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Robust Design for NOMA-based Multi-Beam LEO

Satellite Internet of Things
Jianhang Chu, Xiaoming Chen, Caijun Zhong, and Zhaoyang Zhang

Abstract—In this paper, we investigate the issue of massive
access in a beyond fifth-generation (B5G) multi-beam low earth
orbit (LEO) satellite internet of things (IoT) network in the
presence of channel phase uncertainty due to channel state
information (CSI) conveyance from the devices to the satellite via
the gateway. Rather than time division multiple access (TDMA)
or frequency division multiple access (FDMA) with multi-
color pattern, a new non-orthogonal multiple access (NOMA)
scheme is adopted to support massive IoT distributed over a
very wide range. Considering the limited energy on the LEO
satellite, two robust beamforming algorithms against channel
phase uncertainty are proposed for minimizing the total power
consumption in the scenarios of noncritical IoT applications and
critical IoT applications, respectively. Both thoeretical analysis
and simulation results validate the effectiveness and robustness of
the proposed algorithms for supporting massive access in satellite
IoT.

Index Terms—B5G, NOMA, satellite IoT, multi-beam LEO
satellite, massive access, robust design.

I. INTRODUCTION

The Internet of Things (IoT) is changing various social

and economic fields, e.g., industry, medicine, traffic, and

agriculture [1], [2]. In order to unlock the potential of IoT,

devices have to be interconnected wirelessly. Traditional IoT

networks based on WiFi, narrowband IoT (NB-IoT) and LoRa

access techniques are competent enough to fulfill communica-

tion tasks in cities and regular workplaces [3]. However, for

some underpopulated special areas such as deserts, oceans and

forests, it is impossible to construct tradition IoT networks

owing to the geographical conditions and economic costs.

Thus, satellite IoT is deemed to be a promising approach

to compensate the shortage of terrestrial IoT [4]. Actually,

some companies and organizations such as Space X have

launched many test satellites to realize global Internet service.

In particular, the low-earth orbit (LEO) satellite becomes a

better choice of an access point of satellite IoT based on B5G

wireless networks due to its appealing characteristics, e.g., low

power consumption and low transmission delay [5], [6].

In order to serve multiple IoT devices distributed over a

very large range, multi-beam technique is usually employed

at the LEO satellite [7]. Specifically, the LEO satellite simul-

taneously generates multiple spot beams by a feed reflector

antenna, and each beam covers a specified region [8]. By
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increasing the number of spots, it is possible to support the ac-

cess of many devices. However, multi-beam communications

lead to co-channel interference degrading the access perfor-

mance. Traditionally, the multi-beam satellite system adopts

frequency division multiplexing access (FDMA) such as four-

color frequency reuse [9] to mitigate interference among

adjacent beams. However, such a pattern can not effectively

make full use of spectrum and thus full frequency reuse pattern

with powerful precoding techniques was proposed in [10]. Yet,

full frequency reuse induces another major problem, namely,

the large spectrum demands of feeder link (FL). In [11], the au-

thors proposed an on-board beamforming scheme to reduce the

bandwidth of FL. Similarly, beamforming for multi-gateway

multi-beam satellite systems [12] was also seemed to be an

effective way to tackle the bandwidth problem. In general,

these two approaches still need large bandwidth of FL which is

several times larger than the bandwidth of beams and increase

the cost of satellite system. Time division multiplexing access

(TDMA) can avoid the defects as mentioned above. But in

the application of massive IoT, TDMA may cause a high

scheduling delay. Except for TDMA and FDMA, code-division

multiple access (CDMA) has also been widely employed

in satellite communications. There are a large amount of

studies dedicating to compare the performance of CDMA or

TDMA/FDMA in LEO mobile satellite communications [13]-

[15]. In [13], the authors proved that a CDMA system had

a greater capacity than an FDMA one without considering

the effects of imperfect power control and the adjacent cells

interference. When considering these factors, there was an op-

posite conclusion that TDMA/FDMA was superior to CDMA

[14]. Furthermore, the authors in [15] estimated the capacity

of a CDMA-based LEO satellite system with a comprehensive

account of multiple access interference (MAI) and realistic

evaluation of interference factors, and concluded that the

capacity of CDMA was superior to that of FDMA/TDMA for a

small power control error or a low SINR threshold. However,

the feasibility of CDMA on LEO satellite is based on the

scenario of mobile satellite applications which can use voice

activity technique and other interference mitigation techniques

to improve the capacity. In satellite IoT networks, due to the

effect of MAI on the CDMA system capacity [16], the massive

access of IoT devices inevitably causes the serious MAI

which leads to the sharp degradation of system performance.

Therefore, traditional orthogonal multiple access schemes are

not applicable to LEO multi-beam satellite IoT, which means

that it is necessary to adopt non-orthogonal multiple access

(NOMA) schemes [18], [19]. Based on the NOMA schemes,

it is likely to support massive IoT devices with limited spot
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beams. Besides, the power consumption of satellite can be

reduced due to the decrease of radio frequency (RF) chains

number. In [17], the authors showed the feasibility of applying

power-domain NOMA (PD-NOMA) in satellite IoT networks

based on the characteristic of satellite channels. Combining

with power allocation, PD-NOMA scheme can conquer the

near-far effects in each beam which is a big problem in

CDMA system. Moreover, the spectral efficiency of PD-

NOMA is much higher than that of FDMA/TDMA/CDMA,

which is a big advantage of the NOMA-based satellite IoT

networks. However, the use of NOMA causes serious co-

channel interference, especially in the context of massive IoT

[20]. Hence, it is essential to design spot beams to effectively

eliminate the co-channel interference.

The design of spot beams requires accurate channel state

information (CSI) at the LEO satellite. In general, the LEO

satellite obtains CSI via the aid of the gateway (GW). Due

to the round-trip delay and device mobility, it is difficult to

acquire real-time CSI at the GW. In other words, channel

uncertainty exists in the LEO satellite channels. As a result, the

real performance of beamforming schemes would deteriorate

if the LEO satellite designs spot beams based on perfect

CSI directly. Therefore, it is necessary to consider the robust

design to against channel uncertainty. Generally, there are

three different schemes to achieve robust design in satellite

communication: 1) Worst-case design based on a deterministic

uncertainty model [21]; 2) Optimizing average performance

based on an expectation constraint [22]; 3) Optimizing the

performance with a certain outage level based on outage

probabilistic model [23]. In this paper, we consider the latter

two schemes to design the robust spot beams according to the

characteristics of channel uncertainty in satellite communica-

tions.

A. Previous Works

As a promising technique to improve network capacity and

spectrum efficiency, NOMA has been applied for terrestrial

IoT network [24], [25]. For satellite IoT, the authors in [26]

summarized the state of the art in satellite communication

(SatCom) and the most promising applications in SatCom such

as satellite IoT, and the authors in [6] analyzed the details

of a LEO satellite IoT network. Besides, the advantages and

implementation details of satellite communication based on

NOMA was also well studied in [27]-[31]. To be specific, [27]

elaborately provided different non-orthogonal schemes that are

suitable for the forward link and [31] studied the application

of power-domain NOMA scheme in SatCom systems. The

authors in [28] addressed the quality-of-service (QoS) guar-

anteed resource allocation problem in NOMA-based satellite

industrial IoT networks. [29] extended the cooperative NOMA

with asynchronous channel in downlink of multibeam satellite

networks. Also, [30] utilized multiuser cooperative scheme to

conduct inter-usr interference cancellation and analyzed the

performance of secrecy rate in the frequency-domain NOMA

system.

However, in the aforementioned papers, the analysis of

NOMA-based satellite system is based on perfect CSI which

is unpractical in the real SatCom environment. In general, due

to delay and error during the CSI conveyance from the devices

to the satellite via the gateway, there exists channel phase error

for the CSI at the satellite. Thus, it is necessary to consider the

impact of imperfect CSI on NOMA-based satellite IoT system.

Indeed, there have some researches dedicated to multi-beam

SatCom in the presence of channel uncertainty [21]-[23], [32]-

[34]. Similar to channel models of the terrestrial, [21] and [32]

assumed that channel uncertainty is the additive norm-bounded

estimation error and separately proposed a robust beamforming

design for maximizing the sum secrecy rate in multibeam

SatCom systems. Yet, it is more realistic to consider the mul-

tiplicative phase error in satellite channels due to the special

characteristics in satellite channels [35]. [22] and [33] both

focused on the power minimization problem with expectation

constraint of user’s SINR. Moreover, the authors in [23] and

[34] investigated the robust design for multigroup multicast

precoding for multibeam SatCom systems with full frequency

reuse. By considering the outage probability constraint of

each user’ SINR, [34] adopted the central limit theorem to

transform the non-convex outage probability constraint and

change the original problem into a convex one which can

be solved by standard convex solvers. In addition, the above

researches tackled the rank-one constraint of beamforming

matrixes with classic Gaussian Randomization solution [36].

B. Motivations and Contributions

This paper dedicates to investigate the robust beamforming

design for a NOMA-based satellite IoT network. To the best

of our knowledge, the total power minimization problem

in NOMA-based satellite IoT network with multiplicative

channel phase error is still a new yet challenging domain in

NOMA-based satellite IoT related fields. Thus, these observa-

tions motivate us to make efforts on this research. The main

contributions of this paper are summarized as follows:

1) We present a NOMA-based LEO multi-beam satellite IoT

network to make up the defects of terrestrial IoT network.

Specifically, the proposed LEO multi-beam satellite IoT

network can provide a wide coverage for a massive

number of IoT devices with low power.

2) We design a practical LEO multi-beam satellite frame-

work for massive IoT, where the GW only acquires partial

CSI. Considering two typical IoT application scenarios,

we separatively formulate the robust beamforming design

for minimizing the total transmit power with satisfying

different SINR constraints of users and per-antenna power

constraint.

3) For tackling the non-convexity of two robust designs,

we utilize a series of mathematical tools to reformulate

original problems into the approximately equivalent con-

vex ones. We proposed two novel iteratively algorithms

combining with a penalty function rather than the classic

Gaussian Randomization scheme to solve the convex

problems. Furthermore, we investigate the impact of

imperfect successive interference cancellation (SIC) and

on the performance of the LEO multi-beam satellite IoT

network. Simulation results show the effectiveness and

robustness of the two proposed algorithms.
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Fig. 1. A model of B5G multi-beam LEO satellite IoT network.

The rest of this paper is organized as follows: Section II

introduces a multi-beam LEO satellite IoT network. Section

III concentrates on the design of two robust algorithms based

on different IoT application scenarios to minimize the total

power consumption on the LEO satellite. Section IV provides

numerical results to evaluate the effectiveness and robustness

of the proposed algorithms. Finally, we conclude the paper in

Section V.

Notation : We use bold lowercase and uppercase letters

to denote column vectors and matrices, R
m×n, H

m×n and

R
m denote m× n real and complex matrices, m-dimensional

real vector, respectively. SK and KK denote the symmetric

and skew-symmetric matrixs. (·)H and (·)T denote Hermitian

transpose and transpose, ‖ · ‖ and | · | denote Euclidean norm

and absolute value, tr(·) and Rank(·) denote trace and rank of

a matrix, ⊙ to denote Hadamard product. We use diag(x) to

denote the diagonal matrix with the elements of main diagonal

constituted by x, [X]m,n to denote the [m,n]th element of X.

II. SYSTEM MODEL

In this section, we consider a B5G multi-beam LEO satellite

IoT network, where a satellite equipped with an array fed

reflector antenna communicates with N single-antenna IoT

user equipments (UEs). As shown in Fig. 1, IoT UEs obtain

channel state information (CSI) about downlink channels by

channel estimation and send it to a GW, which conveys the CSI

to the satellite through a high-capacity feedback link1. Then,

the satellite utilizes the array fed reflector antenna to generate

M spot beams according to the obtained CSI and broadcasts

the beamformed signals over the downlink channels. The array

fed reflector antenna comprises a feed array with K feeds, a

beamforming network, and a reflector antenna. In general, the

beamforming network has two kinds of structures, namely,

single feed per beam (SFB) with M = K and multiple feeds

per beam (MFB) with M < K . For convenience of flexibly

controlling the shape and the number of beams, we adopt the

MFB structure in the considered LEO satellite to generate

1In this paper, we assume the feedback link is error-free. In practice,
there may exist error, resulting in imperfect CSI. Imperfect CSI in satellite
communications is usually modeled as channel phase error as analyzed later.

M beams in this paper. Different from traditional multicast

communications with a multi-beam LEO satellite, NOMA

techniques are applied to support massive IoT distributed in a

large range over a limited radio spectrum. Specifically, each

spot beam covers a specific region. The UEs in a region share

the same beam but decode different data streams, and thus

it is possible to realize massive access with a small number

of RF chains. Without loss of generality, we assume that the

satellite coverage area is split into M regions, and the mth

region contains Nm active IoT UEs. For ease of analysis, we

use UEm,n to denote the nth UE in the mth region in the rest

of paper. In what follows, we introduce the massive access

scheme for B5G multi-beam LEO satellite IoT.

A. Channel Model

According to the signal propagation characteristics of LEO

satellite communications, the downlink channel between the

satellite and the UEm,n can be expressed as [10], [34]

hm,n =
√

Cm,nb1/2
m,n ⊙ r1/2m,n ⊙ exp {jθm,n}, (1)

where Cm,n is the large-scale fading efficient, which is given

by

Cm,n = (
υ

4πfd0
)2
Gm,n

κBT
, (2)

where ( υ
4πfd0

)2 is the free space loss (FPL) with υ being

the light speed, f being the carrier frequency and d0 being

propagation distance, Gm,n is the receive antenna gain of

the UEm,n, κ is the Boltzman’s constant, B is the carrier

bandwidth, and T is the receive noise temperature. bm,n is

a K-dimensional beam radiation pattern vector, which of the

kth element, namely the beam gain from the kth feed to the

UEm,n, can be approximated as

bm,n(k) = Gm

(
J1(uk)

2uk
+ 36

J3(uk)

u3
k

)2

, (3)

where Gm represents the maximum satellite antenna gain for

the mth beam and uk = 2.07123
sin(ϕm,n)
sin(ϕm,3dB)

. Here, ϕm,n is

the angle between the kth feed and the UEm,n, and ϕm,3dB

is a constant which is equal to the 3 dB angle for the

mth beam. J1 and J3 are the first and third order of first-

kind Bessel function, respectively. Furthermore, rm,n is a K-

dimensional rain attenuation coefficient vector. In the form

of dB, rdBm,n(k) = 20 log10 rm,n(k), commonly follows log-

normal random distribution ln(rdBm,n(k)) ∼ CN (µr , σ
2
r) [37].

Finally, θm,n is a K-dimensional channel phase vector with

each element independently obeying uniformly distributed

between 0 and 2π.

Apparently, the amplitude of the satellite channel is de-

termined by the beam gain, rain attenuation and large scale

fading factor, which can be considered as a constant over

the intervals of interest. However, the phase of each channel

element is influenced by multiple time varying factors. For

example, fog, rain and atmospheric absorption can lead to

serious time varying phase variations on channel elements,

and these variations change faster than those for amplitude.

As a result, there may exist channel phase estimation error at

the IoT UEs. In general, the relationship between the actual
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channel phase vector θm,n and the estimated channel phase

vector θ̄m,n can be expressed as

θm,n = θm,n + em,n, (4)

where em,n is a K-dimensional channel phase error vector

with independently and identical distributed (i.i.d.) Gaussian

random element, namely, em,n ∼ N (0, σ2
m,nCm,n) with σ2

m,n

being the variance of the phase error and Cm,n being the

normalized covariance matric. Then, the relationship between

the real CSI hm,n and the obtained CSI h̄m,n can be modeled

as

hm,n = hm,n ⊙ qm,n = diag(hm,n)qm,n, (5)

where qm,n , exp {jem,n}.

B. Signal Model

As mentioned earlier, in order to support massive access

with a finite number of beams, the NOMA technique is

adopted in the satellite IoT. Based on the obtained CSI, the

satellite carries out superposition coding before broadcasting

signals to the UEs. First, the satellite constructs the transmit

signal xm for the mth region, ∀m, as follows:

xm =

Nm∑

n=1

√
αm,nsm,n, (6)

where sm,n is the Gaussian distributed signal of unit norm

for the UEm,n, and αm,n is the intra-region power allocation

factor, which can coordinate the intra-region interference, and

satisfies the following constraint:

Nm∑

n=1

αm,n ≤ 1, ∀m, (7)

Then, it constructs the total transmit signal x as below:

x =
M∑

m=1

wmxm, (8)

where wm is a K-dimensional beamforming vector designed

for the mth region based on available CSI to reduce the

inter-region interference. Finally, the satellite broadcasts the

superposition coded signal x to the UEs. Hence, the received

signal at the UEm,n is given by

ym,n = hH
m,nx + nm,n, (9)

where nm,n is additive white Gaussian noise (AWGN) at the

UEm,n with variance σ2
0 .

Owing to the effect of superposition coding, there exists

intra-region interference among UEs in the same ragion.

Therefore, the UEs carry out successive interference cancella-

tion (SIC) to decrease intra-region interference. Based on the

channel quality indicators from the IoT UEs, the satellite can

line the effective channel gains up in each region and conveys

it to the UEs via downlink channels. Without loss of generality,

we presume that the effective channel gains of the mth region

have a descending order as follows:

|hH
m,1wm|2 ≥ |hH

m,2wm|2 ≥ · · · ≥ |hH
m,Nm

wm|2. (10)

According to the principle of SIC, the ith UE decodes the

interfering signals and removes it based on the reverse order in

Eq. (10), and finally demodulates its desired signal. However,

due to the hardware defects of IoT UEs, the consistent change

of circumstance in satellite-ground links and other factors,

decoding errors of the interfering signal from the UEs with

weak channel gains may occur, resulting in residual interfer-

ence after SIC, namely imperfect SIC. According to a linear

model of imperfect SIC [38], the post-SIC signal at the UEm,n

can be written as

ym,n = hH
m,nwm

√
αm,nsm,n

︸ ︷︷ ︸

Desired signal

+hH
m,nwm

n−1∑

i=1

√
αm,ism,i

︸ ︷︷ ︸

Intra-region interference

+hH
m,nwm

Nm∑

i=n+1

√
ηm,nαm,ism,i

︸ ︷︷ ︸

Residual intra-region interference

+

M∑

j=1,j 6=m

hH
m,nwj

Nm∑

i=1

√
αj,isj,i

︸ ︷︷ ︸

Inter-region interference

+ nm,n
︸ ︷︷ ︸

AWGN

,

(11)

where ηm,n ∈ [0,1] represents the coefficient of imperfect

SIC associated with the UEm,n, which can be acquired by

long-term measurement. Note that different values of ηm,n

mean different functions of SIC. Firstly, ηm,n = 0 means

that the UEm,n can carry out SIC perfect to cancel the intra-

region interference from weaker UEs. Secondly, 0 < ηm,n < 1
represents the situation that the UEm,n is able to conduct SIC,

but SIC is imperfect. Thirdly, ηm,n = 1 indicates that the

UEm,n has no capability of performing SIC. Thus, the signal-

to-interference-plus-noise ratio (SINR) at the UEm,n can be

expressed as

Γm,n =
αm,n|hH

m,nwm|2
M∑

j=1

Nm∑

i=1

β
m,n
j,i αj,i|hH

m,nwj |2 + σ2
0

, (12)

where β
m,n
j,i is an instrumental variable which is defined as

β
m,n
j,i =







0, if j = m and i = n,

ηm,n, if j = m and i > n,

1, otherwise.

(13)

It is seen from (12) that the performance of the LEO

satellite IoT network is closely related to the beam wm, ∀m. In

particular, the beams determine the gains of both the desired

signal and the interfering signals. Therefore, it is necessary

to design spot beams from the perspective of improving

the overall performance. Considering the limited energy at

the practical LEO satellite, we dedicate to design beams to

minimize the total power consumption in the next section.
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III. ROBUST DESIGN OF B5G MULTI-BEAM LEO

SATELLITE IOT

In this section, we design robust beamforming for multi-

beam LEO satellite IoT networks in the presence of channel

phase error for minimizing the total transmit power consump-

tion2 based on the characteristics of IoT applications, i.e.,

noncritical applications and critical applications.

A. Noncritical Robust Design

First, we consider the scenario of noncritical IoT applica-

tions, e.g., agriculture, entertainment, and home. For these

noncritical IoT applications, the long-term received signal

quality is more important than the instantaneous one. In this

case, the robust design can be formulated as the following

optimization problem:

min
wm,∀m

M∑

m=1

‖wm‖2 (14a)

s.t. E {Γm,n} ≥ γm,n, ∀m,n, (14b)
[

M∑

m=1

wmwH
m

]

k,k

≤ Pk, ∀k, (14c)

where γm,n > 0 is the required minimum average SINR for

the UEm,n and Pk is the power constraint of the kth feed. It

is obvious that problem (14) is non-convex. To this end, we

introduce an auxiliary variable Wm = wmwH
m and reformulate

problem (14) as

min
Wm,∀m

M∑

m=1

tr(Wm), (15a)

s.t. E {Γm,n} ≥ γm,n, ∀m,n, (15b)
[

M∑

m=1

Wm

]

k,k

≤ Pk, ∀k, (15c)

Wm � 0, ∀m, (15d)

Rank(Wm) = 1, ∀m, (15e)

To solve problem (15), firstly, we take a few transformation

and approximation on the constraint (15b), which can be

rewritten as

Γ
′

m,n =
αm,ntr(Hm,nWm)

t1tr(Hm,nWm) +
M∑

j=1,j 6=m

t2tr(Hm,nWj) + σ2
0

(16)

where t1 =
∑n−1

i=1 αm,i+
∑Nm

i=n+1 ηm,nαm,j , t2 =
∑Nm

i=1 αj,i

and Hm,n = hm,nhH
m,n. As noted in Section II, Hm,n can be

expressed as

Hm,n = diag(hm,n)qm,nqH
m,ndiag(h

H
m,n)

2In general, the total power consumption includes the signal transmit
power, the constant circuit power consumption per antenna relating with
transmit filter, mixer, frequency synthesizer, and digital-to-analog converter
and the basic power consumed at the satellite. Since the circuit power and
the basic power are independent of the signal transmit power, we consider the
minimization of only the signal transmit power.

= diag(hm,n)Qm,ndiag(h
H

m,n). (17)

Then, we set Q
′

m,n = E
{

Qm,n

}
, whose diagonal elements

are all ones. Due to Gaussian distribution of em,n, the off-

diagonal elements of Q
′

m,n can be calculated as

[Q
′

m,n]l,s = E {exp {j[em,n]l}}E {exp {−j[em,n]s}}
= exp

{
−jσ2

m,n

}
. (18)

Therefore, the (l, s)th element of Q
′

m,n takes the following

value:

[Q
′

m,n]l,s =

{

1, if l = s

exp
{
−jσ2

m,n

}
, otherwise.

(19)

Hence, referring to [39], for nonnegative random variables X

and Y, we can have the following approximation:

E

{

log2

(

1 +
X

Y

)}

≈ log2

(

1 +
E {X}
E {Y}

)

. (20)

According to (20), constraint (15b) can be approximated by

(21) at the top of the next page, where Tm,n = t1Wm +

t2
∑M

j=1,j 6=m Wj . To be a convex constraint condition, we

transform (21) and get the following convex constraint (15b
′

):

tr
(

diag(hm,n)Q
′

m,ndiag(hH
m,n)T

′

m,n

)

− γm,nσ
2
0 ≥ 0, (22)

where T
′

m,n = αm,nWm − γm,nTm,n.

However, problem (15) is still nonconvex owing to the rank-

one constraint on Wm, ∀m. To guarantee a rank-one solution

W∗
m, ∀m, we insert an iterative penalty function (IPF) into

the objective function [40]. Note that W∗
m, ∀m, is a positive

semidefinite matrix which means that each eigenvalue λ∗
m of

W∗
m satisfies λ∗

m ≥ 0. Intuitively, rank-one constraint implies

that only one eigenvalue λ∗
m,max is larger than zero. Thus,

according to the fact tr(Wm) =
K∑

i=1

λm,i, we can replace the

constraint (15e) with the following equation:

tr (Wm)−
K∑

i=1

λm,max = 0. (23)

Then, we can build a penalty function to improve the objective

function of problem (15) with the constraint (23):

min
Wm,∀m

M∑

m=1

tr (Wm) + ρ1

M∑

m=1

(tr(Wm)− λm,max) , (24)

where ρ1 is the penalty factor. Unfortunately, the new objective

function is non-convex due to the existence of the penalty

function. To tackle this issue, we adopt an iterative method to

acquire a convex one. To be specific, for the solution W(t)
m in

the tth iteration, we have following inequality:

tr
(

W(t+1)
m

)

−
(

v(t)
m,max

)H

W(t+1)
m v(t)m,max ≥

tr
(

W(t+1)
m

)

− λ(t+1)
m,max ≥ 0.

(25)

where vm,max is the unit eigenvector corresponding to λm,max.

Then, problem (15) can be reformulated as (26) at the top

of the next page. It is obvious that the value of the penalty
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E

{

Γ
′

m,n

}

≈ αm,nE {tr(Hm,nWm)}

t1E {tr(Hm,nWm)}+
M∑

j=1,j 6=m

t2E {tr(Hm,nWj)} + σ2
0

=
αm,ntr(diag(hm,n)Q

′

m,ndiag(hH
m,n)Wm)

tr(diag(hm,n)Q
′

m,ndiag(hH
m,n)Tm,n) + σ2

0

≥ γm,n, (21)

min
Wm,∀m

M∑

m=1

tr
(

W(t+1)
m

)

+ ρ1

M∑

m=1

(

tr
(

W(t+1)
m

)

−
(

v(t)
m,max

)H

W(t+1)
m v(t)m,max

)

(26)

s.t. (15b
′

), (15c), (15d).

factor will affect the convergence speed of the iteration-based

objective function. Thus, it is necessary to choose a proper

penalty factor at first. It is worth pointing out that due to

the existence of a lower bound in (25), the objective function

can be converged eventually. In other words, the rank-one

constraint can be satisfied. Finally, problem (26) is a convex

problem, which can be effectively solved by some off-the-shelf

optimization softwares, e.g., CVX. Afterward, we can obtain

a suboptimal solution of the original problem (14) as follows:

w∗
m =

√

λm,maxvm,max. (27)

As a result, the noncritical robust design can be summarized

as Algorithm 1.

Algorithm 1 : Noncritical Robust Design of Multi-Deam LEO

Satellite IoT for the Total Power Consumption Minimization

Input: K,M,Nm, αm,n, γm,n, σ
2
0 , and Pk .

Output: wm.

1: Set accuracy ǫ1, maximal iteration number Tmax, penalty

factor ρ1 and coefficient κ1.

2: Initialize feasible solution W(0)
m by solving problem (15)

dropping constraint (15e).

3: repeat

4: solve problem (26) by CVX, then obtain W(t)
m .

5: if

∣
∣
∣tr

(

W(t)
m

)

− λ
(t)
m,max

∣
∣
∣ > ǫ1 then

6: update the penalty factor ρ
(t)
1 = κ1ρ

(t+1)
1 .

7: end if

8: Update iteration number t = t+ 1.

9: until t = Tmax or solution converges.

10: Finally, use eigenvalue decomposition (EVD) to W(t)
m and

obtain w∗
m according to (27).

B. Critical Robust Design

Then, we consider the scenario of critical IoT applications,

e.g., medicine, traffic, and industry. For these critical IoT

applications, the instantaneous SINR has to satisfy a given

condition. To guarantee the SINR performance over fading

channels in the presence of channel phase error, we impose an

outage probability constraint on the design of transmit beams.

Thus, the critical robust design can be formulated as

min
Wm,∀m

M∑

m=1

tr(Wm), (28a)

s.t. Pr {Γm,n ≥ γm,n} ≥ 1− pm,n, ∀m,n, (28b)
[

M∑

m=1

Wm

]

k,k

≤ Pk, ∀k, (28c)

Wm � 0, ∀m, (28d)

Rank(Wm) = 1, ∀m, (28e)

where pm,n is the SINR outage probability threshod for

the UEm,n. Unfortunately, problem (27) is also not convex.

To convert problem (28) into a convex problem, we should

transform the probabilistic constraint into a series of convex

conditions. In what follows, we introduce two useful lemmas

for convexity transformation.

First, we need to take a pretreatment into the constraint

(28b), which can be expressed as

Pr
{

qH
m,nZm,nqm,n − σ2

0 ≥ 0
}
≥ 1− pm,n, ∀m,n, (29)

where Zm,n =
[
αm,n

γm,n
− t1

]

Wm −
M∑

j=1,j 6=m

t2Wj , t1 and t2

are the same as before. Then, we utilize the Taylor’s expansion

to approximate the term qH
m,nZm,nqm,n, which is shown in

Lemma 1.

Lemma 1: For Gaussian random vector θ, complex expo-

nential Gaussian vector x = (ejθ1 , · · ·, ejθK ), and K-order

Hermitian matrix Z with symmetric real part A ∈ SK and

skew-symmetric imaginary part B ∈ KK , we can obtain

the second-order Taylor’s expansion expression of xHZx as

follows:

xHZx =
∑

i,j

Zi,j + θ
Tf1(A)θ + θ

T f2(B), (30)

where f1 : RK×K → R
K×K and f2 : RK×K → R

K are the

linear maps, which can be defined as

[f1(A)]i,j =







Ai.j −
K∑

n=1
Ai,n, if i = j,

Ai.j , otherwise.

, (31a)
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and

[f2(B)]i = 2

K∑

n=1

Bi,n, (31b)

The proof of Lemma 1 can be referred to [41]. Based on

Lemma 1, we can obtain an approximation expression of the

outage constraint (28b). Furthermore, if σm,n is small, we

have:

Pr
{

qH
m,nZm,nqm,n ≤ σ2

0

}
≈

Pr







∑

i,j

Zm,n,[i,j] + ν
T Qm,nν + 2νT rm,n ≤ σ2

0






≤ pm,n,

(32)

where ν ∼ N (0, I) is a K-dimentional Gaussian random

vector, Qm,n = σ2
m,nC

1

2

m,nf1(Am,n)C
1

2

m,n, and rm,n =
1
2σm,nC

1

2

m,nf2(Bm,n). Then, we derive the equivalent convex

restrictions of (32), which can be obtained by using the

following lemma:

Lemma 2: Let e ∼ N (0, I), Q ∈ H
K×K and r ∈ R

K×K

being known. For any µ > 1√
2

and τ > 0, we have

Pr
{

eT Qe + 2Re
{

eT r
}
+ s ≤ 0

}

≤







exp
(

− τ2

4T 2

)

0 < τ ≤ 2λµT,

exp
(

− τλµ
T + (λµ)2

)

τ > 2λµT,

(33)

where s = τ − tr(Q), λ = 1− 1
2µ2 , and T = µ‖Q‖F + 1√

2
‖r‖.

The proof of Lemma 2 can be referred to [42]. Note that if we

find a proper τ , we can make Lemma 2 approximately equal to

constraint (32). Thus, we let the right-side expressions of the

(33) be equal to pm,n, respectively, and thus get the following

equivalent equations:

τ1 = 2

√

ln
1

pm,n
T, (34a)

τ2 = (λµ+
ln 1

pm,n

λµ
)T, (34b)

In particular, it is observed that the right side of (33) are all

monotonous decreasing functions about τ . Therefore, we only

need to find the minimum value of τ1 and τ2. It is obvious that

the minimum value of τ2 is equal to τ1 if λµ =
√

ln 1
pm,n

.

The parameter µ, which satisfies µ > 1√
2

, can be obtained

according to the definition of λ. In conclusion, we can get the

least conservative approximation of (32), which is given by

τ ≥ 2

√

ln
1

pm,n
T. (35)

Combining with the definition of T , (35) can be replaced by

a group of second-order cone (SOC) constraints as follows:

tr(Qm,n) + sm,n ≥ 2

√

ln
1

pm,n
(xm,n + ym,n), (36a)

1√
2
‖rm,n‖ ≤ xm,n, (36b)

µm,n‖Qm,n‖F ≤ ym,n, (36c)

where sm,n =
∑

i,j

Zm,n,[i,j] − σ2
0 . In addition, similar to

Algorithm 1, we replace the rank-one constraint by a penalty

function. Finally, problem (28) can be reformulated as (35)

at the top of the next page, where ρ2 is the penalty factor.

Thus, problem (35) reduces to a SDP problem, which can

be effectively solved by CVX. In summary, the critical robust

design can be described as Algorithm 2.

Algorithm 2 : Critical Robust Design of Multi-beam LEO

Satellite IoT for the Total Power Consumption Minimization

Input: K,M,Nm, αm,n, γm,n, µm,n, σ
2
0 , Pk and pm,n.

Output: wm.

1: Initialize xm,n = 0, ym,n = 0 and feasible solution W(0)
m

by solving problem (28) dropping the constraint (28e);

2: Set accuracy ǫ2, maximal iteration number Tmax, penalty

factor ρ2 and coefficient κ2.

3: repeat

4: Generate Zm,n = Am,n + jBm,n, and calculate

f1(Am,n), f2(Bm,n);
5: solve problem (26) by CVX, then obtain W(t)

m .

6: if

∣
∣
∣tr

(

W(t)
m

)

− λ
(t)
m,max

∣
∣
∣ > ǫ2 then

7: update the penalty factor ρ
(t)
1 = κ2ρ

(t+1)
1 .

8: end if

9: Update iteration number t = t+ 1.

10: until t = Tmax or solution converges.

11: Finally, use eigenvalue decomposition (EVD) to W(t)
m and

obtain w∗
m according to (27).

C. Complexity Analysis

In this part, we analyze the computational complexity of

the two proposed robust algorithms. Obviously, the problems

(26) and (35) only involve linear matrix inequality (LMI)

and second-order cone constraints. Thus, we can utilize the

standard interior-point method (IPM) to investigate the com-

putational complexity of the both algorithms. According to

generic IPM [43], the complexity often consists of two parts,

namely, iteration complexity and iteration computation cost.

For a certain ζ > 0, the iteration complexity of an ζ−optimal

solution is in the order of Ψ ln 1
ζ , where Ψ is the barrier param-

eter evaluating the geometric complexity of conic constraints.

Moreover, the computation cost is decided by construction

and factorization of coefficient matrix. It is assumed that

decision variables in problems (26) and (35) are real-valued

[44]. Note that problem (26) has M LMI constraints of size

1 and 2M LMI constraints of size K , problem (35) has M

LMI constraints of size 1, 2M LMI constraints of size K

and 2M SOC constraints of size K + 1. We summarize the

computational complexity of the two proposed algorithms in

Table I on the next page. Furthermore, it is seen from Fig.

2 that the both proposed algorithms can be converged after

no more than 8 times iterations as long as we set proper

penalty factors. Thus, the two proposed algorithms have low

computational complexity for practical deployment.
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min
Wm,∀m,xm,n,ym,n,∀m,n

M∑

m=1

tr(Wm) + ρ2

M∑

m=1

(

tr
(

W(t+1)
m

)

−
(

v(t)
m,max

)H

W(t+1)
m v(t)m,max

)

, (35)

s.t. (28c), (28d), (36a), (36b), (36c).

TABLE I
MAIN PARAMETERS ON LEO SATELLITE

Algorithms Complexity in order of ln 1
ζΥ with n = O(MK2)

Algorithm 1 Υ =
√

M(2K + 1) · n · [M(n+ 1) +KM(1 + n+K2 + nK) + n2]

Algorithm 2 Υ =
√

M(2K + 5) · n · [M(K + 1)(2K + n+ 3) +MK2(K + n) + n2]
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Fig. 2. Convergence behavior of the proposed Algorithm 1 and Algorithm 2.
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Fig. 3. Total transmit power versus required minimum SINR for different
imperfect SIC coefficients on noncritical robust Algorithm 1.

IV. NUMERICAL RESULTS

In this section, we provide extensive simulation results to

evaluate the performance of the two proposed algorithms. The

setup of simulation parameters is given in Table II.

TABLE II
MAIN PARAMETERS ON LEO SATELLITE

Parameter Value

Orbit LEO

Number of beams 10

Number of total users/intra-region user 30/3

Number of satellite antenna feeds 60

Imperfect SIC coefficient 0.05

Bandwidth 25 MHz

Variance of AWGN 1

Carrier frequency 20 GHz

Altitude of orbit 1000 km

Satellite antenna gain 17 dBi

Receiver gain to noise temperature 34 dB/K

Boltzmann’s constant 1.38× 10−23 J/m

Rain fading mean -2.6 dB

Rain fading variance 1.63 dB

3dB Angle 0.4◦

Iterative accuracy 10−10

Variance of phase error 5◦

Normalized covariance matric I

First, we reveal the impact of imperfect SIC coefficients on

noncritical robust Algorithm 1 and critical robust Algorithm 2.

From Fig. 3 and Fig. 4, it is seen that the performance gaps on

different imperfect SIC coefficients are subtle when the SINR

threshold is small, which means the two proposed algorithms

can both resist the influence of imperfect SCI in range of

low SINR. However, as the SINR requirement increases, the

growth rate of the total power consumption under the condition

of large imperfect SIC coefficient (η = 0.1) is much higher

than that of small coefficients (η = 0.05 or η = 0.01).

Due to the impact of imperfect SIC, power needed by UEs

in the latter of efficient channel order to fight against intra-

region interference is in direct proportion to imperfect SIC

coefficients. Thus, the performance of SIC is a key factor to

both Algorithm 1 and Algorithm 2.

Second, we investigate the capability of combating channel

phase uncertainty of the two proposed algorithms. The simula-

tion trends of Fig. 5 and Fig. 6 are consistent with theoretical

analysis, that is, the power consumption increases with the

raise of phase uncertainty level. Besides, it is seen that the two
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Fig. 4. Total transmit power versus required minimum SINR for different
phase uncertainty on noncritical robust Algorithm 2.
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Fig. 5. Total transmit power versus required minimum SINR for different
phase uncertainty on noncritical robust Algorithm 1.

proposed algorithms have a good robustness because of the

small gap between the cases of σ = 0◦ and σ = 5◦. But with

the increase of the phase error, Algorithm 2 performs worse

than Algorithm 1. This is because the average SINR constraint

is slacker than the outage probability constraint, which means

that Algorithm 2 can meet a higher quality of service (QoS)

requirement.

Fig. 7 depicts the total transmit power consumption versus

ruquired minimum SINR for different outage probabilities on

Algorithm 2. As seen in Fig. 7, the gap between the cases

of prob = 0.01 and prob = 0.05 is larger than that between

prob = 0.05 and prob = 0.2. We can deduce that with the raise

of outage probability, the total transmit power consumption

will decrease slower, which means Algorithm 2 is sensitive

to the outage probability in a small range. In fact, outage

probability can not be too large due to the QoS requirement

in practice.

In Fig. 8 and Fig. 9, we compare the performance of

different algorithms under the same conditions. In addition, the
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Fig. 6. Total transmit power versus required minimum SINR for different
phase uncertainty on critical robust Algorithm 2.
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Fig. 7. Total transmit power versus required minimum SINR for different
outage probability on critical robust Algorithm 2.

coordinate of Y-axis changes into dB form and Fig.9 omits the

range of 25dB to 75 dB due to the large power comsumptation

of TDMA. From Fig. 8, it is obvious that TDMA consumes

highest power. Although there is no interference between UEs

in OMA schemes, each UE needs much higher transmit power

to satisfy the SINR constraint compared with the NOMA

scheme. Also the proposed Algorithm 1 has a better perfor-

mance than the zero-forcing beamforming (ZFBF) method.

ZFBF has a strong advantage of alleviating the inter-beam

interference. However, in the range of lower SINR, the inter-

beam interference is small such that the performance is worse

than proposed Algorithm 1. In Fig. 9, TDMA also performs

worst among the all methods. The proposed Algorithm 2

has lower power consumption than S-Bounding method [45]

which proves the effectiveness of Algorithm 2. Besides, the

difference of performance between two proposed algorithms

and perfect CSI are subtle which demonstrates the powerful

robustness of two algorithms.
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Fig. 8. The performance comparison of different algorithms under average
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Fig. 9. The performance comparison of different algorithms under outage
probability constraint.

In Fig. 10, we compare the total power consumption of

NOMA and CDMA (we assume that spread spectrum code

has good orthogonality and consider the process gain with

different chip rate [46] [47]) under the same quality of service

(QoS) requirement and the same spectrum efficiency. It is seen

from Fig. 10 that CDMA slightly outperforms NOMA in low

SINR requirement with a small number of users. However,

with the increase of SINR requirement, NOMA has a better

performance than CDMA. In the case of a large number of

users, NOMA consumes much lower transmit power than

CDMA. In other words, under the same condition of power

resource and frequency resource, the NOMA-based satellite

network can support much more devices than the CDMA-

based one, which proves the effectiveness of the proposed

NOMA scheme in LEO satellite IoT networks.

In Fig. 11, the outage performance of the critical robust

algorithm and non-robust scheme are depicted. In non-robust

scheme, we consider the perfect CSI in the beamforming

design, which leads to a serious mismatch between the de-
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Fig. 10. The comparison of total transmit power required SINR threshold
between CDMA and critical robust design.
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Fig. 11. The comparison of actual probability versus required SINR threshold
between non-robust design and critical robust design.

signed beams and the actual channels. With considering the

phase error into robust design, it is obvious that our proposed

robust designs can guarantee the QoS of users and provide

significant reduction in outage probability than the non-robust

scheme. Thus, the simulation results prove the robustness and

effectiveness of our proposed robust algorithms.

V. CONCLUSION

In this paper, we have designed a massive access framework

for LEO multi-beam satellite IoT networks. To minimize the

total power consumption of the LEO satellite under practical

but adverse conditon of channel phase uncertainty, we propose

two robust beamforming algorithms, one for noncritical IoT

applications, the other for critical IoT applications. Finally,

extensive simulation results validated the effectiveness and

robustness of the proposed algorithms.
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