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Abstract—Due to air quality significantly affects human health,
it is becoming increasingly important to accurately and timely
predict the Air Quality Index (AQI). To this end, this paper pro-
poses a new federated learning-based aerial-ground air quality
sensing framework for fine-grained 3D air quality monitoring
and forecasting. Specifically, in the air, this framework leverages
a light-weight Dense-MobileNet model to achieve energy-efficient
end-to-end learning from haze features of haze images taken
by Unmanned Aerial Vehicles (UAVs) for predicting AQI scale
distribution. Furthermore, the Federated Learning Framework
not only allows various organizations or institutions to collabora-
tively learn a well-trained global model to monitor AQI without
compromising privacy, but also expands the scope of UAV swarms
monitoring. For ground sensing systems, we propose a Graph
Convolutional neural network-based Long Short-Term Memory
(GC-LSTM) model to achieve accurate, real-time and future
AQI inference. The GC-LSTM model utilizes the topological
structure of the ground monitoring station to capture the
spatio-temporal correlation of historical observation data, which
helps the aerial-ground sensing system to achieve accurate AQI
inference. Through extensive case studies on a real-world dataset,
numerical results show that the proposed framework can achieve
accurate and energy-efficient AQI sensing without compromising
the privacy of raw data.

Index Terms—Air quality index, computer vision, aerail-
ground sensing framework, federated learning, unmanned aerial
vehicle (UAV).

I. INTRODUCTION

According to a report from the World Health Organization,
about 7 million premature deaths in 2012 were related to air
pollution that increases the probability of serious diseases,
e.g., respiratory and cardiovascular diseases for humans [[1]. To
quantify the severity degree of air pollution, a metric named
Air Quality Index (AQI) is calculated by the concentration
of various particulate matter (e.g., PMsy 5 and PMg) in the
air [2]. With the help of AQI, humans can take protective
measures in advance. Therefore, it is significantly important
for humans to achieve accurate and timely AQI monitoring in
order to find efficient ways for air pollution control.

The existing AQI monitoring approaches are mainly divided
into two categories: sensor-based monitoring and vision-based
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monitoring |3]]. The sensor-based monitoring approaches typ-
ically utilize sensor monitoring stations set up by public or
private agencies on dedicated sites in a city to achieve AQI
monitoring. Nevertheless, these approaches can only provide
coarse-grained two-dimensional (2D) monitoring due to the
long distance between two monitoring stations. To achieve
fine-grained AQI monitoring, large-scale Internet of Things
devices are applied to stationary stations in cities [4]]. Although
densely deployed static sensors can achieve high-precision
monitoring, this way still suffers from problems of high-
costs and lack of mobility. Previous research has shown the
potential that mobile devices (e.g., mobile phones, vehicles,
and balloons) can access sensor data to monitor AQI [5]-[7].
However, mobile devices need to acquire a certain amount
of air quality data for AQI monitoring using sensor-based
approaches, which results in a large amount of energy con-
sumption for traveling large-scale monitoring areas.

Unlike the sensor-based monitoring approaches, vision-
based monitoring methods include static station monitoring
and mobile crowdsourcing [8]]. Static monitoring stations infer
AQI at restricted sites over the whole region by taking aerial
images [9]]. Liu et al. in [10] developed an AQI monitoring
mobile application, which achieves fine-grained PMs 5 mon-
itoring in a crowdsensing way. Although the crowdsourcing-
based monitoring method expands the scope of AQI monitor-
ing, its performance is usually affected by low-quality data
sources and restricted by data privacy protection policies and
schemes [11]-[13]. Previous researches have integrated sensor-
based with vision-based methods to achieve accurate AQI
monitoring, but have the following limitations:

(1) High Energy Consumption: For the sensor-based
method, to achieve high-precision AQI monitoring, a
large number of sensor devices are densely deployed on
static stations in the city, which will cause expensive de-
ployment costs and energy consumption. Even if we use
a small number of mobile devices for AQI monitoring,
it still causes high energy consumption during moving
because the devices need to obtain air quality data in a
large scale areas [14]]-[16].

(ii) Small-scale Monitoring: The monitoring range of the
AQI monitoring station established by the government
is less than 5% of the urban area, which is not enough
for the public to obtain real-time air quality inference
[17]. This generally requires many institutions to establish
an AQI monitoring model with large monitor scope by
sharing data [|18].

(iii) Privacy Concerns: Public and private agencies build
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AQI monitoring models collaboratively by sharing data
obtained through crowdsourcing. However, the General
Data Protection Regulation (GDPR) [[19]] prohibits direct
sharing of user data between agencies due to privacy con-
cerns, thus leading to data island problems. Therefore, we
need to achieve accurate AQI monitoring while protecting
privacy.

These limitations hinder the widespread deployment and appli-
cation of AQI monitoring systems in smart cities. Therefore, it
is vital to design an efficient framework with the properties of
energy efficiency, better scalability, and privacy preservation
for monitoring and inferring AQI values.

To address the above limitations, we propose a light-weight
federated learning-based aerial-ground air quality sensing
framework with Unmanned Aerial Vehicles (UAVs) swarms, to
monitor and forecast AQI distributions from spatial-temporal
perspectives [20]-[22]. Specifically, we combine sensor-based
with vision-based methods to achieve fine-grained 3D AQI
scale inference with low energy consumption by using UAV.
Unlike existing frameworks [23[], [24], we implement: (1)
mobile vision-based aerial sensing empowered by federated
learning over UAV swarms, which infers the region-level
AQI scale by utilizing a federated learning framework that
deploys deep Convolutional Neural Networks (CNN) without
sharing raw data; (2) ground sensing over a wireless sen-
sor network (WSN) for small-scale accurate spatial-temporal
AQI inference, using a Graph Convolutional Neural Network-
based Long Short-Term Memory (GC-LSTM) model; (3) an
improved MobileNet [25] model, called Dense-MobileNet, is
deployed in UAV that achieves high inference accuracy while
significantly reducing energy consumption.

The contributions of this paper are summarized as follows:

o To address the privacy concerns issues in AQI monitoring,
we build a federated learning (FL) framework on UAV
swarms, which enables different agencies to collabora-
tively monitor AQI without sharing raw data.

« To achieve a fine-grained AQI scale distribution with low-
energy consumption, we introduce a light-weight Dense-
MobileNet model in FL framework, which can achieve
energy-efficient end-to-end learning from haze features
of haze images taken by UAVs to predict AQI scale
distribution.

o The proposed GC-LSTM model utilizes the topology of
the ground WSN system not only to accurately predict
the AQI spatio-temporal value, but also to improve the
performance of UAV vision-guided based method.

« We conduct extensive experiments on a real-world dataset
to demonstrate the performance of the proposed schemes
for AQI monitoring compared to non-federated learning
methods.

The rest of this paper is organized as follows. Section [[I] re-
views the literature on AQI monitoring and federated learning
research in UAV. Section presents the overview of light-
weight federated learning-based UAV vision-guided aerial-
ground air quality sensing framework. Section presents
Dense-MobileNet model. In Section we presents GC-
LSTM based AQI inference model. Section discusse the

experimental results. Concluding remarks are described in

Section [VIIl

II. RELATED WORK
A. AQI Monitoring Methods

AQI monitoring has always been a hot issue in urban
computing, which serves as a function of improving air quality
and urban planning. Although researchers have proposed many
new methods, they can generally be divided into two cate-
gories: sensor-based monitoring and vision-based monitoring
approaches.

1) Sensor-based Monitoring Methods: Government agen-
cies set up a small number of stationary stations to infer
AQI by collecting sensor data. This method is limited by the
long distance between the stations and cannot achieve high-
precision AQI inference. Although Aircloud [26] and U-air
[6]] achieve high-precision AQI monitoring by deploying high-
density Internet of Things devices, their deployment carries
high costs. To solve this problem, researchers use low-cost
mobile sensing devices such as mobile phones and balloons
for AQI monitoring [7[], [10], [[14]. However, none of them can
achieve fine-grained 3D AQI monitoring. Some recent work in
[27]-]29], they all combine UAV and ground WSN to achieve
fine-grained 3D AQI monitoring. However, their schemes have
two challenges: only small-scale regional AQI monitoring
and high costs. Therefore, we need to design energy-efficient
monitoring schemes.

2) Vision-based Monitoring Methods: With the develop-
ment of computer vision technology, vision-based methods
have also been used for AQI estimation. AQNet [11]] realizes
fine-grained 3D AQI monitoring by analyzing images taken by
UAV and combining them with ground sensing systems. Liu
et al. in [[10] used a camera-enabled mobile device to crowd-
source images for AQI monitoring. However, since GDPR
does not allow arbitrary exchange data between agencies,
crowdsourcing data collection is no longer applicable in the
existing framework.

B. AQI Inference Models

Existing AQI monitoring frameworks use AQI inference
models to predict real-time or future AQI distributions. These
works also can generally be divided into two categories:
inference by sensor data and inference by vison data.

1) Inference by sensor data: Shaban et al. in [30] proposed
an urban air pollution monitoring and forecasting system based
on a support vector machine model, which uses historical
air quality data collected by particle sensors to infer AQI
distribution. In [31]], a gaussian process regression model was
proposed to achieve 2D air quality monitoring. A mobile
crowdsourcing based 3D probabilistic concentration estimation
method (3D-PCEM) was proposed to extend the inference to
3D in [7]. To infer AQI distribution more accurately, many
neural network-based methods have been proposed to capture
the spatio-temporal correlation features in [32], [33]]. However,
the above work ignores the correlation between the topology
of the terrestrial WSN and the distribution of AQI.
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Fig. 1. The overview of the light-weight federated learning-based UAV vision-
guided aerial-ground air quality sensing framework.

2) Inference by vison data: In [34], a CNN-based model
was proposed to capture the correlation between the haze
image and AQI distribution. Models with the help of UAV as
well as deep learning techniques are proposed for fine-grained
3D AQI monitoring in [35]].

In this paper, we propose two novel inference models: (1) A
low-energy-consumption visual model using Dense-MobileNet
that can infer image-based AQI scale in different monitoring
regions; (2) A spatio-temporal inference model using GC-
LSTM that can infer fine-grained AQI values in each region
of the ground WSN. Specifically, we can accurately obtain
the fine-grained AQI values of different directions with the
convergence of the above two models.

C. Federated Learning in UAV

In recent years, Federated Learning (FL) models have
been used to analyze private data because of its privacy-
preserving features. FL is to build machine-learning models
based on datasets that are distributed across multiple devices
while preventing data leakage. For example, UAV swarms will
employ FL models for executing various tasks such as AQI
monitoring and target recognition. Zeng et al. in [36] applied
FL framework to design power allocation and scheduling
schemes for UAV swarms. Furthermore, Google proposed a
privacy-protected AQI monitoring mobile application, called
VisionAi which uses FL to estimate air quality over the
whole region in a fine-grained manner. In particular, VisionAir
allows users to crowdsource 3D samples without compromis-
ing privacy.

Inspired by the previous work, we leverage the FL technique
to learning models that estimate air quality by using UAV-
taking photos. Specifically, FL technique not only enables
agencies to learn AQI estimation models collaboratively but
also enables regional-level AQI monitoring.

III. SYSTEM MODEL

As shown in Fig. [I] the proposed framework includes aerial
UAV swarms sensing network and ground sensing systems.
Vision-based aerial UAV sensing and sensor-based ground
WSN sensing form a hybrid spatio-temporal sensing network.

IVisionAir

This framework can combine air UAV sensing and ground
WSN sensing to achieve fine-grained 3D AQI monitoring.
In particular, the proposed framework uses FL technique
equipped with a Dense-MobileNet model to achieve region-
level AQI inference without compromising privacy.

A. Federated Learning Model

FL is a distributed machine learning (ML) paradigm that
has been designed to train ML models without compromising
privacy. With this scheme, UAVs can contribute to the overall
model training while keeping the training data locally. Par-
ticularly, FL problem involves learning a locally and globally
predicted model from the local dataset separately stored in
dozens of or even hundreds of UAVs.

Consider a group of wirelessly connected autonomous
UAVs flying at the same altitude. As shown in Fig. [l UAV
swarms from A and B are executing AQI monitoring tasks
simultaneously. The UAV swarm includes a Central Server C
and a set of K of K Clients. We assume that each UAV k
collects its a series of haze images (i.e., local dataset) Hj, of
size Hj. Therefore, we can obtain the local training dataset
size H = Z,[f:l Hj. In FL model, we assume that the input
sample vector with d features is z; € R? and the labeled output
value for the input sample x; is y; € R. So we can combine
them into a set of input-output pairs {xi,yi}fz’cl. For AQI
monitoring task, we need to learn an optimal model to infer
AQI value by inputting the training sample vector z; (i.e., the
haze images) and finding the model parameter vector w € R?
that characterizes the output value y; (i.e., the inference value
of AQI) with loss function f;(w) (e.g., fi(w) = (z¥w—y;)).
The goal is to minimize the loss function f;(w). The loss
function on the data set of UAV £ is defined as:

Fe@)i= 1 Y, F) 4+ 0@, )
where w € R? is the local model parameter, VA € [0, 1], and
h(-) is a regualarizer function.

To solve (I), FL framework uses a stochastic gradient
descent scheme [37]. After UAV k is minimized , the
gradients are uploaded to the central server using uplink. At
the central server, we can define the globally predicted model
problem as follows:

: K Hy
argf}éi& F(w), F(w) = Zk:l ka

we recast the globally predicted model problem in (2) as
follows:

arg min F(w) := Z

w€ERE

(W), 2)

K Zier fi(w) + Ah(w)
k=1 H '

3)

B. Aerial Sensing

Section demonstrates the FL-based aerial sensing
framework. First, UAVs from different agencies use a camera
to take a series of haze images in different monitoring areas.
Second, a single UAV uses the Dense-MobileNet model to
learn the correlation between the haze images and AQI dis-
tribution. Each UAV uploads the gradient of a trained local
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model to a central server. Finally, the central server aggregates
the gradients uploaded by each UAV to obtain the optimal
global model. This optimal global model can realize end-
to-end learning of haze images to predict region-level AQI
distribution.

C. Ground Sensing

Constructing a graph structure is usually preferred to repre-
sent the spatial relationships of ground WSN. According to the
definition of the graph structure, the ground sensing system
uses the topological characteristics of the sensor location
to construct a graph convolutional neural network (GCN).
GCN combines the spatio-temporal model (i.e., LSTM) to
achieve AQI inference and future air quality prediction. The
ground sensing system uses the inferred results from GC-
LSTM model to modify the prediction results of the aerial
sensing framework to obtain real-time and future fine-grained
AQI distributions.

IV. AERIAL SENSING: FEDERATED LEARNING-BASED
DENSE-MOBILENET MODEL

The aerial sensing network adopts a light-weight Dense-
MobileNet model to enable UAV swarms from different agen-
cies to perform AQI scale monitoring because (1) UAV swarms
from different agencies distributed in different air positions can
train AQI monitoring models collaboratively without sharing
raw data, thereby greatly expanding the scope of sensing;
(2) UAV can stay at different heights, collect 3D samples at
different angles, and can train a FL model through wirelessly
connecting and communicating; (3) UAV swarms equipped
with a Dense-MobileNet model do not need to carry extra
sensors, and they only need to carry a built-in camera, thereby
can extend the monitoring time.

Reference [2] has shown that machine learning can be
effectively used to estimate air quality using camera images.
Although previous work used ML models to infer AQI scale,
these work were learned using images taken by a few static
cameras. Such approaches would result in a lack of image
diversity, thereby reducing model’s performance. In this work,
we use a Dense-MobileNet model (i.e., a variant of CNN
model) with UAVs to learn the extracted haze features to infer
a fine-grained AQI scale.

In this section, we first introduce the imaging principles of
haze images. Second, we detail the extraction process of haze
features. Third, we introduce the details of Dense-MobileNet
model. Finally, we demonstrate a fine-grained AQI inference
algorithm based on light-weight federated learning.

A. Overview of Haze Image Imaging Principle

Bill-Lambert Law can be applied to the atmosphere to
describe the attenuation of sunlight and starlight as they pass
through the atmosphere, as defined follows:

Bz) = e M), (4)

where x represents the pixel coordinates, 5(z) denotes the
transmission matrix, d(z) is the scene’s depth map, and A is

the extinction coefficient of the medium. Equation (4} indicates
that we can estimate PM concentration by the extinction
coefficient of the wavelength. The extinction coefficient is
modeled by the following equation:

¢(x) = do(@)B(x) + ds(x)(1 = B(2)), (5)

where ¢(z) respresents the pixel value sensed by UAVs with
the camera, ¢o(x) denotes the brightness of the scene, and
¢s(x) respresents the airlight color vector (see below for
details).

¢o(x)B(x) is used to calculate the radiation value of the
light reflected from the surface of the object, which is directly
transmitted to UAV camera after attenuation. Airlight in the
scene can reach UAV camera after scattered by air molecules
and PM. The second term of Equation (5) ¢s(z)(1— 8(x) can
be used for calculating the value of airlight.

B. Haze Feature Extraction

The first step is to convert the haze images collected by the
UAV camera into grayscale images, and then further convert
them to binary images using the Otsu method [38]]. Then
we extract the features with haze estimation from the binary
image. To achieve end-to-end learning of the haze binary
image to the AQI scale estimate by using Dense-MobileNet
model, we need to find the statistical features most relevant to
the haze estimation in the haze image.

In the following, we investigate six features related to haze
estimation in haze binary images.

1) Dark Channel Prior: According to Section the
haze model described in the imaging principle of the haze
image, we can use transmission to describe the attenuation
of scene radiation. To address the attenuation problem of a
single blurred vision during transmission, He et al. in [39]
introduced the concept of a dark channel prior. Dark channel
prior assumes that for all outdoor images at least one color
channel (e.g., three channels RGB), there are some pixels with
zero or very low intensity. For a hazefree image P, the dark
channel prior is defined as,

min

Pk (1) = min (
ce{R,G,B)

min (P (y>)>, (©6)
where P represents one of the three color channels of P, Q(z)
denotes all pixel colors in a local patch. Therefore, the rough
approximation of the haze thickness can be estimated by the
dark channel prior. According to Equation (), the transmission
is defined as follows:

5 : Iy
) =1— min min ,
pla) yeQ(z) \ ce{R.G,B} gbsc(x))

(7

where QI;EZ)) represents a haze image normalized by air light
¢s(z), and min W is a dark channel prior of a

ce{R.G,B} ?:°(@)
normalized blurred image.
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2) Depth Map: Depth map is proposed to indicate the
density of the haze. We follow reference [40] to defind it as

follows:
DM(y, x; o, 0) = Zpr,asa
PEN

> V(Yp, g, 3 0),
(p.9)€S
®)

where N represents the superpixel set, S represents the
neighborhood superpixel pair set, U(x) is the unary potential
of the parameterized pixel value, V(%) is the paired potential
of the single layer neural network parameterization, and a, 6
are the model parameters.

3) Blue Channel: The blue of the sky can indicate how
polluted the sky is. If the sky is gray, we think the sky is
very polluted. HSV (Hue, Saturation, and Value) represents the
properties of the color space and can be used for the extraction
and segmentation of certain pixels [39]]. Therefore, We use
pixel saturation values to select hue or intensity as the main
attributes to extract blue pixel features. The formal definition
of converting RGB color space to HSV space is as follows:

— 1+ |2R G—B|*(2R—G—B)
G)*+(R-B)(G-B)]’
S 1 - =g min(R, G, B), ©))

V= (R+G+B)

where Hue (H) is measured by angle, with a value range
of 0° ~ 360°. Saturation (S) indicates how close the color
is to the spectral color. Value (V) represents the brightness
of the color, and its value range is generally 0% (black) to
100% (white). R, G,B represents the components of each
color channel. We can use it to extract the blue of the haze
image.

4) RMS Contrast: Image contrast is another factor that
affects the PM concentration of a haze image. More intu-
itively, humans judge the contrast of the scene through visual
perception, thereby determining the quality of the weather.
Since aerial lighting does not contain scene information, PM
will cause a decrease in image contrast. We use the standard
deviation of the pixel intensity of the image to describe the
contrast of the image, which is defined as the root mean square
(RMS) of the image,

RMS = (10)

Ln DO iy — ave(D)?,

i=1j=1

in which m, n represents the size of the image, I;; represents
the intensity of the image at pixels 7, j, and avg(I) debotes
the average intensity of all pixels in the image.

5) Image Entropy: The image entropy feature may provide
PM-related information. It can use image texture to quantify
the information contained in the image, which is defined as
follows:

entropy = — »_ p;logopi, (11)
i=1

where M denotes the image’s maximum intensity and p; is

the probability that the pixel intensity is equal to ¢. With the

increase of PM concentration, the image becomes more and

more blurred and loses details, thereby leading to a decrease

in image entropy.

6) Image Smoothness: The smoothness of the sky is used
to indicate how clear the sky is. We use the average of the
magnitude of the gradient in the sky region to define the
smoothness of the sky, as follows:

ol ol
VI=_—2+ —1y,
or" * 6yy
Where I represents the intensity of the image. At the = direc-
tion, ‘% denotes the gradient, and at y direction, g—f/ denotes
the gradient. The average value of the gradient amplitude is
defined as follows,

(12)

oI 2

+ (87/) - 13

«
Il
-

.
Il
—

where avg(x) is the average of the gradient amplitudes of the
two-dimensional image.

C. Dense-MobileNet based Federated Learning for AQI Scale
Inference

In section [V-B| we extracted six features related to haze
estimation. Previous work has confirmed that CNN models
have achieved unprecedented performance in image processing
and vision applications. Furthermore, the MobileNet model is
a light-weight CNN model used for mobile devices due to
the reduction of the complex hierarchical structure of CNNs
[25]]. Therefore, we utilize the MobileNet model to learn these
features for accurate AQI scale inference.

To achieve the best feature learning with the fewest pa-
rameters, Dense Convolutional Network (DenseNet) [41] was
proposed for efficient feature learning. Inspired by DenseNet,
we applied the feature transfer mechanism in MobileNet to
achieve efficient feature learning. Specifically, this mechanism
uses the output of all the previous layers as the input of
the next layer to transfer feature learning. Furthermore, for
the same task, the more complex the model, the greater the
energy consumption required to train the model. Therefore,
to reduce the energy consumption of UAV when performing
monitoring tasks, we propose Dense-MobileNet model with
an efficient feature learning mechanism to achieve low energy
consumption AQI scale estimation.

Preprocessing: First, we spatially resize each input haze
image to 128 x 128 pixels. Second, we extracted six haze-
related features and normalized them to [0,1] in grayscale.
To accelerate the model’s convergence, pixels outside the six
haze-related features are normalized to zero-mean.

Model Architecture: The proposed model architecture in-
cludes a feature extraction layer, several depthwise separable
convolution layers, a global average pooling layer, and a fully
connected layer, as shown in Fig. 2| Dense-MobieNet uses
deep separable convolutions to perform convolution opera-
tions. It decomposes the original convolution integral into two
different convolutions, one on the feature map and the other on
the channel. The feature extraction layer extracts six features
related to the haze estimation in the haze image, thereby
obtaining a feature tensor with a size of 128 x 128 x 6. The
extracted features are encoded as input to depthwise separable
convolution layers so that the model can estimate the haze
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Fig. 2. The architecture of the proposed Dense-MobileNet model.

by learning the haze features. This method can improve the
performance of the model by using feature coding as input
instead of the entire haze image. Finally, the global average
pooling layer pools the feature tensors and inputs them into
the fully connected layer, thereby obtaining an estimate of the
AQI scale. This model completes the end-to-end learning of
haze image to AQI scale estimation.

Light-weight Characteristics: We assume that the input
of the convolutional layer is M x H x W and the output
is N x H x W. The size of the standard convolution kernel
is M x K x K x N so thst the total calculation amount is
M x Hx W x K x K x N. The calculation amounts of the
Depthwise layer and the Pointwise layer in Dense-MobieNet
are M xW x Hx K xK and N xW x H x1x1, respectively.
Therefore, the ratio of the parameter quantity and calculation
quantity of the two is defined as follows:

_ MXKXKx14+Mx1xIxN _ 1 1
PO 5775 ST oL
_ MxWxHXKxKx AXWXHXIx1xN _ 1 | 1
Comp = MXWxHXEXEXN =~ 1((124)

As can be seen from the ratio of the parameter amount and the
calculation amount above, compared with the traditional stan-
dard convolution, the depth-dividable convolution can greatly
reduce the parameter amount and the calculation amount.

AQI Scale Inference: According to AQI classification (i.e.,
[Xmins Xmaz]) system proposed by WHO , we consider AQI
scale inference model as a classification problem. According to
the classification index of WHO and AQI value of the collected
data, we perform AQI scale pre-classification on the training
data. The proposed model learns haze images and combines
the inferred results of the ground perception system to achieve
fine-grained AQI scale inference.

D. Dense-MobileNet based Federated Learning Algorithm

To enable public and private institutions to infer AQI scale
collaboratively and expand the scope of UAV swarms, we
introduce a federated learning framework to achieve this
goal. We propose a federated learning-based Dense-MobileNet
algorithm. It consists of four steps:

(i) The central server model w; is initialized through pre-
training that utilizes domain-specific public datasets with-
out privacy concerns;

Pointwise Depthwise separable Depthwise separable

\ Global average .
pooling

Full

convolution convolution connections

(i) The central server distributes the copy of the global
model w; to all UAVs through downlink (i.e., w; <
w), and each UAV trains its copy on local dataset
by using local Dense-MobileNet model, i.e., f,(w) =
D%deieDu fi(w), where f,(w) is the local loss over
datapoints at client u, D,, is the local dataset, D,, is the
size of local dataset, and f;(w) is the local loss function;
Each UAV uploads its model updates wy’,; to the central
server through uplink. The entire process does not share
any private data, but instead sharing the parameters;

The central server aggregates the updated parameters
wi', 1 uploaded by all UAVs to build a new global model,
ie., w1 = arg g’lel]% % Zu D,fu(w),D = > D,, and

u ucl
then distributes the new global model w;4; to each UAV.

(iii)

(iv)

Let U, represents the central server and U/ represents UAVs
set from different institutions. The pseudocode of algorithm is
presented in Algorithm

V. GROUND SENSING: AQI INFERENCE BY GARPH-BASED
GROUD SENSOR MONITORING

We use ground-sensing WSN to achieve accurate realtime
and future AQI inference from the perspective of spatio-
temporal. We observe the following facts: (1) There is a topol-
ogy relationship between the positions of different ground-
sensing sensors; (2) There is a temporal relationship be-
tween historical data on the same static station, and a spatial
relationship between different static stations; (3) Historical
observation data at different static stations can be defined as
graph signals. Inspired by the above facts, we will construct
a graph neural network to achieve fine-grained AQI spatio-
temporal prediction. Furthermore, ground-sensing networks
provide accurate prior knowledge for aerial sensing inference.

In this work, we propose a graph convolutional neural
network-based long short-term memory (GC-LSTM) model
to achieve accurate real-time and future AQI spatio-temporal
inference, as illustrated in Fig. 3] This model architecture
includes a spatio-temporal block, an input layer, a spatio-
temporal processing layer (i.e., an LSTM block), and an output
layer.
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Fig. 3. The architecture of the proposed GC-LSTM model.

Algorithm 1: Federated Learning-based Dense-MobileNet
Algorithm.

Input: UAVs U = {uj,us,---,ux} and the central
server .. The mini-batch size m, the number of
iterations n and the learning rate o.

Output: Parameter w.

1 U, initializes the global model w; by training public
dataset;
2 foreach round i =1,2,3,---,n do

3 {u} + select UAVs U from different institutions to
participate in this round of training;

4 while w; has not convergence do

5 foreach UAV v, € u in parallel do

6 Initalize wy' | + wi';

7 Conduct a mini-batch input haze images
{z}m

8 Conduct a mini-batch labels {y(}m ;

9 Features are extracted according to Eq.
-0

10 fulw) = [% ZdieDu fi(w)s

u | wi < wi —afu(w);

12 U, collects the all parameters from {u} to update

W+15
13 We+1 = % > Dyfu(w);
L ueU
14 return w

A. Spatial Dependency Modelling

1) Graph Construction: Each monitoring station can be
regarded as a node in the graph, and the relationship between
the monitoring stations can be represented by the edges in
the graph. According to the definition of the graph structure,
the input features of the N monitoring stations at the time
step ¢ can be translated to graph signals. We assume that M
is the number of features associated with each node, and the
feature matrix can be expressed as X; € RV*M_ We use
an undirected graph G = (V, E, A) to represent the spatial
relationship between stations in different locations, where N
nodes v; € V and each edge (v;,v;) € E. Let A € RV*N
denote the spatial weight matrix and A; ; denote the spatial
correlation between v; and v;.

We construct 4 from the spatial distance between AQI

monitoring stations. The formal definition is as follows:
1ot
.Aij:{ di.j’z?é‘]

0, otherwise
where d; ; is the distance between position ¢ and position j
calculated from latitude and longitude.

2) Spectral Graph Convolutional Networks: The core idea
of the graph convolutional neural network (GCN) is to use
the Laplacian spectral matrix and the convolution kernel in
CNN to define the spectral convolution kernel. Therefore, the
propagation function between convolutional layers in GCN is
defined as follows:

JUHD = (D=3 XD=3 T W)

where ﬁ) = A+ L (L is the identity matrix), D is the degree
matrix of .St) (ie., D;; = Zj.}-vt)ij), J is the feature of each
convolutional layer, w' is the weight martic, and ¢ is a non-
linear activation function. Note that D~ 2
a symmetric normalized Laplace matrix.

5)

(16)

S U
D~ 2 is similar to

B. Temporal Dependency Modelling

Since the historical air pollution data observed by ground
monitoring stations usually exist in the form of time series,
we can use time series prediction models to achieve AQI
inference. Previous work generally used support vector ma-
chine models to predict AQI. However, these models cannot
capture the spatio-temporal dependencies within the param-
eters. Therefore, we introduce a sequence model in GCN
to dynamically capture the spatio-temporal dependence of
parameters and historical data.

In this work, we use a variant of a recurrent neural network,
called LSTM, to achieve accurate AQI inference, as shown in
Fig.[3] LSTM uses a well-designed “gate” structure to remove
or add information to the state of the cell. The “gate” structure
is a method of selectively passing information. LSTM cells
include forget gates f;, input gates i;, and output gates o;.
The calculations on the three gate structures are defined as
follows:

fe=0o1(Wg - [hie—1, 2] + by),

ig = oy (W; - [he—1, @] + b;),

Ot = tanh(WC . [ht—llzt} + bc),
Ct = ft * Ot—l +Zt * Ct,

or = oy (W - [he—1,2¢] + bo),

hy = o¢ x tanh(C}).

a7
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(@ (b)

Fig. 4. (a) The UAV for vision-based sensing. (b) An overview of the aerial
image dataset: more than 5,000 labeled haze images taken in Guangzhou,
Shenzhen, Hangzhou, Harbin, and Daging.

where W, W;, We,W,, and by, b;,bc, b, are the weight
matrices and the bias vectors for input vector x; at time step ,
respectively. o; is the activation function, * represents element-
wise multiplication of a matrix, C; represents the cell state,
ht_1 is the state of the hidden layer at time step ¢ — 1, and hy
is the state of the hidden layer at time step ¢.

C. Spatiotemporal Prediction

Given the topological map structure of ground monitoring
stations and the spatio-temporal correlation of historical data,
we propose a GC-LSTM model to predict real-time and future
AQI values in different regions:

[AQI(t+1)7 e 7AQI(t+T’)] = h([mt—T-‘rla T ’-Tt]; G(K E7 A))

(18)

As shown in Fig. 3] we tranlate four features: AQI historical
observations, meteorological variables, temporal predictors,
and spatial predictors into graph signals. We use graph con-
volution (GC) operations and LSTM blocks to extract spatial
and temporal features, respectively. In the proposed model, we
use the graph convolution feature of the graph signal in series
as the input of LSTM block.

For each spatio-temporal block, we extract the graphic
signal x; and the spatial weight matrix .4 at each time step ¢ to
calculate the spatial feature h; through the graph convolution
kernel. Next, the graphic signal z; and h; are connected as
the input of LSTM block. Finally, the output of LSTM block
is used as the input of the fully connected (FC) layer, and the
output of FC layer is the real-time or future AQI value.

VI. EXPERIMENTS

In this section, we evaluate the performance of the proposed
framework on a real-world dataset. Specifically, we first intro-
duce the equipment components in the proposed framework,
including ground devices and aerial devices. We then provide
the details about how to collect aerial haze image data.

Ground Devices: To facilitate modeling, we use static
monitoring stations deployed in urban areas (e.g., Hangzhou,
Harbin, Guangzhou, and Shenzhen) as ground sensing devices.
We use the longitude and latitude of the monitoring stations
as their location and treat locations as nodes in the graph
structure El Furthermore, the longitude and latitude can also

2Longitude and latitude data are available at

http://www.weather.com.cn/air/,
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Fig. 5. Performance comparison between the proposed model and other
models: (a) Prediction accuracy; (b) RMSE.

determine the distance between stations, thereby deriving the
weight matrix A.

Aerial Devices: As shown in Fig. [f(a)] we choose MAVIC
2 ZOOM UAVs from DJI company as the aerial sensing
devices. The maximum journey distance of these UAVs is 18
Km each time, and the maximum remote control distance is 8
Km. These UAVs can utilize GPS sensors to provide real-time
3D monitoring of positions and use 4K cameras to collect haze
image data. The MAVIC 2 ZOOM UAV’s maximum battery
life is about 30 minutes, and it can hover in the air to collect
data at a 270° viewing angle. The UAVs can communicate
with each other through wireless networks, and the maximal
communication distance of UAVs is 7~9 Km.

A. Evaluation Setup and Data Description

According to the definition of graph structure, we use the
ground monitoring stations deployed by the government to
construct the graph neural network. Nine UAVs were used to
collect haze image data, of which one was the central server
and the others were divided into two UAV swarms.

Ground Sensing Data: The historical observations of
AQI from the monitoring stations can be downloaded from
http://www.weather.com.cn/air/. In this paper, historical AQI
observations during the first six months of 2019 are used to
evaluate the framework. We select the air quality data from
the first five months as the training dataset and the data from
the sixth month as the test dataset. Furthermore, since the air
quality data is time-series data, we need to use them at the
previous time interval, i.e., T4_1,T¢—2, -, T¢_p, to predict
the air quality at time interval ¢, where r is the length of the
history data window.

Aerial Sensing Data: We respectively collected 5,298 haze
images in Hangzhou, Guangzhou, Shenzhen, Harbin, and
Daging including two-level distribution covering “good” to
“dangerous”, as illustrated in Fig. ff(b)] These images can
be used for AQI estimation. We randomly divide the image
dataset into a training and a test set at a ratio 8:2.

Index of Performance: We adopt Root Mean Square Error
(RMSE) to indicate the robustness of inference as follows:

(v — 9)7]%. (19)

1

RMSE = |

n

3=

7

where y; is the observed air quality, and g, is the predicted
air quality.
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TABLE I
PERFORMANCE COMPARSION OF RMSE FOorR GC-LSTM, GRU, LSTM,
AND AQNET
Metrics Real-time  After 2 hours  After 4 hours  After 6 hours
GC-LSTM 3.212 4.589 6.357 9.145
GRU 4.025 9.156 14.892 22.047
LSTM 4.217 9.635 15.068 21.624
AQNet 4.493 9.264 17.695 24.753

B. AQI Inference Accuracy

1) Vision-based Aerial Sensing: We compare the perfor-
mance of the proposed “Dense-MobileNet + Federated Learn-
ing” (DMFL) model with those models of DM, 3D CNN,
2D CNN, and Support Vector Machine (SVM) under an iden-
tical simulation configuration. Among these five competing
methods, DMFL is a federated machine learning model, and
the rest are centralized ones. The models of 3D CNN and
2D CNN are widely-adopted image-based models that have
good performance for AQI scale inference tasks, and SVM
is a popular machine learning model for general prediction
applications.

In all investigations, we use the same haze image dataset.
The prediction results are given in Fig. for real-time AQI
scale prediction. We can observe that the accuracy of DMFL
is higher than those of 3D CNN, 2D CNN, and SVM but
lower than that of DM. Specifically, the accuracy of DMFL is
97.13% lower than that of the Dense-MobileNet (DM) in this
experiment. This result is contributed by the fact that DMFL
inherits the advantages of DM’s outstanding performance
in prediction tasks. This means that the proposed DMFL
can achieve high-precision predictions without compromising
privacy.

Fig. [5(b)] shows the inference robustness comparison be-
tween DMFL and other models. We can find that RMSE
results of DMFL model are very close to that of DM model
and much better than those of other models. The reason is
that the core technique of DMFL for AQI prediction is the
DM structure, so the performance of DMFL is comparable to
DM model. Furthermore, the DMFL can protect data privacy
by keeping the training dataset locally. The above results verify
that the proposed model not only achieves high-precision
inference without compromising privacy but also maintains
better robustness.

2) Sensor-based Ground Sensing: To further improve the
fine-graininess of aerial sensing results, we build a GC-LSTM
model on the ground to capture the historical observation
and the spatio-temporal dependency of future AQI. Therefore,
we compare GC-LSTM with state-of-the-art sequence models
(i.e., Gate Recurrent Unit (GRU) [42]], LSTM Net [43]], AQNet
[11]) to illustrate the performance of GC-LSTM. GRU and
LSTM are variants of Recurrent Neural Network (RNN). They
are generally used in sequence prediction and natural language
processing tasks. AQNet is a 3D fine-grained spatiotemporal
sequence prediction model, which includes ground sensing
system and air sensing system. In this paper, we use the GC-
LSTM model and other models to predict AQI values in real-
time and in the future (i.e., after 2, 4, 6 hours, respectively).
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Fig. 6. The energy-efficiency comparison between the proposed model and
other models: (a) Training task; (b) Monitoring task.

The results about RMSE are presented in Table [I, which
shows that GC-LSTM’s error is much smaller than other
models. This is because GC-LSTM captures not only the
spatial correlation of historical data on monitoring stations but
also the temporal dependence between air quality data. More-
over, other models have ignored the topological correlation
between the monitoring stations, while we use this topological
correlation to build a graph convolutional neural network in
our work.

C. Energy Efficiency

Due to the limited battery life of UAVs, we need to design
a low-energy monitoring scheme for UAVs to complete more
tasks in the air. In this paper, we use a federated learning-
based DM model to reduce UAV’s energy consumption in
the air. We analyze the energy consumption of UAVs from
two aspects: (1) the energy consumed by model training; (2)
the energy consumed under the same monitoring scope. We
compare the energy consumption of the models by using a
UAV equipped DMFL model and other models (i.e., 3D CNN
and 2D CNN models) to perform the same task, respectively.
We use normalized consumption to indicate the level of energy
efficiency.

Training Task: We assume that UAV uses different models
to complete the model training in the air. As shown in Fig.
DMFL model requires the least energy to complete
a model training. This reason is that the DMFL reduces
the hierarchical structure of CNN and also uses the Dense
structure to share the features of each layer. Both 3D CNN
and 2D CNN achieve the high-precision AQI scale inference
by adding the hierarchical structure of CNN.

Monitoring Task: Fig. [6(b)| shows the energy consumption
of different models under the same monitoring scope. It
shows that when the monitoring range is 100 m3, the energy
consumption of DMFL is about half that of 2D CNN. This is
because the federal learning framework allows UAV swarms
to collaborate on learning. The above results illustrate the
superior performance of the proposed model with low energy
consumption.

D. Discussion

In this section, we discuss the performance of the proposed
framework from the perspectives of privacy, accuracy, and
energy consumption as follows:
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o Privacy: In the proposed framework, institutions or orga-
nizations do not need to access or collect user data and
they do not need to share data with their partners, which
protects user privacy. Indeed, different organizations only
need to share model updated parameters instead of shar-
ing user data.

e Accuracy: From the experimental results, the proposed
framework achieves the state-of-the-art results in both
aerial sensing and ground sensing. Ground sensing can
provide a more accurate numerical reference for aerial
sensing. The aerial sensing system uses a light-weight
Dense-MobileNet model, whose performance exceeds
that of large-scale models such as the 3D CNN model.

o Energy Consumption: It is very important for UAV
swams to achieve low energy consumption. In the frame-
work we designed, we use an improved lightweight CNN
model suitable, i.e., MobileNet model for mobile phones
to achieve fine-grained 3D AQI monitoring. Such a design
not only realizes high-precision AQI monitoring, but
also reduces UAV energy consumption. This provides a
research direction for the future deployment of large-scale
UAV swarms for AQI monitoring.

VII. CONCLUSION

In this paper, we propose an aerial-ground air quality
sensing framework with UAV swarms for monitoring and
forecasting the air quality in a fine-grained manner with
privacy-preservation federated learning. First, we use the light-
weight Dense-MobileNet model to learn the haze feature of
UAV-taking haze images to achieve energy-efficient AQI scale
inference. Second, to further improve the inference accuracy
of the aerial sensing system, we propose a GC-LSTM model
based on graph topology to realize real-time and future AQI
predictions. We evaluate the performance of the proposed
framework on a real-world dataset and compare it with 3D
CNN, 2D CNN, and SVM methods that may compromise
privacy during forecasting. The results show that the proposed
method is better than the existing methods. To the best of our
knowledge, this is one of the pioneering works for air quality
forecasts with federated deep learning.

In the future, we will focus on the communication efficient
technique and novel model compression technique of the FL
framework [44]. First, the large number of communication
rounds between UAVs results in expensive communication
overhead. Due to the limitation of UAV power, expensive
communication overhead makes UAV unable to achieve long-
term AQI monitoring. Therefore, we need to find a communi-
cation efficient FL framework to solve this challenge. Second,
in general, the size of deep learning models is very large
and difficult to apply to micro mobile devices, such as UAV.
In order to be able to deploy large-scale and complex deep
learning models to UAVs, we need to design some novel model
compression techniques to achieve this goal.
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