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Understanding sub-GHz Signal Behaviour in
Deep-Indoor Scenarios

Krzysztof Mateusz Malarski, Student Member, IEEE, Jakob Thrane, Student Member, IEEE,
Henrik Lehrmann Christiansen, Member, IEEE, and Sarah Ruepp, Member, IEEE

Abstract—Critical Internet of Things (IoT) services require
seamless connectivity, which is not always simple to provide and
particularly in deep-indoor scenarios, it can be even impossible in
some cases. The existing outdoor-to-indoor path loss models lack
the accuracy in the underground situations, thus IoT coverage
planning in such areas cannot rely on robust tools and becomes
a process of trial and error. In this work, we derive and
analyse various environmental features that can be useful in
understanding sub-GHz deep-indoor signal propagation. Based
on a large-scale field trial in an underground tunnel system,
we formulate several parameters related to TX-RX distance
and tunnel geometry. Through feature relevance studies in
linear (Ordinary Least Squares (OLS) regression) and non-linear
(Gaussian Process Regression) realms we show that 2D indoor
distance and the distances to the tunnel walls may be useful in
sub-GHz signal strength prediction in deep-indoor situations. We
construct a linear and a Gaussian Process model for indoor path-
loss prediction that outperform the 3rd Generation Partnership
Project (3GPP) model by 1.8 dB and 4.1 dB, respectively.

Index Terms—sub-GHz, NB-IoT, signal propagation, deep-
indoor, path-loss, gaussian process regression, tunnel, LIDAR.

I. INTRODUCTION

THE vital and dynamic development of numerous Internet
of Things (IoT) protocols, architectures and technologies

has transfigured 5G visions about connected industry and
society into a real and already ongoing process. Already in
2019, it was forecasted that 93% of companies use IoT to
optimise and automate their processes [1]. However, it was
the advent of Low-Power Wide-Area Network (LP-WAN)
standards that has really enabled the services involving big
distances (more than 1 km) and challenging connectivity
conditions, such as smart metering and object monitoring.
A prominent LP-WAN member, Narrowband IoT (NB-IoT),
provides 20 dB link budget improvement with respect to Long-
Term Evolution (LTE) [2]. Considering the specification alone,
it may appear clear that NB-IoT is the right choice for such
use-cases as water metering, asset tracking or intelligent alarm
systems. However, as these services may require the sensors
to operate in so called, deep-indoor scenario1 one must be
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1We classify a communication scenario deep-indoor when there are at
least 2 layers of walls or ground between the communicating parties, e.g.
underground tunnel, underground parking or metro station level -2.

aware of NB-IoT behaviour in such extreme situation before
planning the actual service deployment. In deep-indoor areas,
it is inevitable to encounter coverage holes, i.e. spots when
the User Equipment (UE) cannot operate with at least 160
bps throughput in uplink and/or downlink [3]. Yet, even in the
case of full coverage, the energy consumption of a NB-IoT
system may grow undesirably in difficult radio conditions [4],
as the NB-IoT system employs message repetition scheme to
increase the coverage and the power consumption of the UE
is proportional to the number of repetitions [5].

From the service provider and user perspectives, it is crucial
that the packets are reliably transmitted and the devices are
deployed optimally, so that infrastructure investments and the
cost of replacing the batteries are minimised. Although there
are many studies based on simulations and measurements
proving good NB-IoT coverage in outdoor and indoor set-
tings [6]–[8], less efforts have been done to study the deep-
indoor coverage, and according to the existing findings, it
is significantly poorer than in outdoor and indoor scenarios
[9]. Moreover, the simplicity of the official deep-indoor path-
loss models defined in [10], [11] does not reflect the true
nature NB-IoT signal propagation in underground areas [12].
As a result, service providers and users interested in deep-
indoor deployments are left with neither a strong experimental
evidence about robust NB-IoT operation nor with precise
statistical models that could be used to reliably simulate a
deep-indoor NB-IoT application.

In this article we investigate NB-IoT signal behaviour in
the underground tunnel and explore the potential of several
environmental features for explaining sub-GHz signal atten-
uation in deep-indoor scenarios. In [13] we presented the
measurement procedure and several parameters that could be
included in deep-indoor path-loss modelling. In this work,
we introduce more features and extend the data analysis by
studying feature relevance by means of Gaussian Process
Regression (GPR). The contributions of this work are the
following:

• we introduce deep-indoor features: number of the closest
corridors, the distance and the angle to the farthest tunnel
corner, and the distances to the tunnel walls and ceiling,

• we analyse statistically the derived features jointly with
the dataset introduced in [13]; we apply feature selection,
linear regression and Gaussian Process Regression,

• we discuss the prediction performance of the 3GPP
38.901 model and the proposed linear and Gaussian
Process models based on the most relevant features; we
explain to what extent the findings of this work can be
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TABLE I: Notation used in this article

PLo2i outdoor-to-indoor path loss
PLb basic outdoor path loss
PLtw building penetration path loss
PLin indoor path loss
GTX transmitter gain
GRX receiver gain
LTX transmitter noise figure
LRX receiver noise figure
PRX received power
PTX transmitted power
Lmisc miscellaneous losses
σp2 local variability term
ω vector of weights
x input vector
y output vector
X training data
X∗ test data

utilised in the process of deep-indoor deployment plan-
ning for NB-IoT, as well as other LP-WAN technologies.

The remainder of this paper is organised as follows. The
related work is introduced in Section II. We introduce the
methodology of the work in Section III. Section IV describes
the dataset acquired by the underground measurement cam-
paign and the feature engineering process. We analyse the
relevance of the features from the linear perspective in Section
V and in non-linear domain in Section VI. Section VII contains
a discussion and additional considerations for LP-WAN deep-
indoor coverage modelling, and Section VIII concludes the
work. The explanation on the general symbols used in this
article can be found in Table I.

II. RELATED WORK

IoT connectivity in underground areas is an active research
topic due to the potential critical applications, such as: cable
monitoring [14], mine safety warning [15] and urban drainage
systems [16]. In their survey, Hrovat, Kandus and Javornik
reviewed the state-of-the-art research focusing on radio prop-
agation modelling in underground tunnels [17]. The discussed
techniques spanned from numerical methods of Maxwell equa-
tions, through Ray Tracing, to empirical statistical modelling.
The authors explain the factors affecting signal propagation in
the tunnels. Tunnel geometry, especially cross section shape
and the presence of big obstacles may have significant impact
on the attenuation, whilst the effect of electromagnetic features
of the tunnel materials can be neglected in most cases [17].
Even though LP-WAN technologies are relatively new, they
have attracted attention in terms of underground applications.
This is not surprising, as in the most prominent standards:
Long Range Wide-Area Network (LoRaWAN), Sigfox and
NB-IoT the Maximum Coupling Loss (MCL) is increased by
at least 10 dB, comparing to General Packet Radio Service
(GPRS) (as shown in Table II) [8].

TABLE II: MCL in uplink for LP-WAN technologies.

Standard GPRS LoRaWAN Sigfox NB-IoT

MCL (dB) 144 154 158 164

A simulation-based study in [18] considers applying Lo-
RaWAN for underground sensor networks for agriculture. It is

Feature	engineering	(LIDAR)

Tunnel	System

Measurements

Analysis	(linear,	non-linear)

Proposed	PLin	term
Fig. 1: Deep-indoor path-loss component derivation procedure.

shown that LoRaWAN sensors can achieve a multi-kilometre
range, if buried less than 70 cm under the ground; moreover,
the moisture level of the soil has substantial influence on
the signal attenuation. In [19], the authors claim that both
LoRaWAN and NB-IoT are suitable for underground deploy-
ments of up to 1 metre of depth, based on Ray Tracing
simulations and single-point measurement in the manhole. The
measurements of 2 network operators in Oslo showed that
NB-IoT provides better deep-indoor coverage than LTE [20],
however, a deep-indoor measurement campaign presented in
[9] implies that NB-IoT can only provide underground con-
nectivity up to 400 metres away from the evolved Node-B
(eNB). Based on the ray tracing study, the authors in [21] state
that unless novel optimisation techniques (such as multi-hop
relaying) are implemented, the current infrastructure cannot
provide reliable coverage in deep indoor scenarios. The work
in [13] presents the first large-scale NB-IoT underground
measurement campaign (895 points) and initially evaluates
indoor features engineered from measurements’ metadata in
terms of path loss prediction.

The area of NB-IoT deep-indoor coverage modelling re-
mains unexplored. To the best of the authors’ knowledge,
this article presents the first empirical study of Outdoor-To-
Deep-Indoor (O2DI) for NB-IoT in a deep indoor propagation
scenario.

III. METHODOLOGY

In the IoT deployment process, it is essential to use accurate
and versatile modelling tools able to predict the coverage
condition in various environments, and at a reasonable cost.
Ideally, the model should be based on generic (i.e., scenario-
agnostic) parameters that are cheap to derive. Therefore, con-
sidering deep-indoor scenarios, it is understandable to discard
Ray Tracing modelling, as the tool requires geographical data,
which may be unavailable or difficult to acquire. Moreover,
the models are complex, thus costly in terms of computations
and software price. Instead, the use of models formulated
with the aid of statistical data seems appealing. As such
models often describe the phenomena by means of generalised
mathematical equations, they are simple to implement and
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consume little computational resources. At the same time,
the desired quantities depend on generic parameters (such as
distance and power) that can be calculated or measured in
situ. There are, however, certain issues to be addressed for the
statistical models to be accurate:

1) Complexity level. By adjusting the number of terms and
the corresponding coefficients, one needs to face a trade-
off between model simplicity and accuracy.

2) Parameter calibration with the experimental data. The
more unbiased measurements are provided at the model
creation, the more versatile the model becomes. Unfortu-
nately, conducting deep-indoor measurement campaigns
is a challenging and costly task.

Let us consider the example of Outdoor-To-Indoor (O2I)
path-loss model defined in [10]:

PLo2i = PLb + PLtw + PLin +N (0, σ2
p) (1)

Where, PLb is the basic outdoor path-loss, PLtw are constant
and frequency dependent building penetration losses,N (0, σ2

p)
is a log-normal distribution with local variability σp and PLin

are losses dependent on the depth inside the building. The
component related to indoor losses is formulated as follows:

PLin = 0.5 · din,2d (2)

Where din,2d is the distance indoor, e.g. the distance to
the outermost wall closest to the transmitter. Noteworthy,
the model is only limited to regular buildings and does not
consider underground cases (level -1, -2, etc.). It means that the
PLin of the considered path-loss model has not been calibrated
with empirical deep-indoor data, thus does not correspond to
the complexity of underground signal propagation, as shown
in [12]. Nevertheless, even though there exist other outdoor
and indoor models that consider environmental particularities,
such as COST 231 [22], we decided to utilise the 3GPP 38.901
model, presented in this section. We find it advantageous that
3GPP models are general and applicable to wide spectrum of
outdoor and indoor scenarios; therefore, the purpose of our
work is to 1) evaluate the 3GPP 38.901 model performance
underground and 2) propose an enhancement based on the ad-
ditional deep-indoor measurements. In this paper, we propose
a novel PLin formula following the procedure in Figure 1.
We base on the measurements taken in an underground tunnel
system and we engineer features with the aid of the available
Light Detection and Ranging (LIDAR) data of the measured
area. We perform Ordinary Least Squares (OLS) regression
analysis of statistical significance and relevance analysis with
Gaussian Process Regression (GPR).

A. Linear regression

Linear regression is a simple, well-know and easy to in-
terpret method of statistical inference in the cases where the
underlying dependence resemble linear behaviour [23]. In this
type of regression, the output variable y is modelled as a linear
dependency of the input features x, and the fit of the model
can be adjusted by optimised the assigned weights ω. In a

M feature situation, linear regression may be represented as
follows:

y = f(x,ω) = ω0 + ω1x1 + · · ·+ ωMxM (3)

One of the most straightforward methods of linear model
optimisation is adjusting the weights so that the deviations
between the observed and predicted output values are min-
imised. In Ordinary Least Squares method, the term subjected
to minimisation (Sum of Squares Error) is given as follows:

SSE =
n∑

i=1

(yi − ŷi)2, (4)

where n is the number of output samples, yi is the actual
observation and ŷi is the predicted output value [24].

In our work, we investigated whether it is feasible to propose
a more accurate PLin term of the Equation 1 with the aid of the
engineered features. We applied linear regression using various
combinations of the features as parameters (vector x in Equa-
tion 3) and Reference Signal Received Power (RSRP) of the
signal as the output variable. Finally, we constructed a linear
regression model for PLin prediction, which was compared
with the baseline model (Equation 2) and the GPR model.We
utilised a Python implementation of OLS regression [25] and
examined the goodness of fit coefficient (R2) and Residual
Mean Square Error (RMSE) of the considered models.

B. Gaussian processes

Gaussian Process is a probabilistic machine learning
method, applicable both to regression and classification prob-
lems. It allows for a tractable inference for (non-)linear out-
put functions and an arbitrary number of dimensions, under
the assumption that both the input and the output follow
gaussian distribution. In the regression, the resultant process
(i.e. functional distribution) can be sampled to yield possible
x,y dependencies; additionally it is possible to evaluate the
significance of such samples-functions by analysing the given
probabilities.

The GPR bases on 2 fundamental properties of gaussian
distributions, namely that a gaussian distribution retains its
characteristics even when subjected to: 1) Marginalisation,
when certain dimensions are discarded (marginalised out) and
2) Conditioning under the training data [26].

Contrary to linear regression, GPR does not use any weight-
like parameters to produce a function, but instead uses the
input dataset (say, M samples) to create M-dimensional dis-
tribution described by its mean f̄∗ and covariance matrix
cov(f∗). The covariance matrix can be derived with the aid
of the selected kernel function, which provides the similarity
measure between any two input points. A well-known kernel
example, also applied in this work, is squared-exponential
kernel, defined as follows:

cov(f(x), f(x∗)) = K(X,X∗) = exp (−1

2
|x− x∗|2) (5)

The ultimate goal of GPR is to derive a predictive distribu-
tion given the training and test data:
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Calulate	PLin:

PLin	=	PRX	-	PTX	-	GTX	-	GRX	-	LTX	-	LRX	-	Lmisc	-	PLo2i	-	PLb

Assume	perfect	link	budget	calculation:

PRX	=	PTX	+	GTX	+	GRX	+	LTX	+	LRX	+	Lmisc	+	PLo2i

Extract	PLin	from	O2I	formula:

PLin	=	PLo2i	-	PLb	-	PLtw	

Constant

Fig. 2: PLin calculation.

f∗|X,y, X∗ ∼ N(f̄∗, cov(f∗)) (6)

where the mean is expressed as:

f̄∗ = K(X∗, X)[K(X,X) + σn
2I]−1y (7)

and the covariance function:

cov(f∗) = K(X∗, X∗)

−K(X∗, X)[K(X,X) + σn
2I]−1K(X,X∗) (8)

The samples drawn from the distribution from Equation 6
are different output functions, and the mean of such samples
represents the prediction of the output variable given the
test inputs. Additionally, since the hyperparameters of the
covariance function, called length-scales, determine the dis-
tance in the input space at which the function values become
uncorrelated, it is possible to perform so called, Automatic
Relevance Determination (ARD), simply based on the fact
that the larger the value of the length-scale, the lower is the
relevance of the parameter [27].

In this article, we applied the GPR as follows. In order to
complement the linear regression findings on the relevance of
the engineered features, we performed the GPR with ARD and
obtained relevance scores in the non-linear realm. We chose
the most relevant features and constructed the GPR model for
PLin prediction, compared with the model from Equation 2
and the linear regression model.In our analysis, we applied a
GPR implementation in Python [28].

C. Indoor path-loss estimation

In scenarios, such as the O2DI scenario investigated in
this paper, the link budget is complex and composed of
many factors, related to transmitter and receiver’s gains, noise
figures, antenna radiation patterns, antenna polarisation, and
others. In our study we did not know all of the aforementioned
terms, thus we formulated a set of assumptions related to
some of the components (TX gain and losses) and calculated
the link budget accordingly. We calibrated the loss terms
by adjusting an additional constant term corresponding to
miscellaneous losses and also compensating for inaccuracies in
the assumptions. The constant could be found by minimising
the Mean Square Error (MSE) of the measurements towards
a link budget where the constant composes the unknown
attenuation and gain terms. Figure 2 shows how the indoor
path loss was derived from the power measurements; TX/GX
gains are denoted GTX , GRX , noise figures are represented
by LTX , LRX and Lmisc refers to the miscellaneous losses
and is our link budget calibration term.

IV. EXPERIMENTAL DATA COLLECTION

Fig. 3: Layout of tunnel system with coloured signal power
samples along the corridors where the measurements were
conducted. The tunnel system is considered between level −1
and −2. The base station is placed at 30 m above top ground
level.

In order to increase the accuracy of the statistical path-loss
modelling, a field trial was conducted to collect RSRP samples
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Fig. 4: The profile of the campus area.

from a NB-IoT device located in the underground tunnel
system of DTU Lyngby Campus. The data were captured along
1.6 km in total; the area of the experiment is depicted in Figure
3 and the parameters of the campaign are present in Table III.
The university buildings are of 2-4 floors of height and their
walls are made from brick or glass/steel structure. The tunnels
are located directly under the buildings and under the parking
area, where high vegetation is also present. A simplified terrain
cross-section is depicted in Figure 4. The signal samples were
taken only along the main corridors, i.e. those connecting the
group of buildings, or campus quadrants. Each measurement
series started and finished in a certain distance from the entry
of the tunnel system, as there was no direct access to a
main corridor from above and one had to pass some smaller
corridors to reach the main tunnels. Thus, the impact of the
tunnel entries was not analysed.

The uniqueness of this trial lays in the fact that precise
locations of the measurement points could be obtained, even
though there was no Global Navigation Satellite System
(GNSS) signal in the tunnels. The indoor localisation was con-
ducted basing on high resolution LIDAR plan of the measured
area. Thanks to the dataset containing x,y,z coordinates of the
complete tunnel system, we could localise the measurement
positions with a 1 cm precision with the aid of the following
process. 1) We documented the exact location of the first
and the last measurement point of each independent study
(i.e. tunnel interval); 2) such start and end positions were
then localised in the LIDAR point cloud and their Global
Positioning System (GPS) coordinates were calculated; 3)
since all the measurement points were equidistant (1 or 2
metres of distance), knowing the amount of points and the
exact start/end positions it was possible to interpolate the
locations of all intermediate measurement points. In total, 1048
measurement points were taken and each of the 1048 samples
was averaged over 10 measurements to limit the impact of
shadowing and large-scale fading impairments. In Figure 5,
the captured RSRP samples are presented with respect to 3D
distance and 3GPP 38.901 UMa model fit.

A. Feature engineering

As both the GPS position and transmission parameters of the
neighbouring NB-IoT base station were known (see Table III
and Figure 3), combining this knowledge with the precise GPS

locations of the deep-indoor measurement points enabled us to
derive a number of advanced features analysed in this article.
Apart from calculating 3D distance between the NB-IoT
device and the eNB (denoted as d3D), it was also possible to
compute azimuth and elevation angles (θ and φ, respectively).
The latter ones alone were treated as quantities assisting in the
inference rather than path-loss feature candidates. With the aid
of 3D trigonometry, indoor distance din,2D and penetration
distance dpen,3D could be found. din,2D corresponds to the
distance between the UE and the tunnel edge, and dpen,3D
represents the distance between the tunnel edge and the ground
surface; both of them are calculated along the straight line path
toward the eNB. The rest of the features can be categorised as
tunnel-related, as they only refer to the tunnel geometry and
not to the distance from the eNB. It has to be mentioned that
for each tunnel, along which the measurements were taken, the
locations of the entrances to the corridors crossing the main
tunnel were identified. This allowed for the formulation of the
average distance to the nearest corridor dcor,avg , formulated
as follows:

dcor,avg =
dcor,closest + dcor,farthest

2
(9)

where dcor,closest and dcor,farthest are the distances between
the measurement point and the closest/farthest corridor en-
trance in the measured tunnel, respectively. Another feature
included in the study is the number of close corridors2 nc.
Furthermore, we defined 2 more features related to the tunnel
corners, namely, the distance to the farthest corridor corner
and the angle between the measurement point and the farthest
corner with respect to the tunnel wall (dcorner and acorner,
respectively). Last, but not least, we derived 3 parameters
involving the position of the receiver with respect to the tunnel
walls along x,y,z coordinates (dwall,x, dwall,y and dwall,z).

The features investigated in this work can thus be classified
into 2 groups:

1) distance-related, i.e. referring to the straight line distance
between the NB-IoT sensor and the eNB: d3D, din,2D
and dpen,3D, and

2) tunnel-related, corresponding to the geometry properties
of the tunnel: dcor,avg , nc, dcorner acorner, dwall,x,
dwall,y and dwall,z .

Figure 6 illustrates all tunnel-related features and the distance-
related features are depicted in Figure 7.

V. FEATURE ANALYSIS: LINEAR PERSPECTIVE

The purpose of the statistical analysis with linear tools
was to observe and evaluate linear dependencies between
the engineered features and the measured RSRP values. This
approach is a natural first step of the parameter examination,
as the prior assumption on the indoor losses involves a linear
relation to the 2D indoor distance (see Equation 2).

We performed relevance evaluation by means of both au-
tomated and analytical feature selection, and we studied the
performance of a selection of linear models composed of the
engineered features.

2Particularly, nc denotes the number of crossing corridor entrances within
the threshold distance from the measurement point.
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TABLE III: Experiment parameters

# of measurement points 1048

TSMW/UE measurements per point 1e6/10

Operating frequency 820.5 MHz

Bandwidth 180 kHz

Noise figure (TX/RX) 5 dB/3 dB

TX power 46 dBm

Receiver antenna type Dipole-like

Receiver antenna position Vertical

TX/RX antenna gain 5 dBi/5.8 dBi

A. Feature selection

1) Automatic methods: In this work, we applied automated
feature selection using 3 different methods: 1) Feature filtering
based on Pearson Correlation, 2) Recursive Feature Elimina-
tion (RFE) and 3) Lasso Regularisation. The results of the
test are presented in Table IV. Depending on the specific
method, different features were selected. From the results of
the filtering method one can learn that most of the engineered
features have little correlation with RSRP and only d3D and
dcor,avg remain important. Taking into account merely the
resultant R2 coefficient and the statistical significance of the
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TABLE IV: Automatic feature selection

Method # of features
selected Features selected

Filtering 2 d3D , dcor,avg

RFE 13

d3D , din,2D , dpen,3D ,
dcor,avg , dcorner , acorner ,

cos(φ), sin(φ), cos(θ), sin(θ),
dwall,x, dwall,y , dwall,z

Lasso 5 dpen,3D ,dcor,avg ,dcorner ,
dwall,x, d3D

features (which is the case in the RFE method), only nc is
not explanatory for RSRP in a linear fashion. The iterative
method selects 5 features: dpen,3D, dcor,avg , dcorner, dwall,x

and d3D. Regardless of the automatic method used, d3D and
dcor,avg are always selected.

2) Analytical selection: We repeated the process of feature
selection, now in a manual way, considering both the model
performance (R2 and RMSE) and the number of features
involved. Thus, performing backward feature selection we
discovered the following: 1) Starting with all features, one may
drop 9 features and leave only d3D, din,2D, dpen,3D, dcor,avg ,
and dwall,x at the cost of 1.3 dB increase of the RMSE; 2)
Starting with all tunnel-related features, removing all except
dcor,avg , nc, dcorner and dwall,y comes at a negligible increase
of RMSE (0.004 dB).

B. Goodness-of-fit analysis

1) Single-feature models: Figure 8a summarises the RMSE
scores of the engineered parameters considered individually.
In accordance with the feature selection results, d3D and
dcor,avg are the most explanatory for the RSRP measured.
Both the azimuth angle θ and the elevation angle φ represent a
noticeable share of the output variance and indicate that there
exist other geo-statistical features not considered in this paper,
that affect the signal attenuation. Interestingly, dpen,3D and
din,2D alone do not influence the signal power at the receiver;
this is noteworthy having in mind that the current 3GPP indoor
path-loss model bases solely on din,2D (see Equation 2).
Regarding the features corresponding to the tunnel geometry,
the average distance to the nearest corridor impacts the RSRP
much more than the distances to the tunnel walls and corners
(especially, dwall,z).

2) Multiple feature models: In this part, we limited the
amount of investigated models to the following set:

• all feats, containing all features mentioned in this article,
• dists only, including distance-related features: d3D,
din,2D and dpen,3D,

• tun angles, involving tunnel-related features together
with φ and θ angles (i.e. all feats - dists only)

• tun only with all the tunnel-related features,
• 2 models corresponding to the analytical backward fea-

ture selection starting from all features and from all
the tunnel features (Section V-A2): bs all and bs tun,
respectively.

The goodness of fit for the aforementioned models can be
observed in Figure 8b. First of all, combining all the features
together yields the lowest value of RMSE, reaching the value

of 15.1 dB; this means that the features investigated in this
paper are meaningful in general. Moreover, 3 distance-related
features are more powerful in linear prediction than 7 tunnel-
related features, however, the latter ones in combination with
φ and θ angles exhibit better performance. From the linear
perspective, 3 of the tunnel features have no meaning in RSRP
prediction, as tun only and bs tun models perform almost
identically.

VI. BEYOND THE LINEARITY: AUTOMATIC RELEVANCE
DETERMINATION ANALYSIS

The analysis included in the previous section compared
simple linear models and provided some insights about the
feature-to-output correlation, as well as the extent to which
the individual parameters explain the variance of the RSRP.
In this section we describe the GPR analysis with ARD applied
on all the engineered features with the purpose of discovering
their relevance when more complex input-output relationships
are considered.

1) Per-corridor test: We standardised the inputs and cen-
tred them around zero mean, as required by the ARD. We
conducted a series ARD tests for squared-exponential kernel
space. Since the measurements in the tunnel system were taken
in 9 stages (scenarios), we modelled the Gaussian Process 9
times, each time excluding a specific tunnel interval. During
each test, the model was subjected to Cross-Validation (CV)
with variable number of data splits, so that each time a split
consisted of no more than 10 samples. For example, in one of
the scenarios, after discarding one corridor the remaining 895
samples were divided into 179 consecutive splits, 5 samples
per split. At each of the CV splits, the hyperparameters of
the model were adjusted by Adam optimiser, until the conver-
gence of the loss function (marginal likelihood). Compared to
Section V, we excluded d3D from the analysis, as its high
relevance could be clearly observed; we also disregarded the
features related to φ and θ angles. Thus, the ARD analysis
was performed on the remaining 8 features.

Table V presents the lenghtscales of the features, modelled
in the squared-exponential kernel space without any prior
assumptions specified3. Since the lenghtscale is reciprocal to
the relevance score, each feature in the table is additionally
given a relevance rank for a given scenario to facilitate the
relative evaluation. It is visible that the most relevant parameter
is din,2D, ranked first in 8 out of 9 scenarios; the least useful
feature, dwall,z was ranked the worst in the same number
of scenarios. Let us consider the four most relevant fea-
tures: din,2D, dwall,x, dpen,3D and dcor,avg , respectively. Such
results agree with the analytical backward selection model
bs all from Section V-A2 (excluding d3D). This would imply,
that these features are significant in RSRP modelling both
in linear and non-linear realms. Furthermore, both distance-
related and tunnel-geometry-related parameters are necessary
to properly explain the behaviour of NB-IoT signal in deep-
indoor settings.

3Modifying the prior distributions did not affect the results noticeably.
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Fig. 8: Comparison of the selected linear models.

TABLE V: ARD results for different corridor scenarios

Scenario din,2D dpen,3D dcor,avg nc dcorner dwall,x dwall,y dwall,z RMSE[dB]
1 0.235 1 4.996 5 1.682 3 3.575 4 8.008 7 0.41 2 6.951 6 9.572 8 8.4
2 0.187 1 1.158 3 1.332 4 5.755 6 8.417 7 0.549 2 3.652 5 9.448 8 10.7
3 0.273 1 8.053 7 7.199 5 7.318 6 6.640 4 0.28 2 0.845 3 9.967 8 12.2
4 0.255 1 0.506 3 1.775 4 4.091 5 7.26 7 0.459 2 6.243 6 9.671 8 8.4
5 0.202 1 0.539 2 2.389 4 4.774 5 7.759 7 0.598 3 5.93 6 9.513 8 7.4
6 0.207 1 0.577 3 1.825 4 4.492 5 7.193 7 0.525 2 5.056 6 9.719 8 8.7
7 0.192 1 2.718 4 0.577 3 5.59 5 9.485 7 0.551 2 8.053 6 11.596 8 13.1
8 0.62 3 0.46 2 2.217 4 3.033 5 7.557 7 0.249 1 7.244 6 11.683 8 8.6
9 0.202 1 0.689 3 2.525 4 3.25 5 9.398 8 0.42 2 7.974 6 9.063 7 10.4

AVG RANK: 1.222 3.555 3.888 5.111 6.777 2 5.555 7.888

TABLE VI: ARD results for 75% of the shuffled data

din,2D dpen,3D dcor,avg nc dcorner dwall,x dwall,y dwall,z RMSE[dB]
0.547 3 12.468 7 2.168 4 3.906 5 8.912 6 0.369 2 0.356 1 25.852 8 7

2) Shuffled samples test: In this experiment, we randomised
the combined dataset and divided it into training and test sets
with size ratio of 75% and 25%, respectively. We trained the
GPR model on the training set and perform ARD analysis,
summarised in Table VI. One can observe that the relevance
ranks assigned to the features are not the same as in the per-
corridor analysis, and now the 3 most relevant features are:
dwall,y , dwall,x and din,2D. The biggest rank change happened
to dpen,3D that in this experiment was classified as second least
relevant parameter. The discrepancies in the results between
Table V and Table VI indicate that each of the measured tunnel
corridors represents a complex deep-indoor scenario which
environmental characteristics affect the received signal power
in a peculiar way. Excluding one of the tunnels always led to
different feature relevance determination, thus we relied on the
case with the samples shuffled from all the corridors (Table
VI) and used the same data split and the selected features for
indoor path-loss component prediction.

3) Indoor path-loss component prediction comparison:
In order to compare the linear regression and GPR models
with the 3GPP 38.901 model, we transformed the RSRP
values from the measurements into PLin values as depicted
in Figure 2. In our study, we followed the assumption that out
of the components contributing to the received signal power

at the receiver, i.e.: antenna gains GTX , GTX , noise figures
LTX , LRX , path-loss PLo2i and other losses Lmisc (e.g.
antenna polarisation impairments, fading margin) only PLo2i

is a variable, while all remaining components are considered
invariant. The transmitter and receiver gains and noise figures
were assumed (see Table III), and the magnitude of the Lmisc

was empirically found to be equal to 5.6 dB. Moreover, we
assumed the outdoor and building penetration losses constant,
leaving only the PLin component variable. Consequently, we
trained a linear regression model and a GPR model on thus
extracted PLin, so that a direct comparison with 3GPP 38.901
model (Equation 2) was possible.

The boxplot presented in Figure 9 compares the Mean
Absolute Error (MAE) of the predictions. Note that both the
linear regression and GPR models utilise 3 most relevant
features from Table VI: dwall,y , dwall,x and din,2D. The linear
model can be represented as follows:

PLin[dB] = 11.0773−
− 0.1362 ∗ din,2D − 6.9658 ∗ dwall,x + 4.055 ∗ dwall,y

(10)

With respect to the 3GPP model, the linear model exhibits
error improvement of 1.8 dB, whilst the GPR model predicts
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with 4.1 dB lower error. The non-linear model has additionally
2.3 dB lower MAE than the linear regression model. Based
on the given dataset, one may observe that the underlying
behaviour of the PLin in the deep-indoor environment might
be more complex than linear.

In Figure 10, the predictions of all the considered models
are presented with respect to din,2D. The values of the indoor
distances have been limited to 25 metres, as assumed in
[10]. It can be easily noticed that the 3GPP 38.901 proposal
does not offer accurate PLin predictions in the considered
underground scenario. The models proposed in this paper
exhibit considerably higher accuracy, however, it is visible that
certain groups of observations (e.g. those for din,2D values
between 5 and 10 metres) are not predicted correctly by any
model. For din,2D > 15m, the non-linear model follows the
PLin more faithfully than the linear regression model. One
can notice a large spread of measured path loss values, which
may imply that certain corridor-specific propagation effects
(e.g. wave guiding) were not captured in our approach.

VII. DISCUSSION

Feature analysis reveals that with the aid of the parameters
considered in this work it was possible to construct statistical
models predicting the measured PLin more accurate than
the model defined in 3GPP 38.901 standard. However, one
may identify several problems making the validation of the
results tricky. First and foremost, the collected dataset is
subjected to bias, since all data were measured in several
tunnels of the same underground system. Therefore, certain
geographical factors characteristic to the measurement area,
such as: the location of the eNB in relation to the buildings,
the deployment of above-ground obstacles, the size and the
orientation of the tunnels, as well as the influence of ventilation
ducts, doors and other objects in the tunnelhave affected the
observed signal power. On the other hand, the captured data
were taken with changing orientation of the corridors and
various terrain profile above the ground, which has made
the study more versatile. Acquiring the RSRP measurements
from another underground tunnels, preferably situated farther
from the eNB, would be beneficial for the accuracy of the
model; thus, the dataset used in this paper has been published
in [29] and can be extended with more underground signal
samples. However, in the new area one would need either a
high-resolution LIDAR dataset or another solution enabling
precise indoor localisation of the measurement points, since
otherwise deriving the distance-related features (d3D, din,2D
and dpen,3D) would not be possible. In fact, isolating single
corridors from the analysis has led to diverse feature relevance
scores that were difficult to interpret; further analysis of some
corridors we considered the most peculiar did not lead to a
meaningful conclusion. One may conclude that the engineered
features, though relevant in the majority, do not reflect the
entire complexity of signal behaviour in the underground
scenario, which limits the prediction accuracy of the derived
models. The most prominent feature of the measurement area
not considered in this study is the spatial profile of the tunnel:
the distribution of obstacles, the area and cross-section of the
free space in the corridor, etc. On the other hand, several
features analysed in this study have proven their usefulness
in NB-IoT signal prediction. Regardless of the statistical tool
applied in the linear analysis, d3D was selected as the most
relevant parameter. On the other hand, the ARD examination
favoured dwall,y , dwall,x and din,2D. All in all, these 3 features
remain the most useful in understanding the underground NB-
IoT signal behaviour. In general, one can notice that knowing
the distance to the base station and the placement of the IoT
device in terms of the tunnel walls is essential in predicting
the received signal power.

Is the study only relevant for NB-IoT deployments?:
The analysis described in this article considers deep-indoor
propagation of NB-IoT guard-band signal in band 20 (820.5
MHz). However, we believe that the observed signal behaviour
might also be useful source of reference for underground
deployments of unlicensed sub-GHz IoT technologies, such
as LoRaWAN and Sigfox, as their operating frequency is
also sub-GHz, 868 MHz in Europe. One has to remember
the difference in consequences that signal attenuation may
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have for the operation of a particular IoT standard; as already
mentioned in this paper, NB-IoT is sensitive to the radio
conditions, as they affect the number of repetitions, thus both
the data rate and the energy consumption. In the case of
Sigfox, the message is always repeated up to three times
regardless of the received signal power4, and in LoRaWAN
the RSRP may influence the spreading factor in use, thus the
data-rate and time-on-air of the packets [30].

VIII. CONCLUSIONS AND FUTURE WORK

Until now, the area of deep-indoor path-loss modelling in
NB-IoT has been unexplored, as both empirical data and
accurate models are missing. In this work, we addressed this
gap by introducing, describing and analysing a number of
distance- and tunnel-related features. 3 parameters: din,2D,
dwall,x and dwall,y were distinguished as the most relevant
for predicting the measured RSRP. We constructed linear
regression and Gaussian Process models that predicted the
signal power with the MAE decreased noticeably by 1.8 dB
and 4.1 dB, respectively, compared to the 3GPP 38.901 model.

In order to increase the accuracy of the proposed indoor
path-loss models, the next step would be to 1) collect more
measurement data from diverse deep-indoor scenarios, prefer-
ably at various distances from the base station and 2) define
more environmental features, such as those related to the
spatial profile of the underground tunnel: the distribution of
obstacles, the area and cross-section of the free space in the
corridor, among others. Nevertheless, the findings of this paper
may be a solid base for future deep-indoor signal propagation
research and LP-WAN underground deployment studies.
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