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Abstract

The empowering unmanned aerial vehicles (UAVs) have been extensively used in providing intelligence such

as target tracking. In our field experiments, a pre-trained convolutional neural network (CNN) is deployed at

the UAV to identify a target (a vehicle) from the captured video frames and enable the UAV to keep tracking.

However, this kind of visual target tracking demands a lot of computational resources due to the desired high

inference accuracy and stringent delay requirement. This motivates us to consider offloading this type of deep

learning (DL) tasks to a mobile edge computing (MEC) server due to limited computational resource and energy

budget of the UAV, and further improve the inference accuracy. Specifically, we propose a novel hierarchical DL

tasks distribution framework, where the UAV is embedded with lower layers of the pre-trained CNN model, while

the MEC server with rich computing resources will handle the higher layers of the CNN model. An optimization

problem is formulated to minimize the weighted-sum cost including the tracking delay and energy consumption

introduced by communication and computing of the UAVs, while taking into account the quality of data (e.g., video

frames) input to the DL model and the inference errors. Analytical results are obtained and insights are provided

to understand the tradeoff between the weighted-sum cost and inference error rate in the proposed framework.

Numerical results demonstrate the effectiveness of the proposed offloading framework.

Index Terms

Unmanned aerial vehicle, mobile edge computing, deep learning, visual target tracking, offloading.

I. INTRODUCTION

D
URING the past decade, the unmanned aerial vehicles (UAVs), also commonly known as drones,

have been extensively used in providing assorted appealing applications by leveraging UAVs for

wireless communications for civilian, commercial and military services [1]. Noticeably, visual tracking
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Fig. 1: A typical visual target tracking scenario, where an embedded machine learning (ML) unit at UAV identifies the target by processing

the captured video frames and locks the target by tuning the detection region in near-real-time. Once the target moves fast, the ML unit not

only needs to detect the target but also infer and update the coordinates of the detection region from the captured video frames. After that,

the inference results are sent to the flight control system (FCS), which navigates the UAV to track the moving target.

for UAV-captured target has recently gained much attention and has been extensively applied to anticipate

crimes by remotely surveilling and tracking suspicious humans or vehicles at places of interest [2]. In

visual target tracking scenarios, UAVs (or drones) collect video data from the cameras (e.g., high-resolution

digital cameras) and try to detect and lock the target by processing the data frames in near-real-time, with

the aid of digital signal processors (DSPs) [3]. Since UAVs generally have severely limited power supply

and low computing capability, they can hardly be able to complete the tasks requiring intensive computing

by themselves, which impose great challenges on computing capability, low latency as well as requirement

on the inference accuracy [4].

In the UAV-enabled aerial surveillance and visual target tracking scenarios, the UAVs usually need to

detect and track the targets by processing the streamed video frames captured by the cameras mounted

on UAVs in near-real-time, e.g., 20 frames per second (fps). A typical scenario of UAV-enabled aerial

surveillance and tracking is highlighted in Fig. 1, where the camera is able to follow the target, and

actively change its orientation and detection region to optimize for tracking performance based on the

visual feedback results. Because those small-scale UAVs intrinsically have limited capabilities, processing

a high volume of video streaming with high inference accuracy becomes infeasible. In such a situation,

mobile/multi-access edge computing (MEC) is considered a promising technology to address these chal-

lenges by offloading the video images to a MEC server (MES) with much more computing capabilities

(including computing resources and storage space) [5]. Meanwhile, machine learning (ML) especially deep

learning (DL), becomes increasingly popular in many computer vision-based applications [6], [7]. Since

the traditional feature engineering is not always well suited for aerial tracking in complex environments,

the deep neural networks (DNN) [8], [9], especially the convolutional neural networks (CNNs) achieving

state-of-the-art performance on image classification and recognition [10], will be applied to extract critical
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(a) (b)

Fig. 2: An envisioned visual target tracking test is shown in (a), where the testing UAV is tracking a white car, conducted in San Rafael

park in Reno, Nevada, USA. The field testing UAV and its peripherals are detailed in (b).

features from the captured video frames. Hence, it has been a general trend to construct an artificial

intelligence (AI) based visual target tracking infrastructure for small-scale Internet-of-UAVs.

A. Motivating Experiments

To demonstrate the necessity of tasks offloading for visual target tracking, we have designed and

trained a modified CNN model for video processing and performed preliminary experiments [11]. In our

experiments, we tested a UAV (DJI S1000 drone [12]) tracking a specific vehicle, as shown in Fig. 2(a).

The UAV is equipped with an embedded GPU (NVIDIA Jetson TX2 [13]), a camera (GoPro Hero 4) and

some peripherals, as highlighted in Fig. 2(b). Specifically, the camera captures the video in real-time (24

frames per second (fps)) and the video frames are input into the NVIDIA Jetson TX2 for processing. We

build the ARM version of TensorFlow and install it on TX2. A pre-trained CNN model is running on

TX2, which would process the received video frames and run the target tracking algorithm. The output

is transformed into a control command and delivered from TX2 to the flight controller (Pixhawk 4 drone

controller). We test the CNN model with 10, 000 video frames and measure the processing time. The

experimental results show that TX2 can reach up to 7 fps, which is far below the 24 fps required for

real-time video frames processing. As can be observed from the field experiments, how to support the

neural networks to process the collected data in a timely fashion achieving a certain degree of inference

accuracy becomes a challenging issue for UAV tracking due to its constrained carrying capacity. To address

this concern, MEC provides a promising alternative solution by offloading the computation-intensive DL

tasks (e.g., inferring the target by processing video frames within a tolerable delay) to the MES via the

underlying radio access technology (RAT) such as WiFi or cellular networks (e.g., LTE) in 5G era [5].

B. Contributions and Paper Organization

Motivated by the envisioned field testing, how to process DL tasks for the visual target tracking in a

Internet-of-UAVs setup through computation offloading will be the focus of this work. In this paper, we
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propose a hierarchical machine learning tasks distribution (HMTD) framework, which aims to minimize

the total weighted-sum cost of the UAVs with the inference error rate constraint by jointly considering the

quality of data input to the DL model1, computing capability at the UAV and the MES, and communications

bandwidth. The main contributions of this paper are summarized as follows.

• An HMTD framework: We propose an HMTD framework for the deep learning based visual target

tracking system to minimize the weighted-sum cost with the inference error rate constraint. In the

proposed framework, the lower-level layers of the deep learning model are implemented at the UAV,

while the higher-level layers are deployed at the MES. As a whole, the intermediate results generated

by the UAV can be used directly or can be offloaded to the MES for further processing to improve

the inference accuracy and decrease the total processing delay. After processed by the MES, the final

results will be transferred back to the UAV to help in target tracking.

• Weighted-sum cost minimization problem and solution: We formulate a weighted-sum cost min-

imization problem for both of the binary offloading and partial offloading schemes while taking

into account the data quality, computing capability of the UAVs and the MES, and communications

bandwidth. A closed-form optimal offloading probability and optimal offloading ratio is derived

analytically for the binary offloading and partial offloading schemes, respectively.

• Insights and results: Some Insights are provided illustrating the effects of key parameters in the

proposed offloading framework. This enables us to take advantage of the knowledge from ML research

field for realistic visual target tracking scenarios. Numerical results are given to demonstrate the

effectiveness of the proposed HMTD framework with the optimized offloading scheme.

The remainder of this paper is organized as follows. Section II reviews the related works. In Section III,

we present the system model and illustrate the proposed HMTD framework. In Section IV, we present

the optimization of the binary offloading framework, followed by the partial offloading optimization in

Section V. Some implementation issues are discussed and numerical results are presented in Section VI.

Finally, Section VII concludes this paper.

Notations: As per the traditional notation, a bold letter indicates a vector and an upper case letter

indicates a random variable or random parameter. max{·} and min{·} represent the maximum value and

the minimum value, respectively. Given a vector x, then x
T denotes its transpose and ‖x‖ denotes its

Euclidean norm. For ease of reference, Table I list some key notations.

II. LITERATURE REVIEW

Recently, many pieces of literature concern the implementation of UAVs intending to improve the

performance of the wireless communication system, where UAVs play the role of aerial surveillance and

1This is hereafter abbreviated as “data quality”.
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TABLE I: List of Key Notations

Notation Description

Ui The i-th offloading UAV

n Total number of offloading UAVs

N Offloading UAVs set

lL Number of lower-level layers

lH Number of higher-level layers

K Total number of deep learning layers

ǫL Inference error rate given by UAVs

ǫH Inference error rate given by the MES

ǫi
T

Inference error rate threshold of Ui

η Percentage of data with bad quality

Ji The deep learning task of Ui

si Size of Ji

ci CPU cycles required to process Ji

σi Maximum tolerable delay of Ji

Ri Achieved data rate between Ui and the MES

f i

l
CPU cycle frequency of Ui

fm CPU cycle frequency of the MES

µi Offloading probability of Ui

µ∗

i
Optimal offloading probability of Ui

βi Offloaded ratio of Ui

γi Scale coefficient of data size output from Ui

h0 Channel gain at the reference distance of 1 m

λi Distance between Ui and the MES

P i
t

Transmission power of Ui

P i

I
Idle power of Ui

Hi Channel power gain for Ui connecting with MES

ρi Failing penalty on the delay of Ui

ξi Failing penalty on the energy consumption of Ui

θ UAV’s preference on processing delay

τ i
l

Local execution delay of Ui

τ io Execution delay of Ui using offloading

εi
l

Energy consumption processing Ji locally

εio Energy consumption processing Ji using offloading

Oi

l
Weighted-sum cost processing Ji locally

Oi
o Weighted-sum cost processing Ji using offloading

OB
i

Weighted-sum cost of Ui using binary offloading

OB

total
Total cost of all the UAVs using binary offloading

OP
i

Weighted-sum cost of Ui using partial offloading

OP

total
Total cost of all the UAVs using partial offloading

monitoring [14]–[16], or as mobile relaying and ubiquitous coverage [17]–[20]. To elaborate a little further,

in [14], N. H. Motlagh et al. introduced the case of UAV-based crowd surveillance and developed a testbed

using a built-in UAV along with a real-life LTE network. G. Ding et al. [15] developed an amateur drone

surveillance system based on cognitive IoT, named Dragnet, tailoring the emerging cognitive internet of

things framework for amateur drone surveillance. To fully explore the potential of multi-UAV sensor

networks, in [16], J. Gu et al. proposed a new cooperative network platform and system architecture of

multi-UAV surveillance. Moreover, Y. Zeng et al. [17] studied the throughput maximization problem in

UAV relaying systems by optimizing the source/relay transmit power along with the relay trajectory. In
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[18], H. Wang et al. investigated the spectrum sharing planning problem for a full-duplex UAV relaying

systems with underlaid D2D communications, where a mobile UAV employed as a full-duplex relay

assists the communication between separated nodes without a direct link. Furthermore, S.A.R. Naqvi et

al. [19] presented a routing protocol for UAVs in disaster-resilient networks and presented a case study

that incorporated UAVs in a wireless network equipped with both high- and low-power BSs. And in [20],

M. Mozaffari et al. investigated the performance of a UAV that acts as a flying base station in an area in

which users are engaged in the D2D communication.

With the development of MEC, there are assorted appealing applications by leveraging MEC techniques

for wireless communications assisted by UAV. For example, a range of researchers in [21]–[24] proposed

UAV-aided offloading systems, where the ground devices can be served by the flying UAVs. However, this

kind of works is restricted by the capability of UAVs and can only be applicable for the large endurance

UAVs endowed with computing capabilities to offer computation offloading services. With the rapid rise

of small-scale commercially available UAVs which have several advantages in terms of cost, scalability,

and survivability, the empowering smart UAVs with automated computer vision capabilities (e.g., object

detection and tracking, etc.) is becoming a very promising research topic which has attracted the attention

of industry and academia in the field [14].

In this context, with the aid of advantages of MEC, the tasks can be fully offload to MES or processed

locally at the UAVs (denoted as binary offloading [25]–[27]), or only a portion of tasks is offloaded, which

is indicated as partial offloading [28]. However, binary offloading may neither satisfy the inference accuracy

requirements due to constraints on the limited computing resources of the UAVs nor meet the demands of

tolerable delay since additional wireless communication delay is introduced during the offloading. To meet

the stringent delay requirement as well as achieve the inference accuracy of target tracking, it is desired

to offload a proper portion of tasks to the MES. Furthermore, although DNN and MEC techniques are

widely applied to enable delay-sensitive applications such as in industry settings [29], [30], and vehicular

networks [31], [32], the inference error introduced by the DL model is rarely considered. However, in

the practical DL applications, the inference errors will be affected by the quality of the data input to the

neural networks. This is still an open issue for research of DL [33].

III. SYSTEM MODEL AND THE PROPOSED FRAMEWORK

As illustrated in Fig. 3, a multi-UAV single-MES system is considered, where the UAVs are devoted

to tracking a specific target, e.g., a vehicle or pedestrian. Suppose that there are total n UAVs that may

offload the tasks to the MES through LTE cellular network and the set of offloading UAVs is denoted as

N = {U1, U2, ..., Un}.
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Fig. 3: MEC based UAV tracking system model using the proposed hierarchical machine learning tasks distribution (HMTD) framework.

Taking the CNN model as an example, the lower-level layers and higher-level layers consist of the Convolution + ReLU layers and

Pooling layers for the feature extraction, and the fully connected (FC) layers are deployed to generate the classification and regression

results.

A. The Proposed HMTD Framework

In the visual target tracking system, we aim to optimize the system performance by designing an HMTD

framework, where a deep learning model (e.g., the CNN model) is first pre-trained offline and then the

trained model is further divided into two parts: lower-level layers and higher-level layers. The lower-level

layers are deployed at the deep learning unit of the UAVs (e.g., NVIDIA Jetson TX2 unit in DJI S1000

done) and the higher-level layers are implemented at the MES co-located with an Base Station (BS). The

tasks are first processed locally with the lower-level layers saving the wireless bandwidth, whilst some of

the intermediate data can be further offloaded to the MES with higher-level layers improving the inference

accuracy. To make the proposed HMTD framework easier to follow, some essential concepts are detailed

as follows.

Definition 1. Deep Learning Layers: For a pre-trained deep learning model (e.g., CNN in this paper),

we define the layers of the DL model near input data as lower-level layers while the layers near output

data is considered as higher-level layers.

As shown in Fig. 3, taking the CNN model as an example, both of the lower-level layers and higher-

level layers consist of Convolution + ReLU layers and Pooling layers for the feature extraction. Due

to the constrained computation resources available in the UAV, it is reasonably assumed that lower-level

layers are embedded at the UAV, which, however, makes it difficult to achieve inference with relatively

high accuracy [34], especially when the captured images are with low quality. The part with higher-level

layers is deployed at the MES with more powerful computation resources. In this framework, the collected
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Fig. 4: The proposed HMTD framework. In this framework, two inference modes (fast inference and enhanced inference) can be selected,

where the fast inference is given by the lower-level layers embedded at the TX2 of the UAV and the enhanced inference is given by the

higher-level layers deployed at the MES. The intermediate features data is offloaded to the MES and the inferring results can be transmitted

back to the FCS of the UAV via the wireless channel to help the UAV to track the target.

video frames are first fed into the lower-level layers and processed by the UAV. To further improve the

inference accuracy, the intermediate features output from the UAV could be further offloaded to the MES

with higher-level layers.

Definition 2. Inference Modes: The inference given by the lower-level layers is called fast inference,

and the inference performed by the higher-level layers is denoted as enhanced inference.

In general, the enhanced inference outperforms the fast inference in terms of inference accuracy at

the expense of introducing additional wireless transmission delay. In the visual target tracking system,

there exist two branches for the inference: 1) Target detection, which can be considered as a multi-

class classification problem, and 2) Inferring the coordinates of the detection region, which can be

considered as a regression problem. In the proposed HMTD framework, the multi-task learning can be

adopted to optimize the loss functions of the two branches together [35], as illustrated in Fig. 4.

Definition 3. Offloading Strategy: Two kinds of offloading modes are considered for each DL task (Ji) of

Ui, i.e., binary offloading and partial offloading. In the binary offloading strategy, the inference results

are obtained either using the fast inference or using the enhanced inference. In the partial offloading

strategy, the inference results could be obtained by both of the two inference modes.

Definition 4. Inference Error rate: Given a trained DL model (denoted as D) and input data with a
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certain quality2 (denoted as Q), the inference error rate is defined as ǫ=g(Q,D), where ǫ ∈ [0, 1], g(·) is

a mapping function. In the proposed HMTD framework, the Intersection-over-Union (IoU, denoted as ω)

is used to characterize the inference error rate, i.e., ǫ=1−ω, where ω = rD
⋂

rG
rD

⋃
rG

, rD and rG indicates the

detection region and the ground truth region, respectively [37]. Specifically, there is no inference error

when ω = 1 (i.e., detection region and the ground truth region totally match) while the inference is totally

wrong when ω = 0.

As illustrated in Fig. 4, the number of lower-level layers and higher-level layers is denoted as lL and

lH , respectively. Denote the total layers of the DL model as K, we have lL+lH =K. Since it is still a

challenge for UAVs to recognize targets from low-quality video frames due to the limited ability of image

processing, in this paper, we assume that there exists a certain probability that the fast inference and

enhanced inference fail. Without loss of generality, we assume that the image quality may vary from one

video frame to another3. As a result, the video image quality maybe sometimes not sufficiently good for

the UAVs and the MES to achieve the correct inference. In this case, to improve the inference accuracy

and meet the latency demand of the target tracking, the intermediate data from the lower-level layers could

be further offloaded to the MES to improve the inference accuracy. Although it is difficult to obtain an

exact analytic formula for the mapping function ǫ=g(Q,D) in reality, the observations and conclusions

in the paper do NOT depend on the exact formula and would not change even the exact formula changes

because the trends will remain similar: good data quality, stronger DL model and more DL layers

will have less inference error [39], [40].

Remark 1. In the proposed HMTD framework, there exists a trade-off between the achieved inference

accuracy and the introduced delay. In other words, the two inference modes have merits and shortcomings,

i.e., the achievement of a low inference error rate is at the expense of inference delay. For example, when

a large portion of the data is with “Bad” quality, we may not be able to keep the overall inference

delay small enough because the inference error rate constraint should also be satisfied. Therefore, the

target losing may still occur. This suggests that the UAVs should combine the fast inference with the

enhanced inference smartly and allow ample time to “learn” the sensing data and take proper actions

during challenging environment such as bad weather or the high mobility of the target.

2In this paper, the input data is the video frames, the quality of which can be evaluated with Peak-Signal-to-Noise-Ratio (PSNR) [36].

Given a PSNR threshold evaluating the worst quality of image that can tolerate, denoted as ξ, then an image indexed f meeting the condition

PSNRf ≥ ξ can be considered as “Good”, and vice versa.
3The image quality may be affected by the clarity of each video frame and the distance between UAVs and targets [38].
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TABLE II: Mapping Relationship between Inference Error Rate and Data Quality

Data Quality

Error Rate Inference

Fast Enhanced

Good ǫL 0

Bad 1 ǫH

B. DL Tasks Model

In the proposed HMTD framework, the UAVs capture video sequence with the embedded camera and

then the captured video frames are required to be processed to infer and update the coordinates of the

detection region in near-real-time.

Definition 5. Deep Learning Tasks: In this paper, the DL task is defined as the task processed by the pre-

trained DL model. The input of DL tasks is the captured images and the output include two folds: target

detection given by the classification branch and detection region coordinates inferred by the regression

branch, as illustrated in Fig. 4.

For Ui, the DL task can be characterized by a three-tuple of parameters, i.e., Ji(si, ci, σi). Specifically,

si [bits] denotes the size of computation input data, ci [cycles] denotes the total number of CPU cycles

required to accomplish the computation of si, and σi [secs] denotes the maximum tolerable delay. Due

to the environmental changes between UAV and the MES, the wireless channel condition may vary

accordingly, which may lead to the unavailability of the wireless channel in some cases. Specifically, if

the wireless link is available, then the UAVs can offload the DL tasks to the MES and can also receive

the results from the MES via the wireless link. Otherwise, the DL tasks cannot be offloaded to the MES

due to the wireless channel between UAVs and the MES is unavailable (e.g., wireless channel suffers

deep fading).

For simplicity, in this paper, suppose that the quality of the video frames captured by the UAV falls into

two categories: “Good” or “Bad”4. The mapping relationship between the inference error rate of the DL

model and the input data quality is illustrated in Table II5. Specifically, the lower-level layers embedded

at the UAV infer the “Good” frames with an average error rate of ǫL ∈ (0, 1), while error probability 1 is

assumed when faced with the frames with “Bad” quality. For the higher-level layers implemented at the

4In the UAV tracking context, the video frames’ quality could be affected by the distance and the surrounding environment, e.g., the severe

weather such as thunderstorm and sand dust, etc.
5The mapping relationship g(·) given in Table II may be roughly in practice. To solve this problem, we can trace the mapping relationship

via curve-fitting based on the testing experimental results. Specifically, we collect the images data and then evaluate the data quality Q

with the PSNR metric. The normalized metric D, D ∈ [0, 1], is used to evaluate the capability of the DL model, and we suppose that a

larger value D indicates a stronger DL model. Then we perform the testing experiments and calculate the inference error rate with varying

combinations of D and Q. According to the testing results, we could use curve-fitting technique to fit the inference error rate mapping

curve and determine the related coefficients correspondingly [41]. With the fitted mapping curve, the inference error rate ǫ can be inferred

continuously once D and Q are given.
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Fig. 5: Communication model between UAVs and the MES.

MES, the average inference error rate ǫH ∈ (0, 1) is achieved when processing the “Bad” frames while

no error occurring is assumed on processing the “Good” frames.

C. Communication Model

A three-dimensional Cartesian coordinate system is used to characterize the communication link between

the UAV in aerial and the MES on the ground, as illustrated in Fig. 5. It is assumed that the MES is

located at position pM = [xM , yM ]T ∈ R
2×1, the UAV flies along a horizon trajectory with a fixed altitude

H and communicates with its associated BS in a time-division manner. In this case, the position of Ui can

be characterized by the discrete-time locations, i.e., pi
U = [xi

U , y
i
U ]

T ∈ R
2×1. As the altitude of the UAV

is much higher than that of the MES on the ground, it is reasonably assumed that the communication

channels between MES and UAV are dominated by line-of-sight (LOS) [23]. In this case, it is reasonably

assumed that the channel condition does not change within each offloading procedure. The channel gain

between Ui and the MES can be obtained as

Hi = h0λ
−2
i =

h0

H2 + ‖pM − pi
U‖

2 , i ∈ N, (1)

where h0 represents the channel gain at the reference distance of 1 m, λi denotes the distance between

Ui and the MES.

We consider the MEC system with OMA (e.g., OFDMA) as the multiple access scheme in the offloading,

in which the UAVs offload their DL tasks to the MES via orthogonal sub-bands simultaneously6. Denote

the noise power as the white Gaussian noise with zero mean and variance χ2, Pt is the transmission

power of the UAVs, then the received signal-to-interference-plus-noise ratio (SINR) at the MES can be

6 In the cellular IoVs based visual target tracking system, the uplink transmission of the intermediate data from the lower-level layers to

the higher-level layers dominates [42]. Therefore, in this article, we focus on the uplink transmission from the UAVs to the MES. Although

an OMA scenario is assumed in this paper, our proposed offloading framework can be also extended into scenarios using more advanced

non-orthogonal multiple access (NOMA) with a minor modification on the communication model.
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calculated as
Pt|Hi|

2

χ2 . Therefore, the available transmission rate between Ui and the MES can be calculated

as

Ri =
B

n
log2

(

1 +
Pt|Hi|

2

χ2

)

, i ∈ N, (2)

where B stands for the transmission bandwidth between the UAV and MES, which can be further divided

into n sub-bands for the offloading communication.

Without loss of generality, two kinds of offloading strategies, i.e., binary offloading and partial offload-

ing, are considered to optimize the proposed offloading framework, which is detailed in Section IV and

Section V, respectively.

IV. OPTIMIZATION FOR BINARY OFFLOADING FRAMEWORK

A. Problem Formulation

For the binary offloading scheme, the offloading probability is first introduced as below.

Definition 6. Offloading Probability: For the i-th offloading UAV Ui, the offloading probability (µi) is

defined as the probability that the UAV offloading the tasks to the MES. Suppose that the offloading UAVs

can evaluate the inference error rate obtained by the DL lower-layers in near-real-time [43], denoted as

ǫL. If ǫL is above a certain threshold ǫiT , then the data needs to be offloaded to the MES to guarantee

the inference accuracy. Thus, the offloading probability of Ui equals the probability that ǫL ≥ ǫiT , i.e.,

µi = Pr
{

ǫL ≥ ǫiT
}

=

∫ ∞

ǫi
th

e−xdx = e−ǫiT . (3)

1) Local Computing: Denote f i
l as the CPU-cycle frequency (i.e., CPU cycles per second) of Ui,

i ∈ N, the local computation delay is calculated as

τ il =
ci

f i
l

+ ρi ((1− η) ǫL + η) , (4)

where η denotes the probability that the DL tasks data is considered as “Bad”, 1−η denotes the probability

that the data is considered as “Good”. ρi is introduced as all of the DL tasks failing and dropping penalty

of delay7, which is generally no smaller than the tasks processing delay, i.e., ρi > max{ ci
f i
l

, ci
fi
}, fi denotes

the allocated CPU computation resource to Ui by the MES.

According to the widely adopted model of the energy consumption [44], the energy consumption

processing Ji locally with the CPU clock speed f i
l can be calculated as

εil = κ
(

f i
l

)2
ci + ξi ((1− η) ǫL + η) , (5)

7Suppose that the UAV may lose the target due to the tasks processing latency or the fast moving speed of the target. This is because the

target might appear easily outside of the searching region used for the tracking, and enlarging the searching region can cause the delay and

energy performance degradation to the visual target tracking.
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where κ denotes the energy efficiency parameter that is mainly depends on the chip architecture [45], ξi

is introduced as all of the DL tasks failing and dropping penalty of energy consumption.

Based on (4) and (5), the weighted-cost for computing Ji locally for binary offloading scheme is

achieved as

Oi
l = θτ il + (1− θ) εil, (6)

where θ, 0 ≤ θ ≤ 1, specifies the UAV’s preference on processing delay, while 1− θ specifies the UAV’s

preference on energy consumption.

Substituting (4) and (5) into (6), Oi
l is derived as

Oi
l = θ

ci

f i
l

+ (1− θ) κ
(

f i
l

)2
ci + ǫ̃L (θρi + (1− θ) ξi) , (7)

where ǫ̃L = (1− η) ǫL + η.

Remark 2. An UAV with short battery life is prone to decrease the coefficient θ so as to save more energy

at the expense of longer tasks processing delay, and vice versa.

2) Offloading Computing: For the offloading computing, in case that Ui offloads Ji to the MES, the

incurred delay and energy consumption comprise the following two items8: (1) the delay and energy

offloading Ji to the MES via the wireless link, and (2) the delay and energy executing Ji at the MES.

Suppose that the MES can provide computation offloading service to multiple UAVs concurrently, the

queuing delay at the MES is ignored [46]. During the execution of the tasks at the MES, the computation

resources available at the MES are shared among the associating UAVs and quantified by the allocated

computational resources expressed in terms of the number of CPU cycles-per-second, i.e., fi, ∀i ∈ N. The

computing resource constraint should be satisfied, which is expressed as
∑

i∈N fi ≤ F , where F denotes

the entire computational resources of the MES.

Therefore, the delay for offloading the task Ji to the MES is given by

τ io =
ci

f i
l

+ γi

(

si

Ri

+
ci

fi

)

+ ρiηǫH , (8)

where γi denotes the scale coefficient of data size output from the lower-level layers of Ui, i.e., γi =
siout
si

,

siout is the data size output from Ui.

The energy consumption of Ui using offloading computing is calculated as

εio = κ
(

f i
l

)2
ci + γi

(

P i
t

si

Ri

+ P i
I

ci

fi

)

+ ξiηǫH , (9)

8Since the size of the execution results is generally much smaller compared to that of input data, so the corresponding delay and energy

consumption is ignored [26].
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where P i
t is the transmission power of Ui. P

i
t denotes the power consumption of Ui staying idle while

waiting for the execution results from the MES.

According to (8) and (9), the weighted-cost for offloading Ji to the MES is given by

Oi
o = θτ io + (1− θ)εio, ∀i ∈ N. (10)

Substituting (8) and (9) into (10), Oi
o can be rewritten as

Oi
o=θ

ci

f i
l

+(1− θ) κ
(

f i
l

)2
ci+ ǫ̃H (θρi+(1− θ)ξi)+γi

(

si

Ri

(

θ+(1−θ)P i
t

)

+
ci

fi

(

θ+(1−θ)P i
I

)

)

, (11)

where ǫ̃H = ηǫH .

Based on (3), (7) and (11), the overall cost of Ui using binary offloading scheme is obtained as

OB
i = (1− µi)O

i
l + µiO

i
o = Oi

l + µi

(

Oi
o −Oi

l

)

. (12)

The weighted-sum cost of all the offloading UAVs is calculated as

OB
total =

∑

i∈N

(1− µi)O
i
l + µiO

i
o, (13)

with Oi
l and Oi

o defined in (7) and (11), respectively, and 0 ≤ µi ≤ 1 specifying the offloading probability

of Ui.

Given the binary offloading system model described previously, our goal is to develop an optimal

offloading probability (denoted as µ∗
i ) for UAVs to minimize the total weighted-sum cost. Here, we

formulate the optimal offloading as a weighted-sum cost minimization problem (denoted as PB), subject

to individual UAV’s delay and power supply constraints and the computational resource limit of the MES.

PB (Binary Offloading Problem):

minimize
µi∈[0,1]

OB
total

s.t. C1 : ǫi ≤ ǫiT , ∀i ∈ N, (14a)

C2 : 0 ≤ fi ≤ F, ∀i ∈ N, (14b)

C3 :

n
∑

i=1

fi ≤ F. (14c)

The constraints in the formulation of PB are detailed as follows. C1 makes sure that the average

inference error rate processing Ji should not exceed the maximum tolerable threshold. C2 and C3

guarantee that the computational resource allocated to Ui and the sum of the computational resources

allocated to all the offloading UAVs should not exceed the computation resource limit of the MES.
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(a) (b)

Fig. 6: The target (e.g., a white car) is detected outside of the detection region, the UAV would move forward (shown in (a)) or move right

(shown in (b)), and try to make the target be inside the detection region.

In the following, we analyze the optimal offloading solutions of the binary offloading problem based

on the availability of wireless channel between UAVs and the MES, as described in the following parts

B-C.

B. Wireless Channel is Unavailable

In the UAV tracking system, when the wireless channel between the UAV and the MES is under the

thunderstorms and other extreme weather conditions, the wireless channel could be unavailable. In this

case, all the DL tasks can be only processed at the UAVs. The overall cost of Ui and the total cost using

local computing can be rewritten as OB
i = Oi

l and OB
total =

∑

i∈NOi
l . Therefore, the problem PB can be

reformulated as P1
B .

P l
B (Binary - Local Computing Problem):

minimize
µi=0

∑

i∈N

Oi
l

s.t. C1.1 : θ, η ∈ [0, 1], (15a)

C1.2 : ǫL ∈ (0, 1), (15b)

where the condition C1.1 accounts for the range of the weight coefficient and the “Bad” data probability.

The condition C1.2 specifies the range of inference error rate at UAVs with “Good” input data.

Owing that the UAV’s inference error rate is obtained as ǫL = g(D, η). Once a DL model D and “Bad”

data percentage η are given, ǫL can be calculated accordingly. It is observed from (7) that once η and θ

are given, the local tasks processing cost (Oi
l) is proportional to the tasks dropping penalty (ρi and ξi),

which is mainly determined by the object detecting and navigation overhead of the UAV.

Remark 3. During the target tracking, there exists a trade-off between the detection region size and the

weight-sum cost of UAVs. Specifically, a detection region is set up that if the object appears inside, the
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UAV would stay around without taking any action. If the size of the region is too small, it is easy that the

object disappears from view. As a result, the UAV needs to relocate the target, which introduces additional

penalty costs. On the other hand, if the size is too large, the UAV would cause more waste of computing

power and battery to search the target.

During the target tracking, if the target is detected outside of the detection region, the UAV would

make adjustments and try to make the target detected inside the region, as illustrated in Fig. 6. On the

contrary, if the target is detected still inside of the detection region, the UAV would stay around without

taking too many actions. Suppose that the size of the detection region is fixed, the tasks dropping penalty

can be decreased when the target moves slowly.

C. Wireless Channel is Available

When the wireless channel between the UAV and the MES is available, the DL tasks can be either

processed totally at the UAVs or further offloaded to the MES. The overall cost of Ui using binary

offloading scheme is given by OB
i = Oi

l +µi△Oi, where △Oi = Oi
o −Oi

l . In this case, the problem PB

can be reformulated as P2
B .

P2
B (Binary - Offloading Computing Problem):

minimize
µi∈[0,1]

∑

i∈N

Oi
l + µi△Oi

s.t. C1−C3.

(16)

In order to derive the optimal offloading probability (denoted as µ∗
i ) to minimize the overall cost of

P2
B , △Oi is analyzed first.

Substituting (7) and (11) into △Oi, we have

△Oi = γiCi + (ǫ̃H − ǫ̃L) (θρi + (1− θ)ξi) , (17)

where Ci =
si
Ri

(θ + (1− θ)P i
t )+

ci
fi
(θ + (1− θ)P i

I ) indicates the weight-sum cost including delay and

energy consumption.

For clarity, let α = ǫ̃H − ǫ̃L = ηǫH − ((1− η) ǫL + η), we can obtain α
η
= ǫH −

(

1−η

η
ǫL + 1

)

, which

is negative. This indicates that the average inference error rate at UAV is larger than that of MES.

Let γB
i = (ǫ̃L− ˜ǫH)(θρi+(1−θ)ξi)

Ci
, then we derive the optimal offloading probability to minimize OB

i in the

following two cases, as illustrated in Fig. 7.

• Case 1: γi < γB
i . In this case, △Oi < 0 holds and thus OB

i varies inversely with the offloading

probability µi.
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Fig. 7: Offloading probability (µi) versus the overall system cost (OB
i ) using binary offloading scheme.

• Case 2: γi > γB
i . In this case, △Oi > 0 is achieved. Therefore, OB

i varies proportionally to the

offloading probability µi.

According to Table II, the average inference error rate of Ui using binary offloading scheme can be

achieved as

ǫi = (1− µi) ǫ̃L + µiǫ̃H = ǫ̃L − µi (ǫ̃L − ǫ̃H) . (18)

Since ǫ̃L > ǫ̃H generally holds, substituting (18) into (14a), we can achieve µi ≥ µ̃i, where µ̃i =

ǫ̃L − ǫiT

ǫ̃L − ǫ̃H
∈ [0, 1] is achieved because ǫiT ∈ [ǫ̃H , ǫ̃L] generally holds. According to Fig. 7, in order to minimize

the cost OB
i , we can obtain the optimal offloading probability in the two cases above as follows: In case

1, since OB
i varies inversely with µi, we can obtain µ∗

i = max{µ̃i, 1} = 1. In case 2, since OB
i varies

proportionally to µi, we can obtain µ∗
i = max{0, µ̃i} = µ̃i.

Therefore, the optimal offloading probability for the binary offloading scheme is calculated as

µ∗
i =







1, If γi < γB
i , (Con. A)

µ̃i, If γi > γB
i , (Con. B)

. (19)

Remark 4. It is observed from (19) that if γi is small, e.g., γi < γB
i denoting the size of the intermediate

data output from the lower-level layer (denoted as siout) is relatively small, so µ∗
i is prone to be as large

as possible (i.e., µ∗
i = 1) to improve the inference accuracy without introducing too much communication

delay. On the contrary, once γi > γB
i holds, which indicates that siout could be very large compared to

the size of the original data. In this situation, offloading the DL tasks to the MES will introduce too much

communication delay and thus µ∗
i should not be too large, i.e., µ∗

i = µ̃i. Furthermore, it is observed that

µ∗
i is in inverse proportion to the inference error threshold ǫiT . That is to say, the larger ǫiT the smaller

µ∗
i , which indicates that the DL tasks are prone to be processed locally. On the contrary, the limited

computation resource of the UAV becomes a bottleneck. Therefore, it is straightforward to offload DL

tasks to fully explore the computation resources of the MES.
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V. OPTIMIZATION FOR PARTIAL OFFLOADING FRAMEWORK

In this section, the partial offloading model is investigated, which is more general in practice in that it

can fully utilize the computation resources in both of the UAV and the MES. In the following, we first

formulate the latency-minimization problem as a piecewise-convex problem and then derive the optimal

offloading ratio (i.e., β∗
i ). Then, two cases are considered where we analyze β∗

i to minimize energy

consumption and total cost, respectively. Finally, a special scenario is considered assuming that the UAV

can distribute the ML tasks according to the data quality Q, and the optimal tasks segmentation ratio is

derived accordingly.

A. Problem Formulation

For the partial offloading scheme, the offloading ratio is first defined as below.

Definition 7. Offloading Ratio: For Ui, the offloading ratio (βi) is defined as the ratio (or portion) of the

DL tasks that is offloaded to the MES. Therefore, denote βi as the ratio of data offloaded to the MES of Ui,

whereas, 1−βi indicates the ratio of data to be processed locally. Suppose that the time-interdependency

between each video frame within the DL task is ignored, then Ji can be divided into two parts, i.e., βisi

(bits) is offloaded to the MES while (1− βi)si (bits) is processed locally at the UAV.

1) Local Computing: For the local computing, (1 − βi)si of Ji is processed at the UAV. Let ǫ̃L =

(1− η) ǫL + η, the local computation delay and energy consumption is respectively calculated as

τ il = (1− βi)

(

ci

f i
l

+ ρiǫ̃L

)

, (20)

and

εil = (1− βi)
(

κ
(

f i
l

)2
ci + ξiǫ̃L

)

. (21)

Based on (20) and (21), the weighted-cost for the local computing is calculated as

Oi
l = θτ il + (1− θ) εil, ∀i ∈ N. (22)

Substituting (20) and (21) into (22), the weighted-cost for computing Ji locally can be rewritten as

Oi
l = (1− βi)

(

θci

f i
l

+ (1− θ) κ
(

f i
l

)2
ci

)

+ ǫ̃L (θρi + (1− θ) ξi) . (23)

2) Offloading Computing: For the offloading computing, βisi of Ji is offloaded to the MES. Let

ǫ̃H = ηǫH , the total delay and energy consumption introduced by the offloading computing is given by

τ io = βi

(

ci

f i
l

+ γi

(

si

Ri

+
ci

fi

)

+ ρiǫ̃H

)

, (24)
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εio=βi

(

κ
(

f i
l

)2
ci+γi

(

P i
t

si

Ri

+P i
I

ci

fi

)

+ ξiǫ̃H

)

, (25)

where γi is the scale coefficient of data size output from the lower-level layers of Ui, and P i
t is the UAV’s

transmission power. Suppose that UAVs staying idle while waiting for the execution results from the MES

and the power consumption of Ui staying the idle state is P i
I .

According to (24) and (25), the weighted-cost for the offloading computing is given by

Oi
o = θτ io + (1− θ)εio, ∀i ∈ N. (26)

Substituting (24) and (25) into (26), the weighted-cost for computing Ji locally can be calculated

accordingly.

Remark 5. Different from the offloading framework where the deep learning models with different ca-

pabilities are deployed at the sensing devices and the edge server in IIoT [47], in the proposed HMTD

framework, the lower-level layers and the higher-level layers of the same trained CNN model are deployed

at the UAV and MES, respectively. The data privacy preserving is achieved since only the intermediate

features are offloaded from the UAVs to the MES. In this context, the total inference delay at the MES

not only includes the communication and computing delay but also includes the tasks processing delay

at the UAV.

Based on Remark 5, the total delay introduced by partial offloading scheme is calculated as

τPi =
ci

f i
l

+max{δip, δ
i
op}, (28)

where δip = (1− βi) ρiǫ̃L denoting the delay penalty processing (1− βi) of Ji at the UAV. δiop =

βi

(

γi

(

si
Ri

+ ci
fi

)

+ ρiǫ̃H

)

including the transmission delay of intermediate data, processing delay at the

MES, and the delay penalty processing βi of Ji at the MES.

Based on the analysis above, the overall cost of Ui using partial offloading scheme is obtained as

OP
i = θ

(

ci

f i
l

+max{δip, δ
i
op}

)

+ (1− θ)
(

εil + εio
)

. (29)

Therefore, the weighted-sum cost of all the offloading UAVs using partial offloading scheme is calculated

as

OP
total =

∑

i∈N

OP
i , (30)

where OP
i is given in (29).

Given the partial offloading system model described previously, our goal is to develop an optimal
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Fig. 8: Offloading ratio (βi) versus the overall system cost (O
P
case1

total ) using partial offloading scheme in case 1.

offloading ratio (denoted as β∗
i ) for UAVs to minimize the total weighted-sum cost combining execution

delay and energy consumption of all UAVs under the constrain of maximum tolerable inference error rate.

In this case, we formulate the cost minimization as a piecewise-convex optimization problem (PP ).

PP (Partial Offloading problem):

minimize
βi∈[0,1]

OP
total

s.t. C1−C3,

(31)

with OP
total defined in (30).

In the following, the closed-form expressions for β∗
i is devised in different scenarios with specific

objectives.

B. Case 1: Delay-Sensitive Objective

Suppose that the power consumption is not a critical concern for UAVs since some technologies can

be introduced to provide convenient and sustainable energy supply to the UAVs, e.g., wireless power

transfer [48] and laser-beamed power supply [49]. In this case, the delay introduced (including computing

delay and communication delay) is the main concern, i.e., θ = 1. The total system cost can be simplified

as

OPcase1

total =
n

∑

i=1

(

ci

f i
l

+max{δip, δ
i
op}

)

. (32)

Therefore, PP can be transformed as P1
P , which is described as follows.

P1
P (Partial - Delay Minimization Problem):

minimize
βi

n
∑

i=1

(

ci

f i
l

+max{δip, δ
i
op}

)

s.t. C1−C3.

(33)

To analyze the problem P1
P , the following Lemma 1 is introduced.
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Lemma 1. When η, ǫL and ǫH are given, the offloading ratio for P1
P can be obtained as

β̂case1
i =

ρiǫ̃L

γi

(

si
Ri

+ ci
fi

)

+ ρi (ǫ̃L + ǫ̃H)
. (34)

Proof. It is observed that τ il monotonously decreases with βi while τ io monotonously increases with βi,

as illustrated in Fig. 8. Thus the total system cost OPcase1

total can be minimized only when δip = δiop holds.

By solving this equation, βcase1∗

i can be derived, as given in (34).

According to Table II, the average inference error rate of Ui using partial offloading scheme is achieved

as

ǫi = (1− βi) ǫ̃L + βiǫ̃H = ǫ̃L − βi (ǫ̃L − ǫ̃H) . (35)

Substituting (35) into (14a), βi ≥ β̃i is achieved, where β̃i =
ǫ̃L − ǫiT

ǫ̃L − ǫ̃H
. Therefore, the optimal offloading

ratio in case 1 is obtained as

βcase1∗
i = max

{

β̂case1
i , β̃i

}

. (36)

C. Case 2: Energy-Constrained Objective

Suppose that UAVs are with serious energy budget and no additional power supply is available. In this

case, the energy consumption becomes a main concern, i.e., θ = 0. The total system cost can be rewritten

as

OPcase2

total =

n
∑

i=1

(

εil + εio
)

. (36)

In this case, PP can be transformed as P2
P , which is described as follows.

P2
P (Partial - Energy Minimization Problem):

minimize
βi

n
∑

i=1

(

εil + εio
)

s.t. C1−C3.

(37)

To analyze the problem P2
P , we first introduce Lemma 2 as follows.

Lemma 2. When η, ǫL and ǫH are given, the optimal offloading ratio for P2
P can be obtained as βcase2∗

i =

β̃i.

βcase2∗
i =







1, If γi < γcase2
T ,

β̃i, If γi > γcase2
T .

(38)
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Proof. Based on (21) and (25), we can achieve

εil+εio=βi

(

γi

(

P i
t

si

Ri

+P i
I

ci

fi

)

−ξi (ǫ̃L−ǫ̃H)

)

+κ
(

f i
l

)2
ci. (39)

Let γcase2
T =

ξi (ǫ̃L−ǫ̃H)

P i
t
si
Ri
+P i

I
ci
fi

, it is observed from (39) that εil+εio monotonously increases with βi when

γi > γcase2
T and monotonously decreases with βi instead. Since βi ≥ β̃i and ǫiT ∈ [ǫ̃H , ǫ̃L] hold, for the

former case, we have βcase2∗
i = max

{

0, β̃i

}

= β̃i. For the latter case, we have βcase2∗
i = max

{

β̃i, 1
}

= 1.

According to the two cases above, βcase2∗
i can be achieved as (38).

D. Case 3: Tradeoff between Delay and Energy Consumption

Without loss of generality, in this case, a middle course is considered taking account of tracking delay

and energy consumption, where 0 < θ < 1. The total system cost in case 3 can be expressed as

OPcase3

total =

n
∑

i=1

(

θ

(

ci

f i
l

+max{δip, δ
i
op}

)

+ (1− θ)
(

εil + εio
)

)

=











∑n

i=1

(

θ
(

ci
f i
l

+ δip

)

+(1−θ) (εil+εio)
)

, If δip ≥ δiop,

∑n

i=1

(

θ
(

ci
f i
l

+ δiop

)

+(1−θ) (εil+εio)
)

, If δip ≤ δiop.

(40)

Therefore, PP can be transformed as P3
P , as described below.

P3
P (Partial - Weighted-sum Cost Minimization Problem):

minimize
βi

OPcase3

total

s.t. C1−C3.

(41)

Next, we analyze the optimal offloading ratio in the following two conditions: 1) δip ≥ δiop, and 2)

δip ≤ δiop.

1) δip ≥ δiop.

We let γT1
i =

θρiǫ̃L
1−θ

+ ξi (ǫ̃L−ǫ̃H)

P i
t
si
Ri
+P i

I
ci
fi

, to resolve P3
P when δip ≥ δiop, the following Lemma 3 is given.

Lemma 3. The optimal offloading ratio in case 3 when δip ≥ δiop is achieved as

βcase3∗
i =







min
{

β̂case1
i , β̃i

}

, If γi > γT1
i ,

β̂case1
i , If γi < γT1

i .
(42)

Proof. See Appendix A.

2) δip ≤ δiop.
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Similarly, let γT2
i =

(1− θ) ξi (ǫ̃L−ǫ̃H)− θρiǫ̃H

θ
(

si
Ri
+ ci

fi

)

+ (1− θ)
(

P i
t
si
Ri
+P i

I
ci
fi

), to resolve P3
P when δip ≤ δiop, the following

Lemma 4 is given.

Lemma 4. The optimal offloading ratio in case 3 when δip ≤ δiop is achieved as

βcase3∗
i =







max
{

β̂case1
i , β̃i

}

, If γi > γT2
i ,

1, If γi < γT2
i .

(43)

Proof. The proof is similar to the proof in Lemma 3 and omitted to save space.

In order to make the optimal solutions given in Lemma 3 and Lemma 4 more clear and easier to follow,

the following Corollary 1 is presented.

Corollary 1. Once θ, ρi, ǫ̃L and ǫ̃H are given, then γT1
i > γT2

i is obtained. According to Lemma 3 and

Lemma 4, the optimal offloading ratio in case 3 can be concluded as

βcase3∗
i =



















1, If γi < γT2
i ,

max
{

β̂case1
i , β̃i

}

, If γT2
i < γi < γT1

i ,

min
{

β̂case1
i , β̃i

}

, If γi > γT1
i .

(44)

Proof. Dividing the numerator and denominator of γT2
i by 1− θ, we can achieve

γT2
i =

ξi (ǫ̃L−ǫ̃H)−
θρi ˜ǫH
(1−θ)

θ
(1−θ)

(

si
Ri
+ ci

fi

)

+
(

P i
t
si
Ri
+P i

I
ci
fi

).

By comparing γT2
i with γT1

i , it is observed that γT2
i < γT1

i holds. Therefore, the value range of γi can

be divided into three sections, as indicated in (44).

Remark 6. It is observed that β̃i ≤ βi ≤ β̂case1
i is obtained in Lemma 3 when δip ≥ δiop and A > 0. Note

that the derived βcase3∗
i is constraint but global optimal. Once βcase3∗

i cannot meet the criteria C1 (e.g.,

when β̃i > β̂case1
i ), this means that there exists no optimal solution. Suppose that the optimal offloading

ratio exists leading to β̃i < β̂case1
i , then (44) can be further rewritten as

βcase3∗
i =



















1, If γi < γT2
i , (Con.A)

β̂case1
i , If γT2

i < γi < γT1
i , (Con.B)

β̃i, If γi > γT1
i , (Con.C)

. (45)

E. A Special Case

To gain more insights into the proposed DL tasks offloading framework, we further investigate a specific

scenario where the UAVs are able to distribute the DL tasks according to the input data quality. Suppose
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that the memory of the UAV is adequate so as to be able to cache enough data frames. With the help

of preprocessing at the UAV, the video frames can be roughly divided into two categories: “Good” or

“Bad”. In order to minimize the inference errors while keeps the delay at a low level, it is straightforward

that the video frames with “Bad” quality are offloaded to the MES to improve inference accuracy while

the “Good” frames are processed locally to save the bandwidth. As a result, η = 0 holds for the local

processing while η = 1 holds for the offloading processing. Therefore, in the special case, we have

ǫ̃L = ǫL and ǫ̃H = ǫH . Based on (45), the optimal offloading ratio in the special case (βs∗
i ) can be

calculated accordingly.

Remark 7. In this special case, since the proportion of “Bad” frames captured in the memory of the UAV

equals to the DL tasks partition ratio, i.e., ηs = βs∗
i , it is prone to capture enough frames in the memory

to meet the condition above and then offload “Bad” frames to the MES.

VI. IMPLEMENTATION AND NUMERICAL RESULTS

In this section we first present an intuitive implementation example to illustrate the inference delay

and inference accuracy of the TX2 and DGX-1, respectively. Then, the numerical results are presented to

demonstrate the performance of the proposed HMTD framework and investigate the impact of the critical

parameters.

A. Intuitive Implementation Example

In the intuitive experimental setup example, the camera first captures the video frames, which are

cached at the memory to be further processed. A GPU cluster NVIDIA DGX-1 [50] is considered as an

MES bearing the higher-level layers of the pre-trained CNN model. The NVIDIA Jetson TX2 [51] with

TensorFlow [52] can be considered as an UAV in the experimental example, where the lower-level layers

are implemented. Note that both of the higher-level layers and lower-level layers belong to a pre-trained

CNN model. After the offline training, the CNN model can learn the features of the new input images

and help the UAV to detect the target and make the detection region tuning. For the video frames, we use

the ImageNet [53] as the dataset due to the similarity between visual target tracking and object detection,

where 80% of the dataset is used for offline training and the remaining 20% is used for testing. For

each inference, we apply 50 images and measure the processing time. In our testing results, the inference

time and inference accuracy of higher layers running on NVIDIA DGX-1 is about 120 frame per second

(fps) and 90% (10% inference error rate), respectively. The inference time and inference accuracy of the

lower layers running on the NVIDIA Jetson TX2 is about 20 fps and 80% (20% inference error rate),

respectively. It can be observed that the NVIDIA DGX-1 performs six times as fast as the NVIDIA Jetson
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TABLE III:

CRITICAL PARAMETERS AND VALUES

Parameters Value

Total number of UAVs (n) 2

DL tasks size (s) 1 Mbits

UAV’s preference coefficient on delay (θ) 0.5

“Bad” data probability (η) 0.5

Data size scale coefficient (γ) 7

CPU frequency of UAV (fl) 1 GHz

CPU frequency of MES (F ) 10 GHz

Inference error rate of lower-level layers (ǫL) 0.3

Inference error rate of higher-level layers (ǫH) 0.2

Tasks dropping penalty on delay (ρ) 8 sec

Energy efficiency parameter (κ) 1× 10
−28

UAV’s transmission power (Pt) 10 W

UAV’s idle power (PI ) 5 W

White noise power (χ2) 7.9× 10
−13

TX2. Although the reference values of parameters are obtained from well-known ML benchmarks to guide

our simulations, our simulations are not limited by the reference values, and instead cover the entire range

of parameters, as detailed below.

B. Simulation Settings

In the following, numerical results are provided to demonstrate the performance of the proposed HMTD

framework. We consider a testing scenario where the UAV tracking a person who is with relatively low

moving speed. In our simulation model, suppose that the UAV flies at a fixed height of 100 m and the

horizontal distance between UAV and MES is 20 m, which keeps as a constant in the simulations due

to the relatively low speed of the target. The channel bandwidth (B) is set as 10 MHz and the channel

power gain is set to be h0 = −50 dB at the reference distance of 1 m [24]. Besides, the maximum

inference threshold (ǫT ) is calculated as ǫT = ǫ̃L−e, where e is set to be 0.1 in the simulation. Some

critical simulation parameters are given in Table III9.

The attainable performance of the visual target tracking in this paper are characterized both by the total

weighted-sum cost that introduced by computing and communication and by the error rate of inferring

the target. These performance metrics are evaluated for our proposed optimal offloading strategies (i.e.,

‘binary offloading (BO’), ‘partial offloading (PO)’ and the ‘PO under special case’), with two benchmark

offloading approaches: 1) ‘Totally Local (TL)’, where all the DL tasks are executed locally, e.g., when the

wireless channel between UAV and MES is not available, and 2) ‘Totally Offloading (TO)’, denoting that

all the DL tasks are offloaded to the MES to improve the inference accuracy. By conducting the simulations,

we aim to answer the following questions: 1) Which offloading strategy should be selected for optimal

9If there is no special instruction, the parameters in the simulations shall be set according to this table.
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Fig. 9: Data size scale coefficient (γ) versus total weighted-sum cost and average inference error rate are given in (a) and (b), respectively.

The results of the proposed optimal BO and PO strategies are obtained from (19) and Corollary 1, respectively. The parameters are listed in

Table III, where N = 3.

offloading in the visual target tracking with the constraint of the inference error rate? 2) Validation of the

optimization of the critical variable (e.g., the offloading ratio β) to the system performance. 3) What is

the impact of different critical parameters (such as θ, η, F , n, ǫT , etc.) on the total weighted-sum cost

and average inference error rate?

C. Offloading Option Selection

One of the four offloading options (i.e. non-offloading, binary offloading, partial offloading and full

offloading) is prone to be selected for the visual target tracking based computation offloading scenarios to

minimize the total weighted-sum cost, whilst meeting the inference error rate constraint. In this subsection,

we aim to investigate the selection of the four offloading strategies under various scale coefficient γ.

Figs. 9(a)-(b) depict the total weighted-sum cost and the average inference error rate of the four

offloading strategies in the proposed HMTD framework under various values of γ10, as shown in Fig. 9(a)

and Fig. 9(b), respectively. It can be observed that TO, BO and PO are prone to be selected when γ is of

a small value (e.g., γ ≤ 5 in the figure), which corresponds to the optimal condition (i.e., Con. A) derived

in (19) and (45) in Section IV and Section V, respectively. When γ increases (e.g., 6 ≤ γ ≤ 18 in the

figure), it is observed that both of the cost and inference error become larger with totally offloading the

DL tasks to the MES. This is because the size of the intermediate data output from the higher-level layers

becomes larger, which introducing a larger wireless transmission delay. In this situation, it is a better way

to process some of the tasks locally and offload the remaining part to the MES (i.e., partial offloading

strategy, corresponding to the optimal condition, Con. B derived in (45)), until reaching the Con. B in (19)

and Con. C in (45), respectively. Currently, BO and PO achieve similar performance. Moreover, it can be

10Here γ refers to the scale coefficient of the data size output from the higher-level layers at the UAV. The value of γ may vary according

to the design of the deep learning model. Taking CNN as an example, the value of γ mainly depends on the number of filters. That is to

say, γ < 1 can be achieved when pooling layers are used while γ ≫ 1 may hold due to the deployment of filters.
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Fig. 10: Offloading ratio (β) versus total weighted-sum cost and average inference error rate with γ = 0.7 in (a)-(b), and with γ = 30 in

(c)-(d), respectively. The simulation parameters are listed in Table III.
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Fig. 11: Computation capability of MES (F ) and total number of UAVs (n) versus total weighted-sum cost and average inference error rate

are given in (a)-(b) and (c)-(d), respectively. The results of the proposed optimal BO and PO strategies are obtained from (19) and Corollary

1, respectively. The simulation parameters are listed in Table III.

seen that the PO under the special case outperforms other candidate schemes due to the achieved smaller

inference error rate, which benefits from the ability to distribute DL tasks based on the data quality.

D. Validation of Corollary 1

Figs. 10(a)-(d) validate our analysis on the optimal offloading ratio of the partial offloading derived in

Corollary 1, where the data size scale coefficient is respectively set to be 0.7 and 30, corresponding to

two typical DL model design. It can be seen that increasing β results in a descending trend of total cost

in Fig. 10(a) but a rising trend in Fig. 10(c). This is because when γ is small, offloading data to the MES

can save the energy consumption of UAVs without introducing too much communication delay. Therefore,

offloading much data to the MES (i.e., with a larger value of β) is a good choice to decrease the cost.

However, when a higher γ is invoked, the size of intermediate data from the UAVs becomes larger. As

a result, much more delay will be introduced by wireless communication, which becomes a bottleneck

to the target tracking system. In this situation, processing more data locally (i.e., with a smaller value of

beta) could be a better choice. Furthermore, it is observed that the optimal offloading ratio is 1 and 0.2,

with γ = 0.7 and γ = 30, respectively. This observation is consistent with (45) derived in Corollary 1.
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Fig. 12: Bad data ratio (η) and inference error rate threshold (ǫT ) versus total weighted-sum cost and average inference error rate are given

in (a)-(b) and (c)-(d), respectively. The results of the proposed optimal BO and PO strategies are obtained from (19) and Corollary 1,

respectively. The simulation parameters are listed in Table III, where we set γ = 30 in (c) and (d).

E. Impact of the computation capability of MES (F ) and of the total number of UAVs (n)

Figs. 11(c)-(f) depict the impact of F and n on the total weighted-sum cost and average inference

error rate, respectively. As F increases, which indicates that the computation capability of the MES is

improved, we can observe from Figs. 11(c)-(d) that except for the TL scheme, the cost and inference

error rate of the other four schemes is gradually decreased. When F becomes large enough, e.g., F ≥ 10

GHz, the BO and PO strategies switch into the totally offloading mode (i.e., µ∗ = β∗ = 1 is selected),

which outperforms the TL significantly. Figs. 11(e)-(f) evaluate the total weighted-sum cost and average

inference error rate for various values of the total number of UAVs (n). The observations are illustrated as

follows. Firstly, the advantage of offloading is granted when n is of a low value, e.g., n ≤ 4, by the fact

that the cost introduced by wireless communication between UAVs and MES is not too large. Secondly,

the increase of n is capable of drastically increasing the total cost of TO when n becomes larger, whereas

the inference error rate of TO always keeps at the smallest. Thirdly, PO outperforms BO within the n

range of 3 to 8, especially the inference error rate, which can be explained with the aid of fine-grained

selection of β in Corollary 1. Explicitly, it is observed in Fig. 11(f) that when n reaches 3, the achieved

inference error rate of PO gradually approaches to the inference error rate threshold ǫT , whereas the BO

has reached at ǫT already. Furthermore, The advantage of PO over BO is marginal when we set Ln as a

large value since the allocated wireless bandwidth becomes less upon increasing n.

F. Impact of the bad data ratio (η) and of the inference error threshold (ǫT )

Figs. 12(a)-(b) characterize the impact of bad data rate on the weighted-sum cost and inference error

rate using different offloading strategies. It can be observed that increasing η results in both increased cost

and inference error rate of all the offloading strategies except the “PO under special case”, as illustrated in

Fig. 12(a) and Fig. 12(b). When η is small, e.g., η < 0.4, the local computing is more competitive due to

the low achieved cost but high inference accuracy. With the increase of η, the advantage of TO, BO, and

PO schemes is an explicit benefit of exploiting the advantage of offloading when η is large, e.g., η ≥ 0.4.
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Furthermore, we can see that “PO under special case” always keeps unchanged, which is because that the

inference error rate of UAV and MES do not change with η leading to a static optimal offloading ratio.

Let us now depict the achieved weighted-sum cost and inference error rate for different values of the

inference error threshold (ǫT ) in Figs. 12(c)-(d). It can be observed that the increase of ǫT results in the

reduction of total cost and in the increase of the inference error rate for both BO and PO strategies. This

is because the increase of ǫT can lead to the reduction of the necessity of offloading, hence further reduces

the total cost, whilst satisfying the inference error rate condition, as verified in Fig. 12(d). Moreover, we

can see that both the cost and inference error rate of TL and TO strategies keeps unchanged, which is

because the way to process the DL tasks is not related to ǫT , i.e., the DL tasks are processed totally at

UAVs in TL while the DL tasks are totally offloaded to the MES in TO.

VII. CONCLUSION

In this paper, deep learning enabled visual target tracking on UAVs is considered. Due to limited

computing resources and tight energy budget of small UAVs, a novel deployment of trained convolutional

neural network (CNN) model for target tracking is applied where the lower layers of the CNN are deployed

on the UAV, while the corresponding higher layers are deployed at the MEC server. This setup fulfills

the need for timely processing of the video images while taking into account the practical constraints.

When the image quality is good, the lower layers of the CNN are able to provide enough features for

the tracking performance to be acceptable and only local computations on the UAV are carried out. On

the other hand, bad image quality would call for further processing through the higher layers of the CNN

at the MEC server. In this context, a novel offloading framework is proposed in this paper to address

the tradeoff between delay and energy consumption while taking into account many constraints in reality

such as varying image quality, communications bandwidth between UAV and the MEC server, as well

as resource sharing among multiple UAVs. The derived analytical results allow us to obtain important

insights on MEC supported UAV tracking under a realistic environment. Furthermore, most of the analysis

and observations will remain valid and they are not subject to the exact formula used in our simulations

that for demonstration purpose only.

APPENDIX A

PROOF OF LEMMA 3

According to (40), when δip ≥ δiop holds, we can achieve

OPcase3

total =
n

∑

i=1

(

θ

(

ci

f i
l

+ δip

)

+(1−θ)
(

εil+εio
)

)

. (46)
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Substituting δip = (1− βi) ρiǫ̃L into (46), we have

OPcase3

total =

n
∑

i=1

(βiA+B) , (47)

where

A = (1− θ)

(

γi

(

P i
t

si

Ri

+P i
I

ci

fi

)

− ξi (ǫ̃L−ǫ̃H)

)

− θρiǫ̃L,

and

B = θ

(

ci

fi
+ ρiǫ̃L

)

+ (1− θ) κ
(

f i
l

)2
ci.

• If A > 0 holds, i.e., γi > γT1
i is obtained, then the weighted-sum cost monotonously increases with

βi. Since βi ≥ β̃i holds meeting the constraint C1 and βi ≤ β̂case1
i is obtained by solving δip ≥ δiop,

the optimal offloading ratio is achieved as βcase3∗
i = min

{

β̂case1
i , β̃i

}

.

• On the contrary, when A ≤ 0, i.e., γi < γT1
i holds, then the weighted-sum cost monotonously

decreases with βi. In this case, we can obtain βcase3∗
i = min

{

β̂case1
i , 1

}

= β̂case1
i .

To this end, we have proved Lemma 3.
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