhc}]. It can be
determined by historic records of cooling and heating load, and
we assume it to be a constant. The structure of control body
is shown in Fig. 2 as follows.

Fig. 2. The structure of control body, where we consider cooling/heating
components as an entity.

Finally, in order to computing cost, the total fuel consump-
tion Ftot per day can be defined as

Ftot = Fpgu + Fboi (7)

B. Distributed System Model
Consider in a city, there are a number of separate communi-

ties, and in each community, there is a CCHP associated with
it and responsible for supplying cooling, heat, and electricity to
these residents living in this community. In this city, it exists an
APG, which collects extra electric energy from communities
(CCHPs) belonging to this city. For one thing, each CCHP
addresses all energy supplies in its community. A CCHP can
be a single, or several CCHPs integrated by an aggregate,
which can be considered as a single CCHP entity. It can decide
the amount of fuel to be consumed to generate thermal and
electric energy, and how much electric energy is sold to the
APG for making revenue. For another thing, the APG attempts
to buy electricity from these CCHPs in this city at a lower
price, transfers it to other places where electricity is needed,
and sell it at a normal electricity price.

First, it assumes there is a set I containing all CCHPs
in a city. Each CCHP i ∈ I consumes fuel F ipgu and F iboi
independently, and it is able to manage its partition coefficient
βi that sells (1 − βi) · Eipgu electric energy to the grid
for making revenue. To reduce pollution, the government
usually adopts some policies to restrict the gas usage for each
community. For each CCHP i ∈ I, we say its gas usage
restriction is given by F itot. If it exceeds F itot, this community
will face serious fines and bad credit records. Thus, we can
consider F itot as a predefined constant, which indicates how
much fuel can be consumed at most in a day. Then, we denote
by pb the buying price of APG from CCHPs and ps the selling
(retail) price of APG, where the APG is willing to pay pb per
unit of energy to each CCHPs for purchasing their electricity.
Here, we define a partition coefficient αi = F ipgu/F

i
tot. Based

on that, we propose the utility function for each CCHP i ∈ I
obtained from its αi and βi, that is

U i = ki1 ln(1 + bi1qF
i
totη

i
pguα

iβi)

+ ki2 ln(1 + bi2((qF
i
totη

i
rec(1− ηipgu)αi + qF itotη

i
boi

(1− αi))ηcom))

+ pb(qF
i
totη

i
pguα

i(1− βi)) (8)

where ki1, bi1, ki2 and bi2 are adjustable parameters. The utility
function U i(αi, βi) is composed of three items. In Equation

(8), the first item is the utility of electric energy generated by
CCHP i that used for electricity demand in its community.
The second item is the heat energy generated by CCHP i that
used for cooling and heating demand in its community, and
it is composed of waste heat from PGU and boiler. The third
item is the revenue from the electric energy that sold to the
APG at the price of pb.

Unfortunately, the utility U i(αi, βi) is a multivariate func-
tion, and cannot be guaranteed to be a concave function
because the first item involves two variables. This causes great
difficulty for our follow-up mathematical analysis processing.
Generally, the electric load of a community is much larger
than its heating and cooling load, because electricity is a more
advanced energy source, and can be converted to other energy
easily. Given total fuel F itot, it is valid to think the waste heat
Qiw from EPG, qF itot · (1 − ηipgu) · ηirec · ηicom, is enough to
supply heat energy for the residents in community i. Thus,
all the fuel should be inputted into PGU, namely we can set
αi = 1. Like this, utility function U i(αi, βi) can be converted
to univariate function U i(βi), that is

U i = ki1 ln(1 + bi1qF
i
totη

i
pguβ

i)

+ ki2 ln(1 + bi2qF
i
tot(1− ηipgu)ηirecηicom)

+ pb(qF
i
totη

i
pgu(1− βi)) (9)

where βi ∈ [0, 1]. Consider the item, ln(1 + x) ∈ [0,+∞)
when x ≥ 0, in related researches, they usually adopted
function ki ln(1 + x) to estimate the utility for community
[18] [27] [28]. But it exists a drawback to this utility function
that logarithmic function does not have asymptote. Thus, we
add a parameter bi1 such that ln(1 + bi1x) ∈ [0,+∞), and we
can use it to model the the utility of electric energy used in
community. This parameter bi1 to control the variation range
of term ln(1 + bi1x), to avoid grow infinitely and make each
parameter meaningful. Our objective is to let ln(1+ bi1x) = 1
if βi = 1, at this time, the utility of the first item of (9) reaches
the maximum value. Thus, we have

bi1 =
e− 1

qF itotη
i
pgu

(10)

and for heat energy

bi2 =
e− 1

qF itot(1− ηipgu)ηirecηicom
(11)

On the other hand, consider the APG, it has no power
of pricing, because retail price is usually regulated by the
government. Thus, the retail price of electricity of APG can be
considered as a constant. To make revenue, the APG wishes
to collect electric energy from those distributed CCHPs at a
price as low as possible. Here, we assume the APG is willing
to buy electricity at the price pb which aims to maximize
its earning. Based on Equation (9), if pb is low, the CCHPs
tend to increase their partition coefficient β, namely sell less,
and use more electricity to serve themselves. They consume
more energy to improve the quality of life, or simply reduce
power generation, results in the revenue of APG is reduced.
In contrast, if pb is high, even approached to retail price ps,
the profit per unit of electricity will be small. Therefore, it is
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important for the APG to set a valid bid pb, not only encourage
CCHPs to sell more electricity, but also ensure that the APG
has sufficient profitability. Usually, pb ∈ (pm, pc), where pc is
the cost price of generating electricity by the APG. The APG
needs to generate electricity by itself at a cost price pc when
the electric energy collected from CCHPs is not enough to
meet the requirement. Then, we propose the utility function
to capture the profit gained by the AGP, that is

L = (ps − pb)
∑
i∈I

(
qF itotη

i
pgu(1− βi)

)
+ (ps − pc)

(
R−

∑
i∈I

(
qF itotη

i
pgu(1− βi)

))
(12)

where R is the electric load of APG, and we assume R ≥∑
i∈I qF

i
totη

i
pgu. The utility function L(pb) is composed of

two items. In Equation (12), the first item is the profit of selling
the electric energy bought from all CCHPs. The second item
is the profit of selling the electric energy generated by itself,
which is constrained by the total demand R.

IV. TRADING BETWEEN APG AND CCHPS

In the last section, we have introduced the utility functions
of APG and CCHPs, which depend on partition coefficient βi

for each i ∈ I and bid pb of APG. In the process of energy
trading, they need to determine {βi}i∈I and pb respectively.
The APG offer an appropriate price pb to purchase the electric
energy generated by each CCHP i ∈ I, in order to maximize
its profit L. Each CCHP i ∈ I responds to APG with the
amount of electricity that is willing to sell according to the
bid of APG by adjusting parameter βi to maximize its utility
U i. In this section, we describe the process of trading and
formulate their optimal strategies step by step.

A. Objective of APG and CCHPs
Given a bid pb by APG, each CCHP i ∈ I hopes to sell part

of electric energy to APG for making revenue by controlling
the partition coefficient {βi}i∈I . Thus, the objective function
for each CCHP i ∈ I can be defined, that is

max
βi

U i(βi) s.t., βi ∈ [0, 1] (13)

Then, its first-order derivative is

∂U i

∂βi
= qF itotη

i
pgu ·

(
ki1b

i
1

1 + bi1qF
i
totη

i
pguβ

i
− pb

)
(14)

The maximum utility value for each i ∈ I can be obtained by
solving its first-order defferential condition ∂U i/∂βi = 0, so
we have

βi♦ =
1

qF itotη
i
pgu

·
(
ki1
pb
− 1

bi1

)
(15)

which shows that the response strategy of each CCHP to the
bid of APG. Here, we need to note that the choice of parameter
ki1 must be in a valid range such that βi♦ ∈ [0, 1] for any value
of bid pb ∈ [pm, pc]. According to Equation (10) and (15), we
can get the range of ki1 as follows:

pc ·

(
qF itotη

i
pgu

e− 1

)
≤ ki1 ≤ pm ·

(
eqF itotη

i
pgu

e− 1

)
(16)

where it assumes pc ≤ e · pm, or else no such ki1 can keep
βi♦ ∈ [0, 1] satisfied. Form (15), the partition coefficient βi♦
determined by each i ∈ I is proportional invervely to the bid
pb of APG. Therefore, the CCHP i tends to sell more electric
energy by decreasing βi for a higher buying price.

Conversely, let us look at the side of APG, which aims to
maximize its profit by buying electric energy from all CCHPs
at a reasonable price. Thus, the objective function of APG can
be defined, that is

max
pb

L(pb) s.t., pb ∈ [pm, pc] (17)

Consider the relationship between {βi}i∈I and pb from (15),
substitute (15) into (12), we have

L = (pc − pb)
∑
i∈I

(
qF itotη

i
pgu −

(
ki1
pb
− 1

bi1

))
+ (ps − pc)R (18)

Then, is first-order derivative is

∂L

∂pb
=
∑
i∈I

(
ki1pc
p2b
−
(
qF itotη

i
pgu +

1

bi1

))
(19)

The maximum profit value for the APG can be obtained by
solving its first-order defferential condition ∂L/∂pb = 0, so
we have

p◦b =

√
pc
∑
i∈I k

i
1∑

i∈I(qF
i
totη

i
pgu + (bi1)

−1)
(20)

which shows that the optimal price p◦b is affected by the
number of CCHPs and their properties. From (20), we can
observe that the optimal price is interfered by the cost price
pc as well. With the increase of pc, the optimal price should
increase theoretically. In order to make the profit maximized,
the APG should set its bid according to (20) to collect
electricity from CCHPs, but from (17), pb ∈ [pm, pc], the
optimal strategy of APG can be shown as follow:

p♦b =


pc, if p◦b ≥ pc
pm, if p◦b ≤ pm
p◦b , if pm < p◦b < pc

(21)

Because the profit function is concave, which will be proved
later, L(pc) is the maximum value when p◦b ≥ pc; Similarly,
L(pm) is the maximum value when p◦b ≤ pm.

From (20) and (21), the APG can obtain the optimized
bid p♦b that maximizing its profit function, shown as (18),
easily if it can acquire complete information about those
parameters, such as ki1, bi1, F itot and ηipgu, for each CCHP
i ∈ I. However in the real situation, it seems unrealistic that
complete information about parameter setting of all CCHPs
can be accessed by the APG in a direct way because of its
flexibility or out of privacy protection. Thus, a noncooperative
Stackelberg game is formulated between APG and CCHPs to
decide on the variable {βi}i∈I and pb.

B. Noncooperative Stackelberg Game

A noncooperative Stackelberg game generally refers to
the multilevel decision making processes of a number of
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independent decision-makers in response to the decision taken
by the leading player of the game [29]. In this section, we
formulate a noncooperative Stackelberg game to model the
bargain between APG and CCHPs, where the APG is the
leader, and the CCHPs are the followers. The game G is
formally defined by its strategic form as

G =
{

APG ∪ {i}i∈I , L, {U i}i∈I , pb, {βi}i∈I
}

(22)

where the bid pb is offered by APG (leader) first, and each
CCHP i ∈ I (follower) responds to the APG with its strategy
βi. Then, L is the profit function of APG, shown as (12),
and U i is the utility function of CCHP i, shown as (9). As
said before, the purpose of APG and CCHPs are to maximize
its profit in (12) and their utilities in (9) by adapting their
corresponding trading strategies. The optimal solution of this
game can be obtained when the APG can get the maximized
profit at a bid p∗b given the CCHPs’ best responses. In other
words, none of them, including the leader and followers, can
get a larger profit and utilities through altering their strategies
unilaterally. At this time, the Stackelberg equilibrium (SE) is
formulated, which is defined as follows:

Definition 1 (Stackelberg Equilibrium). Given a Stackel-
berg game G defined in (22), we say a set of strategies(
p∗b , {βi∗}i∈I

)
reaches an Stackelberg equilibrium of game G

if and only if the following inequalities are met,

U i
(
p∗b , β

i
∗, {βj∗}j∈I\{i}

)
≥ U i

(
p∗b , β

i, {βj∗}j∈I\{i}
)

(23)

L
(
p∗b , {βi∗}i∈I

)
≥ L

(
pb, {βi∗}i∈I

)
(24)

where this strategy
(
p∗b , {βi∗}i∈I

)
is the point of equilibrium

and satisfies p∗b ∈ [pm, pc], βi ∈ [0, 1] for i ∈ I.

Based on Definition 1, neither the leader and the followers
can improve their utilities by changing their strategies respec-
tively when the SE

(
p∗b , {βi∗}i∈I

)
is reached. However, it is

possible for the noncooperative game with pure strategies that
the point of equilibrium does not exist [29]. Hence, we want
to know whether our proposed game G exists an SE.

Theorem 1. Between APG and CCHPs in I, it exists a unique
SE in our Stackelberg game G.

Proof. For each CCHP i ∈ I, and based on the first-order
derivative of U i, shown as (14), we have

∂2U i

∂βi2
= −ki1 ·

(
bi1qF

i
totη

i
pgu

1 + bi1qF
i
totη

i
pguβ

i

)2

(25)

where ∂2U i/∂βi2 < 0, thus utility function U i, shown as
(9), is strictly concave with respect to βi for i ∈ I. Thus,
given any bid pb by APG, for each CCHP i ∈ I, it exists a
unique partition coefficient βi♦ selected from [0, 1], shown as
(15), that maximizing i’s utility function. A SE can be reached
when the APG and CCHPs have their maximum profit and
utilities respectively. Because the strategy βi♦ is unique for
i ∈ I given a bid pb, we have that the game G reaches an
equilibrium only if the APG is capable of finding the best bid
p∗b at which each CCHP i select the unique partition βi∗ that
maximizing its utility given this best bid p∗b simultaneously.

Given the optimized responses by all CCHPs, consider (18)
and (19), we have

∂2L

∂p2b
= −2pc

p3b
·
∑
i∈I

ki1 (26)

where ∂2L/∂p2b < 0, thus profit function, shown as (18),
is strictly concave with respect to the bid pb. The APG can
acquire the maximum profit by finding a unique bid p∗b given
the optimized response of CCHPS. Therefore, our proposed
game G exists a unique SE definitely.

C. Distributed Algorithm
As mentioned earlier, complete information about CCHPs

is not available for the APG. Hence, instead of centralized
fashion, a distributed algorithm needs to be designed, where
the APG is not required to know the parameters information of
CCHPs, but only receive the amount of electric energy each of
them plans to sell. The APG and all of CCHPs can reach the
unique SE of Stackelberg game G in an iterative manner by
use of limited communications between leader and followers.
This distributed algorithm is shown in Algorithm 1.

Algorithm 1 Finding SE
1: Initialize: p∗b := pm, L∗ := (ps − pc)R
2: for each CCHP i ∈ I do
3: Initialize: βi∗ = 0
4: end for
5: for the bid pb from pm to pc do
6: for each CCHP i ∈ I do
7: CCHP i decides on its partition coefficient βi♦ ac-

cording to βi♦ = 1
qF i

totη
i
pgu
·
(
ki1
pb
− 1

bi1

)
8: end for
9: The APG computes its profit L based on the response

βi♦ for each i ∈ I according to

L = (pc − pb)
∑
i∈I

(
qF itotη

i
pgu(1− βi♦)

)
+ (ps − pc)R

10: if L ≥ L∗ then
11: p∗b := pb, L∗ := L
12: βi∗ := βi♦ for each i ∈ I
13: end if
14: end for
15: return

(
p∗b , {βi∗}i∈I

)
For Algorithm 1, in each iteration, the APG offers a bid
first, then each CCHP i ∈ I decides on its best partition
coefficient βi♦ according to (15) based on the bid pb offered
by APG, and sends it the APG. After receiving all responses
{βi♦}i∈I from CCHPs, the APG is able to compute its current
profit L according to (12). If this profit L is better than
before, it updates the global variables p∗b and L∗. The result(
p∗b , {βi∗}i∈I

)
returned by Algorithm 1 sastisfies the definition

in (23) (24), thus the game G reaches the SE.

V. BLOCKCHAIN-ENABLED ENERGY MANAGEMENT

Mentioned before, in a city, it can be divided into a number
of communities, each of which is equipped with a CCHP
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Fig. 3. The workflow of our blockchained-enable energy management system,
and the schematic diagram of CCPH is from [30].

system responsible for supplying energy for this community.
In this city, there is an APG, and it can trade with all CCHPs
in this city. Like this, an ecosystem of energy trading is
formulated, which is composed of a number of cities. For
instance, a country is a typical energy ecosystem. Here, the
ecosystem is denoted by E = {E1,E2, · · · }, where we have
Ej = {{APGj}, {CCHP1

j ,CCHP2
j , · · · }} for each Ej ∈ E.

In this section, we propose the blockchain-enable energy
management system, shown in Fig. 3, which is made up
of IoE sub-systems and blockchain sub-system. Generally
speaking, a city Ej ∈ E is an IoE sub-system, which is
composed of an APG and a number of CCHPs in this city.
It mainly realizes information interactions and finishes energy
transactions between APG and CCHPs in this city. Participants
of the IoE sub-system are connected with each other by P2P
communication. The blockchain sub-system consists of all
APGs in the ecosystem E, where all APGs are connected by
P2P communication. Apart from the effect described above in
the IoE sub-system, it needs to verify and record those energy
transactions between APG and CCHPs in a secure and trusted
manner. The workflow of our proposed blockchain-enabled
energy management system is as follows: First, a transaction
between APG and CCHPs is initiated and finished in an IoE
sub-system; Then this transaction can be verified and stored
permanently in the blockchain sub-system.

A. IoE Sub-system

Consider in Fig. 3, for each APGj ∈ Ej ∈ E in the
ecosystem, there are four major components: a transaction

server, an account server, a memory server, and a computation
server. The transaction server is a central controller, which is
mainly responsible for giving a bid, collecting the responses
from CCHPs in its city, adjusting trading strategy, and decide
whether to trade. Each entity, including APG and CCHPs, in
each city Ej ∈ E has a personal account in the account server
of APGj , which stores personal transaction records. Besides,
there is a wallet associated with each personal account, and
the digital assets of each entity are stored in its wallet in the
form of energy coin [22]. For privacy protection, true address
of the wallet is hidden by a public key (random pseudonym),
and the mapping relationships between the personal accounts
and the public keys of their associated wallets are stored in this
account server. Besides, the memory server and computation
server are mainly used in the later blockchain sub-system, we
will introduce in the next section.

As introduced before, the IoE sub-system is mainly respon-
sible for information interactions and finishing transactions.
The information includes the bid of APG and responses
(amount of energy) of CCHPs. Thus, our core problem is
how to protect the privacy during information interaction and
how to ensure security during trading. Here, we design a
smart contract to solve this problem. Smart contract empower
credible transactions without third parties based on blockchain
technology, which can ensure transactions to be trackable
and irreversible, but reduce time and cost at the same time.
In the beginning, each entity, including APG and CCHPs,
needs to register on trusted institution, e.g., a department
authorized by government, to become a legitimate entity, and
obtain its ID, public key, private key, certificate and wallet
address, which is assigned by this trusted institution. Here,
the public and private key can be achieved by some existing
algorithms, such as elliptic curve digital signature algorithm
[31], lattice-based signature scheme [32] and anti-quantum
signature scheme [33]. The certificate links each entity with
its registration information. The information of entities forms
a mapping, and stored in the account server of the APG in
its city. After initialization, they can verify the integrity of its
wallet in corresponding account server. Now, details of smart
contract for energy trading is described as follows:

1) Energy requesting: The APG (transaction server) broad-
cast the energy request to all of the CCHPs in its city. If
it makes energy requesting, it needs to send the message
that includes its bid pb.

2) Response: Each CCHP in this city that is willing to sell
its energy to the APG has to determine the amount of
energy to sell, and give responses back to the APG with
it. If no response, means that it does not trade.

3) Decide on whether start a transaction: After receiving
all responses from CCHPs, the APG (transaction server)
need to decide whether to start trading or change bid. If
changing bid, go back to step (1) and give a new buying
price; or else go to the next step.

4) Start trading: The APG (transaction server) broadcasts
the notification that it agrees to start this trade to all
of CCHPs in its city, and CCHPs send their wallet
addresses to the APG. Then, the energy is delivered
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from CCHPs to their corresponding APG by electricity
pipeline or wireless transmission equipment.

5) Payment by energy coins: The energy coins are trans-
ferred to the wallet of CCHPs that have completed
providing electric energy according to their wallet ad-
dresses. Then, these transaction records are generated
by the APG, needed to be verified and digitally signed
by the CCHPs to ensure its integrity and authenticity.

6) Transactions recording: The information of transactions
finished in this city has to be recorded in account server
first, and then upload into the memory server at the same
time. These recorded transactions in memory server are
broadcasted to other APGs (memory servers) in the
whole ecosystem to be further verified and recorded.
Invalid transactions will be neglected, and others will
be added into the new block in future.

In addition, it is worth noting that all the information
that transmitted in this system, including energy requesting,
response, transaction, and payment, must be signed by the
sender in order to make sure the authenticity and traceability
of the information and permit others to validate it. Here, for
each CCHP, its private key is used for signing transactions,
and its public key is shared with all APGs in the ecosystem,
where they can use it to verify its signature.

B. Bloackchain Sub-system

After a transaction is uploaded into the memory server, it
will be broadcasted to all the memory servers of APGs in
the ecosystem. All of the transaction records (blocks) in the
ecosystem E are stored in the memory server. Next, all mem-
ory servers start competing for accounting rights, e.g., adding
the new block to blockchain. The mining process is similar to
find a correct proof-of-work in Bitcoin system. Denoted data
by the information of the header of previous block, merkel root
of transactions, timestamps and so on, this process required the
memory server of each APG in the ecosystem to look for a
nonce a such that Hash(data + a) < b [34], where b is the
level of difficulty to find a that controlled by the system. If
an APG finds such a nonce successfully, it must broadcast
its block and this nonce to other APGs (memory servers) as
soon as possible. Other APGs audit it and decide to accept
or reject it after receiving the result. If the number of APGs
in the ecosystem that agree to accept it satisfies the condition
of consensus, this new block will be added into blockchain.
At this time, the energy coins associated with transactions in
this new added block is transferred to corresponding wallets
substantially. Besides, the APG that generating this new block
will be rewarded by a certain number of energy coins.

Shown as above, APGs require computational power to
compete for adding a new block, thus, in each APG, there
is a computation server responsible for providing enough
computational power. If someone wants to create a false block,
it will finish a correct proof-of-work independently (find a
valid nonce) before other APGs and has ability to dominate
the majority of APGs. It’s almost impossible for a single node.
If someone wants to modify a transaction in some block, it
will be impeded because the header of its subsequent block

is related to this transaction. Thus, a tiny modification to a
transaction in some block will affect all the subsequent blocks.

To execute the consensus process, it is executed among
all APGs in the ecosystem, and the leader is the first one
that gives a correct proof-of-work. The leader broadcasts its
proof-of-work, block, and timestamp to all other APGs, then
these APGs verify this proof-of-work as well as block, and
broadcast their verified block each other with their signature.
Each APG contrasts its result with those verified results from
other APGs, and reports this comparison result to the leader
with its signature. After receiving all responses from APGs,
the leader will perform on them with statistical analysis. If
all of them approve this block, the leader will broadcast a
notification that claims the new block should be added into
blockchain in chronological order, and it is rewarded by energy
coins. If some APGs reject this block, the leader will find
out the reasons why they reject, and send the block to them
for second verification if necessary. The total time that used
to reach consensus is almost unchanged no matter what the
network size is, when the number of APGs in the ecosystem
remains stable [35]. All the processes are completed by the
memory server of each APG.

VI. SECURITY ANALYSIS AND SIMULATIONS

In this section, we will analyze the security of our proposed
blockchain-enabled energy management system, and conduct
simulations to verify the Stackelberg game.

A. Security Analysis

For each APG in the ecosystem, it is not only an entity
that participating in the transaction in IoE sub-system, but
also a node that stores the blockchain in blockchain sub-
system. Different roles are played by different servers, and
these servers work together but work independently. Thus, our
energy management system inherits the characteristics of the
blockchain, shown as follows:

1) Decentralization: The energy trades between APG and
CCHPs are carried out in a P2P manner, and the book-
keeping process is finished among APGs without a third
trusted intermediary.

2) Privacy protection: Each CCHP uses its public key to
communicate with the APG in its city, and this public
key is shared among the APGs to be verified without
disclosing true identity. Besides, the wallets of CCHPs
are hidden by pseudonyms and can only be accessed
by corresponding key and certificate, which avoiding
malicious attacks against a specific entity.

3) Authentication: All transactions need to be audited and
verified publicly in the consensus process by all APGs
in the ecosystem. It is extremely hard to dominate the
majority of APGs to create an unreal block because of
the difficulty of proof-of-work.

4) Integrity: Any block that new added into blockchain
contains the hash of the previous block, and its sub-
sequent block contains its hash. A malicious attacker
that attempts to modify a transaction must create a new
chain after the block this transaction is in by dominating
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the majority of computational power, this is impossible.
Besides, every transaction in block is encrypted, it is
hard to be decrypted without the private key.

5) Transparency: The nature of decentralization requires
the blockchain to be saved in all memory servers of
APGs. Thus, it is transparent to every entity, and CCHPs
are able to check and confirm those transactions that they
participate in easily.

6) No double-spending: The blockchain provides all enti-
ties with a public ledger of transactions in the ecosystem,
which avoids double-spending potentially.

B. Numerical Simulation

First of all, we plan to evaluate the properties of utility
function of APG and CCHPs. Let us consider such a city
that there is an APG and only one CCHP. Typically, the
calorific value of natural gas is 3.6 × 107 J/m3 at the
standard atmosphere and the measure for electricity is kW ·h,
where 1 kW · h = 3.6 × 106 J. According to the latest U.S.
electricity price, that is 0.2 dollar/kW · h, hence, we can set
ps = 5.5× 10−8 dollar/J. In our energy management system,
it can be considered as ps = 5.5 × 10−8 coin/J equivalently.
We assume the cost price pc = 4 × 10−8 coin/J because the
cost price should be less than retail price. Besides, for this
CCHP, we assume its Ftot = 200 m3, ηpgu = 1 and R = 0 for
simplicity, because these settings does not affect the properties
of our objective functions. From (16), we have pc ≤ e · pm,
thus we are able to assume pm = 2 × 10−8 coin/J and its
parameter k1 satisfies k1 ∈ [167.6093, 227.8046]. Thereby we
have the range of variables, that is β ∈ [0, 1] for CCHP and
pb ∈ [2× 10−8, 4× 10−8] for APG definitely.

Fig. 4 draws the relationship between CCHP’s utility U and
partition coefficient β under different bid pb given by APG,
where k1 = 197.7069. Shown in Fig. 4, as β increases, these
utility functions increase first and then decrease regardless of
what the bid is. It proves that the utility function U , shown
as (9), is concave. Furthermore, as pb increases, the point of
maximum utility moves to the right, which means that the
CCHP tends to allocate more electric energy that sold to the
APG by increasing β in order to obtain the maximum utility.
Fig. 5 draws the relationship between APG’s profit L and
buying price pb under different parameter k1 set by CCHP.
Shown in Fig. 5, these profit functions increase first and then
decrease regardless of what the k1 is. It proves that the profit
function L, shown as (18), is concave. Furthermore, as k1
increases, the point of maximum profit moves to the right,
which means that the APG has to give a higher bid to buy the
electric energy from CCHP in order to obtain the maximum
profit. Here, a larger k1 implies the energy that used to serve
community contributes much to the total utility, thus the APG
has to offer a higher bid to buy energy.

Then, we consider a common city there are a number of
CCHPs, denoted by a set I, in this city want to sell electric
energy to the APG. The setting of pc and pm is the same
as above, thus we have pb ∈ [2 × 10−8, 4 × 10−8] as well.
For each CCHP i ∈ I, we assume its F itot = 200 m3 and
ηipgu = 1 for simplicity. The parameter ki1 for different CCHP

Fig. 4. The relationship between CCHP’s utility U and partition coefficient
β under different bid pb given by APG.

Fig. 5. The relationship between APG’s profit L and buying price pb under
different parameter k1 set by CCHP.

i ∈ I can be specified arbitrarily, but all of them satisfies
ki1 ∈ [167.6093, 227, 8046] definitely. Here, we set electric
load R in (18) as R = 2·

∑
i∈I qF

i
totη

i
pgu. Now, we can evalute

the performance of the convergence to the SE by following
distributed Algorithm 1.

Fig. 6 and Fig. 7 draw the process of APG’s buying price pb
and CCHPs’ partition coefficient βi, i ∈ I, converged to SE by
following Algorithm 1 in a city with five CCHPs set as above.
At the beginning, bid pb offer by APG is low, the CCHPs
are unwilling to sell their electric energy to the APG, hence,
their partition coefficient is very high. By interacting with each
CCHP in this city, the APG adjusts its strategy (increases its
bid) gradually in each iteration to encourage CCHPs to sell
more energy in order to obtain larger profit. After the 32-
th iterations, the APG gains the largest profit at the buying
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Fig. 6. The process of the APG’s buying price pb converged to SE by
following Algorithm 1.

Fig. 7. The process of those CCHPs’ partition coefficient βi converged to
SE by following Algorithm 1.

price 2.64 × 10−8 coin/J, which is the point of Stackelberg
equilibrium, thus their SE is reached.

Finally, we have discussed before that the APG can ac-
quire the optimal bid directly in a centralized manner if all
parameters of CCHPs in its city are known. Here, we can
compare the performance of profits that are obtained in both
the centralized and our proposed distributed manner. The
comparison results are shown in Table I. Here, we set electric
load R as R = 30 · qFtot, where F itot = Ftot = 200 m3,
i ∈ {1, 2, · · · , 30}, and ki1, i ∈ {1, 2, · · · , 30}, is sampled
uniformly from [167.6093, 227, 8046]. Shown in Table I, the
profits of APG at the SE of this game obtained by following
our distributed algorithm are very close to that computed in
the centralized manner regardless of the number of CCHPs.
The profit in a centralized manner is slightly higher than

that under distributed algorithm, thus its performance is better
because of complete information. We execute 100 iterations
between [2× 10−8, 4× 10−8], thus the stride is 2× 10−10. To
improve the accuracy of distributed algorithm further, we can
reduce the stride through increasing the number of iterations.
In addition, we assess how the profit of APG changes with
the different number of CCHPs in the city by comparing with
the base profit. The base profit is computed under the the
circumstance that there is no CCHP in the city, which is equal
to (ps − pc) ·R = 3240. This implies that all required energy
R has to be generated at the cost price. Accordingly, the base
profit is lower than that involved with CCHPs. Next, the profit
of APG increases gradually with the increase of the number
of CCHPs in the city, because the APG is able to buy more
electric energy from CCHPs at a price lower than cost price.
Thus, the profit will be increased certainly. The increment (the
last column) in Table I measures the performance compared
to base profit because of CCHPs’ existence, namely quantified
by actual profit divided by base profit. The effect is getting
more and more significant that increasing from 108% to 147%
as the number of CCHPs increases.

TABLE I
THE APG’S PROFITS OBTAINED IN CENTRALIZED AND DISTRIBUTED

MANNER UNDER DIFFERENT # OF CCHPS IN THE CITY.

|I| Centralized Distributed Incret
— p∗b Profit p∗b Profit ——-

5 2.6300 3507.2231 2.6400 3507.2026 108%

10 2.5969 3800.6279 2.6000 3800.6236 117%

15 2.6225 4050.5182 2.6200 4050.5142 125%

20 2.6645 4255.7724 2.6600 4255.7551 131%

25 2.6656 4507.6399 2.6600 4507.6065 139%

30 2.6487 4799.9251 2.6400 4799.8273 148%

VII. CONCLUSION

In this paper, we constructed CCHP system, and discussed
the energy trading between APG and CCHPs in a smart city,
where a Stackelberg game was formulated. Then, we designed
utility functions through valid simplifications in order to be
suitable for completing this game. We showed that the SE
between APG and CCHPs in the city is guaranteed to exist
and unique. Thus, we proposed a distributed algorithm that is
able to reach the SE by limited iterations. To protect privacy
and ensure transaction security, we created a blockchain-
enabled energy management system, where the information
interactions and energy transactions can be completed without
a trusted third institution. Security analysis showed our system
is secure and reliable. The results of numerical simulations
indicated that our model is valid, and SE can be reached by
our proposed distributed algorithm.

In the future, this energy trading can be improved and
extended further. CCHP system is an integrated energy system,
which implies not only selling electricity to the grids, but
supplying heat to heat stations or cooling to cooling stations.
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Hence, it forms a multi-leader Stackelberg game, where the
utility functions of the followers are multivariate functions.
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