
 

 

 

Abstract— While achieving security for Industrial Internet 

of Things (IIoT) is a critical and non-trivial task, more 

attention is required for brownfield IIoT systems. This is a 

consequence of long life cycles of their legacy devices 

which were initially designed without considering security 

and IoT connectivity, but they are now becoming more 

connected and integrated with emerging IoT technologies 

and messaging communication protocols. Deploying 

today’s methodologies and solutions in brownfield IIoT 

systems is not viable, as security solutions must co-exist 

and fit these systems’ requirements. This necessitates a 

realistic standardized IIoT testbed that can be used as an 

optimal format to measure the credibility of security 

solutions of IIoT networks, analyze IIoT attack landscapes 

and extract threat intelligence. Developing a testbed for 

brownfield IIoT systems is considered a significant 

challenge as these systems are comprised of legacy, 

heterogeneous devices, communication layers and 

applications that need to be implemented holistically to 

achieve high fidelity. In this paper, we propose a new 

generic end-to-end IIoT security testbed, with a particular 

focus on the brownfield system and provide details of the 

testbed’s architectural design and the implementation 

process. The proposed testbed can be easily reproduced 

and reconfigured to support the testing activities of new 

processes and various security scenarios. The proposed 

testbed operation is demonstrated on different connected 

devices, communication protocols and applications. The 

experiments demonstrate that this testbed is effective in 

terms of its operation and security testing.  A comparison 

with existing testbeds, including a table of features is 

provided. 

 

Index Terms — security testing, IIoT, brownfield, testbed   

 

I. INTRODUCTION 

HE Industrial Internet of Things (IIoT) is a special case of 

IoT paradigms in which machines, computers and people 

can enable intelligent industrial operations based on 

advanced data analytics. Industrial systems are becoming 

increasingly capable of working automatically and 

intelligently and even responding to unpredicted events (e.g., 

machine’s failure). However, there is a security risk associated 

with connecting these critical industrial systems to the IoT  
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technologies [1]. A greater concern relates to ‘brownfield’ 

systems in which existing legacy industrial systems such as 

Programmable Logic Controller (PLC), Remote Terminal Unit 

(RTU), Supervisory Control and Data Acquisition (SCADA), 

Input/Output (I/O) devices and among others interoperate with 

IoT technologies [2]. These systems, such as those of energy, 

water, buildings, roads, and factories have been around for 

decades and were designed to have long service lives without 

considering their connectivity and security [3]. Replacing 

them with new gadgets and devices designed to be secure 

from scratch (i.e., ‘greenfield’ systems) is not technically or 

economically feasible [4, 5]. Furthermore, most of today’s 

security solutions and methodologies are not applicable for 

such implementation because they are Information 

Technology (IT)-centric and do not take into account a 

system’s safety, resilience and reliability [6-8]. As a 

consequence, there is a security-gap in brownfield systems 

which raise the need to infuse these systems with new security 

models to protect them and mitigate potential risks.  

     To develop new, efficient and holistic solutions, more 

research should be conducted. However, this is often restricted 

by a lack of realistic data about a system’s communications 

and activities, as well as potential cyber-attacks [9-11]. 

Unfortunately, it is extremely difficult to obtain realistic data 

from an actual environment for security and privacy reasons 

which may lead researchers to make inexact assumptions and 

limit the applicability of their results. Therefore, realistic data 

and system test models are essential for researchers to be able 

to understand the current threats landscape and attack 

techniques in brownfield IIoT systems with rapidly emerging 

new devices and connectivity protocols. Existing IoT testbeds 

cannot be used to test IIoT systems’ security (in particular 

brownfield) as these industrial systems have special 

requirements such as safety, resilience and reliability, and the 

need for the integration between legacy and new technologies 

[4, 12-14]. Thus, it is critical to offer researchers with accurate 

and realistic testbeds to optimize ongoing research and help 

the research community to validate its security hypotheses. To 

achieve high levels of fidelity, there is a need for a holistic, 

end-to-end IIoT testbed that is generic, accurate, relatively 

inexpensive and easy to reproduce.  

This paper proposes a new IIoT testbed for testing and 

analyzing security issues related to a system’s components 

(e.g., data, communication, and devices). The main 

contributions of this paper are thus as follows: 

1) We propose a new generic end-to-end IIoT security 

testbed, with particular emphasis on brownfield 

implementations. We call it Brown-IIoTbed. 

2) We develop a Brown-IIoTbed with free open sources  
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software and cost-affordable hardware.  

3) We investigate and test various security threats based 

on the STRIDE model, as well as security 

evasion/reverse shell backdoor against router/firewall 

to demonstrate the feasibility of Brown-IIoTbed. 

4) We also provide machine learning approaches for 

intrusion detection and introduce an example of 

malicious payload hunting and intelligence as a 

proactive defense approach (early detection).  

5) We provide a comprehensive analysis and comparison 

of existing testbeds with our Brown-IIoTbed.  

6) We release all the implementation of testbed into the 

GitHub
1
, so the researcher can easily reproduce it.   

 The remainder of this paper is organized as follows: related 

work in section II; a description of a generic IIoT system 

architecture in section III; development and implementation of 

the testbed (Brown-IIoTbed) in section IV; security testing 

and analysis using Brown-IIoTbed in section V; comparison 

with existing testbeds and a discussion in section VI; and the 

conclusion and future work in section VII.  

II. RELATED WORK  

    Several IoT/IIoT testbeds have been presented by 

researchers to validate their hypotheses related to various 

issues in these systems. Patel et al.[15] investigated the 

challenge of designing and experimenting robust IoT 

applications such as smart traffic and lighting. In their testbed, 

the authors utilized a Message Queuing Telemetry Transport 

(MQTT) protocol and Kafka-software platform to transfer data 

and visualize it in a dashboard to provide knowledge about 

these applications. In related work, Choosri et al. [16] 

presented a traffic management system testbed to investigate 

how IoT technologies can be applied to solve the practical 

requirements for human-oriented traffic control.  They used a 

Java-based application to control Radio Frequency 

Identification (RFID) readers tagged to vehicles. Another 

testbed was developed by Deshpande, Pitale, and Sanap [17] 

for detecting abnormal signals in an industrial automation 

system. They used a set of sensors (e.g., temperature, and 

pressure) that sent analog signals to an Android smartphone 

using Bluetooth. Similarly, Merchant and Ahire [18] 

introduced a simple industrial automation system testbed for 

monitoring the blade-aging system of a cutter tool. These 

presented testbeds did not provide a complete IIoT system and 

were designed for specific use.  

Furthermore, few labs globally have developed large-scale 

open IoT/IIoT testbeds to test new devices, applications and 

technologies. For example, Industrial Internet Consortium 

(IIC) [19] introduced ‘INFINITE’ as an innovation for 

building a software-defined infrastructure testbed to drive the 

growth of IIoT and facilitate a process for testing new 

applications. ‘INFINITE’ involved multiple platforms across 

mobile, cloud, sensor and analytics. It was deployed in Ireland 

and included multiple IIoT service providers. The Federated 
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Interoperable Semantic Testbed and Applications (FIESTA)-

IoT [20] provided  large-scale experimental infrastructure for 

heterogeneous IoT technologies through 10 testbeds 

distributed around the world. It included smart Santander for a 

smart city, smart Institute of Communication Systems (ICS) 

for a smart building, Sound City (SC) for collecting data from 

smart mobiles, KETI, ADREAM, FINE and Network 

Implementation Testbed Open Source (NITOS) for smart 

buildings, EXTEND for sea and underwater environments, 

Tera.4Agri for smart agriculture and Real Data Center (RDC) 

for the energy consumption of data center solutions. These 

testbeds focused on collecting various data types based on 

different communication technologies, including Wi-Fi, LTE, 

WIMAX, Zigbee, and 4G/5G terminals. Another open IoT 

testbed is Japan-wide Orchestrated Smart/Sensor Environment 

(JOSE) [21]. JOSE focused on collecting data from multiple 

wireless networks, each of which represented a specific IoT 

service and used virtual machines for its storage and 

computations. Also, various communication protocols were 

used to connect sensors and gateways with middleware and 

virtual networks including wireless LAN, LTE, and 3G. All 

these discussed testbeds concentrated only on testing 

applications and collecting IoT data, and most did not provide 

clear descriptions of their configurations and components.  

      Although security is one of the major challenges that 

IoT/IIoT deployments encounter, few studies have focused on 

IoT/IIoT security testbed. For example, Siboni et al. [22] 

presented a security testbed capable of testing various IoT 

devices and physical access media, including Wi-Fi, Zigbee, 

and Bluetooth. They tested various security issues such as 

discovering IoT devices’ vulnerabilities, detecting anomalies 

using machine learning, and evaluating testbed’s resilience 

against denial of service (DoS) attacks. However, their 

proposed testbed focused only on IoT devices and specific 

physical access media. It also provided an industrial IoT 

scenario, in particular, a closed control loop, using simulators 

only. Berhanu, Abie, and Hamdi [23] presented security 

testbed for smart health applications. In their experiment, data 

was collected from multiple sensors via smartphones, sent to a 

storage device and then displayed for end-users through 

multiple interfaces. This testbed focused on validating energy 

consumption rather than security issues and presented only a 

specific use. Moreover, Hossain et al. [24] introduced a 

distributed testbed providers and multiple users which could 

be rented by end-users to deploy their devices or conduct IoT 

research experiments (e.g., security testing). The authors 

argued that, as their testbed was designed based on the 

principle of cloud services, it provided these services through 

users registering for allocation of resources which were 

managed and monitored using the management components. 

The testbed was evaluated based on a process of allocating 

various IoT-simulated devices, with the results showing that it 

could provide a reasonable and manageable performance 

despite some clients possibly facing a short delay in reserving 

their demand for resources. However, as evaluating its 

performance based only on simulated devices could not 

represent those of real systems and their conditions, this 



 

 

prototype could not be considered a real service.  

    In summary, although there is a great deal of literature 

available on developing testbeds for IoT and IIoT systems 

with different objectives, most existing testbeds focus on 

collecting data using various sensor types deployed in wireless 

sensor networks and supporting different networking wireless 

communications while others depend on simulators to model 

the data of IoT/IIoT devices and some involved specific target 

applications. Open testbeds and those presented as service 

prototypes are confronted by the challenge of authenticating 

valid users and offering only restricted access to some 

collected data due to privacy concerns. They are also highly 

complex and cannot be adapted to satisfy users’ requirements 

for security testing. Almost all of the existing testbeds cannot 

guarantee the fidelity of IIoT systems as they do not follow a 

standard architecture model. Also, the IoT implementations 

cannot be used to test security issues related to industrial 

systems since IIoT systems have special requirements 

regarding safety, resilience, and reliability. The 

interoperability using various messaging communication 

protocols, and the integration between legacy control systems 

and IoT technologies have not been investigated. A holistic 

end-to-end testbed has not been presented for IIoT systems, in 

particular brownfield systems, for security testing. Therefore, 

as there are critical gaps, it is necessary to develop a testbed 

that focuses on providing a simple and accurate end-to-end 

IIoT testbed with a high level of fidelity. This paper introduces 

a new end-to-end IIoT security testbed with a particular focus 

on recent IIoT connectivity protocols, interoperability-

supportive devices, and brownfield systems because they are 

the most essential for obtaining new security solutions as well 

as a testbed for evaluating those solutions.   

III. DESCRIPTION OF GENERIC IIOT SYSTEM 

ARCHITECTURE  

An Industrial Control System (ICS) usually uses the Purdue 

Enterprise Reference Architecture (PERA) as the reference 

architectural model. Its main concept is based on dividing 

enterprise and ICSs into vertical and hierarchal segments, 

including fieldbus, control bus, and corporate, that function in 

a similar way [25]. Arguably, this model is still adopted in 

terms of its functionality for providing downward and upward 

information flows among a brownfield IIoT system’s levels. 

However, because of the implementation of new digital 

networks and various technologies, such as mobile, edge, and 

cloud computing, as well as changes in information and 

command flows through these systems, new architectural 

reference models have been developed for IIoT systems.  

The Industrial Internet Consortium (IIC) published an 

architectural model for IIoT system applications, called the 

Industrial Internet Reference Architecture (IIRA), that helps in 

understanding the implementation of greenfield and 

brownfield IIoT systems in real environments [26]. It presents 

different descriptions for these implementations as it is 

generally case-specific. However, from a variety of such 

architectures, we extract a generically designed model that can 

represent the main implementation and functionality of IIoT 

systems, a horizontal modular with the following three basic 

tiers. 

Tier1: The edge tier consists of physical assets/filed devices 

that form a closed control loop with a senor, actuator, and 

controller and an edge gateway that provides real-time data 

analytics, storage, and control. It also connects a physical 

system with other digital ones and may include an optional fog 

node for performing various real-time operations.  

Tier2: The platform tier receives, processes, and relays 

control commands from the enterprise tier to the edge one. It 

provides data analytics, storage, and management services that 

could be implemented in corporate or cloud data centers.  

Tier3: The enterprise tier represents a service network for an 

IIoT system and includes an Application Programming 

Interface (API), Web-SCADA and Human User Interface 

(HUI) to enable human interactions with applications, the 

issuance of commands to the edge tier, the making of smarter 

decisions and the performance of maintenance.  

The IIRA model focuses totally on the basic characteristics 

and cross-cutting features of any IIoT system implementation 

and can be described as follows. Firstly, it emphasizes a 

closed control loop, which is clearly defined at the edge tier, 

for collecting and analyzing data and controlling the system. 

Secondly, it has a large-scale closed control loop in an IIoT 

system that includes all the system’s tiers (i.e., edge, platform, 

and enterprise) and uses the data collected from the physical 

control systems for analysis at the corporate/cloud data center 

servers. Then, it makes a smart decision regarding the 

operational process and eventually concentrates on influencing 

the systems in the edge tier. Finally, it also emphasizes the 

interoperability features in an IIoT implementation; for 

example, the interoperability between various messaging 

communication protocols, networks, or types of devices and 

the interoperability among systems so that a one-IIoT system 

could use the cloud data collected from different IIoT systems.  

Given that, we use the IIRA as a reference model to build a 

more realistic testbed that helps to demonstrate the fidelity and 

credibility of security research. However, the horizontal 

interoperability is out of the scope of this paper as our focus 

on providing simplified IIoT testbed for security testing rather 

than the system of systems integration.  

 

IV. DESIGN AND DEVELOPMENT OF THE TESTBED 
 

A. Description of generalized Brown-IIoTbed architecture 

Fig.1 illustrates the architecture of Brown-IIoTbed based on 

IIRA model, it is a generalized prototype which means that 

any type of sensor, actuator, and industrial control device 

(such as PLC, RTU, and I/O devices), can be involved in it. 

Also, to provide more flexible capabilities for performing 

various IIoT applications and security tests, any relevant 

simulator can be used as a physical system as well as various 

human interfaces, including laptops, Personal Computers 

(PC), smartphones and tablets, to provide interactions with 

edge devices and visualizations of data analytics. The testbed 

is divided into the following zones. 



 

 

Physical assets/filed devices zone: Whenever a physical 

assets/filed devices are represented, the device and/or 

simulator deployed should behave similarly to the actual 

system and have a deterministic scan cycle, response time and 

accurate response for each of the inputs provided. The cyber-

physical links and access medium between these devices and 

other system components should represent the actual medium 

and communications of the systems deployed. Therefore, 

various industrial physical assets/filed devices are used, each 

of which achieves the closed control loop required by the 

IIRA model. Firstly, a PLC, a master device that uses the 

MODBUS protocol, is connected to an I/O slave device 

represented by a physical analog sensor and actuator. The PLC 

device is also connected using the MODBUS/TCP protocol to 

the edge gateway. Secondly, two I/O slave devices with two 

different serial fieldbus protocols are used. They represent 

digital sensors and actuators that are controlled directly by the 

edge gateway as a master device. Finally, a simulator (our 

developed JavaScript script) acts as the sensor, controller and 

actuator, is used. 

Edge gateway zone: An edge gateway plays a critical role in 

supporting Machine-to-Machine (M2M) communication, 

collecting data from various physical devices, storing it as a 

time-series database (local data historian) and sending it to the 

cloud. It also acts as a microcontroller for I/O devices and a 

master device for PLC at the same time as well as supporting 

the interoperability and integration of various communication 

protocols and different legacy systems. It can also provide a 

local SCADA or API system as a web service for monitoring 

and controlling these physical processes and devices [27, 28].  

Edge mobile service zone: A mobile device runs at the edge 

tier to provide Human-to- Machine (H2M), and Machine-to- 

Human (M2H) communications. It represents the smartphones 

and tablets used by connected workers and their on-site 

supervisor. The connected workers use a mobile application to 

wirelessly access the physical devices using the edge gateway 

to read data, send commands and check the status of the 

actuators as well as perform specific Python scripts for 

maintenance after receiving a notification from edge gateway. 

The on-site supervisor can use the tablet as a web interface 

device to access the statistical figures and data analytics (i.e., 

as a mobile SCADA clients).  

Local Area Networks (LANs), router and firewall zone: 

The edge gateway connects with local networks that provide 

local SCADA and various simple IT services in both wired 

and wireless forms. For example, it connects with a mail 

server to send e-mail notifications to connected workers and 

with an IT PC to provide local management and maintenance 

for edge devices. A router is used to connect between the edge 

systems and external world i.e., Wide Area Network (WAN), 

this router is also with firewall capabilities to achieve a high-

fidelity security testing as the edge physical devices and 

systems cannot connect directly with the Internet without 

accessing a control list.  

Cloud zone: The cloud platform consists of a broker that 

connects with the edge gateway to receive the measurements 

and states of the physical assets/filed devices and a data 

historian to store the values that fall outside the predefined 

deadband, with only the significant data sent to the cloud to 

reduce the amount of bandwidth used and provide real-time 

processing at the edge gateway [28]. However, Brown-

IIoTbed presents various scenarios for collecting data, 

including the deadband and deterministic values, stored in a 

usable and searchable way, i.e., in an indexed database, to 

allow analyses or machine learning processes to be performed 

in order to make further decisions. The cloud application 

provides the analytics results and statistical data graphs as a 

service. In fact, it helps to transform the raw data into the 

valuable information sought to satisfy the requirements of 

other IIoT applications.  

 
 

 Fig. 1. Testbed architecture based on IIRA model 

 
 

 



 

 

Enterprise service zone: one of the main objectives of an 

IIoT system is to provide remote monitoring and control. 

Therefore, the development and deployment of APIs or Web-

SCADA interfaces to provide remote monitoring and real-time 

data visualization, such as of sensor data, actuator status, 

current set-point values, statistics and graphs. These interfaces 

can be accessed using any web browser via any computer or 

mobile device. Another task that could be performed at this 

zone is the remote technical maintenance of edge physical 

devices by control systems’ individuals.  

B. System components and structure of Brown-IIoTbed 

The testbed environment illustrated in Fig. 2 shows the 

hardware, software and communication protocols used in 

Brown-IIoTbed implementation:   

1) System hardware components: At the edge tier, two 

Raspberry Pi and one Arduino mega 2560 devices are used to 

act as an edge gateway, PLC, and I/O device respectively. 

These electronic devices are very common IoT devices with 

multiple I/O pins, are easy to use and with affordable prices. 

Also, one analog and one digital sensor, i.e., TMP36 (−40°C 

to +125°C) and DS18B20 (-55°C to +125°C) provide various 

temperature readings value. The focus is on performing a 

closed-loop temperature controller which is considered a part 

of most existing ICSs [52, 53]. To provide a variety of 

measurement readings, a pressure sensor (MPL3115A2) is 

used to obtain both pressure (20 to 110 kPa) and temperature 

values (–40 °C to 85 °C). Various Light Emitting Diode 

(LED) devices are deployed as the actuators represent the 

controlling parameters that can influence the closed control 

loop, such as its switch on/off pump relay or valve. Also, 

mobile devices, such as iPhones and Android tablets, are 

integrated into this testbed to provide connectivity with the 

edge gateway. LANs are represented by laptop and PC devices 

connected to the edge gateway by a Wi-Fi access point and 

physical switch (i.e., a 2810-24G managed HP Ethernet 

switch) respectively. To establish a WAN and external world, 

an HP server provides various devices and a router/firewall. 

2) System software components: Various open-source 

software tools freely available online are used to perform 

specific tasks. An OpenPLC server runs on a Raspberry Pi B+ 

device and connects to an OpenPLC software (C++ code) 

slave that runs on an Arduino Mega 2560 device. The 

OpenPLC [29] is an open-source fully functional PLC that 

supports MODBUS/TCP connectivity and ladder logic as a 

programming language for process control. A simple ladder 

logic program is created to read the values from an analog 

sensor, process them based on a function block, and react by 

sending a command to the actuator. A Node-Red [30] 

application is used to perform the functionalities of the edge 

gateway. It is a programming tool for wiring together 

hardware devices, APIs, and online services with multiple 

libraries for connecting physical devices, such as a MODBUS 

PLC, digital sensor, LED, and many more. Multiple Node-Red 

flows (JavaScript codes) are created to perform the edge 

gateway’s functionality, connect the PLC, I/O devices and 

other physical assets to the edge gateway, and then the 

external world. Also, additional flows are created to store real-

time data (data historian) and analyze it, control I/O devices, 

and simulate a closed control loop to provide different limited-

range random values of temperature, pressure and humidity 

measurements. The Node-Red application also helps to 

establish an API and Web-SCADA. The edge gateway runs 

txThing Constrained Application Protocol (CoAP) [31] 

(building based on twisted Python library, as one of the most 

common CoAP Python framework), Apache2 web server, 

MYSQL database, Secure Shell (SSH), Dnsmasq (for 

providing Domain Name Service (DNS), Dynamic Host 

Configuration Protocol (DHCP), router advertisement and 

network boot) and Host access point daemon (Hostapd) to 

provide access points for wireless mobile devices and other 

services for end-users as well as physical control devices. 

VMware workstation pro [32], a virtualization tool, is used to 

create multiple virtual machines at a Windows laptop and PC.  

The laptop provides a mail service and CoAP client scripts. 

The hMailserver [33] is run on a Windows virtual machine to 

provide SMTP mail services, with Python scripts used on 

another Windows virtual machine to simulate CoAP client 

behavior. The virtual machines on the PC provide 

management (Windows) for various services and internal 

attack tools (i.e., kali Linux). 

The iPhone mobile devices use three applications installed 

from the App Store, the “CoAPClient” app for connecting to 

the CoAP server, Shortcuts app for creating repeated scripts 

over SSH and Mail app for receiving notifications from the 

edge gateway as e-mail. The tablet device runs on a Chrome 

web browser to access Web-SCADA and the ESXi 6.7 

hypervisor [32] is used for virtualization. Multiple virtual 

machines are created to act as a virtual router/firewall with 

pfsense software [34], a cloud server running a mosquito 

MQTT broker [35] to receive data from the edge, MYSQL 

storing the received data in an indexed database, and a shiny 

server with the R language [36] creating a cloud data analytics 

application while other virtual machines act as an API, Web-

SCADA, remote maintenance and external attacker tool (i.e., 

Kali Linux). The virtualization technique is adopted since it is 

often inexpensive, reduces the amount of equipment required 

and simplifies the physical compositions of systems. The 

iMacro [37] is used to automate the behavior of human on web 

interfaces, and Python scripts for automating SQL clients. 

3) Communications and physical links: In this 

implementation, the heterogeneous application layer 

(messaging) protocols concentrating mainly on those that are 

common in IIoT are used. For physical media, both wired and 

wireless communication (Ethernet  IEEE 802.3 and Wi-Fi 

IEEE 802.11 respectively) are employed, with the PLC, PC  

and WAN devices configured to use the former and the mail 

server, CoAP simulator and mobile devices the latter. The 

edge gateway is configured to use both. The legacy industrial 

protocol MODBUS/TCP, the most common industrial 

protocol in brownfield implementations, is used to connect the 

PLC device to the edge gateway and the MODBUS serial to 

connect the Arduino/ slave device to the PLC, i.e., the 

Raspberry Pi B+/master. The fieldbus serial communications 

I2C and 1-wire connect the sensor and actuators to the edge 

Fig.1. Testbed architecture 



 

 

gateway as I/O devices. The DNS and CoAP protocols enable 

a mobile device to connect to the CoAP server and access 

point at the edge gateway while the SSH protocol is used in 

most devices deployed to perform remote access and 

management. The MQTT protocol, the second common 

protocol after HTTP in IoT, publishes data to the cloud server 

and WebSocket accesses APIs from mobile devices and the 

local API-edge gateway monitor. The HTTP protocol is used 

for Web-SCADA from an external network (WAN), SMTP, 

and IMPA ones to send and receive e-mail notifications and 

SQL to access a local data historian.  

C.  Cases using Brown-IIoTbed functionalities 

    Uses of the proposed testbed are discussed in the following 

examples of cases of generalized and non-specific systems. 

They concern the complete proposed system and are aimed at 

illustrating the feasibility of our proposed testbed, Brown-

IIoTbed, as our focus is on hardware and software 

implementations for security testing: 

Case1. Quick checkup and response using mobile 

application: A connected worker uses his/her mobile 

application to send a request to the edge gateway over the 

CoAP protocol-wireless network, asking for the current 

reading value of the I2C sensor. He/she can also send a 

command to switch on/off the actuator, that is, the I-wire LED 

at any time.   

Case 2. Notification and warning via e-mail: The edge 

gateway connects to the local mail server to send an email 

notification via the SMTP protocol to a connected worker’s 

mobile. This email confirms that a specific command has been 

sent to the actuator or initiates a warning that the sensor values 

have exceeded a predefined threshold.  

Case 3. Running of Python script to log on to edge gateway 

and repair malfunction: A connected worker uses an iPhone 

mobile device to connect to the edge gateway over the SSH 

protocol and run Python scripts to repair a specific physical 

device malfunction, such as disabling a pump relay (i.e., 

LED), on site with no need for any manual action. 

Case 4. SCADA alarm and notification pop-up: When a 

pump valve is opened or closed (i.e, Switch on/off LED) 

based on a decision received from a PLC or microcontroller, a 

message appears in the Web-SCADA interface. 

Case 5. Checking and monitoring of physical control systems 

on site: The on-site supervisor uses an Android tablet to 

access the SCADA interface via the webSocket protocol and 

can also view real-time data graphs, current values, and the 

actuator’s status using a mobile SCADA. 

Case 6. System monitoring: The edge gateway provides local 

 

 

  

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 
 
 

Fig. 2. Structure of the Brown-IIoTbed 

 

 
 



 

 

SCADA/API systems over the webSocket protocol that 

enables an operator at the edge level to monitor the connected 

industrial physical systems and control them locally.  

Case 7. Maintenance of IIoT edge gateway: The IT team  

can remotely (i.e., over the Internet) access the edge gateway 

using the SSH protocol to perform the processes required for 

technical maintenance.   

Case 8. Remote tuning of PLC parameters: Operators at the 

enterprise level can access a Web-SCADA over the Internet 

(over HTTP protocol) using his/her authentication credentials 

and change the predefined values of the set-points of a PLC 

device 

Case 9. Ad hoc analytics for optimization: The data 

analytics team can access a cloud application to determine 

how frequently a specific task related to the relevant sensor 

should be performed through searchable and filtered tables.  

Case 10. Fault modeling: Through a cloud application, the 

data analytics team can create graphs for the sensor data 

collected during a specific period. Therefore, they can 

discover faults and any bias in the sensor values that help them 

identify any kind of malfunction that has happened or will 

occur.   

Case 11. Addition of new devices at edge: The technical 

maintenance team can remotely add a new device to the IIoT 

edge gateway and configure it using the SSH protocol.  

Case 12. Malfunction in actuators: If a specific actuator 

does not act according to the control command received, the 

operator will be able to notice this through a Web-SCADA 

system to quickly fix the problem remotely.  

Case 13. Quick query to edge data historian: An operator 

sends a query to the data historian (i.e, a MySQL database in 

the edge gateway), asking about the last status of a specific 

actuator.  

Case 14. Remote starting or stopping of sensor: An operator 

can start or stop a sensor from providing any measurement for 

local and cloud data historians. The simulated sensors and 

their engines are shown at the Web-SCADA/API interface 

where the operator can control them.  

Case 15. Backup and recovery: A IT maintenance worker 

can access the edge devices, collect the desired logs and 

perform remote backup, and potentially provide a manual 

recovery process for connected industrial devices and edge 

gateways.  

D. Brown-IIoTbed Setup and Performance 

    We implemented Brown-IIoTbed in the IoT lab of UNSW 

Canberra, which provides an isolated security testing 

environment. As shown in Fig. 3, the testbed setup consists of 

the aforementioned hardware, open-source software, and 

communications protocols (see Fig. 2). For example, Fig. 3 

shows the installed Raspberry Pi and Arduino devices with 

their connected electronics components (i.e, sensors, and 

LEDs) which represent the physical asset and edge devices.  

Furthermore, it shows the management screen of ESXi 6.7 

hypervisor which illustrates the WAN network’s devices (e.g., 

Cloud application, and web-SCADA over HTTP), IT services 

script on the PC screen, laptop with  running CoAP client  

scripts, and API on Android tablet.  

Brown-IIoTbed is successfully tested with connected wired 

 and wireless devices. To evaluate its performance, we 

consider the edge gateway network and system activities as it 

is the central point of the Brown-IIoTbed at which the 

physical and cyber systems are connected. Fig.4 shows the 

edge gateway CPU load that is almost around 50% and it 

rarely peaks over 75% while Fig.5 shows that the system is 

making suitable use of memory where the total memory 

utilization is limited to less than 45%. Metrics related to the 

system’s input/output activities are shown in Table I. As it can 

be observed, the workload of transfer, read, and write requests 

per second (their average values are 15.11, 6.13, and 8.98 

respectively) is much low which in return has an efficient 

impact on the process response time. In overall, the edge 

gateway system (Raspberry pi 3 B+ with quad-core processor 

CPU) seems to work well. Fig.6 shows the average network 

throughput in Gigabit per second (Gbps) over a time interval 

(seconds). It can be seen that the average throughput 

drastically increases and its values are high. For example, the 

average throughput value at time interval 3600 seconds (i.e., 

the successfully transferred data rate in period 3000 to 3600 

seconds) is approximately 5 × 10+8 Gbps. Other network data 

analytic metrics are also shown in Table I such as average 

packet size, bytes/second, and bits/second have values 2153 

bytes, 617BK/s, and 4941KB/s respectively.  

To ensure the full connectivity and acceptable Quality of 

Service (QoS) for IIoT network, it is essential that the jitter, 

describing the variance in time delay between packets over 

time, does not exceed the certain tolerable value. This value 

varies in different applications; however, according to Cisco 

[38] the jitter value should be below 30ms and this value may 

roughly fit IIoT data streams. In our implementation, it can be 

clearly observed from Fig.7 that most of jitter values over time 

are expected and less than 30ms. In the light of these jitter 

values with existing wireless communication and the 

capabilities of edge gateway device (i.e., Raspberry pi 3 B+), 

 
 

Fig. 3.  Brown-IIoTbed setup 

 



 

 

we can state that Brown-IIoTbed network performs well. A 

response time (i.e., sum of transport latency and processing 

time) is another important metric that has a bearing on QoS 

and needs to be retained under control. Table I shows the 

average of response time for the key Brown-IIoTbed 

application protocols. For example, the response time of 

MODBUS varies over the time but the average value is 

10.94ms. This value fits the MODBUS TCP requirement 

where the recommendation for maintaining its value below 

20ms [39]. While HTTP takes longer time around 346.95ms as 

it, in its way to the edge gateway, goes through router and 

firewall. However, it is still below the recommended limit 

value (1 second). Other services also provide acceptable 

response time including local DNS, CoAP, SMTP, and serial 

fieldbus I2C where take 0.201ms, 7.38ms, 12.3ms and 1.34ms 

respectively. While for MQTT protocol, as publish-subscribe 

protocol, we consider publishing (QoS=2) handshake time 

between client and broker (i.e., “publish message”, “publish 

received”, “publish release”, and “publish complete” packets). 

It is the interval-time between “publish message” and “publish 

complete” packets and it takes around 8.6ms in our 

implementation. WebSocket also starts out its connection by 

HTTP handshake, and then data is exchanged as frames over 

WebSocket protocol in persistent connection. Hence, the 

WebSocket response time is calculated based on HTTP, and it 

takes around 10.18ms. Arguably, this convenient level of 

service response times means low transport latency, 

appropriate network bandwidth utilization, and the reliable 

QoS.   

In summary, we can conclude that Brown-IIoTbed 

functions well and in a predicted manner. This is because 

Brown-IIoTbed is designed in a way that supports edge 

computing (using edge gateway), which provides faster 

process and storage and sends only the relevant data to the 

cloud. Further, it highly depends on emerging application 

protocols such as MQTT, CoAP, WebSocket that are designed 

to reduce network overhead, address latency and bandwidth 

problems, and provide QoS options.  
 

 
 

E. Examples of implementation of Brown-IIoTbed 

     In this subsection, for the sake of brevity, we will provide 

examples of the testbed implementation of the most important 

communications, operations, and functionalities of Brown-

IIoTbed. 

The telemetry data collected from various physical devices 

is published via an MQTT protocol to the broker. Then, a  

 
Fig.7. Network traffic Jitter over one hour   

TABLE I 
BROWN-IIOTBED PERFORMANCE METRICS OVER ONE HOUR 

Avg. Packet size (Byte) 2153 

Avg. bytes/s (KiloByte) 617  

Avg. bits/s (KiloByte) 4941  

Avg. number of transfer request /second issued to 

physical device 

15.11 

Avg. number of read request /second issued to 
physical device 

6.13 

Avg. number of write request /second issued to 

physical device 

8.98 

Avg .MODBUS. Response time  (ms) 10.94 

Avg.CoAP. Response time (ms) 7.38 

Avg.HTTP. Response time (ms) 346.95 

Avg. DNS. Response time (ms) 0.201 

Avg .I2C Response time (ms) 1.34 

Avg. MQTT publish (QoS 2) message  handshake 

time (ms) 

8.6 

Avg. SMTP response time (ms) 12.3 

Avg.WebSocket.HTTP response time (ms) 10.18 

 

 

 
 

Fig. 4. Edge gateway system CPU Load 
 

 
Fig. 5. Edge gateway system Memory Utilization  

 

 
Fig. 6. Network Throughput over time interval   



 

 

JavaScript function is used to parse the data, change its 

format, and send it as a JSON message to the cloud broker; for 

example, as shown in Fig. 8, a published packet with 225 

bytes of an MQTT message and name [station/I2C slave] is 

sent from the edge gateway to the cloud broker. It consists of a 

JSON data representation that describes critical information, 

such as the device’s ID/type and measurements. While the 

edge gateway polls the data from the MPL311A2 sensor using 

an I2C fieldbus protocol, parses and acts on received data 

format and then sends it in response to a connected client’s 

request. This communication is conducted over the CoAP 

protocol between the CoAP client’s mobile app (i.e., the 

connected worker) and the txThing CoAP server/edge 

gateway. The connected worker sends a ‘GET’ request to the 

resource path to read the sensor values and can also send a 

‘PUT’ request to change the actuator’s states (switch on/off). 

To perform this communication between a CoAP client and 

server, the original txThing code is updated and a new specific 

code for polling and acting on I2C sensor measurements is 

developed, as shown in Algorithm I. 

Fig. 9 is a screenshot of the cloud application table for ad 

hoc analytics. The data collected at the cloud data historian 

can be accessed using this application and simultaneously 

filtered based on various factors. For example, the time-series 

data can be filtered based on the time interval between 2019-

07-12 08:35:45.680 and 2019-08-09 10:41:30.000. Fig.10 

shows the Node-Red flows created to connect a PLC with the 

edge gateway and other components, with the data register as 

the object on the right-hand side. The three registered  

 

 

 

 

 

 

 

 

 

 

 

 

 

addresses are received as voltage values on which the edge 

gateway can act and change the format to Celsius values 

(using a JavaScript code). This new data format can be passed 

to other system components, such as by being published to the 

cloud server using the MQTT client node. 

 

V. SECURITY TESTING AND ANALYSIS USING  

THE TESTBED 

Each component of an IIoT system has a broad attack 

surface and may be a target for various cyberattacks. To prove 

the feasibility of the proposed testbed for security testing, the 

following attack scenarios are studied via experiments. 

A. Security threats based on STRIDE model 

The Microsoft threat model ‘STRIDE’ (Spoofing (S), 

Tampering (T), Repudiation (R), Information disclosure (I), 

Denial of service (D) and Elevation of privilege (E)), the most 

common threat model, is adopted to describe various attack 

types. For the sake of brevity, only one attack scenario is 

tested for each attack type.  

Test Case 1: Spoofing attack (S)-Address Resolution 

Protocol (ARP) spoofing scenario 

In the ARP spoofing attack, the attacker sends faked ARP 

messages over a local network to link the attacker’s MAC 

address with the IP address of the victim device [40]. In our 

implementation, the attacker can be between the edge gateway 

and router in the same network. The attacker begins to poison 

the edge gateway’s ARP cache so that all the traffic from the 

edge gateway to the router passes via the attacker’s machine. 

Fig. 11 shows an example of HTTP traffic before ARP 

spoofing where the Ethernet frame originates from the edge 

gateway with a MAC address of b8:27:eb:61:e5:14 to the 

router interface with a MAC address of 00:0c:29:6e:a7:ca. Fig. 

12 shows the same HTTP traffic after ARP spoofing in which 

the frame has a different MAC address, that is, that of the 

attacker’s machine of 00:0c:29:5b:a2:99. Through this 

process, the attacker can perform more malicious activities, 

such as preventing data from being sent to its destination or 

injecting false data or commands. 

Test Case 2: Tampering attack (T)-poisoning data 

analytics at cloud 

   A tampering attack is based on the modification of data 

exchanged between the client and server [41]. In our 

Algorithm I.  Generating COAP message  

Input: Request  
Output: Response                         

1.   Data= Read  I2CDataBlock (0x60, 0x00,6)         

2.   Var temp_value  = Read Temperature _ Register ( )                  

3.   temp_value  =  ((Data [4]*256) + (Data[5] &  0xF0) ) /16        
4.  CelsiusTemp = temp_value / 16.0         

5.   Var pressure_value= Read Pressure_Register( ) 

6.   Pressure_value = (( Data[1]*65536) + (Data [2]*256) + Data [3]    
                                          & 0xF0)) / 16 

7.   Pressure = (Pressure_value / 4.0 )  / 1000.0            

8.   Payload = String  ({“ Device Name”; “MPL3115A2”, “data”:    
                         {“Ctemp”:{“Celsius:” CelsiusTemp}, “Pressure”:    

                          {“Pascalpre”: Pressure}}} 

 9.  Response = CoAP.Message (code = COAP.Content, payload = 
                                Payload) 

10. Return Response  

 
 
 

 

 
 

 
 

Fig. 8.  MQTT packets captured in Wireshark 
 

 
 

Fig. 9.  Data table in cloud application 
 



 

 

implementation, this attack can occur between the cloud 

broker and edge gateway (as a publisher) where an attacker 

sends false data to the cloud to fake the sensor measurements. 

This injection is performed by a Man-in-the-Middle (MitM) 

attack that modifies the data-in-transit. Fig. 13 shows two 

superimposed curves in plots of pressure measurements over 

time. One is the true data collected from the local data 

historian at the edge gateway; the other is collected from the 

cloud data historian that is subject to tampering. The false data 

is fabricated such that it changes slowly to evade mechanisms 

for anomaly detection. This attack can continue for a long time 

as various data values are injected with the goal of affecting 

the decision-making process.  

Test Case 3: Repudiation attack (R)-sending fake 

notification and denying it by compromised edge gateway  

  A repudiation attack happens when the user denies the fact 

that he/she has executed a specific action [42]. In our 

implementation, this can be performed by the edge gateway.   

The edge gateway often sends a notification to a connected 

worker which can be exploited by an attacker sending fake 

notifications (that are opposite to the real ones). When a 

worker realizes that an e-mail notification is not real, the edge 

gateway denies sending it. For example, we use the Node-Red  

library to send an e-mail to a connected worker, with each 

activity recorded in the Node-Red logs. The attacker can 

compromise the edge gateway and use a Python script to 

establish a connection to an SMTP server by harvesting 

credentials and e-mail accounts from the edge gateway. 

Afterward, the attacker can send a fake notification to the 

connected worker which will be denied by the edge gateway 

as this activity cannot be seen in the Node-Red logs. However, 

with adequate auditing and logs of the edge gateway (see Fig. 

14), this activity can be proven to be conducted by the edge 

gateway using a Python script which indicates that it is due to 

either another legitimate user or a malicious one. 

Test Case 4: Information disclosure attack (I)-injecting 

edge gateway and sniffing fieldbus I2C protocol  

   This type of attack aims to acquire specific information 

about the system [43]. For example, an attacker can monitor 

 

Fig.11. Traffic from edge gateway to the router before ARP spoofing  

 

 
 

Fig. 12. Traffic from edge gateway to the router before ARP spoofing  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
 

 

 

Fig. 14. Authorization Log  

 

 
  

 

Aug 13 18:12:05 raspberrypi sudo:       pi : TTY=pts/1 ; 

PWD=/home/pi ; USER=root ; COMMAND=/usr/bin/python 

fakeemail.py 
Aug 13 18:12:05 raspberrypi sudo: pam_unix(sudo:session): 

session opened for user root by (uid=0) 
Aug 13 18:12:06 raspberrypi sudo: pam_unix(sudo:session): 

session closed for user root 

Aug 13 18:15:01 raspberrypi CRON[1736]: 
pam_unix(cron:session): session opened for user root by (uid=0) 

 

 
 

Fig. 13. Cloud data tampering 
  

 

 
 

 

Fig. 10. MODBUS/TCP readings of Node-Red flows 



 

 

and capture the traffic between master and slave devices using 

sniffing scripts to understand the conversation between the 

endpoints and use the collected information for advanced 

attacks. Fig. 15 shows the traffic between the edge gateway (a 

master device) and the MPL3115A2 sensor (a slave device) 

captured by a sniffer (i.e., Python script), where ‘[‘ represents 

for start, Acknowledgment ‘+’ or nor ‘-‘, address (7 or 10 

bits), Read/Write bit (1=Read, 0= Write), ‘xx’ two 

hexadecimal characters for each data byte and ‘]’ for a stop.  

For example, the second part of the message ‘[C0+01+ 

[C1+5C+84+70+ 17+F0+00-]’ shows the read command 

issued by the master device to the slave’s standard address (C1 

(0x60 plus read bit)) for the 6 data bytes 5C, 84, 70, 17, F0 

and 00. Using this data register’s address and the data bytes, 

an attacker can extract the temperature values according to the 

formula (((Data [4]*256) + (Data [5] & 0xF0)) /16)16.0), that 

is, 23.9375 ℃ which could help the attacker to perform 

advanced threats such as a false data injection attack. 

Test Case 5: DoS attack scenario (D)-attacking PLC device 

using Modbus/TCP protocol 

In an attack performed against PLC devices, the attacker 

with access to the network floods these devices with Modbus 

packets by sending huge numbers of read queries for various 

addresses of the targeted PLC [13]. The goal of this DoS 

attack can be to cause system disruption and expend 

processing resources. Fig. 16 shows the numbers of packets 

and transfer requests from a PLC to a connected physical I/O 

slave device during the DoS attack. It is clear that there is an 

abrupt increase in both these measurements. However, in this 

implementation, the PLC device still operates during and after 

the attack and proves its availability and resiliency.  

Test Case 6: Elevation of privilege attack (E)-unprivileged 

subscriber to cloud MQTT broker 

     An elevation of privilege attack occurs when an attacker 

obtains the rights of authorized users and gains a higher level 

of privilege to the system [44]. In our experiments, a 

malicious subscriber can connect to the cloud broker to obtain 

all the information exchanged between it and the publishers. 

This attack can be considered an elevation of privilege as this 

unauthorized subscription for several topics at the same time 

results in a disclosure of sensitive information exchanged 

between endpoints and the state of the broker. An MQTT 

subscriber for wildcard topics # and script responses, as shown 

in Fig. 17, displays the target broker in its raw format where 

the broker’s ‘Mosquito version 1.4.15’, its states and the most 

recent published messages, such as the data received from a 

PLC Modbus, and simulated devices, are highlighted.  

B. Machine Learning approaches for Intrusion detection  

     Utilizing Machine learning for analyzing and revealing 

malicious behavior is getting predominant as it can extract the 

hidden pattern of malicious and normal behavior [45]. Hence, 

we implemented machine learning approaches to identify the 

aforementioned attacks that have distinguishable features in 

network traffic (i.e., ARP spoofing, poisoning, Modbus DoS, 

and unprivileged MQTT subscriber). We utilized the most 

common algorithms including Random Forest (RF), Decision 

Tree (J48), Logistic Regression (LR), K-Nearest Neighbor 

(KNN), and Naive Bayes (NB). We collected and processed 

the raw network traffic of testbed during normal (without 

attack), and attacks using the Wireshark tool and then 

extracted the basic features of network traffic conversations. 

Examples of these features include the number of packets, 

number of bytes, bit rate, duration, and among others [46]. 

The final dataset has 42594, 145, 149, 1039, and 1534 

conversations for normal, ARP spoofing, poisoning, Modbus 

DoS, and unprivileged MQTT subscriber respectively. We 

utilized the Accuracy (ACU), Precision (P), Recall 

(R)/detection rate, and F-Measure (F-M) based on 10-fold 

cross-validation to evaluate approaches’ performance.  

      Table II shows machine learning approaches for intrusion 

detection where all of them achieved a reasonable 

performance. However, the RF achieved the best performance 

(i.e., 99.9%) in terms of accuracy, precision, recall, and F-

Measure. While the NB achieved the worst performance 

compared with others because it assumes the independency 

among features, and it classifies the conversation based on the 

prior knowledge of the condition that may be related to the 

occurrence of conversations. Table III shows the performance 

of machine learning approaches in revealing attack types.  As 

it can be observed, the RF achieved the highest detection rate 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 17. MQTT broker’s subscribing data 

  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Fig. 15. Sample of I2C traffic  

  

 

[C0+01+[C1+5C+84+70+17+F0+00-] 

[C0+01+[C1+5C+84+E0+18+00+00-] 

[C0+01+[C1+5C+84+90+18+00+00-] 

 

 
 

 
Fig. 16. Packets and transfer request/second during Modbus DoS attack 
  

 

|     $SYS/broker/subscriptions/count: 20 

|     $SYS/broker/load/bytes/sent/1min: 4921.41 
|     station/PLC: {"Device ID":"Slave 2","Device Type":"PLC 

MODBUS","Measurement":"16.407","Function":"PLC 

Temperature Sensor","Content Type":"Temperature"} 
…. 

|     $SYS/broker/version: mosquitto version 1.4.15 

|     $SYS/broker/bytes/sent: 31348 
|     $SYS/broker/load/connections/5min: 1.32 

|     $SYS/broker/timestamp: Tue, 18 Jun 2019 11:42:22 -0300 

|     station/sensor1: {"Device ID":"Slave 4","Device 
Type":"sensor-1","Measurement":17.65,"Function":"Sim-

humditiy Sensor","Content Type":"Humditiy"} 

|     $SYS/broker/load/messages/received/15min: 27.11 
|     $SYS/broker/heap/current: 36688 
 



 

 

for ARP spoofing (71.0%), and Modbus DoS (99.5%), while 

the NB obtained the best detection rate for the poisoning and 

unprivileged MQTT subscribers.  
 

C. Security evasion / Malicious reverse shell backdoor 

against Router/Firewall for remote command injection 

   Edge devices are usually protected from the external world 

by firewalls that specify the IP addresses that can legitimately 

access their internal networks. However, attackers are always 

able to pass such security mechanisms by identifying their 

weaknesses, such as misconfigurations, and unpatched 

vulnerabilities. In our experiments, a pfsense router/firewall 

with vulnerability (CVE-2016-10709) is used. An attacker 

starts its exploitation process by scanning and numerating 

target devices to identify open ports and collect more system 

information. For instance, the output of Nmap command 

(Nmap  -f –v –O 192.168.10.1) is “PORT    STATE SERVICE 

443/tcp open  https and OS details: FreeBSD 7.0-RELEASE-

p1 - 10.0-CURRENT, FreeBSD 7.2-RELEASE”, which 

indicates the possibility of accessing the WebGUI of the 

router/firewall device. An attacker can use the default 

credentials or perform a phishing attack to gain access to it 

and find any vulnerability that can be exploited. Another way 

that can be performed is a directory and file traversal (web 

application attack) e.g., using the Dirbuster tool against 

(https://192.168.10.1:443), to find files that may have 

information related to these credentials. Based on the collected 

credentials and information, the attacker can exploit the 

pfsense software’s vulnerability by injecting malicious PHP 

codes and creating reverse shell backdoor for command 

injection with root privileges, as shown in Fig.18. 

C.  Malicious payload hunting and intelligence 

As attacks have evolved and attackers keep working on new 

techniques and tactics to compromise systems, more 

techniques than prevention and reactive detection are required 

to reveal their behaviors. Threat hunting [47], which chases an 

attacker (rather than being a target and working in the passive 

mode), is a reasonable solution. The hunting process for 

malicious reverse shell backdoor payload (see Section V- B) 

starts by verifying the main hypothesis that “an attacker may 

be operating on a reverse shell backdoor that uses to launch 

malicious commands with root privileges to the 

router/firewall”. To verify this hypothesis, it is necessary to 

collect data from multiple sources and, given basic knowledge 

of the target device and network, the indicators may be found 

in the abnormal network’s connections and system log of 

router/firewall.  

Firstly, given the network connection data obtained from 

the Zeek tool (formally known as Bro) [48], all the client IP 

addresses connected to a pfsense router/firewall WebGUI 

using open HTTPS port ( i.e., 443) can be extracted. The Bro 

connection logs (i.e, conn.log) that fit an Excel file are used to 

search for connected IP addresses and their accumulated 

traffic statistics such as total connections’ duration and 

number of data bytes sent. Shown in Fig. 19 are all the IP 

addresses that start connections to  the router/firewall on port 

443, total number of connections (i.e., count), total 

connections’ duration (i.e., duration is  the difference in time 

between the first and last packets seen), maximum and 

minimum durations, and total number of sending bytes that are 

extracted from the determined connections. As the IP address 

192.168.10.151 has a suspicious behavior that is the longest 

connection time and most data bytes sent, the question is “Did 

the router/firewall connect back to this IP address as this 

might be an indicator for reverse shell?”. To answer this, new 

queries that return the connections that may have originated 

from the router/firewall back to one of the aforementioned IP 

addresses are performed. As shown in Fig. 20, the 

router/firewall establishes a connection back to the IP address 

192.168.10.151 five times on port 4444 with a total duration 

of 1344.026 seconds. By tracking the TCP data streams 

listener on that port (i.e., 4444) and checking type of 

exchanged packets between victim IP (i.e, 192.168.10.1) and 

suspicious IP (i.e., 192.168.10.151), we found that most of 

exchanged packet types are [PSH, ACK], and [ACK] TCP 

packets. This information indicates the possibility of a reverse 

shell backdoor that is opened back from the router/firewall to 

an attacker’s machine on port 4444 many times over TCP 

protocol.   

The next step in malicious reverse shell backdoor payload 

hunting process is identifying the malicious payload, and this 

step is accomplished by analyzing the system logs after 

collecting, extracting and parsing them into two columns each 

with a timestamp and event in a CSV file, and searching for 

TABLE III 

DETECTION RATE FOR ATTACKS (%) 

Approach 
ARP 

spoofing 

 

Modbus 

DoS  

 

 

poisoning 
Unprivileged 

MQTT 
Subscriber 

RF  71.0 99.5 96.6 99.7 

J48 65.5 99.5 96.0 99.7 

NB 3.4 89.0 98.7 99.9 

LR 3.4 99.0 44.3 0.0 

KNN 64.1 98.7 4.7 1.0 

 

 

TABLE II 

PERFORMANCE METRICS 

Approach ACU (%) 

 

P (%) 

 

 

R (%) F-M (%) 

RF  99.9 99.9 99.9 99.9 

J48 99.8 99.8 99.8 99.8 

NB 42.4 95.4 42.3 55.1 

LR 95.9 92.7 96.0 94.2 

KNN 94.7 92.6 94.7 93.6 

 

 

 

 

 

 

 

 

 
 

Fig. 18. Example of Metasploit command to exploit pfsense vulnerability  

 

msf exploit(unix/http/pfsense_graph_injection_exec) > exploit 

[*] Started reverse TCP handler on 192.168.10.151:4444 
[-] pfSense version not detected or wizard still enabled. 

[*] Payload uploaded successfully, executing 

[*] Command shell session 1 opened (192.168.10.151:4444 -> 

192.168.10.1:64609) at 2019-10-01 22:38:42 -0500 

https://192.168.10.1/


 

 

long malicious commands launched by attackers. As shown in 

Fig. 21, a Python script is developed to parse the data and 

filter the longest commands (more than 250), with the search 

yielding a positive finding. Examining the logs, the longest 

malicious command with sensitive characters and numbers 

(i.e., 1004) is identified as a malicious PHP script injected into 

the router/firewall WebGUI whereby the attacker uses a 

known vulnerability (unpatched by the system administrator) 

in status_rrd graph_img.php to inject an obfuscated malicious 

code into a ‘throughput-rrd.file-printf’ command. To obtain 

more information about this payload, it is de-obfuscated and 

fitted as a text file to the VirusTotal [49] which has multiple 

anti-virus tools for detecting malicious files. As shown in Fig. 

22, VirusTotal has a high false negative rate, with only one of 

its 56 anti-viruses, BKav, identified the text file  as a web shell 

while most of the anti-virus tools failed to detect a malicious 

payload (Metasploit payload) as they do not have a signature 

related to this malicious payload. This indicates the 

importance of hunting rather than using only detection 

engines. 

     In summary, the network indicators learned from the first 

step, the HTTPS connections over open port 443 with the 

router/firewall are leveraged as the starting point for tracking 

suspicious behaviors. Finding the longest duration, the largest 

number of originated bytes and a reverse connection of the 

server to the specific port of a suspicious IP for a long time is 

useful for tracking suspicious TCP stream data. Also, filtering 

the longest commands in the logs helps to detect a malicious 

reverse shell backdoor payload for remote command injection. 

All the stacked information confirms the proposed hypothesis. 

VI. COMPARISONS AND DISCUSSION 

    To compare our new testbed with existing ones, the 

following features are used [17, 21, 50]: 

 Usability: A testbed should be easy to use, learn, 

configure, build, operate and reproduce. Also, 

understanding its scenarios and interpreting its output 

should be simple.  

 Fidelity: The design of a testbed should follow an agreed 

international standard architecture, that is, an IIRA model 

for IIoT systems (see Section III). This design expects to 

cover the IIoT system’s main components and 

functionalities. This feature can also focus on 

interoperability, and closed control loop as important 

characteristics of brownfield IIoT systems.  

 Heterogeneity: A testbed should have different physical 

access media (i.e., wired and wireless), application and 

industrial fieldbus protocols (i.e., CoAP, MQTT, HTTP, 

WebSocket, Modbus/TCP, I2C, 1-wire), various devices 

(i.e., sensors and physical control devices), 

API/applications and web browser interfaces (i.e., cloud, 

mobile applications and among others).  

 Flexibility and Scalability: A testbed should be able to 

be modified, changed, and expanded, including being 

adaptable, sustainable and customizable. For example, 

new specific-environment sensors over specific 

communications should be involved at the edge layer to 

connect with the edge gateway. Other devices, simulators, 

and applications should be also included.   

 Federation:  A testbed should offer various experimental 

capabilities on the same standardized platform so that 

experiments can be repeated.  

 Safety, Reliability and Resilience: A testbed should 

support an industrial control system’s characteristics of 

safety, reliability, and resilience. Examples of a safe 

scenario need to be designing a physical control system 

with specific parameters for sending alarms and 

notifications. The system should behave predictably and 

use protocols and a fieldbus that specify safety standards, 

such as counters, time-outs, unique sender and receiver 

identifications, and cross-checks. Reliability is a testbed’s 

capability to perform the required functions under the 

stated conditions for a specific time interval: For example, 

the actuators are programmed to react to the physical 

environment, i.e., switch on/off for specific times 

whenever the relevant condition is met. Resilience is a 

 
 

Fig. 22. Results obtained from VirusTotal 

 

 
 
 
 

Fig. 21. Parsing and filtering system logs 
 

 

 
 
 

Fig. 20. List of connections established back from router /firewall 
 

 
 
 

Fig. 19. List of connections established with router/firewall over port 443 

 



 

 

testbed’s capability to absorb any incident and continue 

working without significant effects: For example, there 

should be a recovery and backup procedure for the 

collected data. Also, an IIoT system should be supported 

by the implementation of specific techniques: For 

instance, in the case of a crash, the sensor, controller, and 

other devices should still work. 

  User Interfacing: Simple tools should be available to fix 

a testbed’s malfunction, change its configuration, and 

support its programming and logging functionalities: For 

example, using SSH connectivity for all system’s devices.  

 End-to-End testbed: A testbed should be holistic and 

end-to-end to provide three layers of the IIoT system: 

edge layer (i.e. physical devices and edge computing), 

platform layer (i.e. cloud storage, and analytics), and 

enterprise layer (i.e. service and application devices). 

 Primary purpose: The key objective is to develop a 

testbed with certain levels of specialization, such as 

security testing and application for IIoT systems.  

Based on these features [17, 21, 50], an analysis of existing 

IoT/IIoT testbeds is conducted, with the comparative results 

shown in Table IV. It is found that most of the existing 

testbeds [15, 17, 20, 21, 23, 24] focused on general IoT system 

implementations rather than industrial ones and, at most, 

satisfied 7 features for IIoT testbeds, with only one specific for 

IIoT ‘INFINITE’ [19]. The ‘INFINITE’ testbed has been built 

by the IIC and is still under development. It was not designed 

for security testing and there is little public information 

available about it. However, our testbed (Brown-IIoTbed) 

achieved 13 of the relevant features. 

Implementing a holistic end-to-end IIoT system is 

considered a highly complex task due to the need to integrate 

Operational Technology (OT) systems (i.e., hardware and 

software interact with the physical process) and IT systems, 

and different functionalities and processes (from the edge and 

cloud to services and applications) with maintaining key 

characteristics of an IIoT system of safety, reliability, and 

resilience. Moreover, the need to support the system’s 

heterogeneous nature where there is a wide variety of M2M, 

M2H, and H2M communications, various devices, access 

media, APIs, and states. Brown-IIoTbed deals with these 

challenges by developing a generic, affordable, and high-

fidelity end-to-end IIoT testbed that provides the key 

functionalities in a simple and easily understandable manner. 

It utilizes cost-effective devices, free open-source software, 

and affordable computer devices to provide a testbed that is 

scalable, adaptable, and can be reproduced, modified, and 

changed to fit the research demand. Brown-IIoTbed covers 

existing gaps in the development of IoT/IIoT system testbeds 

by supporting various new IIoT application protocols, legacy 

industrial protocols, the interoperability among them, and 

providing edge computing, and various APIs for visualizations 

of data analytics, controlling, and monitoring physical assets. 

      Moreover, Brown-IIoTbed deals with one of the greatest 

challenges in the IIoT research, that is, security testing. IIoT 

security (in particular for brownfield) is considered an 

extremely complex process as IIoT systems integrate both OT 

and IT technologies, which have different security 

perspectives and priorities of data protection, physical process, 

and control. Addressing and analyzing the security issues 

related to such implementations need to be well understood for 

the purpose of identifying potential threats and targets, and 

estimating the possible consequences. This is achieved in our 

proposed testbed by using a STRIDE model to provide and 

analyze examples of potential threats against various IIoT 

system components, and machine learning approaches for 

intrusion detection. An advanced security testing, vulnerability 

exploitation, and malicious payload injection against the 

router/firewall are presented. Threat hunting and intelligence 

related to a malicious reverse shell payload as an example of 

proactive defense techniques are also performed in Brown-

IIoTbed. Our testbed can be also extended with other security 

tests that fulfill researchers’ demands. 

However, Brown-IIoTbed has several limitations. For 

example, since IIoT implementations are still in their early 

stages and most of the existing implementations are special 

projects rather than standard and publicly-available ones, it is 

not possible to make a comparison between Brown-IIoTbed 

performance and real systems. We cannot show that the 

Brown-IIoTbed behavior is similar to the real system and this 

is a key limitation for our work. Nevertheless, we can state 

that it has been solved somewhat by adopting IIRA as a 

standard reference model to build a high fidelity testbed. But 

in the meantime, this remains a limitation. Additionally, 

Brown-IIoTbed, like the most advanced testbeds, has limited 

ability in simulating real environmental conditions for process 

measurement and control systems. Another limitation of 

Brown-IIoTbed is the limited edge gateway hardware 

capabilities (i.e., Raspberry pi). If an experiment needs to 

connect more PLC devices to the edge gateway, this may 

cause an increase in the load of the edge gateway and affect its 

performance. To expose this limitation, another edge gateway 

can be used to connect these PLC devices, and then the two-

edge gateways can be connected together. This will act like a 

traditional Distributed Control System (DCS) [12] where 

many master devices connect to each other. A further solution 

can be achieved by connecting two-edge gateways separately 

and directly to the cloud.  
 

VII. Conclusion and Future work 
 

    This paper presents a new IIoT testbed that enables security 

researchers to easily reproduce it and test their security 

hypotheses while also facilitating analyses of potential attacks, 

and attackers’ techniques and tactics. The proposed testbed 

(i.e, Brown- IIoTbed) provides generic, holistic, high- fidelity 

and simplified end-to-end instance of realistic IIoT systems at 

a lower cost without requiring any additional management, 

maintenance, high-level skills or domain expertise, and 

without causing real systems any physical risk or damage. To 

the best of our knowledge, this is the first end-to-end IIoT 

testbed that is developed for security testing with the main 

focus on Brownfield implementation. We demonstrate the 

feasibility of Brown-IIoTbed in conducting security testing by 

providing various attacks based on a STRIDE threat model, 



 

 

Testbed  U 
F H FL 

and 
SC 

FE 

S, 

REL 

and 
 RES 

UI E2E Primary Purpose 

IIRA I CCL AIP  D PAM API/A 

Patel et al.[15]              Testing IoT application 

Choosri et al. [16]              Smart Traffic light 

Deshpande et al. [17]              Industrial automation 

Merchant and Ahire 

[18] 
             Industrial automation 

INFINITE  [19]   -  -   -    - - 
Testing new  IIoT 

devices/ technologies 

FIESTA-IoT [20]     -       -  Testing IoT applications 

JOSE [21]              IoT service evaluation 

Siboni et al. [22]              IoT security testing 

Berhanu, Abie, and 

Hamdi  [23] 
             

Testing healthcare-IoT 

security 

Hossain et al. [24]              
Generic  IoT 

experiments 

Brown-IIoTbed              IIoT security testing 

U: Usability              F: Fidelity H: Heterogeneity IIRA: Industrial Internet Reference Architecture 

CCL: Closed Control Loop      AIP: Application and Industrial protocol UI: User Interfacing PAM: Physical Access Media 

API/A: Application Programming Interface /Application FL and SC: Flexibility and Scalability FE: Federation          D: Devices 

S, REL, and RES: Safety, Reliability, and Resilience E2E: End to End testbed      I: Interoperability 

: Features considered          : Features not considered         : Features not explicitly and completely considered       - : not available information                                                                                                                              

 

 
 

 

 
 

 

 
 

 

 

 

and evasion security/reverse shell backdoor against 

router/firewall. We also utilize Brown- IIoTbed to provide 

machine learning approaches for intrusion detection, and 

perform malicious payload hunting and intelligence as a 

proactive defense technique (early detection). The results 

show that Brown-IIoTbed is well-structured and performed 

satisfactorily for security testing and operated in a way that 

will enable researchers to study various security issues. Also, 

in-depth analyses and comparisons with existing IoT/IIoT 

testbeds are conducted. The overall results prove that Brown-

IIoTbed satisfied the 13 features required for an IIoT testbed 

(described in section IV-Table I) and cover the research gaps 

regarding existing testbeds.   

      In future work, we plan to improve this testbed’s capacity 

and performance by deploying more and different sensors, 

machines, industrial protocols, and applications, implementing 

complex ladder logic programs for PLCs. We will also expand 

the capabilities of cloud applications by performing big data 

analytics using deep and machine learning techniques. Also, 

we intend to generate an intrusion dataset for security research 

purposes. 
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