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Abstract—Federated learning (FL) allows multiple edge com-
puting nodes to jointly build a shared learning model without
having to transfer their raw data to a centralized server, thus
reducing communication overhead. However, FL still faces a
number of challenges such as nonindependent and identically
distributed data and heterogeneity of user equipments (UEs).
Enabling a large number of UEs to join the training process in
every round raises a potential issue of the heavy global com-
munication burden. To address these issues, we generalize the
current state-of-the-art federated averaging (FedAvg) by adding
a weight-based proximal term to the local loss function. The
proposed FL algorithm runs stochastic gradient descent in par-
allel on a sampled subset of the total UEs with replacement
during each global round. We provide a convergence upper bound
characterizing the tradeoff between convergence rate and global
rounds, showing that a small number of active UEs per round
still guarantees convergence. Next, we employ the proposed FL
algorithm in wireless Internet-of-Things (IoT) networks to mini-
mize either total energy consumption or completion time of FL,
where a simple yet efficient path-following algorithm is developed
for its solutions. Finally, numerical results on unbalanced data
sets are provided to demonstrate the performance improvement
and robustness on the convergence rate of the proposed FL algo-
rithm over FedAvg. They also reveal that the proposed algorithm
requires much less training time and energy consumption than
the FL algorithm with full user participation. These observa-
tions advocate the proposed FL algorithm for a paradigm shift
in bandwidth-constrained learning wireless IoT networks.

Index Terms—Energy efficiency, federated learning (FL), inner
approximation (IA), Internet of Things (IoT), resource allocation.

I. INTRODUCTION

NOWADAYS, Internet of Things (IoT) and mobile devices
are often equipped with advanced sensors and high com-

puting capabilities that allow them to collect and process vast
amounts of data generated at the network edge [1]–[4]. In addi-
tion, it is predicted that there will be over 10 billion smart
objects in the IoT connected to the Internet and the overall
mobile data will reach 49 exabytes per month by 2021 (an
increase of about 188% compared to 2018) [5]. Computation
and data storage services can be provided by a cloud and edge
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computing system [6], [7], in which users’ tasks are intel-
ligently uploaded to a cloud data center layer and an edge
computing layer. Many IoT applications require preprocess-
ing and classifying data and then are used to predict future
events using machine learning (ML) techniques. The extensive
amount of data of IoT devices is usually collected in private
environments, and thus it is privacy sensitive in nature. It is,
therefore, generally not practical to send all data to a cen-
tralized server/cloud center that trains a deep learning model.
Besides, transferring a huge amount of data through wireless
connectivity encounters expensive communication costs and
high communication delays due to the limited resources of
wireless systems.

To address the above challenges, it is necessary to devise
a new ML technique through which each user equipment
(UE) can be trained locally based on its collected data and
by collaboratively building a shared global learning model.
One of the most promising decentralized learning approaches
to accomplish this goal is federated learning (FL) [8], [9].
FL allows multiple UEs to jointly train a global ML model
without exchanging raw data between them or transferring
their data to a centralized server. In particular, the server first
broadcasts the latest global model to all participating UEs.
Next, UEs compute local updates based on their available data
and then send their local models back to the server. These
steps are repeated until a certain level of global model accu-
racy is achieved. This way, only local model parameters are
exchanged, and thus reducing the communication overhead.
Communication efficiency and incentive mechanism for FL
have been investigated recently [10]–[14]. Nevertheless, there
are still a number of challenges in implementing FL such
as nonindependent and identically distributed (non-iid) data
across the network and high communication costs due to send-
ing massive local model updates, which will be tackled in this
article.

A. Review of Related Literature

In this section, we review the state-of-the-art of FL
techniques and FL performance optimization over wireless
networks. Federated averaging (FedAvg), which is a syn-
chronous distributed optimization algorithm, is perhaps the
most well-known FL algorithm [8]. FedAvg runs several
updates of stochastic gradient descent (SGD) in parallel on
UEs before averaging local model updates at a centralized
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server. Unlike GD and SGD, FedAvg executes more local
updates and fewer global updates that improves communi-
cation efficiency. It was shown experimentally that FedAvg
works well on non-iid data. However, its theoretical conver-
gence guarantee in realistic settings was only recently provided
in [15].

Fallah et al. [16] proposed personalized FL (Per-FedAvg)
to build a proper initialization model, inspired by model-
agnostic metalearning (MAML), that can be updated quickly
to their own data after the training phase. Gradient-descent-
based FL for heterogeneous networks was studied in [17],
where an adaptive control algorithm is proposed to obtain the
desirable tradeoff between local updates and global aggrega-
tion steps. The work in [18] proposed communication efficient
FedAvg using a distributed form of Adam optimization and
compression techniques to reduce the number of communi-
cation rounds and uploading data. Xie et al. [19] proposed
an asynchronous federated optimization algorithm, which has
been shown to achieve near-linear convergence to a global
optimum. Li et al. [20] proposed FedProx, which is gener-
alized from FedAvg by adding the same proximal term to
all the local functions that helps improve convergence speed.
However, it is challenging to choose an appropriate value
of the penalty constant in the proximal term, especially on
unbalanced and non-iid data sets.

In another direction, many researchers have recently focused
on the performance optimization of FL at the wireless network
edge. In particular, three different scheduling policies were
proposed in [21] to speed up the convergence of FL algorithms,
accounting for the effects of user scheduling and interference.
In [22], the desirable tradeoff between total UEs’ energy con-
sumption and FL training time is studied, where all UEs are
required to transmit their local updates in a synchronous man-
ner. The work in [23] aimed at minimizing the global FL
loss function under the effect of wireless communications.
However, the computation delay of the local FL training model
was not taken into account. An energy-efficient strategy for
bandwidth allocation and scheduling was introduced in [24],
which is capable of reducing UEs’ energy consumption. The
authors in [25] studied a sparse and low-rank problem to sup-
port FL algorithms, where user selection and beamforming
design are jointly optimized. The superposition property of
the multiaccess channel is exploited in [26] to obtain a low
latency for the FL training time. To deal with non-iid data, the
work in [27] proposed an online energy-aware dynamic worker
scheduling policy to scale down the communication cost. Joint
local accuracy, transmit power, and UEs’ processing frequency
were studied in [28] to minimize the training time, where
cell-free massive multiple-input–multiple-output network is
designed to support arbitrary FL algorithms. This work was
extended in [29], in which frequency-division multiple access
(FDMA) is adopted to transmit local updates asynchronously.
However, the performance optimization of these works is
mainly based on existing FL algorithms and requires all UEs
to join the training process in every global round, leading to a
suboptimal solution due to limited resources (i.e., bandwidth
and energy).

B. Motivation and Main Contributions

In this article, we aim at addressing the fundamental
question: is it possible to efficiently utilize the limited com-
munication and computation resources at the edge nodes to
improve the performance of heterogeneous IoT networks by
utilizing FL, while still guaranteeing convergence? To do so,
we entail the following inherent issues which may limit the
FL performance in wireless IoT networks.

1) Non-iid and Unbalanced Data: In distributed IoT
networks, the collected data is distributed unevenly
across UEs, and thus the data size and its distribution
will be highly different among them. Therefore, random
and uniform sampling schemes for selecting user partic-
ipation result in the unstable and divergent convergence
of FL algorithms.

2) Heterogeneity of UEs: Each UE typically has very dif-
ferent types of computation capacity, channel gains,
and battery, which may have negative impacts on the
performance of the synchronous FL algorithms (e.g.,
high completion time).

3) Large Number of UEs and Limited Bandwidth: The IoT
network may constitute a large number of UEs collab-
oratively building a shared learning model. However,
in the FL-supported IoT network, it is not necessary
to force all UEs to participate in every communica-
tion round, i.e., each device can be activated in several
rounds of the training process. In addition, once the
number of UEs is larger than a certain threshold, it
may not be possible to obtain high-reliability and low-
latency communications to upload local models due to
the limited bandwidth. In this case, partial participa-
tion in each round is a good option, instead of full user
participation [22]–[29].

To the best of our knowledge, this is the first work proposed
for communication-efficient FL that takes into account all
these issues. Our main contributions are summarized as
follows.

1) We propose a new FL algorithm generalized from the
FedAvg by adding a proper weight-based proximal term
to each local loss function to tackle non-iid and unbal-
anced data and heterogeneity of UEs. The key advantage
of the weight-based proximal term is to ensure that
the global loss decreases steadily and smoothly, since
local and global updates should have the same direc-
tion during the training process. That is to say, every
UE can generate useful local model parameters to a
centralized server which stabilizes the FL algorithm.
In addition, we develop an efficient sampling strategy
with the replacement for partial user participation. Our
theoretical analysis on non-iid data indicates that the
convergence of the proposed FL algorithm can be guar-
anteed using a learning rate decay, despite the negative
effects of the sampling method.

2) We formulate a resource allocation problem using the
proposed FL algorithm in wireless IoT networks which
targets key performance metrics of total energy con-
sumption and completion time of FL. The problem
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TABLE I
SUMMARY OF MAIN NOTATIONS AND SYMBOLS

captures a joint design of the signal transmission
and the computation in one global round under both
synchronous and asynchronous communication modes,
which is formulated as a nonconvex optimization
problem. Assuming that only the distribution of chan-
nels is known, we first transform the considered problem
into an equivalent nonconvex form with a more compu-
tationally tractable form, and then develop an efficient
path-following algorithm for its solution based on the
inner approximation (IA) framework [30].

Numerical results in realistic federated settings are provided
to validate our theoretical analysis and demonstrate the stabil-
ity and robustness of the proposed FL algorithm on non-iid
and unbalanced data sets. They also show that the proposed
scheme requires much less training time and energy than exist-
ing FL-based schemes such as full user participation and equal
bandwidth (EB) allocation. They also reveal the effectiveness
of asynchronous communication in utilizing the limited com-
munication and computation resources as well as handling
UEs’ heterogeneity.

C. Paper Organization and Mathematical Notation

The remainder of this article is organized as follows.
Preliminaries and definitions are given in Section II. The
proposed FL algorithm and resource allocation scheme for
wireless IoT networks are provided in Sections III and IV,
respectively. Numerical results are given in Section V, while

Fig. 1. Illustration of the FL-enabled wireless IoT network.

Section VI concludes this article. In order to make the remain-
der of this article easy to follow, we summarize the notations
and symbols in Table I.

II. PRELIMINARIES AND DEFINITIONS

A. Network Model

We consider an FL-supported wireless IoT network consist-
ing of one base station (BS) and a set Ktot � {1, 2, . . . , Ktot}
of Ktot = |Ktot| UEs, as illustrated in Fig. 1. The BS and
UEs jointly build a shared ML model for data analysis and
inference. In a radio-map-assisted wireless network [31], each
UE collects measurement data in the wireless environment that
is used to train ML algorithms to predict the performance of
wireless networks. Heterogeneous computing capabilities of
UEs can be empowered by Qualcomm Hexagon Vector eXten-
sions on Snapdragon 835 [32]. Each UE k ∈ Ktot has a local
input data set Dk � {xk1, xk2, . . . , xkDk }, where Dk denotes
the number of samples and each element xki ∈ R

d is an input
sample vector with d features. The local input data set of UE
k may be different from other UEs, i.e., Dk ∩Dk′ = ∅ ∀k �= k′.
Throughout this article, we consider non-iid distributed data
across the network, which are independent but not identically
distributed. The total data size of all users can be defined by
D = ∑k∈Ktot

Dk. In a typical learning algorithm, let yi ∈ R

be the output for the sample xi.

B. Loss Function

The main goal is to find the model parameter w ∈ R
d that

characterizes the output yi with the loss function f (w, xi, yi).
For data sample xi, we rewrite f (w, xi, yi) as fi(w) for sim-
plicity. In Table II, we summarize various loss functions for
widely used ML models [33]–[35].

The loss function on the data set Dk of UE k can be
defined as

Fk(w) � 1

Dk

∑

i∈Dk

fi(w). (1)
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TABLE II
LOSS FUNCTIONS FOR WIDELY USED ML MODELS

The aim of the FL algorithms is to minimize the global loss
value of the following distributed optimization problem:

min
w∈Rd

F(w) =
∑

k∈Ktot

pkFk(w) (2)

where pk � Dk/D is the weighting factor for of UE k,
satisfying pk ≥ 0 and

∑
k∈Ktot

pk = 1.

C. Review of Federated Averaging (FedAvg)

Definition 1: The FL model generated by UEs using their
local data set is called local FL model (or local model), while
that generated by BS is called global FL model (or global
model).

In a general FL framework, problem (2) is separately
decomposed into K independent problems that are solved
locally at UEs. Before we can consider ways to solve (2) effi-
ciently, we first review FedAvg [8], which is also related to our
proposed FL algorithm presented later in Section III. In IoT
networks, each UE often has limited computation capability,
and thus training on the entire (local) data set using deter-
ministic gradient descent (DGD) may not be realistic. In this
article, UE k solves its local problem by SGD with the same
step size (also known as, the learning rate) and the number of
local updates L ≥ 1. At the gth round of FedAvg, the cen-
tralized server co-located at BS transmits wg to all UEs; each
user (say, UE k) updates the latest global model wk

g,0 := wg

and then runs SGD locally for L updates

wk
g,�+1 := wk

g,� − λg,�∇Fk

(
wk

g,�, ξ
k
g,�

)
, � = 0, . . . , L − 1

(3)

where λg,� is the learning rate, and ξ k
g,� ∈ Dk is a data sample

uniformly picked from the local data set. Finally, the resulting
local model updates are sent to the BS for averaging.

In the aggregation step of each round (or each iteration),
there are two types of user participation, such as full and
partial user participation:

1) Full User Participation: All UEs send their local models
back to BS for aggregation, and the aggregated global
model to be used for the g + 1th round can be obtained
as [22]–[24], [28], [29]:

wg+1 :=
∑

k∈Ktot

pkwk
g,L. (4)

In this case, BS must wait for the slowest UEs (i.e., with
low computing capability and low batter level), leading

to serious straggler’s effect and longer convergence time
of FedAvg.

2) Partial User Participation: A subset Kg �
{1, 2, . . . , Kg} of Kg UEs with Kg ≤ Ktot are
selected at round g to send local models [8], [15], [20],
and BS then performs

wg+1 := 1

Kg

∑

k∈Kg

wk
g,L. (5)

This scheme is more practically suited for large
scale IoT networks in which a very large number of
IoT devices (sensors, smartphones, actuators, etc.) are
deployed.

The training procedure of FedAvg with partial user participa-
tion can be summarized as follows.

1) BS transmits the latest global model to the selected UEs
at random.

2) Each selected UE runs SGD locally for L iterations to
output the trained local model [i.e., (3)], and sends it
back to BS.

3) BS aggregates the received local models to update the
global model [i.e., (5)].

4) Steps 1–3 are repeated until convergence.
We note that the design of local updates at UEs and the
aggregation strategy at BS may vary depending on the
objective functions and different designs of FL algorithms
[10], [21], [23], [36].

III. FEDERATED LEARNING ALGORITHM DESIGN

A. Proposed FL Algorithm Design

In IoT networks, there will be a massive number of deployed
IoT users connected to collect data related to public safety,
weather, energy, transportation, etc. The different UEs in IoT
networks often have different resource constraints such as
computation capabilities and power levels. In this article, local
models are updated via wireless links, and thus it may not be
practical to collect all local models in each global aggregation
step due to the limited bandwidth. Our FL algorithm design
is similar to FedAvg [8] and FedProx [20] in the sense that
a subset Kg of UEs are picked in each global round g to per-
form local training updates, and these will be sent back to BS
to form a new global model.

However, to deal with two key challenges in the traditional
federated optimization (i.e., systems heterogeneity and non-iid
distributed data across the network) [20], we modify the local
loss function of UE k at round g as

f ′
i (w) � fi(w) + μpk

2

∥
∥w − wg

∥
∥2 ∀i ∈ Dk (6)

where μ > 0 is a tradeoff parameter. We note that
(μpk/2)‖w − wg‖2 can be viewed as a weight-based proxi-
mal term with a model parameter w and a parameter constant
(μpk/2), which can be found in a wide range of applica-
tions such as l2-regularized linear regression model f ′

i (w) =
(1/2)‖yi − wTxi‖2 + (μ/2)‖w‖2. We have the following
remarks.

1) The weight-based proximal term (μpk/2)‖w − wg‖2 is
incorporated to force the trained local model to be closer
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to the latest global model wg, thereby guaranteeing a
smooth global loss value and improving the stability of
FL algorithm. In other words, it ensures that new local
models are not too diverse from the latest global model,
so that UEs can generate useful local model parameters
to the next global update, addressing the challenge of
non-iid and unbalanced data as well as reducing negative
impacts of random sampling strategy for selecting user
participation.

2) In some extreme cases, UE k can have a very large data
(i.e., a high value of pk), and the local model of this
user is mainly determined by the latest global model.
If μk � μpk is set to be high for all UEs, which may
drift the local models of UEs with low weights p too far
away from the true model, leading to high divergence.
On the other hand, a small value of μk may not make
much difference. Therefore, it is necessary to select an
appropriate value of μ for all UEs. The coefficient μk

in (6) safely reflects the different amount of local data
at UE k, which is more flexible than a fixed proximal
term for all UEs [20].

Throughout this article we consider Fk(w) to be convex
[15], [22], [23]. Thus, the local updates at UE k in (3) can
be modified as

wk
g,�+1 := wk

g,� − λg,�∇F′
k

(
wk

g,�, ξ
k
g,�

)

:= wk
g,� − λg,�

(
∇Fk

(
wk

g,�, ξ
k
g,�

)
+ μpk

(
wk

g,� − wg

))
.

(7)

The proposed FL algorithm design is summarized in
Algorithm 1. Here, a slight but important modification in
step 10 of Algorithm 1 is expected to obtain significant
performance improvement compared to FedAvg with strong
theoretical convergence guaranteed, which will be detailed
next. We note that the convergence of FedAvg on non-iid
data has been studied in [15].

B. Convergence Analysis

In this section, we analyze the convergence of Algorithm 1
and provide an upper bound of E{F(wG)} − F(w∗), where
w∗ denotes the optimal global model corresponding to the
minimum of the global loss F.

1) Assumptions: To facilitate the analysis, we first make the
following assumptions on the modified local loss functions,
which are widely adopted in [11], [15], [20], [22], and [23].

Assumption 1: F′
k(·) is �-smooth; i.e., ∀w, w̃ ∈ R

d

F′
k(w) ≤ F′

k

(
w̃
)+ 〈∇F′

k

(
w̃
)
, w − w̃

〉+ �

2

∥
∥w − w̃

∥
∥2 ∀k.

(8)

Assumption 2: If Fk(·) is convex, F′
k(·) becomes μk-

strongly convex (since the Hessian of F′
k(·) can be positive

semi-definite); i.e., ∀w, w̃ ∈ R
d and there exists μk > 0 such

that

F′
k(w) ≥ F′

k

(
w̃
)+ 〈∇F′

k

(
w̃
)
, w − w̃

〉+ μk

2

∥
∥w − w̃

∥
∥2 ∀k.

(9)

We note that
∑

k∈Ktot
μk = μ

∑
k∈Ktot

pk = μ.

Algorithm 1 FL Algorithm Design
1: Input: Ktot, Kg, L, G, and Dk,∀k, g
2: Initialize the global model w0 and learning rate λ0 to the

same value for all UEs
3: for g = 0, 1, · · · , G − 1 do
4: BS picks a subset Kg of Kg UEs at random (UE k

is selected with replacement according to the sampling
probability pk, ∀k ∈ Ktot)

5: BS sends wg to all UEs in Kg

6: for k ∈ Kg in parallel do
7: wk

g,0 := wg

8: for � = 0, 1, · · · , L − 1 do
9: Randomly pick a data point ξ k

g,� ∈ Dk

10: Update: wk
g,�+1 := wk

g,� − λg,�

(∇Fk(wk
g,�, ξ

k
g,�) +

μpk(wk
g,� − wg)

)

11: end for
12: Send wk

g+1 := wk
g,L to BS

13: end for
14: BS aggregates to update the global model parameter as:

wg+1 := 1
Kg

∑
k∈Kg

wk
g+1

15: end for

Assumption 3: For any k and w, we define δ as an upper
bound of the expected squared norm of stochastic gradients
E{‖∇F′

k(w
k
g,�, ξ

k
g,�)‖2}, i.e.,

E

{∥
∥
∥∇F′

k

(
wk

g,�, ξ
k
g,�

)∥
∥
∥

2
}

≤ δ. (10)

2) Main Results: For simplicity, we assume that λg =
λg,� ∀�, i.e., all local iterations use the same learning rate
in each aggregation step. Let us define that

w̄g,�+1 �
∑

k∈Ktot

pk

(
wk

g,� − λg∇F′
k

(
wk

g,�, ξ
k
g,�

))
(11)

which is the aggregation of one local update from all UEs.
For �F′(w̄g,�) �

∑
k∈Ktot

pk∇F′
k(w

k
g,�, ξ

k
g,�), it follows that:

w̄g,�+1 =
∑

k∈Ktot

pkwk
g,� − λg∇F′(w̄g,�

)

= w̄g,� − λg∇F′(w̄g,�

)
. (12)

In the case of full user participation in (4), we always
have w̄g,�+1 = ∑

k∈Ktot
pkwk

g,�+1, but not hold true for our
proposed FL due to the randomness of sampling strategy. We
recall that in the global round g, only a subset Kg of UEs are
randomly selected to join the training process. Thus, the sam-
pling strategy must be indifferent among all UEs with respect
to their weights which guarantees the convergence of the FL
algorithm. Inspired by [15], we define the following relation-
ship to capture the unbiased sampling strategy which is related
how UEs are picked at different rounds.

Definition 2: The expectation of the next global model
parameter of selected UEs is equal to the average of all UEs’
updated local parameters, i.e.,

E

⎧
⎨

⎩

1

Kg

∑

k∈Kg

wk
g+1

⎫
⎬

⎭
= w̄g+1. (13)
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For wg+1 � (1/Kg)
∑

k∈Kg
wk

g+1, the expected divergence
between wg+1 and w̄g+1 is characterized by the following
lemma.

Lemma 1: Assuming {λg}∀g is a nonincreasing sequence
(i.e., λg ≤ λg−1) with a learning rate decay as λg ≤
[λ0/(1 + ag)] for any positive constant a > 0, the expected
upper bound of ‖wg+1 − w̄g+1‖2 can be given as

E

{∥
∥wg+1 − w̄g+1

∥
∥2∣∣k ∈ Kg

}
≤ L2λ2

0δ

Kg(1 + ag)2
. (14)

Proof: We first use Definition 2 to overcome the dif-
ficulty of the expectation over the subset Kg, based on
which the upper bound in (14) is obtained. For details, see
Appendix A.

Theorem 1: Let all Assumptions 1–3 hold. Given the
optimal global model w∗, the learning rate λg ≤ [λ0/(1 + ag)]
with λ0 ≤ [2/(μ + �)] and ε0 = ‖w0 − w∗‖2, the expected
convergence upper bound of F(wG) − F(w∗) after G global
rounds can be given by

E{F(wG)} − F
(
w∗)

≤ �

2

(
L2λ2

0δ

KG(1 + aG)2
+

G−1∏

i=0

(

1 − 2λ0μ�

(μ + �)(1 + ia)

)

ε0

)

.

(15)

Proof: We first analyze the expected upper bound of
‖wg+1 − w∗‖2 within the subset Kg. Combining with the
result in Lemma 1, we obtain the final result. For details, see
Appendix B.

Corollary 1: Let all Assumptions 1–3 hold. Given the
optimal global model w∗ and ε0 = ‖w0 − w∗‖2. If we fix
the learning rate to be λg = [2/(μ + �)] ∀g, the expected
convergence upper bound of F(wG) − F(w∗) in Theorem 1
becomes

E{F(wG)} − F
(
w∗)

≤ �

2

(
4L2δ

KG(μ + �)2
+
(

1 − 4μ�

(μ + �)2

)G

ε0

)

. (16)

It can be seen that lim
G→∞(1 − [4μ�/((μ + �)2)])G = 0 due

to 0 ≤ 1 − [4μ�/((μ + �)2)] < 1.
Remark 1: From Theorem 1, we can observe that the

proposed Algorithm 1 will converge to the optimum (global
model) after a sufficiently large number of global rounds. In
addition, with a fixed learning rate in Corollary 1, it will con-
verge to a suboptimal solution with a gap of the total loss of
[(4L2δ�)/(2Kg(μ + �)2)] away from the optimum due to the
heterogeneity of the data distribution. These observations sim-
ply imply that an adaptive learning rate is necessary for the
proposed FL algorithm to obtain the optimal global model.
However, we note that decreasing the learning rate very often
(e.g., after each local update) may slow down the conver-
gence speed of the proposed FL algorithm. The key advantage
of FedAvg is mainly attributed to the fact that it performs
several local model updates before communicating with the
centralized server for global aggregation, which achieves a
low communication cost.

Fig. 2. Illustration of the proposed scheme to support FL over wireless IoT
networks.

Remark 2: The sampling strategy is controlled by the cen-
tral server co-located at BS. Compared to FL algorithms with
full user participation and uniform sampling, Algorithm 1 may
additionally require all UEs to update their number of samples
to the central server before performing the sampling strat-
egy. This step is done once in the entire implementation of
Algorithm 1. For real-time video streaming applications, the
number of training samples needs to be updated regularly that
allows the system to adapt quickly to the newly collected
data. The fine-tuned learning rate λg, tradeoff parameter μ,
and the number of local iterations L are necessary to prevent
divergence of Algorithm 1.

Practical Implementation: In addition to the learning rate,
we now discuss the selection of other parameters to success-
fully implement Algorithm 1.

1) Selection of L: In principle, the number of local updates
L is controlled by UEs to achieve an approximate solu-
tion that satisfies certain local accuracy. If L is too large,
Algorithm 1 becomes the one-short averaging [12],
where wk

g,� will converge only to an optimal solution
of the local loss function Fk(·). On the other hand,
Algorithm 1 with a very small L will result in a heavy
global communication burden. Therefore, an appropriate
value of L is necessary not only to guarantee the conver-
gence of Algorithm 1 but also to reduce communication
costs.

2) Selection of Kg: From Theorem 1, it can be seen that the
convergence rate is less dependent on Kg than G and L.
Thus, one can set the number of user participants to be
small that still ensure high quality of training parameters
transmitted over wireless links (due to limited resources)
without compromising the convergence rate, suitable for
IoT networks having a large number of UEs.

IV. PROPOSED FL-ENABLED RESOURCE OPTIMIZATION

OVER WIRELESS IOT NETWORKS

Given insights from Section III, we are now in a position
to develop a resource allocation algorithm to optimize the FL
performance over wireless IoT networks.

In what follows, one FL process is referred to as the
entire implementation of Algorithm 1 until convergence. The
proposed scheme to support FL is illustrated in Fig. 2, con-
sisting of five steps. Compared to Algorithm 1, an additional
step (S1) is added to enhance the performance of FL (e.g.,
in terms of energy consumption and training time). This step
is done at the BS side before executing Algorithm 1 in each
communication round.

Remark 3: In practice, the BS is often equipped with much
higher computation capacity than UEs for executing tasks. In
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addition, the BS is located in a place closer to UEs, and thus,
the latency of performing steps (S1) and (S5) can be neglected.
This assumption is also adopted in recent works on the FL for
wireless communications [22]–[24], [28], [29].

A. System Model

We assume that BS is equipped with N antennas to serve
single-antenna UEs via a shared wireless medium. We consider
the channel reciprocity between BS and UEs in time division
duplex mode. The channel vector between BS and UE k is
denoted by hk ∈ C

N×1, which is generally modeled as hk =√
ϕkh̄k; Here, ϕk accounts for the effect of large-scale fading

(e.g., path loss and shadowing), and h̄k ∼ CN (0, IN) denotes
the small-scale fading.

1) Communication Model: BS transmits the latest global
model to the selected UEs using FDMA over the total
bandwidth B (i.e., step S2 in Fig. 2). We denote the band-
width allocated to UE k via downlink by bdlk B, satisfying∑

k∈Kg
bdlk ≤ 1. Applying maximum ratio transmission

(MRT) beamforming (i.e., hk/‖hk‖), UE k downloads the FL
global model from BS with the transmission rate (b/s)

rdlk = bdlk B log
(

1 + SNRdl
k

)
(17)

where SNRdl
k � [(‖ρdlk hk‖2)/(bdlk BN0)] and N0 are the

downlink signal-to-noise ratio (SNR) and noise power spec-
tral density at UE k, respectively; ρdlk is the transmit power
coefficient allocated to UE k subject to

∑
k∈Kg

(ρdlk )2 ≤ PBS,
where PBS is the power budget at BS. Let S be the data size
(in bits) that BS and UEs require to transmit the global/local
training update w over wireless links.1 Thus, the down-
link communication delay for UE k to download the global
model is

tdlco,k = S

rdlk

. (18)

UEs perform the local training based on the latest global
model, and then transmit the trained local models to BS using
FDMA (i.e., step S4). Applying maximum ratio combining
(MRC) receiver at BS (i.e., hH

k /‖hk‖), the data rate of UE k
to transmit its local FL model to BS can be given as

rulk = bulk B log
(

1 + SNRul
k

)
(19)

where SNRul
k � [(‖ρulk hk‖2)/(bulk BN0)] is the uplink SNR

of UE k; bulk and ρulk are the bandwidth and transmit
power coefficients of UE k in uplink, respectively. The uplink
communication delay to upload the local FL model is thus

tulco,k = S

rulk

. (20)

2) Computation and Energy Consumption Model at
UEs: Let ck (cycles/sample) be the number of processing
cycles of UE k to execute one sample of data, which assumes
to be measured offline and known a prior [37]. Denoting
the central processing unit (CPU) frequency of UE k by fk

1The transmit data size can be calculated as S = 32d b, since it typically
takes 32d b to encode the vector w of length d.

(cycles/s), the computation time for the local training update
at UE k (i.e., step S3) over L local iterations is given by

tcp,k = L
ckDk

fk
(21)

where (ckDk/fk) can be interpreted as the computation time
per one local iteration. The energy consumption at UE k in
one global round can be formulated as

Ek = Eco,k + Ecp,k (22)

where Eco,k = (ρulk )2tulco,k is the energy consumption required
to transmit the local update via the uplink, and Ecp,k =
L(θk/2)ckDkf2k denotes the CPU energy consumption for L
local iterations [38] with θk/2 being the effective capacitance
coefficient depending on the chipset of UE k. Next, the energy
consumption of Kg UEs at round g is expressed as follows:

Eg =
∑

k∈Kg

Ek =
∑

k∈Kg

(
Eco,k + Ecp,k

)
. (23)

B. Problem Formulation

To convey local models to BS in the uplink, we con-
sider two different schemes, i.e., synchronous (Syn) and
asynchronous (Asyn) communication. The former requires all
selected UEs to complete the current step before starting the
next step [22], [28], while the latter allows each selected UE
to communicate with BS in an asynchronous manner [29].

The total time of one communication round of the FL
process at iteration g is

TX
g =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max
k∈Kg

{
tdlco,k

}+ max
k∈Kg

{
tcp,k
}+ max

k∈Kg

{
tulco,k

}

if X is Syn (24a)

max
k∈Kg

{
tdlco,k + tcp,k + tulco,k

}
, if X is Asyn. (24b)

We introduce a constant parameter η ∈ {0, 1} to formu-
late the utility function as ηEg + (1 − η)TX

g , where η = 1
(η = 0, respectively) corresponds to the energy consumption
minimization problem (the time minimization, respectively).
At the global round g, we seek the solution to the following
minimization problem:

min
ρ,f,b

ηEg + (1 − η)TX
g (25a)

s.t. Ek ≤ Emax ∀k ∈ Kg (25b)

Tk ≤ Tmax ∀k ∈ Kg (25c)

SNRx
k ≥ γ min ∀k ∈ Kg, x ∈ {dl,ul} (25d)

(
ρulk

)2 ≤ Pmax
k ∀k ∈ Kg (25e)

∑

k∈Kg

(
ρdlk

)2 ≤ PBS (25f)

fmin
k ≤ fk ≤ fmax

k ∀k ∈ Kg (25g)
∑

k∈Kg

bx
k ≤ 1 ∀x ∈ {dl,ul} (25h)

where Tk = tdlco,k + tcp,k + tulco,k, ρ � {ρdl, ρul}, ρdl �
{ρdlk }k∈Kg , ρul � {ρulk }k∈Kg , f � {fk}k∈Kg , and b �
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{bdlk , bulk }k∈Kg . Constraints (25b) and (25c) indicate the max-
imum energy consumption Emax and the delay requirement
Tmax, respectively, for executing one communication round.
Constraint (25d) with a minimum SNR requirement γ min is
added to ensure that BS can successfully decode the mes-
sage. The parameters (Emax, Tmax, γ

min) assume to be known
a prior at the BS. When the condition in (25c) is not met
for some UEs, BS simply ignores these stragglers from the
global training update. Constraints (25e)–(25h) are the CPU
frequency, transmit power, and bandwidth constraints for each
UE, respectively, which also capture UEs’ heterogeneity with
different types of computation capability and battery level.

Definition 3: The effective completion time and the total
energy consumption of all UEs for implementing the FL
algorithm are computed as TX = ∑G

g=1 E{TX
g } and E =

∑G
g=1 E{Eg}, respectively. Here, E{TX

g } and E{Eg} are the
average of TX

g and Eg over the random sampling of devices
and large-scale fading realizations, respectively.

C. Proposed Path-Following Algorithm

We note that the functions Eco,k, tdlco,k, tulco,k, SNRdl
k , and

SNRul
k ∀k are neither convex nor concave in (ρ, b), which

can be verified by checking the Hessian matrix. As a con-
sequence, the objective (25a) and constraints (25b)–(25d) are
nonconvex, causing problem (25) to be nonconvex. In what
follows, we first transform problem (25) to a computationally
tractable form and then apply IA method [30] to develop an
efficient path-following algorithm for its solution.

Let us start by rewriting (25) equivalently as

min
ρ,f,b,ϑ,t

ηEg
(
ρul, f,ϑul)+ (1 − η)TX

g (t) (26a)

s.t. rx
k ≥ ϑx

k ∀k ∈ Kg, x ∈ {dl,ul} (26b)

Ek
(
ρulk , fk, ϑul

k

) ≤ Emax ∀k ∈ Kg (26c)

Tk(fk, ϑul
k , ϑdl

k ) ≤ Tmax ∀k ∈ Kg (26d)
⎧
⎪⎨

⎪⎩

L ckDk
fk

≤ tcp ∀k ∈ Kg, if X is Syn
S
ϑx

k
≤ txco ∀k ∈ Kg, x ∈ {dl,ul} if X is Syn

Tk
(
fk, ϑul

k , ϑdl
k

) ≤ t ∀k ∈ Kg, if X is Asyn
(26e)

(25d)−(25h) (26f)

where

Eg
(
ρul, f,ϑul) =

∑

k∈Kg

Ek
(
ρulk , fk, ϑul

k

)

Ek
(
ρulk , fk, ϑul

k

) = S

(
ρulk

)2

ϑul
k

+ L
θk

2
ckDkf2k

Tk
(
fk, ϑul

k , ϑdl
k

) = S

ϑdl
k

+ L
ckDk

fk
+ S

ϑul
k

TX
g (t) =

{
tdlco + tcp + tulco , if X is Syn
t, if X is Asyn

(27)

and t � {tcp, tulco , tdlco , t} and ϑ � {ϑul,ϑdl} with ϑul �
{ϑul

k }k∈Kg and ϑdl � {ϑdl
k }k∈Kg are newly introduced

variables to unravel the nonsmooth objective function. It is

observed that the objective and all the constraints are convex
and linear, except (26b).

Due to the limited resources and low computation capacity
of UEs, it may take more than one communication block to
complete one global round. Thus, the small-scale fading may
change during local training updates, and the perfect instan-
taneous CSI of UEs may be difficult to obtain in practice.
In addition, one large-scale coherence time can be invariant at
least 40 small-scale fading coherence intervals [39]. Assuming
that the large-scale fading is a known deterministic quantity,
we replace (26b) by the following outage constraint [40]:

(26b) ⇒
{

bx
kB log

(
1 + γ x

k

) ≥ ϑx
k

∣
∣
∣

× Prob

(
ϕk
∥
∥ρx

k h̄k
∥
∥2

bx
kBN0

< γ x
k

)

≤ ε

}

∀k ∈ Kg, x ∈ {dl,ul} (28)

which ensures a sufficient margin. Here, γ x
k is a new variable

representing the soft SNR of UE k, and ε is a small positive
constant (close to 0) to ensure high reliability. (28) is a nonlin-
ear probabilistic constraint, which may not be solved directly.
Instead, we introduce the following lemma to evaluate (28).

Lemma 2: Constraint (26b) is equivalent to the following
constraint:

(26b) ⇔ bx
kB log

(
1 + γ x

k

) ≥ ϑx
k ∀k ∈ Kg, x ∈ {dl,ul}

(29)

under the condition

ϕkN

BN0
ln(1 − ε) + γ x

k bx
k

(
ρx

k

)2 = 0 ∀k ∈ Kg, x ∈ {dl,ul}.
(30)

Proof: Based on the foundation results in [40], a self-
contained proof is given in Appendix C.

From Lemma 2, we rewrite (26) as

min
ρ,f,b,ϑ,t,γ

ηEg
(
ρul, f,ϑul)+ (1 − η)TX

g (t) (31a)

s.t. bx
kB log

(
1 + γ x

k

) ≥ ϑx
k , k ∈ Kg, x ∈ {dl,ul}

(31b)
ϕkN

BN0
ln(1 − ε) + γ x

k bx
k

(
ρx

k

)2 ≤ 0

∀k ∈ Kg, x ∈ {dl,ul} (31c)

γ x
k ≥ γ min ∀k ∈ Kg, x ∈ {dl,ul} (31d)

(25e)−(25h), (26c)−(26e)

(31e)

where (31c) must hold with equality at the optimum, and
γ � {γ dl

k , γ ul
k }k∈Kg . The linear constraint (31d) is derived

from (25d).
We are now ready to approximate the nonconvex con-

straints (31b) and (31c). By IA method [30], (31b) is iteratively
replaced by the following convex constraint at iteration κ:

�(κ)
(
γ x

k , bx
k

)
� A(κ) − B(κ) 1

γ x
k

− C(κ) 1

bx
k

≥ ϑx
k

B
∀k, x (32)
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Algorithm 2 Proposed Path-Following Algorithm for
Solving (25)
Initialization: Set κ := 0, a subset of selected UEs Kg, and

generate a feasible point (ρ(0), b(0), γ (0)) for constraints
in (35b).

1: repeat
2: Solve the convex program (35) to obtain the optimal

solution, denoted by (ρ∗, f∗, b∗,ϑ∗, t∗, γ ∗).
3: Update (ρ(κ+1), b(κ+1), γ (κ+1)) := (ρ∗, b∗, γ ∗).
4: Set κ := κ + 1.

5: until Convergence
6: Output: (ρ∗, f∗, b∗) and the objective value (25a)

whose proof is given in Appendix D, where A(κ) �
2bx,(κ)

k log(1 + γ
x,(κ)
k ) + [(bx,(κ)

k γ
x,(κ)
k log(e))/((γ x,(κ)

k + 1))],
B(κ) � [(bx,(κ)

k (γ x,(κ))2 log(e))/((γ x,(κ) + 1))] and C(κ) �
(bx,(κ)

k )2 log(1 + γ
x,(κ)
k ). It is noted that the function

�(κ)(γ x
k , bx

k) is concave and lower bound of bx
kB log(1 + γ x

k ),
satisfying �x,(κ)(γ

x,(κ)
k , bx,(κ)

k ) = bx,(κ)
k B log(1+γ

x,(κ)
k ). Next,

we rewrite (31c) as
(
ρx

k

)2

bx
k

≥ −BN0

ϕk ln(1 − ε)N
γ x

k . (33)

It is clear that (ρx
k )

2/bx
k is a quadratic-over-linear function,

which is convex over the domain (ρx
k > 0, bx

k > 0). Thus,
constraint (33) is iteratively convexified as

2ρ
x,(κ)
k

bx,(κ)
k

ρx
k −

(
ρ

x,(κ)
k

bx,(κ)
k

)2

bx
k ≥ −BN0

ϕk ln(1 − ε)N
γ x

k ∀k, x. (34)

Summing up, at iteration κ of round g, we solve the
following convex program:

min
ρ,f,b,ϑ,t,γ

ηEg
(
ρul, f,ϑul)+ (1 − η)TX

g (t) (35a)

s.t. (25e)−(25h), (26c)−(26e), (31d), (32), (34)

(35b)

to generate the next feasible point (ρ(κ+1), b(κ+1), γ (κ+1)).
The procedure is successively repeated until conver-
gence. A pseudocode of the path-following algorithm to
solve (25) is given in Algorithm 2. An initial feasi-
ble point to start Algorithm 2 can be easily found by
setting γ

x,(0)
k = γ min, bx,(0)

k = 1/Kg and ρ
x,(0)
k =√

[(−BN0)/(ϕk ln(1 − ε)N)]γ x,(0)
k bx,(0)

k ∀k ∈ Kg, x ∈
{dl,ul}.

Convergence and Complexity Analysis: Algorithm 2 is
developed using the IA framework, where the conver-
gence was provided in [30]. Specifically, let F (κ) �
{ρ, f, b,ϑ, t, γ |constraints in (35b) hold} be the feasible set
of (35) at iteration κ . By IA properties [41], Algorithm 2
produces a sequence {ρ(κ), b(κ), γ (κ)} of improved solutions
and a sequence of nonincreasing objective values of (35)
[and hence (25)]. By [30, Th. 1], Algorithm 2 is guaranteed
to obtain a locally optimal solution for (25), which satisfies
Karush–Kuhn–Tucker conditions when κ → ∞. Problem (35)

TABLE III
STATISTICS OF MNIST AND SYNTHETIC DATA SETS

involves 7Kg + 3 scalar decision variables and 12Kg + 3 lin-
ear/quadratic constraints for synchronous communication, and
7Kg +1 scalar decision variables and 10Kg +3 linear/quadratic
constraints for asynchronous communication. As a result,
the periteration computational complexity of Algorithm 2
is O((12Kg + 3)2.5(49K2

g + 54Kg + 12)) for synchronous
communication and O((10Kg + 3)2.5(49K2

g + 24Kg + 4))

for asynchronous communication, respectively. Similarly, the
periteration complexity for the energy minimization problem
is O((9Kg +3)2.5(49K2

g +9Kg +3)). We recall that only a sub-
set of UEs Kg are selected at round g of Algorithm 1, making
Algorithm 2 implementable.

V. NUMERICAL RESULTS

In this section, we first examine our theoretical results
to validate the proposed FL’s performance and then provide
numerical results for FL over a wireless IoT network.

A. Numerical Results for the Proposed FL Algorithm 1

Model and Loss Function: We consider a multinomial logis-
tic regression with a convex loss function (cross-entropy error
loss function). We decay the tradeoff parameter μ after every
global round g as μg = [μ0/(1 + 0.1g)] to balance the loss
function and the weight-based proximal term, where μ0 is the
best value chosen from the set μ0 ∈ {100, 10, 1}.

Data Sets: In order to examine the performance of the
proposed FL algorithm in a heterogeneous setting, we con-
sider both real (MNIST data set [42]) and synthetic data
sets with 100 UEs taking part in the training process. In
MNIST data set, each UE has samples of only two digits
where the number of samples among UEs follows a power
law. Synthetic data are generated by following the same set-
tings in [15] and [20]. In particular, samples (Xk, Yk) are
generated by y = argmax(softmax(Wkx + bk)) with x ∈ R

60,
Wk ∈ R

10×60 and b ∈ R
10. Each entry of Wk and bk is

modeled as N (νk, 1) with νk ∼ N (0, α). x is modeled as
N (τk, �), where τk ∼ N (Bk, 1) with Bk ∼ N (0, β) and the
matrix � is diagonal with �jj = (1/j1.2). Here, α and β con-
trol how much the local model and the local data differ from
each other, denoted Synthetic(α, β). The number of samples
among UEs follows a power law. We summarize the statistics
of data sets in Table III.

Simulation Setting: To guarantee the convergence of
Algorithm 1 (as mentioned in Remark 1), we consider a non-
increasing learning rate as λg = [λ0/(1 + 0.01g)], where λ0
is carefully chosen from the set λ0 ∈ {0.1, 0.03, 0.01}. In all
experiments, we generate an initial model as w0 = 0. We
use batch sizes (B) of 60 and 20 for MNIST and synthetic
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(a) (b)

Fig. 3. Global loss values versus the number of global rounds. (a) MNIST
dataset, with B = 60, L = 20, and Kg = 10 ∀g. (b) Synthetic(0, 0) dataset,
with B = 20, L = 10, and Kg = 10 ∀g.

data sets, respectively. We then compare the performance of
the proposed FL with FedAvg [8] and Per-FedAvg [16].
To conduct fair comparison, the subset of selected UEs in
each round is the same for all considered FL algorithms.
Each local data is randomly split to 80% for training and
20% for testing. The FL algorithms are implemented in
TensorFlow.

Fig. 3 shows the convergence of the proposed FL algo-
rithm for different data sets. For FedAvg and Per-FedAvg,
we also decay the learning rate as λg = [λ0/(1 + 0.1g)],
where the initial value of λ0 is carefully adjusted from the
set {0.1, 0.03, 0.01}. The results demonstrate that Algorithm 1
outperforms FedAvg and Per-FedAvg on both MNIST and
synthetic data sets. In particular, compared to FedAvg and
Per-FedAvg, the improvements in terms of global loss are
approximately 15.6% and 9.7% for the MNIST data set in
Fig. 3(a), and 28.7% and 24.6% for the Synthetic(0, 0) data set
in Fig. 3(b), respectively. In addition to its better performance,
it can be seen that Algorithm 1 is more stable and con-
verges faster than FedAvg and Per-FedAvg. This further
confirms the effectiveness of the weight-based proximal term
in (6) in dealing with the negative effects of the random sam-
pling strategy to select user participation in the heterogeneous
setting.

In Fig. 4, we investigate the effect of different numbers
of local iterations L ∈ {10, 30} on the performance of the
proposed FL algorithm. It can be observed that Algorithm 1
outperforms FedAvg and Per-FedAvg in all settings. In addi-
tion, a larger L leads to faster convergence and allows to handle
the instability of all FL algorithms with non-iid data in a better
way. However, we recall that a very large value of L may result
in the one-short averaging of FL algorithms [12]. In practice, it
is beneficial to allow an appropriate value of L, which not only
boosts the convergence speed but also prevents divergence of
the proposed FL algorithm.

We next examine the impact of weight-based proximal term
by fixing μk = μpk = 1 for all UEs, as shown in Fig. 5.
We use Synthetic(0, 0) and Synthetic(1, 1) data sets with
B = 20, L = 20, and Kg = 10 ∀g. It can be seen that
Algorithm 1 using the individual penalty constant (i.e., μpk

(a) (b)

Fig. 4. Global loss values versus the number of global rounds with the
different numbers of local iterations. (a) MNIST dataset, with B = 60 and
Kg = 10 ∀g. (b) Synthetic(0, 0) dataset, with B = 20 and Kg = 10 ∀g.

(a) (b)

Fig. 5. Global loss values versus the number of global rounds with different
FL algorithms. (a) Synthetic(0, 0) dataset, with B = 20, L = 20, and Kg =
10 ∀g. (b) Synthetic(1, 1) dataset, with B = 20, L = 20, and Kg = 10 ∀g.

for UE k) achieves a significant performance gap over FedAvg
and Algorithm 1 with μk = 1 ∀k in terms of global loss in both
cases. For Synthetic(0, 0) data set in Fig. 5(a), we can see that
Algorithm 1 with a fixed penalty constant exhibits a lower con-
vergence speed compared to an individual and flexible penalty
constant. This is probably attributed to the fact that the local
model of some UE k with a small number of training samples
may strongly depend on the latest global model, and thus it
generates less useful local parameters to the next global aggre-
gation. In other words, it may not reflect the actual local loss of
those UEs that might slow down convergence on non-iid data.
For highly heterogeneous Synthetic(1, 1) data in Fig. 5(b), it
is also worth noting that Algorithm 1 is less volatile than other
algorithms.

A natural question that arises is how many user partici-
pants are optimal to accelerate the convergence speed of the
proposed FL algorithm while still ensuring a minimum global
loss. In Fig. 6, we select Kg from the set Kg ∈ {10, 20, 100}.
We set L = 5 to reduce the local training time due to a large
number of UEs taking part in the training process. It can be
seen that the number of selected UEs in each global round has
a limited impact on the convergence of Algorithm 1 in both
MNIST and Synthetic data sets, which is also aligned with our



3404 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 5, MARCH 1, 2021

(a) (b)

Fig. 6. Global loss values versus the number of global rounds with the
different numbers of selected UEs in each round. (a) MNIST dataset, with
B = 60 and L = 5. (b) Synthetic(0, 0) dataset, with B = 20 and L = 5.

TABLE IV
SIMULATION PARAMETERS

theoretical result in Theorem 1 as well as the findings of [15].
This phenomenon plays an important role in improving the
performance of the FL algorithm for wireless IoT networks
in terms of energy consumption and FL training time, which
will be elaborated next.

B. Numerical Results for the FL-Supported Wireless IoT
Network (Algorithm 2)

We consider a wireless IoT network, where Ktot = 100
UEs are uniformly deployed in a circle area of 1-km radius
where the BS equipped with four antennas is located at its
center. We use the same settings in Fig. 3(b) on Synthetic(0, 0)
data set with B = 20, L = 10, and the number of selected UEs
in each round is fixed to as Kg = 10 ∀g. The number of global
rounds is determined when Algorithm 1 converges. The large-
scale fading is modeled as: ϕk = 10[(−PLk+σshz)/10], where the
shadow fading is considered as a random variable z ∼ N (0, 1)

with σsh = 8 dB. We consider the path loss as PLk = 103.8+
20.9 log(dk), where dk (in km) is the distance between BS and
UE k. The training size Dk of UE k is uniformly distributed
in [5, 10] Mb [22]. Unless specifically stated otherwise, other
parameters are given in Table IV, following the studies in
[22], [23], [28], and [29].

For comparison purpose, we investigate two other schemes:
1) “EB:” In every communication round, each UE is allo-
cated with EB, i.e., bx

k = 1/Kg ∀k ∈ Kg, x ∈ {dl,ul}

Fig. 7. Total energy consumption versus the maximum delay requirement.

and bx
k = 1/Ktot ∀k ∈ Ktot, x ∈ {dl,ul} for partial and

full user participation, respectively; 2) “Full UEs:” In every
global round, all UEs participate the training process, stud-
ied in [22], [28], and [29]. The solutions of these schemes
can readily be obtained using Algorithm 2 after some slight
modifications. On average, Algorithm 2 converges in about six
iterations for Kg = 10.

Energy Consumption Minimization: In Fig. 7, we plot the
tradeoff between total energy consumption and maximum
delay requirement for executing one communication round.
The observations from the figure are as follows. First, one
can see that the proposed Algorithm 2 offers a remark-
able gain in the total energy consumption compared with
the full user participation in the range of Tmax ∈ [1, 4] s.
Although a larger Kg can slightly accelerate the convergence
of the FL process (see Fig. 6), it requires a substantially
high power consumption in both computation and commu-
nication phases. In addition, a lower number of UEs taking
part in the training process will exploit limited resources (i.e.,
bandwidth) more efficiently. Second, increasing Tmax leads
to a significant reduction in the effective energy consump-
tion. This is reasonable because the higher the maximum
delay requirement, the lower the optimal value of power
consumption and CPU frequency can be obtained while
still satisfying constraint (25c), leading to energy saving.
Third, the joint optimization of bandwidth results in better
performance, especially when the delay requirement is more
stringent.

The impact of the outage constant on the total energy con-
sumption is shown in Fig. 8. Increasing the threshold ε leads
to a dramatic decrease in energy consumption, e.g., by up to
39% and 36% for Algorithm 2 and “Full UEs,” respectively,
with ε = 0.01 in comparison with that of ε = 0.03. This out-
come is not surprising because with a higher value of ε, less
power at UEs is required to meet the condition (30), i.e., by a
factor of −1/ log(1 − ε). However, we recall that in practice,
a small value of ε should be considered to ensure high relia-
bility of the uplink transmission. Nevertheless, Algorithm 2
still achieves the best performance out of the schemes
considered.
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Fig. 8. Total energy consumption versus the outage constant.

Fig. 9. Completion time versus maximum energy requirement.

Completion Time Minimization: In Fig. 9, we show the
impact of UEs’ maximum energy consumption Emax on the
effective completion time to implement the FL algorithm. We
consider both synchronous and asynchronous communications.
First, as can be seen that increasing Emax requires much less
completion time. In order to minimize the completion time,
all UEs must run at a higher CPU frequency and transmission
rate as possible all the time, but this will certainly increase
the energy consumption. Consequently, increasing the UE’s
maximum energy requirement will result in a greater feasible
region of the optimization problem (25). Another important
observation is that asynchronous communication is superior to
the synchronous one in both schemes. This is not difficult to
see that the latter has to wait for the slowest UEs to complete
local training updates before communicating to BS, leading to
serious delays compared to the former, especially in a highly
heterogeneous environment. Fig. 10 illustrates the impact of
UEs’ maximum CPU frequency by setting fmax = fmax

k ∀k.
As expected, the effective training time increases when fmax

decreases, as it requires more time to complete the local
computation.

One can observe from Figs. 9 and 10 that at Emax = 0.5 J
and fmax = 3 GHz, significant gains of up to 40% and 33%
are offered by “Asyn-Algorithm 2” compared to “Asyn-Full

Fig. 10. Completion time versus maximum CPU frequency of each UE.

UEs,” respectively. This is the result of using a small number
of active UEs per round, since the communication phase in
Algorithm 2 with higher bandwidth for each UE is willing to
consume less energy than the local computation, allowing to
use higher UEs’ CPU frequency.

VI. CONCLUSION

In this article, we have proposed an efficient FL algorithm
relying on a weight-based proximal term, which is an exten-
sion of FedAvg, to tackle the heterogeneity across UEs data
and UEs’ characteristics in federated networks. The proposed
FL algorithm allows a small number of UEs per round to
be participated in the training process based on the unbiased
sampling strategy. Under the assumption of strongly convex
and smooth FL’s problem, we have theoretically character-
ized the convergence of the proposed FL algorithm. Empirical
results on both real and synthetic data sets have verified our
theoretical findings and demonstrated the stabilization and
robustness of the proposed FL algorithm compared to FedAvg
in highly heterogeneous environments. Next, we have formu-
lated a wireless IoT resource allocation problem employing
the proposed FL algorithm to minimize either total energy
consumption or completion time. To deal with the nonconvex
nature of the problem and uncertainty of wireless channel, we
have developed a new path-following algorithm based on the
IA framework to obtain at least a locally optimal solution.
Numerical results are provided to confirm the effectiveness of
the proposed FL algorithm over existing baseline approaches
(e.g., full user participation and EB) in wireless IoT networks
with limited resources.

Next-generation wireless IoT networks will be extremely
dynamic and complex due to the emergence of new applica-
tions and mobile broadband services, such as video stream-
ing and online gaming, calling for inclusive and innovative
approaches. Thus, interesting future works include: 1) novel
gradient coding schemes for addressing the problem of strag-
glers and 2) personalized FL models to adapt to newly
collected data. In addition, it would be interesting to develop
prototypes/testbeds to validate the proposed FL’s performance
presented in this work.
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APPENDIX A
PROOF OF LEMMA 1

Given that each activation of the sampling strategy is
independent with the rest and following [15], we have

E

{∥
∥wg+1 − w̄g+1

∥
∥2∣∣k ∈ Kg

}

= 1

K2
g

∑

k∈Kg

E

{∥
∥
∥wk

g+1 − w̄g+1

∥
∥
∥

2
}

. (A.1)

From Definition 2 for an unbiased sampling strategy, it follows
that:
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We know that wg is the same for all UEs (i.e., step 7 of
Algorithm 1). Hence
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where
∑

k∈Ktot
pk = 1 and

∑
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pkwk
g+1 = w̄g+1.

Substituting (A.3) into (A.2) and from Assumption 3, we have
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where the third inequality is obtained due to the fact that each
selected UE independently performs L local iterations.

APPENDIX B
PROOF OF THEOREM 1

For the strong convexity of F′, if it has a minimizer w∗,
then

E
{
F′(wg+1

)}− F′(w∗) ≤ �

2
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}
(B.1)

which follows from the upper bound in Assumption 1 at w =
wg+1 and w̄ = w∗. We know that F′(wg+1) = F(wg+1) +

∑
k∈Kg

(μpk/2)‖wg+1−wg‖2. At the optimum, F′ and F share
the same minimizer w∗ [i.e., F′(w∗) = F(w∗)], and thus
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In addition, we have
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where E{wg+1} − w̄g+1 = 0 due to (13). We note that
E{‖wg+1−w̄g+1‖2} is already bounded by (14). We now focus
on the bound of E{‖w̄g+1 − w∗‖2}. Let us start by rewriting
it as

∥
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Let Assumptions 1 and 2 hold. By Qg+1 � E{‖w̄g+1 −w∗‖2},∑
k∈Ktot

μk = μ
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pk = μ and [43, Th. 2.1.12], we

have

Qg+1 =
(

1 − 2λg
μ�

μ + �

)

Qg

−2λg
μ�

μ + �

L−1∑

�=1

E

{∥
∥w̄g,� − w∗∥∥2

}

+
(

λ2
g − 2λg

1

μ + �

) L−1∑

�=0

E

{∥
∥∇F′(w̄g

)∥
∥2
}
. (B.5)

If we choose the learning rate λg ≤ [2/μ + �)], yielding 0 ≤
1 − 2λg[μ�/(μ + �)] < 1 and λ2

g − 2λg[1/(μ + �)] ≤ 0. As
a result, we have
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Combining the results from (14) and (B.6), the expected upper
bound of (B.2) is
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With the learning rate λi ≤ [λ0/((1 + ia))], we obtain the
result in (15).
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APPENDIX C
PROOF OF LEMMA 2

First, we note that ‖ρx
k h̄k‖2 is an exponentially distributed

random variable with parameter [1/(N(ρx
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2)]. It follows that:
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As a result, we have
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For given bx
k and ρx

k , the left-hand side of (C.2) is an increase
function in γ x

k . Therefore, log(1 + [(ϕk‖ρx
k h̄k‖2)/(bx

kBN0)]) =
log(1 + γ x

k ) if the equality in (C.2) holds.

APPENDIX D
PROOF OF INEQUALITY (32)

By [44, Appendix A], the function �(x, y) � ln(1 + 1/x)/y
is convex in the domain (x > 0, y > 0). Thus, �(x, y) is
innerly approximated as
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By substituting (γ x
k , γ

x,(κ)
k ) = (x−1, (x(κ))−1) and

(bx
k, bx,(κ)

k ) = (y−1, (y(κ))−1) into (D.1), we obtain (32).
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