
ar
X

iv
:2

00
4.

06
45

3v
2

 [
cs

.N
I]

 3
 S

ep
 2

02
0

1

Peer Offloading in Mobile Edge Computing with

Worst-Case Response Time Guarantees
Xingqiu He, and Sheng Wang, Member, IEEE

Abstract—Mobile edge computing (MEC) is a new paradigm
that provides cloud computing services at the edge of networks.
To achieve better performance with limited computing resources,
peer offloading between cooperative edge servers (e.g. MEC-
enabled base stations) has been proposed as an effective technique
to handle bursty and spatially imbalanced arrival of computation
tasks. While various performance metrics of peer offloading
policies have been considered in the literatures, the worst-case
response time, a common Quality of Service(QoS) requirement
in real-time applications, yet receives much less attention. To fill
the gap, we formulate the peer offloading problem based on a
stochastic arrival model and propose two online algorithms for
cases with and without prior knowledge of task arrival rate.
Our goal is to maximize the utility function of time-average
throughput under constraints of energy consumption and worst-
case response time. Both theoretical analysis and numerical
results show that our algorithms are able to produce close to
optimal performance.

Index Terms—Edge computing, peer offloading, worst-case
response time.

I. INTRODUCTION

THE “pay-as-you-go” cloud computing model has played

a significant role in data storage and computation of-

floading in the past decade. Recently, with the proliferation of

smart devices and the development of Internet of Things, many

new computationally intensive applications, such as smart

cities and intelligent surveillance systems, have posed stringent

quality of service (QoS) requirements that cloud computing is

unable to meet. To solve these problems and alleviate traffic

congestions on transport networks, mobile edge computing

(MEC) has emerged as a new paradigm to provide cloud

computing services in close proximity to the end-users [1].

Different from the traditional cloud computing framework

where massive computing resources are placed on remote

areas, MEC deploys computing servers throughout the net-

work. These servers are usually base stations (BSs), but can

also be other dedicated devices with computing and storage

resources. Offloading computation tasks to nearby BSs rather

than to the cloud substantially reduces end-to-end latency,

thus improves the quality of experience (QoE) of end-users.

Extra tasks exceeding the computing capacity of local BSs

X. He and S. Wang are with the School of Communication and
Information Engineering, University of Electronic Science and Tech-
nology of China, Chengdu 610051, China (e-mail: hexqiu@gmail.com;
wsh keylab@uestc.edu.cn).

Corresponding author: Sheng Wang.
This paper is accepted by IEEE Internet of Things Journal. Digital Object

Identifier: 10.1109/JIOT.2020.3019492
Copyright (c) 2020 IEEE. Personal use of this material is permitted.

However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

are further offloaded to the cloud, forming a hierarchical

offloading structure among end-users, BSs, and the cloud

[2]. Therefore, MEC is more like an extension rather than

a substitute for cloud computing. In addition to low-latency

computing service, densely deployed BSs also provide other

benefits like location awareness and mobility support. Thus,

MEC is considered as a promising approach to address the

challenges posed by modern applications.

Although MEC is able to meet severe QoS requirements,

one significant problem is that the available computing re-

sources at the edge of the network are very limited compared

to data centers in cloud computing. Recently, peer offloading

[3]–[6] has been proposed as an effective technique to handle

bursty and spatially imbalanced arrival of computation tasks.

By exploiting cooperation among BSs, peer offloading allows

overloaded BSs to forward part of their workload to their

neighbors, thus improves the utilization of existing computing

resources and user experience.

As far as we know, most existing researches [3]–[5] of peer

offloading are based on the fluid-flow model. They assume

the workload of computation tasks is divisible and regard the

task arrival process as a fluid-flow with a certain rate. As a

result, control algorithms based on the fluid-flow model only

consider the expected arrival rate and ignore the variances

of task arrivals. If the actual arrival process is bursty, the

amount of arrived tasks may be substantially larger than

the average level in a short time interval. In this case, the

performance of these algorithms will degrade significantly and

result in a large worst-case response time. We present a simple

example in Section IV to further illustrate our argument. A

similar discussion is also given in [6] and they solve this

problem by incorporating deadlines of tasks into decision-

making. However, the algorithm in [6] is specially designed

for computation-intensive tasks whose processing time ranges

from minutes to hours or even days. Moreover, although [6]

serves tasks with the best effort, they do not ensure all accepted

tasks will be processed before their deadlines. Therefore, there

still lacks a peer offloading algorithm that is able to provide

worst-case response time guarantees for real-time applications

who generally require the response time of tasks should be

less than 100 milliseconds (ms) [7]–[9].

In this paper, we formulate the peer offloading problem

based on the stochastic arrival model. Control decisions are

made for individual tasks instead of abstracted task flows.

We deliver two efficient online algorithms that are able to

yield close to optimal performance while providing worst-case

response time bound. The main contributions of our work are

summarized as follows.

http://arxiv.org/abs/2004.06453v2

2

(1) We formalize the peer offloading problem in MEC

networks based on the stochastic arrival model. The objective

is to maximize the utility function of time-average throughput

under a long-term energy consumption constraint and the

worst-case response time requirement. Our algorithms can be

extended to include other time-average constraints easily. To

the best of our knowledge, we are the first that provides worst-

case response time guarantees for real-time applications.

(2) We present a simple yet efficient algorithm when the

expected arrival rate of computation tasks at each BS is

known in advance. Theoretical analysis shows the algorithm

is optimal both in system performance and response time.

(3) When the arrival rate is unknown, we develop an

online algorithm that requires no prior information based on

Lyapunov optimization. We show that the key subroutine of

the algorithm is equivalent to the classical assignment problem,

and thus can be solved in O(n3) time [10]. Theoretical

analysis of the algorithm presents a O(1/V)-O(V) tradeoff

between system performance and worst-case response time

bound, where V is a tunable parameter. We carry out extensive

simulations with a real-world dataset to verify theoretical re-

sults and demonstrate that the proposed algorithm outperforms

others under various settings.

The rest of this paper is organized as follows. In Section

II, we review related works in more detail. In Section III,

we present the system model and formalize the problem. In

Section IV, we propose an optimal algorithm when the arrival

rate of computation tasks is known. In Section V, we develop

an online algorithm based on Lyapunov optimization, and give

related theoretical analysis. In Section VI, several techniques

are proposed to improve the practicality of our algorithms. In

Section VII, numerical results are presented to demonstrate

the performance of our algorithm. Section VIII concludes the

paper and shows open problems for future work.

II. RELATED WORKS

The emerging MEC paradigm offers the possibility of

supporting a large variety of new applications such as smart

cities and intelligent surveillance systems [9], [11]. One of

the main research points in MEC is the task offloading

problem. [12]–[16] stand in the position of end-users to decide

which task should be offloaded to nearby BSs in order to

optimize objectives like latency1 and energy consumption. In

contrast, we consider from the point of view of BSs and study

how cooperative BSs can handle their tasks collaboratively

to provide the best user experience. Although collaborative

computing is a common act in geographical load balancing

originally proposed for data centers, the main concern there is

reducing operational cost with respect to spatial diversities of

workload patterns [17] and electricity price differences across

regions [18]. In contrast, we care about system performances

like throughput and energy consumption in cooperative MEC.

Additionally, while the cooperative task offloading problem in

MEC is online in nature, the problem considered in geograph-

ical load balancing is usually offline. Therefore, techniques

1In the rest of this paper, we will use “response time” and “latency”
interchangeably.

developed for geographical load balancing cannot be directly

applied to MEC.

Recently, extensive researches have been conducted on

the cooperation strategy between edge servers and incentive

mechanism design [19]–[25]. The works closest to ours are

those that design control algorithms for peer offloading [3]–

[6]. The work in [3] considers the users’ QoE and the

BSs’ power efficiency in the MEC network. They observe a

fundamental tradeoff between these two metrics and develop

a distributed optimization framework to achieve this tradeoff.

The authors in [4] present a framework for online computation

peer offloading. They theoretically characterize the optimal

peer offloading strategy and show that the role of a computing

server is determined by its pre-offloading marginal compu-

tation cost. A distributed optimization for cost-effectiveness

offloading decisions is considered in [5]. All the three works

aim to optimize the expected latency while the authors in [6]

discuss the necessity to consider the variability of response

time. To enhance satisfaction ratio, they incorporate deadlines

of tasks into decision-making. However, the algorithm in [6]

is specially designed for computation-intensive tasks whose

processing time ranges from minutes to hours or even days. In

addition, they serve tasks in a best-effort way and do not offer

any service level guarantees. Although works in [26]–[30] also

adopt the stochastic arrival model and consider worst-case

latency of computation tasks in MEC networks, they either

investigate the user-to-BSs offloading problem, or only study

control policies for a single BS. Therefore, to the best of our

knowledge, our research is the first work that presents peer

offloading algorithms being able to provide worst-case service

guarantees for real-time applications that generally require the

response time be less than 100 ms [7]–[9].

Lyapunov optimization is an online framework that solves

time-average optimization problems. The main advantage of

this method is it can produce asymptotically optimal results

without requiring prior knowledge of the system’s random

events. Lyapunov optimization is extensively used to solve the

offloading problem in MEC, including offloading between end-

users [31]–[33], offloading from users to BSs [2], [34]–[38],

and considering both situations simultaneously [39], [40]. The

peer offloading algorithms in [4], [5] are also based on Lya-

punov optimization. Most of these works either seek to reduce

the task latency [2], [4], [34], or aim for a minimized energy

consumption [31], [32], [36], [38]–[40]. Due to the variety of

practical problems, extra considerations are incorporated into

the design of offloading algorithms, including energy harvest-

ing [31], [33], [34], service cache [2], user mobility [38], and

cooperation incentives [32], [33]. However, all these works

only concern time-average performance metrics. To provide a

worst-case latency guarantee, we have to significantly revise

the traditional Lyapunov optimization method and formulate

our problem based on a different arrival model.

III. SYSTEM MODEL

We consider a local MEC network with N BSs, which

operates in slotted time t as illustrated in Fig. 1. Similar to

other peer offloading researches, we focus on the cooperation

3

Fig. 1: A simple MEC network with cooperative peer offload-

ing.

between BSs and does not consider the collaborative behaviors

of end-users. Our model is well suited for applications in

which all tasks must be offloaded to edge servers, either

because end-users’ devices lack adequate computation capa-

bilities (e.g. sensors in IoT networks and cameras in intelligent

surveillance systems), or constrained by the energy budget

(e.g. smartphones with a low battery). In other applications,

end-users may help each other to process computation tasks

(e.g. offloading tasks from augmented reality glasses to a tablet

or smartphone) and form a device-to-device (D2D) network. In

this case, one can integrate our work with scheduling policies

in D2D networks [41] and let end-users choose offloading

decisions with the minimal response time. In our future work,

we will also seek to extend our model to include user-side

cooperation so that we can achieve the optimal performance

with a unified scheduling control.

We assume that the total workload of all tasks arrived in

every slot does not exceed the maximum workload that can

be processed by each BS in a single slot. Since these tasks can

be served within the same slot, we bind them as a whole and

regard it as a single “giant” task. We also assume temporarily

that the workload of all “giant” tasks is equal. In Section VI-B,

we show how to construct a general algorithm that is able to

handle tasks of varying workload from strategies designed in

Section IV and V. In Section VI-C, we further demonstrate

that our assumption should hold in most practical cases and

theoretically bound its impact if the assumption is not satisfied.

In each time slot, let An(t) ∈ {0, 1} be the random variable

indicating whether there is a task arrived at BS n. Arrived

tasks may be blocked if BSs are overloaded, and accepted

tasks can be either processed locally or offloaded to nearby

BSs. We do not consider offloading tasks to the cloud because

the round-trip time between the network edge and the remote

cloud is generally greater than the maximum latency allowed

by real-time applications [42]. Besides, our work does not

conflict with those that study the collaborative cloud and edge

computing. For example, one can integrate our algorithm with

the framework proposed in [43] so that (1) all latency-sensitive

tasks are offloaded to BSs to get a delay guarantee and (2)

the rest tasks are allocated according to [43] to minimize

the overall latency. For the convenience of description, we

temporarily assume all arrived tasks will be accepted and allow

BSs to drop accepted tasks. In Section VI-A, we present a

method that converts drop decisions to block decisions so that

the refusal of service happens at the request stage and all

accepted tasks are guaranteed to be served on time.

Let µn(t) and Dn(t) be the amount of tasks processed and

dropped by BS n on time slot t. cnm(t) is the number of

tasks peer offloaded from BS n to BS m. Like An(t), we

require µn(t), cmn(t) and Dn(t) are binary variables. We use

Q(t) = (Q1(t), . . . , QN(t)) to denote the number of tasks

stored in the queues of BSs. The update process of Qn(t) is

Qn(t+ 1) =max[Qn(t)− µn(t)−
∑

m 6=n

cnm(t)−Dn(t)

+
∑

m 6=n

cmn(t− δmn), 0] +An(t) (1)

where δmn is the one-way trip time from BS m to BS n. Thus

cmn(t − δmn) is the number of peer offloaded tasks leaving

BS m on slot t− δmn and arriving at BS n on slot t.

Our goal is to maximize the utility function of throughput

with the constraint of time-average energy consumption and

worst-case response time. Standing in the position of BSs, the

response time of a task in this paper refers to the time from

the moment the task is received by BSs to the moment the

computation result of the task is transmitted back to the user.

We omit the transmission time of the computation result as its

size is usually very small. Given the maximum latency Lmax

allowed by users, we want to solve the following stochastic

optimization problem Po with the extra requirement that all

non-dropped tasks must be processed in Lmax time slots. The

formulation of Po is

max
∑

n

gn(yn) (Po)

s.t. Qn < ∞ ∀n ∈ {1, . . . , N}

en ≤ Eaver
n ∀n ∈ {1, . . . , N} (2)

where

yn , λn − lim
t→∞

1

t

t−1∑

τ=0

E[Dn(τ)] (3)

en , lim
t→∞

1

t

t−1∑

τ=0

E[en(τ)]

are the time-average expectation of throughput and energy

consumption on BS n, respectively. Here, λn = E[An(t)]
is the expected task arrival rate of BS n and gn is a con-

cave function over [0, 1] that represents the utility of BS

n. Note that we have assumed a stationary λn in order to

simplify our statement, but all algorithms and their perfor-

mance analysis also hold when λn is time-varying. Eaver
n

is the upper bound of time-average energy consumption.

The energy consumption en(t) depends on the computation

activity µn(t). Since µn(t) is binary, we use e1n to denote

the active energy consumption when µn(t) = 1 and e0n to

denote the static energy consumption when µn(t) = 0. Then

we have en(t) = e1nµn(t) + e0n(1 − µn(t)), so the energy

consumption constraint (2) actually requires the time-average

service level µn = limt→∞ 1/t
∑t−1

τ=0
E[µn(τ)] satisfies µn ≤

(Eaver
n − e0n)/(e

1
n − e0n).

4

The difficulty of solving Po not only comes from the

uncertainty of future task arrivals, but also from the coupling

of decision variables along the timeline. From (1) we can see

that the state of Qn is dependent on the past peer offloading

decisions cmn(t − δmn). To avoid this problem, we consider

a relaxed problem Pr where we set δmn = 0 in Po for every

m,n ∈ {1, 2, . . . , N}. Then, the update of Qn becomes

Qn(t+ 1) =max[Qn(t)− µn(t)−
∑

m 6=n

cnm(t)−Dn(t)

+
∑

m 6=n

cmn(t), 0] + an(t). (4)

The following theorem shows algorithms of Po can be con-

structed from algorithms of Pr.

Theorem 1: If there is an algorithm S∗
r for the relaxed

problem Pr that achieves objective value z∗r with worst-case

response time T ∗
r , then we can design an algorithm S∗ for the

original problem Po that achieves z∗r with worst-case response

time T ∗
r + 2δmax, where δmax = maxmn δmn.

Proof: To better describe the state change of Qn(t), we

rewrite (4) without the max operator

Qn(t+ 1) =Qn(t)− µ̃n(t)−
∑

m 6=n

c̃nm(t)− D̃n(t)

+
∑

m 6=n

c̃mn(t) + an(t) (5)

where D̃n(t), µ̃n(t) and c̃mn(t) are the actual number of

tasks being dropped, being processed locally, and being peer

offloaded, respectively. For example, if we have only one task

in Qn(t) but µn(t) = 1 and cnm(t) = 1 simultaneously. Since

we cannot both offload and process this task, one of the above

control decision must fail in execution. Thus, we have either

µ̃n(t) = 0 or c̃mn(t) = 0. One can prove that the time-average

of control decisions and actual execution results are equal. The

introduction of these notations are purely for the simplification

of this proof.

Since δmn = 0 in Pr , the transmission of tasks is completed

instantly. So there is no need to transmit tasks in advance and

we can require that tasks are offloaded only when they will be

served by other BSs in the next slot. Then, all tasks will be

peer offloaded at most once. Let (D∗
n(t), c

∗
mn(t), µ

∗
n(t)) and

(D∗
r,n(t), c

∗
r,mn(t), µ

∗
r,n(t)) be the decision variables of S∗ and

S∗
r respectively. For given S∗

r , let D∗
n(t) = D̃∗

r,n(t), c
∗
mn(t) =

c̃∗r,mn(t), µ
∗
n(t) = µ̃∗

r,n(t− δmax). It is easy to check that S∗

is feasible for Po. Next we focus on the performance of S∗.

Since tasks can be peer offloaded at most once and the

actual transmission time will not exceed δmax slots, the task

being served by BS n on slot t under S∗
r is also available at

BS n on slot t+ δmax under S∗. Therefore, we have µ̃∗
n(t) =

µ∗
n(t) = µ̃∗

r,n(t− δmax). This means tasks served on t by S∗
r

will be served on t + δmax by S∗. Thus the throughput, as

well as the objective value, of S∗ is same to that of S∗
r . Note

that the computing result have to be transmitted back to the

original BS, which cost no more than δmax slots. Therefore,

the worst-case response time of S∗ is T ∗
r + 2δmax.

Theorem 1 enables us to focus on algorithm design of Pr,

which is a much easier problem because the update of Qn(t)

no longer depends on past decision variables. In the next two

sections, we design two online algorithms of Pr for cases with

and without prior information of task arrival rate.

IV. ALGORITHM UNDER KNOWN ARRIVAL RATE

In this section, we assume the task arrival rate λn is known.

We consider the following optimization problem Pk

max
∑

n

gn(ŷn) (Pk) (6)

s.t. 0 ≤ µ̂n ≤
Eaver

n − e0n
e1n − e0n

∀n ∈ {1, . . . , N} (7)

ŷn ≤ λn ∀n ∈ {1, . . . , N} (8)
∑

n

ŷn =
∑

n

µ̂n ∀n ∈ {1, . . . , N} (9)

where ŷn and µ̂n are free variables in the set of real numbers.

Let ŷ∗ = (ŷ∗1 , . . . , ŷ
∗
N), µ̂∗ = (µ̂∗

1, . . . , µ̂
∗
N) be the optimal

solution of Pk and z∗ be the corresponding optimal value.

The following theorem shows z∗ is an upper bound of system

performance2.

Theorem 2: No algorithm of Pr can achieve an objective

value greater than z∗.

Proof: Suppose there is an algorithm S′
r with objective

value z′ > z∗. Let y′n and µ′
n be the time-average throughput

and service level of S′
r. The definition of of y′n (3) implies

y′n satisfies (8), and constraint (2) implies µ′
n satisfies (7).

Summing (5) over n results in

N∑

n=1

Qn(t) =

t−1∑

τ=0

N∑

n=1

An(τ)−

t−1∑

τ=0

N∑

n=1

D̃n(τ)−

t−1∑

τ=0

N∑

n=1

µ̃n(τ).

(10)

Taking expectation, dividing by t, and letting t → ∞. The left-

hand side turns to limt→∞ 1/t
∑N

n=1
E[Qn(t)], which equals

0 because Qn(t) < ∞. Then (10) implies (9) by substituting

(3) into the right-hand side of (10). Therefore, y′n and µ′
n are

feasible variables of Pk with objective value z′, contradicting

the assumption that z∗ is the optimal value.

From the above proof, we can see that ŷ∗ and µ̂∗ are the

time-average of optimal control decisions y∗n(t) and µ∗
n(t)

of Pr. Suppose the task arrival processes of different BSs

are independent, we will show there is an algorithm that

achieves z∗ and serve all tasks within one slot. The intuition

behind the algorithm is illustrated by the following example.

Considering a 2 BSs MEC network with task arrival rate

(λ1, λ2) = (0.8, 0.2) and energy consumption constraint that

requires (µ1, µ2) ≤ (0.5, 0.5). Let n1, n2 denote the two

BSs. If we peer offload the task arrived at n1 to n2 with

probability 3/8, then the time-average number of tasks to be

served by n1 and n2 are µ1 = 0.8 × (1 − 3/8) = 0.5 and

µ2 = 0.2 + 0.8 × 3/8 = 0.5, which satisfies the energy

consumption constraint. Note that such strategy is based on

expected task arrival rate and is usually given by algorithms

adopting the fluid-flow model. We not show that although it

achieves optimal throughput, the induced response time may

be very large. Assume on some slot t we have A1(t) = 1

2The system performance here refers to the objective value of problem Po.

5

and A2(t) = 1, and we offload one task from n1 to n2. Since

the task arrival processes of different BSs are independent,

such event happens with probability 0.2× 0.8 × 3/8 = 0.06.

Because there are two tasks enter Q2(t) on slot t and each BS

can only process one task in every time slot, one of the two

tasks has to wait 1 slot. If in the next time slot, the same event

happens again, then one of the four tasks has to wait 2 slots.

Generally, for any finite integer M , there is a probability of

at least 0.06M that the response time of some tasks exceeds

M slots.

The problem of above strategy is that the control decisions

only depend on the expected arrival rate and disregard the

actual task arrival on each time slot. As shown in the ex-

ample, when the actual arrival differs from the expectation

in a sequence of time slots, it inevitably induces a large

response time. In contrast, if we offload tasks of n1 only when

A2(t) = 0, then each BS is assigned at most one task on every

slot and thus all newly arrived tasks can be served within one

slot. In our example, we first list the probabilities of all arrival

events

p (A1(t) = 0 and A2(t) = 0) = 0.2× 0.8 = 0.16

p (A1(t) = 1 and A2(t) = 0) = 0.8× 0.8 = 0.64

p (A1(t) = 0 and A2(t) = 1) = 0.2× 0.2 = 0.04

p (A1(t) = 1 and A2(t) = 1) = 0.8× 0.2 = 0.16

Our strategy is offloading an arrived task from n1 to n2 with

probability 0.30/0.64 only when A1(t) = 1 and A2(t) = 0.

Then under all situations, there is at most one task enters the

waiting queues of each BS so that all tasks can be served in the

next slot. The time-average service rate of n1 is µ1 = 0.64×
(1− 0.30/0.64) + 0.16 = 0.50. Similarly we can compute

µ2 = 0.50. So in this case both the throughput and the response

time are optimal. Now we extend this method to the general

case.

Let n1, . . . , nN denote the N BSs. Out goal is to compute

how many tasks should be served by each BS given the actual

arrival A(t) = (A1(t), . . . , AN (t)). We first decide how many

tasks should be dropped so that the expected throughput equals

ŷ∗. In every slot t, observe A(t), then choose the value of

Dn(t) according to the following rule

Dn(t) =

{
1 with probability 1− ŷ∗n/λn when An(t) = 1

0 otherwise

(11)

We use A0(t) = (A0
1(t), . . . , A

0
N (t)) to denote the number of

tasks accepted by local BSs, where A0
n(t) = An(t) −Dn(t).

It can be easily confirmed that for every n and t, A0
n(t) is a

{0, 1} random variable with expectation λn−λn(1−ŷ∗n/λn) =
ŷ∗n.

Next, we develop a peer offloading strategy to let the time-

average number of tasks processed by BSs equals µ̂∗. The

whole algorithm consists of N steps. In each step, we make

offloading decisions based on the outcome of the previous

step. We use vector Ai(t) to denote both the output of i-th
step and the input of (n + 1)-th step. The component Ai

j(t)
is the number of tasks assigned to BS j by the end of step i.

The input of the first step is A0(t). Define operation πij to

swap the i-th and j-th component of any vector A

πij(A1, . . . , Ai, . . . , Aj , . . . , AN)

= (A1, . . . , Aj , . . . , Ai, . . . , AN).

For ease of statement, when the expectation of variables is

invariant over time, their time index is omitted. For example,

we use E(Ai−1

i) instead of E(Ai−1

i (t)). Now we explain the

i-th step of our algorithm in detail. The overall procedure is

summarized in Algorithm 1.

(1) If E(Ai−1

i) = µ̂∗
i , let Ai(t) = Ai−1(t) and skip to the

next step.

(2) Else, if E(Ai−1

i) < µ̂∗
i , it means the expected number

of tasks assigned to ni according to Ai−1 is lower than ni’s

optimal time-average service rate, so we should assign more

tasks to ni by offloading from other BSs. Find the smallest

m ∈ {i, . . . , N} such that

1− (1− E(Ai−1

i)) · · · (1− E(Ai−1
m)) ≥ µ̂∗

i . (12)

The left-hand side is the probability that there is at least one

task arrived at ni, . . . , nm. Our strategy is offloading tasks

arrived at the these BSs to ni so that the time-average number

of tasks assigned to ni equals µ̂∗
i . Specifically, in every time

slot t, observe the value of Ai−1(t). If Ai−1

i (t) = 1, then no

peer offloading is performed, and we have Ai(t) = Ai−1(t).
Else, find the smallest p ∈ {i+1, . . . ,m} such that Ai−1

p (t) =
1. If no such p exists, let Ai(t) = Ai−1(t). Otherwise, if

p < m, then offload the task from np to ni. In this case,

Ai(t) = πip(A
i−1(t)). If p = m, offload the task from nm to

ni with probability

Pm→i =
µ̂∗
i − [1− (1− E(Ai−1

i)) · · · (1− E(Ai−1

m−1))]

(1− E(Ai−1

i)) · · · (1− E(Ai−1

m−1
))E(Ai−1

m))
.

(13)

Our choice of m (12) guarantees that the value of (13) is

non-negative. So when p = m we have

Ai(t) =

{
πim(Ai−1(t)) with probability Pm→i

Ai−1(t) with probability 1− Pm→i

.

(14)

(3) Else, it must be E(Ai−1

i) > µ̂∗
i , we should offload tasks

of ni to other BSs. Similarly, find the smallest m ∈ {i, . . . , N}
such that

E(Ai−1

i)E(Ai−1

i+1
) . . .E(Ai−1

m) ≤ µ̂∗
i . (15)

The left-hand side is the probability that there is a newly

arrived task for all ni, . . . , nm. If Ai−1

i (t) = 1 and

Ai−1

i+1
(t)Ai−1

i+2
(t) · · ·Ai−1

m (t) = 0, let p be the least integer with

Ai−1
p (t) = 0. Offload the task of ni to np with probability

Pi→p =
E(Ai−1

i)− µ̂∗
i

E(Ai−1

i)(1− E(Ai−1

i+1
) . . .E(Ai−1

m))
.

Likewise, this value must be non-negative. In this case

Ai(t) =

{
πip(A

i−1(t)) with probability Pi→p

Ai−1(t) with probability 1− Pi→p

. (16)

Otherwise, when Ai−1

i (t) = 0 or

Ai−1

i+1
(t)Ai−1

i+2
(t) · · ·Ai−1

m (t) = 1, we have Ai(t) = Ai−1(t).

6

Algorithm 1 Peer Offloading for Known Arrival Rate

Input: Task arrival A(t), expected arrival rate λ, optimal

solution of problem (6) (ŷ∗, µ̂∗)
Output: Offloading decision AN (t)

1: Choose D(t) according to (11);

2: A0(t) ⇐ A(t)−D(t);
3: for i = 1 to N do

4: if E(Ai−1

i) = µ̂∗
i then

5: Ai(t) ⇐ Ai−1(t);
6: else if E(Ai−1

i) < µ̂∗
i then

7: Find m according to (12);

8: if Ai−1

i (t) = 1 then

9: Ai(t) ⇐ Ai−1(t);
10: else

11: Find the smallest p ∈ {i + 1, . . . ,m} such that

A0
p(t) = 1;

12: if p does not exist then

13: Ai(t) ⇐ Ai−1(t);
14: else if p < m then

15: Ai(t) ⇐ πip(A
i−1(t));

16: else

17: Choose Ai(t) according to (14);

18: end if

19: end if

20: else

21: Find m according to (15);

22: if Ai−1

i (t) = 1 AND Ai−1

i+1
(t)Ai−1

i+2
(t) · · ·Ai−1

m (t) =
0 then

23: Let p ∈ {i + 1, . . . ,m} be the least integer with

Ai−1
p (t) = 0;

24: Choose Ai(t) according to (16);

25: else

26: Ai(t) ⇐ Ai−1(t);
27: end if

28: end if

29: end for

30: return AN (t)

Starting from the first step, one can verify that for each

i ∈ {1, . . . , N}, we have: (1) Ai
j(t) ≤ 1 ∀j ∈ {1, . . . , N};

(2)
∑N

j=1
Ai

j(t) =
∑N

j=1
Ai−1

j (t); (3) E(Ai
j(t)) = µ̂∗

j ∀j ∈
{1, . . . , i}. Repeat the process N times, it is guaranteed that

the final output AN (t) satisfies

AN
j (t) ≤ 1 ∀j ∈ {1, . . . , N} (17)

N∑

j=1

AN
j (t) =

N∑

j=1

A0
j (t) (18)

E(AN
j) = µ̂∗

j ∀j ∈ {1, . . . , N} (19)

Offload tasks so that the number of tasks assigned to each BS

equals AN (t) and let BSs serve the assigned tasks in the next

slot. The performance of the algorithm is analyzed as follows:

1) Since we assign at most one task to each BS at every slot

according to (17), all non-dropped tasks will be served

within one slot.

2) Equation (19) and constraint (7) guarantees the time-

average energy consumption constraint is not violated,

which means our algorithm is feasible.

3) Since all non-dropped tasks are served by the N BSs

(18), our choice of D(t) guarantees the throughput

of all BSs equals ŷ∗, which produces optimal system

performance z∗.

Therefore, it can be concluded that our algorithm is optimal,

both in system performance and response time.

It can be easily checked that the time complexity of Al-

gorithm 1 is O(N2). One can also run the algorithm offline

and store the output strategy for each possible arrival A(t).
This will consume O(2N) storage space in total. After that,

when the task arrival A(t) is observed, one can directly look

up the corresponding offloading strategy without running the

whole algorithm again. The time complexity, in this case, is

only O(N).

V. ALGORITHM UNDER UNKNOWN ARRIVAL RATE

The optimality of the algorithm designed in the previous

section largely depends on the prior knowledge of the arrival

rate. In this section, we will solve the problem without

such prior knowledge based on a methodology of Lyapunov

Optimization. Different from traditional Lyapunov framework

that only provides a time-average response time bound, we

design a virtual queue that enables us to bound the response

time in the worst-case. As stated in the proof of Theorem 1, we

can assume that tasks are offloaded to other BSs only if they

will be processed in the next slot As a result, the decisions

of peer offloading and task serving can be represented by a

single variable. Let bnm(t) ∈ {0, 1} be the number of tasks

at BS n that are offloaded to and served by BS m on slot t.
Then ηn(t) =

∑
m∈N bnm(t) is the number of tasks in Qn(t)

being served on slot t. Tasks offloaded to BS m will be served

immediately and will not enter Qm(t). Now, the update of

Q(t) is

Qn(t+ 1) = max[Qn(t)− ηn(t)−Dn(t), 0] +An(t).

Considering the following constraints:

0 ≤ ηn(t) ≤ 1 (20)

0 ≤
∑

n∈N

bnm(t) ≤ 1 (21)

0 ≤ ηn(t) +Dn(t) ≤ 1

where all variables are binary. The first two constraints require

that, in every slot t, at most one task of Qn(t) can be served,

and each BS can serve at most one task. The last constraint

ensures that the number of tasks leaving Qn(t) is at most one,

whether being served or being dropped. We will see later that

this constraint does not harm the optimal value and it is useful

in transforming drop decisions into block decisions.

In the following subsections, we first transform our problem

Pr into an equivalent form. Then we set a virtual queue to

record the waiting time of the head-of-line task. We define

a drift function of queues and combine it with our objective

function to form a drift-plus-penalty bound. An algorithm is

designed to minimize this bound. Theoretical analysis shows

7

that the algorithm presents a O(1/V)-O(V) tradeoff between

system performance and worst-case response time bound,

where V is a tunable parameter.

A. Problem Transformation

Assume the right partial derivative of gn(y) over [0, 1] is

bounded by a non-negative constant νn. Define the concave

extension of gn(y) over [−1,∞) as

ĝn(y) , gn([y]
1
0) + νn min[yn, 0]

where [y]10 , min[max[y, 0], 1]. Clearly, ĝn(y) is non-

decreasing, concave and gn(y) = ĝn(y) when 0 ≤ y ≤ 1. We

extend the objective function to allow variables of gn taking

negative values. This will be useful in bounding the response

time. For the sake of convenience, we also use ĝ(y) to denote∑
n ĝn(yn) in the following subsections.

With the extended objective function, we introduce a vector

of auxiliary variables γ(t) = (γ1(t), . . . , γN (t)) to transform

Pr into the following problem Pt

max ĝ(γ) (Pt)

s.t. yn ≥ γn ∀n ∈ {1, . . . , N} (22)

− 1 ≤ γn ≤ 1 ∀n ∈ {1, . . . , N} (23)

en ≤ Eaver
n ∀n ∈ {1, . . . , N} (24)

Qn < ∞ ∀n ∈ {1, . . . , N}

Note that one can always choose γn(t) = yn(t) to ensure

(22) and (23) are satisfied. Since ĝn(y) is non-decreasing, the

optimal solution of γn(t) will make (22) holds with equality.

Recall that ĝn(y) = gn(y) on [0, 1], Pt and Pr must have

same optimal objective value. Therefore, any algorithm solves

Pt also solves Pr.

To ensure constraint (22), we introduce a virtual queue

Zn(t+ 1) = max[Zn(t)− λn +Dn(t) + γn(t), 0] (25)

from which we have

Zn(t+ 1) ≥ Zn(t)− λn +Dn(t) + γn(t).

Summing over τ ∈ {0, . . . , t− 1} and dividing by t yields

Zn(t)− Zn(0)

t
+

1

t

t−1∑

τ=0

(λn −Dn(τ)) ≥
1

t

t−1∑

τ=0

γn(τ).

Take expectations of both sides and substituting Zn(0) = 0,

we have
E[Zn(t)]

t
+ yn(t) ≥ γn(t). (26)

It is apparent that when the virtual queue is stabilized, which

means E[Zn(t)]/t → 0 as t → ∞, then the constraint (22)

is satisfied. Similarly, we introduce another virtual queue for

constraint (24)

Wn(t+ 1) = max[Wn(t)− Eaver
n + en(t), 0].

It should be noted that the implementation of the virtual

queue Zn(t) requires the knowledge of task arrival rate λn,

which contradicts the assumption that λn is unknown. Our

plan is to temporarily assume λn is known and develop an

algorithm with performance analysis. Later, in Section V-F,

we will replace λn with past observation of task arrival An(t),
and show that the performance analysis still holds with slight

modification.

B. Waiting Time Virtual Queue

In order to bound the maximum response time, we follow

the technique used in [44] and design a virtual queue Hn(t)
to record the waiting time of the head-of-line task in Qn(t).
Since all tasks will be in the head-of-line position before they

are processed, we bound the waiting time of all tasks in Qn(t)
if we bound the length of Hn(t), and thus we also bound the

response time. Set Hn(t) = 0 when Qn(t) is empty. Define

αn(t) as an indicator variable that is 1 if Qn(t) > 0, and 0 if

the queue is empty. Let βn(t) = 1 − αn(t). The update rule

of Hn(t) is

Hn(t+1)=αn(t)max[Hn(t)+1−(ηn(t)+Dn(t))Tn(t), 0]

+ βn(t)An(t)

where Tn(t) represents the inter-arrival time between the head-

of-line task and the subsequent task. The value of Tn(t) is

unknown if the subsequent task has not arrived yet. Because

arrivals are Bernoulli, if Hn(t) > 0, then Tn(t) is a geometric

random variable with success probability λn. If Hn(t) = 0,

then we define Tn(t) = 0.

Without loss of generality, assume that λn > 0 for all BS

n ∈ {1, 2, . . . , N}. Define Θ(t) , [Z(t);W (t);H(t)] and

the following Lyapunov function

L(Θ(t)) ,
1

2

N∑

n=1

Zn(t)
2 +

1

2

N∑

n=1

Wn(t)
2 +

1

2

N∑

n=1

λnHn(t)
2.

We now apply the Lyapunov optimization to develop an

algorithm with bounded response time.

C. Drift-Plus-Penalty Bound

Define the one-step conditional Lyapunov drift

∆(Θ(t)) , E[L(Θ(t+ 1))− L(Θ(t))|Θ(t)]. (27)

Intuitively, ∆(Θ(t)) describes the change of length of queues.

Recall that our goal is to maximize the objective function

while bounding the length of queues. Therefore, we can

put ∆(Θ(t)) and the objective function together and try to

minimize them on every time slot. Specifically, we form the

following “drift-plus-penalty” term with parameter V that

decides the performance-latency tradeoff

∆(Θ(t)) − V E[ĝ(γ(t))|Θ(t)]. (28)

Before deducing the bound of (28), we introduce an inde-

pendence property that will be useful in the proof.

Definition 1: An algorithm has the independence property

if for any slot t, every BS n with Hn(t) > 0 has a value of

Tn(t) that is independent of Θ(t), ηn(t), and Dn(t).
Since the arrivals are independent over queues and i.i.d.

over slots, all algorithms that make decisions up to time t
independent of Tn(t) have the independence property.

8

Lemma 1: On every slot t, for any value of Θ(t), and under

any control policy that satisfies the independence property, we

have

∆(Θ(t))− V E[ĝ(γ(t))|Θ(t)] ≤ B − V E[ĝ(γ(t))|Θ(t)]

−
∑

n

Wn(t)E[E
aver
n − en(t)|Θ(t)]

−
∑

n

Zn(t)E[λn −Dn(t)− γn(t)|Θ(t)]

−
∑

n

Hn(t)E[ηn(t) +Dn(t)− λn|Θ(t)] (29)

where B is a constant defined in the proof.

Proof: The proof is given in Appendix A.

In the next subsection, we design an algorithm to minimize

the right-hand side of (29).

D. Algorithm Design

Leaving out all constant terms in the right-hand side of (29),

then minimizing the bound equals to maximizing the following

expression

V E[ĝ(γ(t))|Θ(t)] −
∑

n

Zn(t)E[Dn(t) + γn(t)|Θ(t)]

−
∑

n

Wn(t)E[en(t)|Θ(t)]+
∑

n

Hn(t)E[ηn(t)+Dn(t)|Θ(t)].

The γn(t) terms are separated from other decision variables,

so we can optimize them separately by maximizing V ĝ(γ)−∑
n Zn(t)γn(t), based on the observed Θ(t) and subject to

the constraint −1 ≤ γn(t) ≤ 1. After this, we are left with

∑

n

Hn(t)ηn(t)+
∑

n

(Hn(t)−Zn(t))Dn(t)−
∑

n

Wn(t)en(t).

(30)

Since both en(t) and ηn(t) are related to bnm(t) and we have

the constraint Dn(t) + ηn(t) ≤ 1, all variables are correlated.

Clearly, in order to maximize (30), Dn(t) should take value

1 when ηn(t) = 0 and Hn(t) ≥ Zn(t) and Qn(t) > 0.

Otherwise Dn(t) = 0. Define

mn(t) =

{
1, if Qn(t) > 0 and Hn(t) ≥ Zn(t)

0, otherwise
. (31)

Then, we have Dn(t) = mn(t)(1−ηn(t)). Substitute into (30)

and leave out the constant term
∑

n Hn(t)mn(t) yields

∑

n

ηn(t)[Hn(t)−mn(t)(Hn(t)−Zn(t))]−
∑

n

Wn(t)en(t).

(32)

From (31), we have

Hn(t)−mn(t)(Hn(t)− Zn(t)) = min[Hn(t), Zn(t)].

This is because if mn(t) = 0, then Hn(t) ≤ Zn(t), and so

Hn(t) = min[Hn(t), Zn(t)]. If mn(t) = 1, then Hn(t) ≥
Zn(t), and Zn(t) = min[Hn(t), Zn(t)]. Substituting into (32)

results in
∑

n

min[Hn(t), Zn(t)]ηn(t)−
∑

n

Wn(t)en(t).

Replacing ηn(t) and en(t) with
∑

m bnm(t) and (e1n −
e0n)

∑
m bmn (t) + e0n, leaving out the constant term, and ex-

changing the summing order, we finally have

max
∑

n

∑

m

bnm(t)
(
min[Hn(t), Zn(t)] −Wm(t)(e1m − e0m)

)

(33)

subject to (20) and (21). It can be easily proved that this

problem is equivalent to the well-known assignment problem

by setting all negative coefficients of bnm to 0 and forcing

the left-hand of inequality constraints equals 1. We omit the

detailed proof due to space limitation. Therefore, our problem

has the same time complexity with the assignment problem

and thus can be solved in O(n3) time [10]. Putting everything

together, our algorithm is summarized as follows. On every

slot t, observe Z(t), W (t), and H(t), then

1) Choose γ(t) = (γ1(t), . . . , γN(t)) as the solution to the

following problem:

max : V ĝ(γ(t)) −
∑

n

Zn(t)γn(t)

s.t. :− 1 ≤ γn(t) ≤ 1 ∀n ∈ {1, . . . , N}.

Since our utility function is separable, this problem can

be decomposed into N single-variable problems, which

have a closed-form solution when the concave function

ĝn(γn) has a derivative.

2) Observe Z(t), W (t), H(t) and choose bnm(t) to solve

the optimization problem (33).

3) For any BS n with ηn(t) = 0, drop the head-of-line task

if the queue is not empty and Hn(t) ≥ Zn(t).
4) Update all queues with variable values decided in the

previous stages.

E. Performance Analysis

From the description of our algorithm, we can see that

the decisions made up to slot t are independent of the

value of Tn(t), which indicates our algorithm possesses the

independence property. Define Hmax
n for each BS n

Hmax
n , ⌈V νn⌉+ 2.

Let Hmax
g = maxn[H

max
n]. The following theorem states

that our algorithm presents a O(1/V)-O(V) tradeoff between

system performance and worst-case response time bound.

Theorem 3: Suppose all queues are initially empty. The gap

between the achieved system performance of our algorithm

and the optimal value is bounded by B/V

lim inf
t→∞

g(y(t)) ≥ g∗ −B/V (34)

where g∗ is the optimal value of Pr. Meanwhile, we have a

bound for all queues

Qn(t) ≤ Hn(t) ≤ Hmax
n

Zn(t) ≤ Hmax
n

Wn(t) ≤ ⌈Hmax
g /(e1n − e0n)⌉+ e1n − Eaver

n .

Since Hn(t) records the waiting time of tasks in BS n, we

also bound the worst-case response time.

9

Different from the common Lyapunov optimization frame-

work which only provides a time-average response time bound,

our algorithm considers the worst case. By recalling Theorem

1, to ensure the worst-case response time is less than or

equal to the given bound Lmax, we only need to choose a

proper timescale for each slot t and set the value of V so that

⌈V maxn{νn}⌉+2 ≤ Lmax−2δmax. Based on our experience,

the recommended timescale of each slot is around 1/50 of the

worst-case latency required by applications, but can also be

flexibly adjusted to suit practical situations. Some applications

may have extra requirements, such as their tasks must be

served by BSs that cached related databases/libraries. These

requirements can be transformed into constraints of decision

variables. This may increase the complexity of each step,

but the algorithm structure and corresponding performance

analysis are not influenced. The proof of Theorem 3 is given

in Appendix B.

F. Back to Unknown Arrival Rate

Recall in (25), the update of Zn(t) requires the value of

λn. Now we will fix this problem by replacing λn with the

past observation of the task arrival. Particularly, we will use

the following update rule of Zn(t)

Zn(t+ 1) = max[Zn(t)−An(t−W) +Dn(t) + γn(t), 0]

where the constant W is equal to Hmax
g . We can follow

the similar way as in the previous subsection to prove that

Theorem 3 still holds with B replaced by a new term B′+4W ,

where B′ is a constant derived similarly as B. The choice of

W guarantees An(t − W) is independent with the current

system state Θ(t), which will be useful in bounding the

quadratic term in drift-plus-penalty. The detailed proof is

omitted due to space limitations.

VI. MORE PRACTICAL ALGORITHMS

In previous sections, we have assumed: (1) all arrived tasks

are accepted and we allow BSs to drop accepted tasks; (2)

the workload of different tasks is the same. In this section,

we present methods to revise our algorithms so that they can

better fit in real-world situations where the above assumptions

generally do not hold.

A. Early Refuse

In common practice, tasks are not expected to be dropped

once they are accepted. The refusal of service usually should

happen at an early stage where users propose new requests

to nearby BSs. These requests may be blocked if BSs are

overloaded. In this subsection, we show how to transform drop

decisions Dn(t) into block decisions. Note that in Algorithm

1, the value of Dn(t) is decided on the same slot when tasks

arrive, so the drop decisions there can be directly regarded as

block decisions. Hence, we only need to consider the algorithm

designed in Section V.

According to the 3-rd step of the algorithm in Section V,

the head-of-line task of BS n is dropped only if ηn(t) = 0.

By recalling that ηi(t) ≤ 1 ∀i ∈ {1, . . . , N}, we know that

∑
i ηn(t) ≤ N − 1, so there is at least one BS, denoted as BS

m, which does not process any tasks on slot t. Our technique

is to let BS m serve the head-of-line task of BS n, and on the

same time block the next task arrived at BS n. If we denote

the head-of-line task as τn1 and the next arrived task as τn2 .

Suppose according to the original algorithm, τn1 is dropped on

slot t1, and τn2 is served by BS m′ on slot t2. Then what we

did can be understood as swapping τn1 and τn2 and shifting the

process of τn2 from t2 to t1. By exchanging the service order

of these two tasks, the refusal of service is brought forward

to an early stage. If the task τn2 is dropped by the original

algorithm, we only need to block yet another arrived task.

The only problem is that if m 6= m′, then we have assigned

an extra task to BS m, which may violate its energy consump-

tion constraint. To solve this, we only need to compensate BS

m by letting BS m′ help process a task originally assigned to

BS m. It is apparent that the response time, system throughput,

and energy consumption are not changed after applying our

technique so the performance analysis in previous sections still

holds, but now we have guaranteed that all accepted tasks will

be served by local BSs.

B. Tasks with Different Workload

The algorithms proposed in previous sections are specially

designed for cases where computation tasks have an equal

workload. Such an assumption rarely holds in practice as tasks

offloaded from users usually belong to different applications.

To improve the practicality of our algorithms, we partition the

range of workload into K intervals [lk, uk] ∀k ∈ {1, . . . ,K},

and classify computation tasks into K classes according to

the interval their workload lies in. Then we can construct K
instances of our algorithms to handle tasks in different classes.

The range of different intervals is usually equal, but can also

be set to distinct values so that the number of tasks contained

in each class is approximately the same. By increasing the

number of classes, we can narrow down each interval and be

more close to the equal workload assumption. However, this is

usually unnecessary in practice. In fact, although we made the

equal workload assumption when designing our algorithm, it

is mainly for the tractability of theoretical analysis. In realistic

situations, our algorithm functions well even if this assumption

is not satisfied. Thus, there is no need to set K to a large value.

In our experiments, the improvement is very limited when K
is greater than 5.

For an arbitrary BS n, one can imagine instances of al-

gorithms as several virtual machines running on top of it.

In every slot, each instance makes its own control decisions.

If it decides to serve a task (either from its own backlog or

offloaded from other BSs), it sends the task to the substrate

BS for processing. The only resource of BS n shared by

the K instances of algorithms is CPU cycles constrained

by the maximum time-average energy consumption Eaver
n .

Consequently, we have to divide the time-average process

capacity of BS n into K parts. This is done by computing

an energy consumption constraint Eaver
n,k for each instance

k, where Eaver
n,k satisfies

∑
k E

aver
n,k ≤ Eaver

n . The value of

each Eaver
n,k depends on our goal. For example, if we seek to

10

maintain fairness, we can re-assign Eaver
n,k every a few slots

proportional to the time-average workload of different classes

computed from the history of task arrivals. Our allocation

is guaranteed to converge to the optimal value if the arrival

process is ergodic.

The above assignment constrains the time-average number

of tasks sent by upper instances. It ensures these tasks can

be processed by substrate BSs without violating BSs’ energy

constraints. However, this assurance only holds in the long

run. In a specific time slot, the computing capacity may be

insufficient if multiple instances decide to process a task

simultaneously. For example, assume the CPU frequency of

BS n is fn, and the duration of each slot is T , then fnT
is the maximum number of CPU cycles that can be served

by BS n in one slot. If
∑

k uk ≤ fnT , then the process

requests of all instances can be realized even if they decide

to serve a task at BS n simultaneously. On the other hand, if∑
k uk > fnT , then the process of some tasks may have to be

delayed due to the insufficiency of CPU power. In this case,

there is a possibility that the response time of these delayed

tasks exceeds the bound derived in Section V. However, we

can alleviate this problem by using a smaller V so that there is

a gap between the derived bound Hmax
n and Lmax and leave

more time to process delayed tasks.

C. Impact of the Maximum Arrival Assumption

In Section III, we assumed the arrived workload in each slot

should not exceed the maximum workload that can be served

by BSs in a single slot. In this subsection, we will first show

that this assumption should hold in most practical cases. After

that, we derive a theorem to bound its impact to our algorithm

if this assumption is not satisfied.

As shown in [45], in a widely used model, every BS

is associated with a group of Nu users, and each of them

generates a task request with probability pu in each time slot.

As a result, the number of requests received by BSs, denoted

by nr, follows a binomial distribution with expectation Nupu.

If the timescale of each slot is short, pu is usually quite

small so the probability of receiving nr requests decrease

exponentially as nr becomes larger. Therefore, in practical

situations, our assumption will hold with a large probability

if there is a gap between the time-average arrived workload

and the BS’s peak process capacity. For example, suppose the

workload of each task is w and let wmax be the maximum

workload that can be served by each BSs in a single slot. If

Nu = 100, pu = 0.1, wmax = 15w, then our assumption

holds in more than 96% cases.

Now we will demonstrate that our algorithm is barely

affected even if this assumption is not satisfied. We begin by

defining two kinds of time regions. Considering an arbitrary

BS n. An edge region is a time interval such that Hn(t) ≥
Hmax

n for all slot t in that interval. The definition of a violation

region is similar except that we require Hn(t) ≥ Hmax
n + T

for some constant T in each slot of the region. For arbitrary

slot t, let pe and pv be the probability that t belongs to an

edge region and a violation region respectively. If pv|e is the

conditional probability that a time slot in the edge region also

belongs to a violation region, then we have pv = pepv|e and

the following theorem.

Theorem 4: For all T ≥ 3, we have pv|e ≤ M(r)/rT where

r is a tunable parameter and M(r) is a constant associated

with r.

Proof: The proof is given in Appendix C.

The above theorem demonstrates that pv|e, as well as pv,

decreases exponentially as T grows larger, let alone to mention

that pe itself is very small in practice. Consequently, even if

our assumption does not hold, we can still ensure tasks will

be served in time by leaving a margin between Hmax
n and the

maximum latency allowed by users. For example, if the worst-

case response time bound required by users is 50 time slots,

then we can choose V so that Hmax
n = 45 or 40, leaving a 5

to 10 slots gap. We are guaranteed that the users’ requirement

will be satisfied with an extremely large probability.

We also want to mention that the data used in our numerical

experiments do not meet the maximum arrival assumption, but

our algorithm still behaves as expected and outperforms other

algorithms under various settings. Therefore, both the theoret-

ical analysis and experimental results validate the practicality

of our algorithm.

VII. SIMULATION

In this section, we evaluate our algorithm presented in

Section V under various settings. The experiments are con-

ducted based on the real-world locations of BSs and end-

users within the Central Business District of Melbourne in

Australia3. We select 36 BSs and 126 user groups whose

latitude and longitude lies in [−37.818166,−37.814257] and

[144.958295, 144.966824] respectively. For an arbitrary user

group, a task request is generated by a Poisson process with a

rate of 0.25 task/ms. Task requests are submitted to a random

BS within 100 meters. The CPU cycles required by each

task are drawn uniformly from [2.5M, 7.5M], and the CPU

frequency of each BS is 20GHz [46]. The energy consumption

of one CPU cycle is 8.2nJ, with static energy consumption

and long-term energy constraint be 10Wh and 50Wh per hour

for each BS. As in [5], the marginal benefit of serving one

task is denoted as unit one, so the utility function of each

BS is gn(x) = x. When computing system utility, we also

introduce a double punishment for each task that failed to

meet the worst-case response time requirement Lmax, which

is 50ms in our experiments. The one-way trip time between

BSs is decided by their geographical distances. Let Distmn be

the distance of BS m and BS n, then δmn = 3ms if Distmn ∈
[0m, 300m], δmn = 4ms if Distmn ∈ [300m, 600m], and

δmn = 5ms if Distmn ∈ [600m, 900m]. The tunable

parameter V is set to 10 unless otherwise specified and each

slot lasts for 1ms. The number of algorithm instances K is set

to 5 to deal with the varying workload.

We implement our algorithm that provides Worst-case re-

sponse time Guarantees (WoG) for 1000 slots and compares

it with three benchmarks: (1) No Peer Offloading (NoP):

each BS process their own tasks received from end-users and

tasks beyond their computing capacity will be blocked; (2)

3https://github.com/swinedge/eua-dataset

11

0 200 400 600 800 1000
Time slot t

0

2

4

6

8

Ti
m
e-
av
er
ag

e
re
sp
on

se
 ti
m
e

WoG
NoP
CoR
OPEN

(a) Response Time

0 200 400 600 800 1000
Time slot t

0

20

40

60

80

100

120

140

160

Ti
m
e-
av
er
ag

e
sy
st
em

 u
til
ity

WoG
NoP
CoR
OPEN

(b) System Utility

Fig. 2: Time-average performance.

0 10 20 30 40 50 60
V

5

6

7

8

9

10

Ti
m

e-
av

er
ag

e
re

sp
on

se
 ti

m
e

WoG
NoP
CoR
OPEN

(a) Response Time

0 10 20 30 40 50 60
V

90

100

110

120

130

140

150

160

Sy
st
em

 u
til
ity

WoG
NoP
CoR
OPEN

(b) System Utility

Fig. 3: Impact of parameter V.

0 200 400 600 800 1000
Time slot t

0.0

0.1

0.2

0.3

0.4

Ti
m
e-
av

er
ag

e
bl
oc
k
ra
te

WoG
NoP
CoR
OPEN

(a) Block Rate

0 200 400 600 800 1000
Time slot t

0.75

0.80

0.85

0.90

0.95

1.00

Ti
m
e-
av

er
ag

e
sa

tis
fa
ct
io
n
ra
tio

WoG
NoP
CoR
OPEN

(b) Satisfaction Ratio

0 200 400 600 800 1000
Time slot t

0

5

10

15

20

25

30

35

40

Ti
m
e-
av
er
ag

e
re
sp
on

se
 ti
m
e

WoG
NoP
CoR
OPEN

(c) Response Time

0 200 400 600 800 1000
Time slot t

0

25

50

75

100

125

150

175

200

Ti
m
e-
av
er
ag

e
sy
st
em

 u
til
ity

WoG
NoP
CoR
OPEN

(d) System Utility

Fig. 4: Time-average performance in the heavily loaded case.

0 10 20 30 40 50 60
V

5

10

15

20

25

30

35

40

Ti
m
e-
av
er
ag

e
re
sp
on

se
 ti
m
e

WoG
NoP
CoR
OPEN

(a) Response Time

0 10 20 30 40 50 60
V

60

80

100

120

140

160

180

Sy
st
em

 u
til
ity

WoG
NoP
CoR
OPEN

(b) System Utility

Fig. 5: Impact of parameter V in the heavily loaded case.

0 200 400 600 800 1000
Time slot t

0

2

4

6

8

10

12

Ti
m
e-
av
er
ag
e
re
sp
on
se
 ti
m
e

WoG(Poisson)
WoG(Bursty)
OPEN(Poisson)
OPEN(Bursty)
CoR(Poisson)
CoR(Bursty)

(a) Response Time

0 200 400 600 800 1000
Time slot t

0

25

50

75

100

125

150

175

Ti
m

e-
av

er
ag

e
sy

st
em

 u
til

ity

WoG(Poisson)
WoG(Bursty)
OPEN(Poisson)
OPEN(Bursty)
CoR(Poisson)
CoR(Bursty)

(b) System Utility

Fig. 6: Impact of task arrival pattern.

Online Peer Offloading (OPEN) [4]: an online peer offload-

ing strategy aiming to minimize the average response time

of tasks; (3) Optimization of Collaborative Regions (CoR)

[5]: a cost-effective algorithm that optimizes system utility

by maximizing throughput and minimizing average response

time.

A. Run-time Performance

Fig. 2 presents the performance comparison of time-average

response time and system utility in terms of time slots. Among

the four algorithms, NoP achieves the lowest time-average

response time because it blocks tasks for each BS that exceed

their computing capacity, and serve the rest tasks as soon

as possible. The side effect is, the system utility of NoP

is relatively small due to blocked tasks. Except for NoP,

our algorithm WoG has the lowest time-average response

time and obtains the highest system utility together with

OPEN. The performance of CoR seems poor in both metrics.

We found that the scheduling policy of CoR will delay the

process of some tasks when the arrived workload of BSs

differs significantly. Besides, the accept decisions of CoR are

relatively conservative when the value of V is small and thus

cause unnecessary blocks. We will show later that the utility

of CoR is improved with a larger V .

B. Impact of V

We next show the time-average latency and system utility

in terms of the tunable parameter V. The performance of NoP

is not affected by V and is regarded as a baseline. Different

from WoG and CoR, the objective of OPEN is response time

instead of system utility, so its response time decreases as

V become larger. As predicted by the theoretical analysis,

the response time and system utility of WoG and CoR grow

with the increase of V. The difference is, when V is large,

the latency of CoR keeps growing and cause a reduction of

system utility while the performance of WoG is stabilized. This

is because the computing capacity of BSs is adequate in our

situation, so the length of Wn(t) is kept small and encourages

BSs to process tasks without further waiting. Therefore, the

average response time remains unchanged when V is large

enough. It should be noted that the results are very different

when BSs are overloaded, as shown in the next subsection.

12

C. Heavily Loaded Case

In Fig. 4, we consider a heavily loaded case where the

arrival rate of each user group is enhanced by 50%. In

this situation, the average arrived workload will exceed the

computing capacity of the whole system. Fig. 4a and Fig. 4b

illustrate the time-average block rate and satisfaction ratio of

different algorithms, where the satisfaction ratio is defined

as the proportion of accepted tasks that are served within

Lmax = 50ms. Since OPEN does not block any tasks, its

satisfaction ratio drops very quickly as BSs become overloaded

and result in a poor system utility. Although CoR blocks more

tasks than WoG, its satisfaction ratio is lower than WoG. This

is because the process of some tasks is delayed in CoR (as

mentioned in the previous subsection) and makes them fail to

meet the worst-case response time requirement. The combined

effect of block rate and satisfaction ratio is reflected by the

time-average system utility given in Fig. 4d. We can see that

our algorithm WoG achieves the highest utility by blocking

tasks as less as possible while maintaining the satisfaction

ratio close to 100%. The time-average response time of each

algorithm is given in Fig. 4c. Not surprisingly, NoP and OPEN

have the lowest and highest average latency. With a higher

block rate, the tasks served by CoR are fewer than WoG, thus

yield a lower average latency.

The performance under different V in the heavily loaded

case is given in Fig. 5. Recall that to ensure the worst-

case response time requirement, the value of V should satisfy

⌈V maxn{νn}⌉ + 2 ≤ Lmax − 2δmax, where δmax = 5,

νn = 1, and Lmax = 50 in our experiments. Thus, V should

be less than 38. As a result, the system utility of WoG drops

sharply when V exceeds 40 due to the decrease in satisfaction

ratio. The response time of the rest tasks is improved as there

are fewer tasks to be served. Combining with Fig. 3, we can

see that our algorithm performs well both in light loaded and

heavily loaded case if we have chosen a proper value for V

(e.g. V = 10).

D. Impact of Task Arrival Pattern

In practice, the real-world task arrival may not follow

the assumed Poisson process. To analyze the practicality of

our algorithm, we conduct experiments with different task

arrival realizations. Fig. 6 compares the performances of peer

offloading algorithms under Poisson and bursty task arrival,

where the latter is implemented with a Markovian arrival

process. We can see that the average response time of all

algorithms is degraded but WoG has the smallest increase and

still outperforms the others. In terms of system utility, WoG

performs almost equally in both cases. In contrast, the achieved

utility of OPEN and CoR is reduced when dealing with bursty

arrivals. We also run this experiment in the heavily loaded case

and observe a similar phenomenon, which demonstrates the

robustness of our algorithm under various task arrival patterns.

VIII. CONCLUSION

In this paper, we studied peer offloading among local BSs

with worst-case response time constraint. We proposed two

algorithms for cases with and without the prior knowledge of

task arrival rate. Both the theoretical analysis and numerical

results showed our algorithms produce close to optimal per-

formance under strict worst-case response time requirement.

One limitation of our work is we can only provide a uniform

response time guarantee for all tasks. More flexible deadlines

will be considered in our future work.

APPENDIX A

Proof: Using the fact that max[a, 0]2 ≤ a2, we can

expand Zn(t+ 1)2 and summing over n ∈ 1, 2, . . . , N

1

2

N∑

n=1

[Zn(t+ 1)2 − Zn(t)
2] ≤

1

2

N∑

n=1

(γn(t) +Dn(t)− λn)
2

−

N∑

n=1

Zn(t)[λn −Dn(t)− γn(t)].

Apply similar manipulation to Wn(t) and Hn(t). Substituting

them into (27) we have

∆(Θ(t)) ≤ E[B(t)|Θ(t)] −
∑

n

Wn(t)[E
aver
n − en(t)|Θ(t)]

−
∑

n

Zn(t)E[λn −Dn(t)− γn(t)|Θ(t)]

−
∑

n

λnHn(t)E[(ηn(t) +Dn(t))Tn(t)− 1|Θ(t)] (35)

where B(t) is the sum of rest terms. Let χ(t) denote

[Θ(t); ηn(t)+Dn(t)]. Note that by the independence property,

if Hn(t) > 0, then Tn(t) is independent of χ(t), so we have

E[Tn(t)|χ(t)] = 1/λn. Then, by using the law of iterated

expectations, we have for any t and n such that Hn(t) > 0

E[(ηn(t) +Dn(t))Tn(t)|Θ(t)]

= E[E[(ηn(t) +Dn(t))Tn(t)|χ(t)]|Θ(t)]

= E[(ηn(t) +Dn(t))E[Tn(t)|χ(t)]|Θ(t)]

= (1/λn)E[(ηn(t) +Dn(t))|Θ(t)]

Thus, for any slot t and any BS n, we have

λnHn(t)E[(ηn(t) +Dn(t))Tn(t)− 1|Θ(t)]

= Hn(t)E[ηn(t) +Dn(t)− λn|Θ(t)]. (36)

The inequality (29) follows by substituting (36) into the last

term of the (35) and subtracting V E[ĝ(γ(t))|Θ(t)] from both

sides. Now we need only to show that E[B(t)|Θ(t)] ≤ B for

some finite constant B. This can be proved by noting that all

variables are bounded and An(t) is independent of Θ(t).

APPENDIX B

Lemma 2: If Zn(t) > V νn for some particular t and n, then

in the first stage of the algorithm we have γn(t) = −1.

This comes easily from the properties of concave functions.

Now we can prove the bound of queues

Proof: We first prove by induction that Zn(t) ≤ ⌈V νn⌉+
2 for all t ≥ 0 and any n ∈ {1, . . . , N}. If t = 0, the inequality

apparently hold. Suppose the inequality holds at t. From the

update of Zn(t) we know that Zn(t) can at most increase

by 2 in every slot. So if Zn(t) ≤ ⌈V νn⌉, then Zn(t + 1) ≤

13

⌈V νn⌉+2 and the bound holds. Else, we have Zn(t) > ⌈V νn⌉,

so γn(t) = −1 by the previous lemma. In addition, Dn(t) ≤ 1
for all slot t, so γn(t)+Dn(t) ≤ 0, and we have Zn(t+1) ≤
Zn(t) ≤ ⌈V νn⌉+2. The bounds of Hn(t) and Wn(t) can be

proved similarly.

We are left with the proof of the utility bound. We first

claim that our constraint ηn(t)+Dn(t) ≤ 1 will not affect the

optimal value.

Lemma 3: Let y∗ be the optimal throughput of the relaxed

problem with g∗ = g(y∗). Then, there is an algorithm that

is independent of Θ(t) and makes randomized decisions that

satisfies ηn(t) +Dn(t) ≤ 1 and

E[η(t)] = y∗
E[D(t)] = λ − y∗

E[e(t)] = Emax

based on the observation of A(t).
Please see [44] and [47] for a proof. Now we prove (34).

Proof: Since our algorithm satisfies the independence

property and minimize the drift-plus-penalty bound, we have

following inequality by taking expectations of (29)

E[L(Θ(t+ 1))]− E[L(Θ(t))] − V E[ĝ(γ(t))]

≤B − V E[ĝ(γ∗(t))] −
∑

n

E[Wn(t)]E[E
aver
n − e∗n(t)]

−
∑

n

E[Zn(t)]E[λn −D∗
n(t)− γ∗

n(t)]

−
∑

n

E[Hn(t)]E[η
∗
n(t) +D∗

n(t)− λn]

where γ∗(t) = y∗, and D∗, η∗, e∗ are chosen as in Lemma

3. Plugging into the above formula we have

E[L(Θ(t+ 1))]− E[L(Θ(t))] − V E[ĝ(γ(t))] ≤ B − V g∗.

Summing over τ ∈ {0, . . . , t− 1} and dividing by t

E[L(Θ(t))] − E[L(Θ(0))]

t
−

V

t

t−1∑

τ=0

E[ĝ(γ(τ))] ≤ B − V g∗.

Using the fact that L(·) ≥ 0 and Jensen’s inequality yields

ĝ(γ(t)) ≥ g∗ −B/V −
E[L(Θ(0))]

V t
(37)

where γ(t) , 1

t

∑t−1

τ=0
E[γ(τ)]. However, because Zn(t) ≤

Hmax
n , from (26) we have

y(t) +Hmax/t ≥ γ(t)

where Hmax = (Hmax
n)n∈{1,...,N}. For all t, −1 ≤ γ(t) ≤ 1

and 0 ≤ y(t) ≤ 1. Therefore

[y(t) +Hmax/t]10 ≥ γ(t).

Plugging into (37) and using the fact that ĝ is non-decreasing

ĝ
(
[y(t) +Hmax/t]10

)
≥ g∗ −B/V −

E[L(Θ(0))]

V t
.

By continuity of ĝ and the facts that 0 ≤ y(t) ≤ 1 and

Hmax
n /t → 0

lim inf
t→∞

ĝ(y(t)) ≥ g∗ −B/V. (38)

Because g(y) = ĝ(y) when 0 ≤ y ≤ 1, we have (34).

APPENDIX C

Proof: Considering an arbitrary edge region [t0, t1] and

suppose it contains a violation region [t′0, t
′
1]. From the proof

of Theorem 3 we can deduce that the bound for Zn(t) still

holds even if the maximum arrival assumption is not satisfied.

Therefore, Hn(t) ≥ Zn(t) for all t ∈ [t0, t1]. By the third

step of our algorithm, BS n either processes tasks by itself, or

drop head-of-line tasks. From Section VI-A we know dropped

tasks are actually processed by other BSs and their maximum

process capability is also wmax. As a result, we can conclude

that the backlogs on BS n is served with speed wmax/slot

when t ∈ [t0, t1].
Let Aw

n (t : t
′) denote the total workload arrived on the time

interval [t, t′]. Since Hn(t) is the waiting time of the head-of-

line task, we can prove

wmax×(t−t0) ≤ Aw
n (t0−Hmax

n : t−Hmax
n −T) ∀t ∈ [t′0, t

′
1].

(39)

Let Aw
n (t) be the arrived workload on slot t. Define a virtual

queue Ĥn(t) with update rule

Ĥn(t+ 1) = Ĥn(t) +Aw
n (t−Hmax

n)− wmax ∀t ∈ [t0, t1]

and Ĥn(t) = 0 for all other time slots. We can prove Ĥn(t)
is always non-negative. For any slot t ∈ [t′0, t

′
1], we have

Ĥn(t− T) =

Aw
n (t0 −Hmax

n : t−Hmax
n − T)− wmax × (t− t0 − T).

Substituting (39) yields

Ĥn(t− T) ≥ wmaxT ∀t ∈ [t′0, t
′
1].

Therefore, if t ∈ [t0, t1] belongs to a violation region, then we

can find some t′ such that Ĥn(t
′) ≥ wmaxT . Thus

pv|e ≤ Pr{Ĥn(t) ≥ wmaxT }. (40)

It is well known that when Nu is large while pu is small, the

binomial distribution converges to a Poisson distribution. Thus,

we can regard Ĥn(t) as a M/D/1 queue and its stationary

probabilities satisfies the following inequality [48]

Pr{Ĥn(t) ≥ wmaxT } ≤ M(r)/rT ∀T ≥ 3

where r is a tunable parameter and M(r) is a constant

determined by r. The detailed definition of M(r) can be found

in [48]. Substituting into (40) proves our theorem.

REFERENCES

[1] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, 2016.

[2] J. Xu, L. Chen, and P. Zhou, “Joint service caching and task offload-
ing for mobile edge computing in dense networks,” arXiv preprint

arXiv:1801.05868, 2018.

[3] Y. Xiao and M. Krunz, “Qoe and power efficiency tradeoff for fog
computing networks with fog node cooperation,” in INFOCOM 2017-

IEEE Conference on Computer Communications, IEEE. IEEE, 2017,
pp. 1–9.

[4] L. Chen, S. Zhou, and J. Xu, “Computation peer offloading for energy-
constrained mobile edge computing in small-cell networks,” IEEE/ACM

Transactions on Networking, vol. 26, no. 4, pp. 1619–1632, 2018.

14

[5] X. Lyu, C. Ren, W. Ni, H. Tian, and R. P. Liu, “Distributed optimization
of collaborative regions in large-scale inhomogeneous fog computing,”
IEEE Journal on Selected Areas in Communications, vol. 36, no. 3, pp.
574–586, 2018.

[6] Y. Li, X. Wang, X. Gan, H. Jin, L. Fu, and X. Wang, “Learning-
aided computation offloading for trusted collaborative mobile edge
computing,” IEEE Transactions on Mobile Computing, 2019.

[7] M. Suznjevic and J. Saldana, “Delay limits for real-time services,” IETF

draft, 06 2016.

[8] S. Nunna, A. Kousaridas, M. Ibrahim, M. Dillinger, C. Thuemmler,
H. Feussner, and A. Schneider, “Enabling real-time context-aware
collaboration through 5g and mobile edge computing,” in 2015 12th

International Conference on Information Technology-New Generations.
IEEE, 2015, pp. 601–605.

[9] T. GPP, “22.261: Service requirements for next generation new services
and markets,” 2019.

[10] C. H. Papadimitriou and K. Steiglitz, Combinatorial optimization:

algorithms and complexity. Courier Corporation, 1998.

[11] Z. Li, M. A. Uusitalo, H. Shariatmadari, and B. Singh, “5g urllc: Design
challenges and system concepts,” in 2018 15th International Symposium

on Wireless Communication Systems (ISWCS). IEEE, 2018, pp. 1–6.

[12] Q. Fan and N. Ansari, “Application aware workload allocation for edge
computing-based iot,” IEEE Internet of Things Journal, vol. 5, no. 3,
pp. 2146–2153, 2018.

[13] Y. Liu, C. Xu, Y. Zhan, Z. Liu, J. Guan, and H. Zhang, “Incentive mech-
anism for computation offloading using edge computing: A stackelberg
game approach,” Computer Networks, vol. 129, pp. 399–409, 2017.

[14] W. Chen, D. Wang, and K. Li, “Multi-user multi-task computation
offloading in green mobile edge cloud computing,” IEEE Transactions

on Services Computing, 2018.

[15] X. Chen, Z. Zhou, W. Wu, D. Wu, and J. Zhang, “Socially-motivated
cooperative mobile edge computing,” IEEE Network, no. 99, pp. 12–18,
2018.

[16] M. Chen and Y. Hao, “Task offloading for mobile edge computing in
software defined ultra-dense network,” IEEE Journal on Selected Areas

in Communications, vol. 36, no. 3, pp. 587–597, 2018.

[17] Z. Liu, M. Lin, A. Wierman, S. H. Low, and L. L. Andrew, “Greening
geographical load balancing,” in Proceedings of the ACM SIGMETRICS

joint international conference on Measurement and modeling of com-

puter systems. ACM, 2011, pp. 233–244.

[18] J. Luo, L. Rao, and X. Liu, “Spatio-temporal load balancing for energy
cost optimization in distributed internet data centers,” IEEE Transactions

on Cloud Computing, vol. 3, no. 3, pp. 387–397, 2015.

[19] T. X. Tran, A. Hajisami, P. Pandey, and D. Pompili, “Collaborative
mobile edge computing in 5g networks: New paradigms, scenarios, and
challenges,” IEEE Communications Magazine, vol. 55, no. 4, pp. 54–61,
2017.

[20] A.-C. Pang, W.-H. Chung, T.-C. Chiu, and J. Zhang, “Latency-driven
cooperative task computing in multi-user fog-radio access networks,”
in 2017 IEEE 37th International Conference on Distributed Computing

Systems (ICDCS). IEEE, 2017, pp. 615–624.

[21] Z. Sheng, C. Mahapatra, V. Leung, M. Chen, and P. Sahu, “Energy
efficient cooperative computing in mobile wireless sensor networks,”
IEEE Transactions on Cloud Computing, 2015.

[22] X. Cao, F. Wang, J. Xu, R. Zhang, and S. Cui, “Joint computation and
communication cooperation for mobile edge computing,” arXiv preprint

arXiv:1704.06777, 2017.

[23] C. You and K. Huang, “Energy-efficient peer-to-peer computation of-
floading based on non-causal cpu-state information,” in 2018 IEEE Inter-

national Conference on Communications Workshops (ICC Workshops).
IEEE, 2018.

[24] L. Chen and J. Xu, “Socially trusted collaborative edge computing
in ultra dense networks,” in Proceedings of the Second ACM/IEEE

Symposium on Edge Computing, 2017, pp. 1–11.

[25] P. Lai, Q. He, M. Abdelrazek, F. Chen, J. Hosking, J. Grundy, and
Y. Yang, “Optimal edge user allocation in edge computing with variable
sized vector bin packing,” in International Conference on Service-

Oriented Computing. Springer, 2018, pp. 230–245.

[26] S. Atapattu, C. Weeraddana, M. Ding, H. Inaltekin, and J. Evans,
“Latency minimization with optimum workload distribution and power
control for fog computing,” arXiv preprint arXiv:2001.11648, 2020.

[27] X. Lyu, H. Tian, W. Ni, Y. Zhang, P. Zhang, and R. P. Liu, “Energy-
efficient admission of delay-sensitive tasks for mobile edge computing,”
IEEE Transactions on Communications, vol. 66, no. 6, pp. 2603–2616,
2018.

[28] Y. Deng, Z. Chen, D. Zhang, and M. Zhao, “Workload scheduling toward
worst-case delay and optimal utility for single-hop fog-iot architecture,”
IET Communications, vol. 12, no. 17, pp. 2164–2173, 2018.

[29] T. Li, C. S. Magurawalage, K. Wang, K. Xu, K. Yang, and H. Wang,
“On efficient offloading control in cloud radio access network with
mobile edge computing,” in 2017 IEEE 37th International Conference

on Distributed Computing Systems (ICDCS). IEEE, 2017, pp. 2258–
2263.

[30] T. Zhu, T. Shi, J. Li, Z. Cai, and X. Zhou, “Task scheduling in
deadline-aware mobile edge computing systems,” IEEE Internet of

Things Journal, vol. 6, no. 3, pp. 4854–4866, 2018.
[31] G. Qiao, S. Leng, and Y. Zhang, “Online learning and optimization for

computation offloading in d2d edge computing and networks,” Mobile

Networks and Applications, pp. 1–12, 2019.
[32] L. Pu, X. Chen, J. Xu, and X. Fu, “D2d fogging: An energy-efficient

and incentive-aware task offloading framework via network-assisted d2d
collaboration,” IEEE Journal on Selected Areas in Communications,
vol. 34, no. 12, pp. 3887–3901, 2016.

[33] D. Zhang, L. Tan, J. Ren, M. K. Awad, S. Zhang, Y. Zhang, and
P.-J. Wan, “Near-optimal and truthful online auction for computation
offloading in green edge-computing systems,” IEEE Transactions on

Mobile Computing, vol. 19, no. 4, pp. 880–893, 2019.
[34] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading

for mobile-edge computing with energy harvesting devices,” IEEE

Journal on Selected Areas in Communications, vol. 34, no. 12, pp. 3590–
3605, 2016.

[35] Z. Jiang and S. Mao, “Energy delay tradeoff in cloud offloading for
multi-core mobile devices,” IEEE Access, vol. 3, pp. 2306–2316, 2015.

[36] D. Huang, P. Wang, and D. Niyato, “A dynamic offloading algorithm
for mobile computing,” IEEE Transactions on Wireless Communications,
vol. 11, no. 6, pp. 1991–1995, 2012.

[37] Y. Li, S. Xia, B. Cao, Q. Liu et al., “Lyapunov optimization based
trade-off policy for mobile cloud offloading in heterogeneous wireless
networks,” IEEE Transactions on Cloud Computing, 2019.

[38] C.-F. Liu, M. Bennis, M. Debbah, and H. V. Poor, “Dynamic task
offloading and resource allocation for ultra-reliable low-latency edge
computing,” IEEE Transactions on Communications, vol. 67, no. 6, pp.
4132–4150, 2019.

[39] T. Cui, Y. Hu, B. Shen, and Q. Chen, “Task offloading based on lyapunov
optimization for mec-assisted vehicular platooning networks,” Sensors,
vol. 19, no. 22, p. 4974, 2019.

[40] J. Song, Y. Cui, M. Li, J. Qiu, and R. Buyya, “Energy-traffic tradeoff
cooperative offloading for mobile cloud computing,” in 2014 IEEE 22nd

International Symposium of Quality of Service (IWQoS). IEEE, 2014,
pp. 284–289.

[41] J. Kim, T. Kim, M. Hashemi, C. G. Brinton, and D. J. Love, “Joint
optimization of signal design and resource allocation in wireless d2d
edge computing,” arXiv preprint arXiv:2002.11850, 2020.

[42] O. Tomanek, P. Mulinka, and L. Kencl, “Multidimensional cloud latency
monitoring and evaluation,” Computer Networks, vol. 107, pp. 104–120,
2016.

[43] J. Ren, G. Yu, Y. He, and G. Y. Li, “Collaborative cloud and edge
computing for latency minimization,” IEEE Transactions on Vehicular

Technology, vol. 68, no. 5, pp. 5031–5044, 2019.
[44] M. J. Neely, “Delay-based network utility maximization,” IEEE/ACM

Transactions on Networking, vol. 21, no. 1, pp. 41–54, 2013.
[45] S.-W. Ko, K. Han, and K. Huang, “Wireless networks for mobile edge

computing: Spatial modeling and latency analysis,” IEEE Transactions

on Wireless Communications, vol. 17, no. 8, pp. 5225–5240, 2018.
[46] H. A. Alameddine, S. Sharafeddine, S. Sebbah, S. Ayoubi, and C. Assi,

“Dynamic task offloading and scheduling for low-latency iot services
in multi-access edge computing,” IEEE Journal on Selected Areas in

Communications, vol. 37, no. 3, pp. 668–682, 2019.
[47] M. J. Neely and R. Urgaonkar, “Optimal backpressure routing for

wireless networks with multi-receiver diversity,” Ad Hoc Networks,
vol. 7, no. 5, pp. 862–881, 2009.

[48] K. Nakagawa, “On the series expansion for the stationary probabilities
of an m/d/1 queue,” Journal of the operations research society of Japan,
vol. 48, no. 2, pp. 111–122, 2005.

	I Introduction
	II Related Works
	III System Model
	IV Algorithm Under Known Arrival Rate
	V Algorithm Under Unknown Arrival Rate
	V-A Problem Transformation
	V-B Waiting Time Virtual Queue
	V-C Drift-Plus-Penalty Bound
	V-D Algorithm Design
	V-E Performance Analysis
	V-F Back to Unknown Arrival Rate

	VI More Practical Algorithms
	VI-A Early Refuse
	VI-B Tasks with Different Workload
	VI-C Impact of the Maximum Arrival Assumption

	VII Simulation
	VII-A Run-time Performance
	VII-B Impact of V
	VII-C Heavily Loaded Case
	VII-D Impact of Task Arrival Pattern

	VIII Conclusion
	Appendix A
	Appendix B
	Appendix C
	References

