

Abstract— While achieving security for Industrial Internet

of Things (IIoT) is a critical and non-trivial task, more

attention is required for brownfield IIoT systems. This is a

consequence of long life cycles of their legacy devices

which were initially designed without considering security

and IoT connectivity, but they are now becoming more

connected and integrated with emerging IoT technologies

and messaging communication protocols. Deploying

today’s methodologies and solutions in brownfield IIoT

systems is not viable, as security solutions must co-exist

and fit these systems’ requirements. This necessitates a

realistic standardized IIoT testbed that can be used as an

optimal format to measure the credibility of security

solutions of IIoT networks, analyze IIoT attack landscapes

and extract threat intelligence. Developing a testbed for

brownfield IIoT systems is considered a significant

challenge as these systems are comprised of legacy,

heterogeneous devices, communication layers and

applications that need to be implemented holistically to

achieve high fidelity. In this paper, we propose a new

generic end-to-end IIoT security testbed, with a particular

focus on the brownfield system and provide details of the

testbed’s architectural design and the implementation

process. The proposed testbed can be easily reproduced

and reconfigured to support the testing activities of new

processes and various security scenarios. The proposed

testbed operation is demonstrated on different connected

devices, communication protocols and applications. The

experiments demonstrate that this testbed is effective in

terms of its operation and security testing. A comparison

with existing testbeds, including a table of features is

provided.

Index Terms — security testing, IIoT, brownfield, testbed

I. INTRODUCTION

HE Industrial Internet of Things (IIoT) is a special case of

IoT paradigms in which machines, computers and people

can enable intelligent industrial operations based on

advanced data analytics. Industrial systems are becoming

increasingly capable of working automatically and

intelligently and even responding to unpredicted events (e.g.,

machine’s failure). However, there is a security risk associated

with connecting these critical industrial systems to the IoT

M. AL-Hawawreh, and E. Sitnikova are with school of engineering and

information technology, University of New South Wales (UNSW) -

Australian Defence Force Academy (ADFA), Canberra, Australia.(e-mail:

m.al-hawawreh@student.adfa.edu.au).

technologies [1]. A greater concern relates to ‘brownfield’

systems in which existing legacy industrial systems such as

Programmable Logic Controller (PLC), Remote Terminal Unit

(RTU), Supervisory Control and Data Acquisition (SCADA),

Input/Output (I/O) devices and among others interoperate with

IoT technologies [2]. These systems, such as those of energy,

water, buildings, roads, and factories have been around for

decades and were designed to have long service lives without

considering their connectivity and security [3]. Replacing

them with new gadgets and devices designed to be secure

from scratch (i.e., ‘greenfield’ systems) is not technically or

economically feasible [4, 5]. Furthermore, most of today’s

security solutions and methodologies are not applicable for

such implementation because they are Information

Technology (IT)-centric and do not take into account a

system’s safety, resilience and reliability [6-8]. As a

consequence, there is a security-gap in brownfield systems

which raise the need to infuse these systems with new security

models to protect them and mitigate potential risks.

 To develop new, efficient and holistic solutions, more

research should be conducted. However, this is often restricted

by a lack of realistic data about a system’s communications

and activities, as well as potential cyber-attacks [9-11].

Unfortunately, it is extremely difficult to obtain realistic data

from an actual environment for security and privacy reasons

which may lead researchers to make inexact assumptions and

limit the applicability of their results. Therefore, realistic data

and system test models are essential for researchers to be able

to understand the current threats landscape and attack

techniques in brownfield IIoT systems with rapidly emerging

new devices and connectivity protocols. Existing IoT testbeds

cannot be used to test IIoT systems’ security (in particular

brownfield) as these industrial systems have special

requirements such as safety, resilience and reliability, and the

need for the integration between legacy and new technologies

[4, 12-14]. Thus, it is critical to offer researchers with accurate

and realistic testbeds to optimize ongoing research and help

the research community to validate its security hypotheses. To

achieve high levels of fidelity, there is a need for a holistic,

end-to-end IIoT testbed that is generic, accurate, relatively

inexpensive and easy to reproduce.

This paper proposes a new IIoT testbed for testing and

analyzing security issues related to a system’s components

(e.g., data, communication, and devices). The main

contributions of this paper are thus as follows:

1) We propose a new generic end-to-end IIoT security

testbed, with particular emphasis on brownfield

implementations. We call it Brown-IIoTbed.

2) We develop a Brown-IIoTbed with free open sources

Developing a Security Testbed for Industrial

Internet of Things

Muna AL-Hawawreh, Elena Sitnikova

T

software and cost-affordable hardware.

3) We investigate and test various security threats based

on the STRIDE model, as well as security

evasion/reverse shell backdoor against router/firewall

to demonstrate the feasibility of Brown-IIoTbed.

4) We also provide machine learning approaches for

intrusion detection and introduce an example of

malicious payload hunting and intelligence as a

proactive defense approach (early detection).

5) We provide a comprehensive analysis and comparison

of existing testbeds with our Brown-IIoTbed.

6) We release all the implementation of testbed into the

GitHub
1
, so the researcher can easily reproduce it.

 The remainder of this paper is organized as follows: related

work in section II; a description of a generic IIoT system

architecture in section III; development and implementation of

the testbed (Brown-IIoTbed) in section IV; security testing

and analysis using Brown-IIoTbed in section V; comparison

with existing testbeds and a discussion in section VI; and the

conclusion and future work in section VII.

II. RELATED WORK

 Several IoT/IIoT testbeds have been presented by

researchers to validate their hypotheses related to various

issues in these systems. Patel et al.[15] investigated the

challenge of designing and experimenting robust IoT

applications such as smart traffic and lighting. In their testbed,

the authors utilized a Message Queuing Telemetry Transport

(MQTT) protocol and Kafka-software platform to transfer data

and visualize it in a dashboard to provide knowledge about

these applications. In related work, Choosri et al. [16]

presented a traffic management system testbed to investigate

how IoT technologies can be applied to solve the practical

requirements for human-oriented traffic control. They used a

Java-based application to control Radio Frequency

Identification (RFID) readers tagged to vehicles. Another

testbed was developed by Deshpande, Pitale, and Sanap [17]

for detecting abnormal signals in an industrial automation

system. They used a set of sensors (e.g., temperature, and

pressure) that sent analog signals to an Android smartphone

using Bluetooth. Similarly, Merchant and Ahire [18]

introduced a simple industrial automation system testbed for

monitoring the blade-aging system of a cutter tool. These

presented testbeds did not provide a complete IIoT system and

were designed for specific use.

Furthermore, few labs globally have developed large-scale

open IoT/IIoT testbeds to test new devices, applications and

technologies. For example, Industrial Internet Consortium

(IIC) [19] introduced ‘INFINITE’ as an innovation for

building a software-defined infrastructure testbed to drive the

growth of IIoT and facilitate a process for testing new

applications. ‘INFINITE’ involved multiple platforms across

mobile, cloud, sensor and analytics. It was deployed in Ireland

and included multiple IIoT service providers. The Federated

1 https://github.com/Alhawawreh/Brown-IIoTbed.

Interoperable Semantic Testbed and Applications (FIESTA)-

IoT [20] provided large-scale experimental infrastructure for

heterogeneous IoT technologies through 10 testbeds

distributed around the world. It included smart Santander for a

smart city, smart Institute of Communication Systems (ICS)

for a smart building, Sound City (SC) for collecting data from

smart mobiles, KETI, ADREAM, FINE and Network

Implementation Testbed Open Source (NITOS) for smart

buildings, EXTEND for sea and underwater environments,

Tera.4Agri for smart agriculture and Real Data Center (RDC)

for the energy consumption of data center solutions. These

testbeds focused on collecting various data types based on

different communication technologies, including Wi-Fi, LTE,

WIMAX, Zigbee, and 4G/5G terminals. Another open IoT

testbed is Japan-wide Orchestrated Smart/Sensor Environment

(JOSE) [21]. JOSE focused on collecting data from multiple

wireless networks, each of which represented a specific IoT

service and used virtual machines for its storage and

computations. Also, various communication protocols were

used to connect sensors and gateways with middleware and

virtual networks including wireless LAN, LTE, and 3G. All

these discussed testbeds concentrated only on testing

applications and collecting IoT data, and most did not provide

clear descriptions of their configurations and components.

 Although security is one of the major challenges that

IoT/IIoT deployments encounter, few studies have focused on

IoT/IIoT security testbed. For example, Siboni et al. [22]

presented a security testbed capable of testing various IoT

devices and physical access media, including Wi-Fi, Zigbee,

and Bluetooth. They tested various security issues such as

discovering IoT devices’ vulnerabilities, detecting anomalies

using machine learning, and evaluating testbed’s resilience

against denial of service (DoS) attacks. However, their

proposed testbed focused only on IoT devices and specific

physical access media. It also provided an industrial IoT

scenario, in particular, a closed control loop, using simulators

only. Berhanu, Abie, and Hamdi [23] presented security

testbed for smart health applications. In their experiment, data

was collected from multiple sensors via smartphones, sent to a

storage device and then displayed for end-users through

multiple interfaces. This testbed focused on validating energy

consumption rather than security issues and presented only a

specific use. Moreover, Hossain et al. [24] introduced a

distributed testbed providers and multiple users which could

be rented by end-users to deploy their devices or conduct IoT

research experiments (e.g., security testing). The authors

argued that, as their testbed was designed based on the

principle of cloud services, it provided these services through

users registering for allocation of resources which were

managed and monitored using the management components.

The testbed was evaluated based on a process of allocating

various IoT-simulated devices, with the results showing that it

could provide a reasonable and manageable performance

despite some clients possibly facing a short delay in reserving

their demand for resources. However, as evaluating its

performance based only on simulated devices could not

represent those of real systems and their conditions, this

prototype could not be considered a real service.

 In summary, although there is a great deal of literature

available on developing testbeds for IoT and IIoT systems

with different objectives, most existing testbeds focus on

collecting data using various sensor types deployed in wireless

sensor networks and supporting different networking wireless

communications while others depend on simulators to model

the data of IoT/IIoT devices and some involved specific target

applications. Open testbeds and those presented as service

prototypes are confronted by the challenge of authenticating

valid users and offering only restricted access to some

collected data due to privacy concerns. They are also highly

complex and cannot be adapted to satisfy users’ requirements

for security testing. Almost all of the existing testbeds cannot

guarantee the fidelity of IIoT systems as they do not follow a

standard architecture model. Also, the IoT implementations

cannot be used to test security issues related to industrial

systems since IIoT systems have special requirements

regarding safety, resilience, and reliability. The

interoperability using various messaging communication

protocols, and the integration between legacy control systems

and IoT technologies have not been investigated. A holistic

end-to-end testbed has not been presented for IIoT systems, in

particular brownfield systems, for security testing. Therefore,

as there are critical gaps, it is necessary to develop a testbed

that focuses on providing a simple and accurate end-to-end

IIoT testbed with a high level of fidelity. This paper introduces

a new end-to-end IIoT security testbed with a particular focus

on recent IIoT connectivity protocols, interoperability-

supportive devices, and brownfield systems because they are

the most essential for obtaining new security solutions as well

as a testbed for evaluating those solutions.

III. DESCRIPTION OF GENERIC IIOT SYSTEM

ARCHITECTURE

An Industrial Control System (ICS) usually uses the Purdue

Enterprise Reference Architecture (PERA) as the reference

architectural model. Its main concept is based on dividing

enterprise and ICSs into vertical and hierarchal segments,

including fieldbus, control bus, and corporate, that function in

a similar way [25]. Arguably, this model is still adopted in

terms of its functionality for providing downward and upward

information flows among a brownfield IIoT system’s levels.

However, because of the implementation of new digital

networks and various technologies, such as mobile, edge, and

cloud computing, as well as changes in information and

command flows through these systems, new architectural

reference models have been developed for IIoT systems.

The Industrial Internet Consortium (IIC) published an

architectural model for IIoT system applications, called the

Industrial Internet Reference Architecture (IIRA), that helps in

understanding the implementation of greenfield and

brownfield IIoT systems in real environments [26]. It presents

different descriptions for these implementations as it is

generally case-specific. However, from a variety of such

architectures, we extract a generically designed model that can

represent the main implementation and functionality of IIoT

systems, a horizontal modular with the following three basic

tiers.

Tier1: The edge tier consists of physical assets/filed devices

that form a closed control loop with a senor, actuator, and

controller and an edge gateway that provides real-time data

analytics, storage, and control. It also connects a physical

system with other digital ones and may include an optional fog

node for performing various real-time operations.

Tier2: The platform tier receives, processes, and relays

control commands from the enterprise tier to the edge one. It

provides data analytics, storage, and management services that

could be implemented in corporate or cloud data centers.

Tier3: The enterprise tier represents a service network for an

IIoT system and includes an Application Programming

Interface (API), Web-SCADA and Human User Interface

(HUI) to enable human interactions with applications, the

issuance of commands to the edge tier, the making of smarter

decisions and the performance of maintenance.

The IIRA model focuses totally on the basic characteristics

and cross-cutting features of any IIoT system implementation

and can be described as follows. Firstly, it emphasizes a

closed control loop, which is clearly defined at the edge tier,

for collecting and analyzing data and controlling the system.

Secondly, it has a large-scale closed control loop in an IIoT

system that includes all the system’s tiers (i.e., edge, platform,

and enterprise) and uses the data collected from the physical

control systems for analysis at the corporate/cloud data center

servers. Then, it makes a smart decision regarding the

operational process and eventually concentrates on influencing

the systems in the edge tier. Finally, it also emphasizes the

interoperability features in an IIoT implementation; for

example, the interoperability between various messaging

communication protocols, networks, or types of devices and

the interoperability among systems so that a one-IIoT system

could use the cloud data collected from different IIoT systems.

Given that, we use the IIRA as a reference model to build a

more realistic testbed that helps to demonstrate the fidelity and

credibility of security research. However, the horizontal

interoperability is out of the scope of this paper as our focus

on providing simplified IIoT testbed for security testing rather

than the system of systems integration.

IV. DESIGN AND DEVELOPMENT OF THE TESTBED

A. Description of generalized Brown-IIoTbed architecture

Fig.1 illustrates the architecture of Brown-IIoTbed based on

IIRA model, it is a generalized prototype which means that

any type of sensor, actuator, and industrial control device

(such as PLC, RTU, and I/O devices), can be involved in it.

Also, to provide more flexible capabilities for performing

various IIoT applications and security tests, any relevant

simulator can be used as a physical system as well as various

human interfaces, including laptops, Personal Computers

(PC), smartphones and tablets, to provide interactions with

edge devices and visualizations of data analytics. The testbed

is divided into the following zones.

Physical assets/filed devices zone: Whenever a physical

assets/filed devices are represented, the device and/or

simulator deployed should behave similarly to the actual

system and have a deterministic scan cycle, response time and

accurate response for each of the inputs provided. The cyber-

physical links and access medium between these devices and

other system components should represent the actual medium

and communications of the systems deployed. Therefore,

various industrial physical assets/filed devices are used, each

of which achieves the closed control loop required by the

IIRA model. Firstly, a PLC, a master device that uses the

MODBUS protocol, is connected to an I/O slave device

represented by a physical analog sensor and actuator. The PLC

device is also connected using the MODBUS/TCP protocol to

the edge gateway. Secondly, two I/O slave devices with two

different serial fieldbus protocols are used. They represent

digital sensors and actuators that are controlled directly by the

edge gateway as a master device. Finally, a simulator (our

developed JavaScript script) acts as the sensor, controller and

actuator, is used.

Edge gateway zone: An edge gateway plays a critical role in

supporting Machine-to-Machine (M2M) communication,

collecting data from various physical devices, storing it as a

time-series database (local data historian) and sending it to the

cloud. It also acts as a microcontroller for I/O devices and a

master device for PLC at the same time as well as supporting

the interoperability and integration of various communication

protocols and different legacy systems. It can also provide a

local SCADA or API system as a web service for monitoring

and controlling these physical processes and devices [27, 28].

Edge mobile service zone: A mobile device runs at the edge

tier to provide Human-to- Machine (H2M), and Machine-to-

Human (M2H) communications. It represents the smartphones

and tablets used by connected workers and their on-site

supervisor. The connected workers use a mobile application to

wirelessly access the physical devices using the edge gateway

to read data, send commands and check the status of the

actuators as well as perform specific Python scripts for

maintenance after receiving a notification from edge gateway.

The on-site supervisor can use the tablet as a web interface

device to access the statistical figures and data analytics (i.e.,

as a mobile SCADA clients).

Local Area Networks (LANs), router and firewall zone:

The edge gateway connects with local networks that provide

local SCADA and various simple IT services in both wired

and wireless forms. For example, it connects with a mail

server to send e-mail notifications to connected workers and

with an IT PC to provide local management and maintenance

for edge devices. A router is used to connect between the edge

systems and external world i.e., Wide Area Network (WAN),

this router is also with firewall capabilities to achieve a high-

fidelity security testing as the edge physical devices and

systems cannot connect directly with the Internet without

accessing a control list.

Cloud zone: The cloud platform consists of a broker that

connects with the edge gateway to receive the measurements

and states of the physical assets/filed devices and a data

historian to store the values that fall outside the predefined

deadband, with only the significant data sent to the cloud to

reduce the amount of bandwidth used and provide real-time

processing at the edge gateway [28]. However, Brown-

IIoTbed presents various scenarios for collecting data,

including the deadband and deterministic values, stored in a

usable and searchable way, i.e., in an indexed database, to

allow analyses or machine learning processes to be performed

in order to make further decisions. The cloud application

provides the analytics results and statistical data graphs as a

service. In fact, it helps to transform the raw data into the

valuable information sought to satisfy the requirements of

other IIoT applications.

 Fig. 1. Testbed architecture based on IIRA model

Enterprise service zone: one of the main objectives of an

IIoT system is to provide remote monitoring and control.

Therefore, the development and deployment of APIs or Web-

SCADA interfaces to provide remote monitoring and real-time

data visualization, such as of sensor data, actuator status,

current set-point values, statistics and graphs. These interfaces

can be accessed using any web browser via any computer or

mobile device. Another task that could be performed at this

zone is the remote technical maintenance of edge physical

devices by control systems’ individuals.

B. System components and structure of Brown-IIoTbed

The testbed environment illustrated in Fig. 2 shows the

hardware, software and communication protocols used in

Brown-IIoTbed implementation:

1) System hardware components: At the edge tier, two

Raspberry Pi and one Arduino mega 2560 devices are used to

act as an edge gateway, PLC, and I/O device respectively.

These electronic devices are very common IoT devices with

multiple I/O pins, are easy to use and with affordable prices.

Also, one analog and one digital sensor, i.e., TMP36 (−40°C

to +125°C) and DS18B20 (-55°C to +125°C) provide various

temperature readings value. The focus is on performing a

closed-loop temperature controller which is considered a part

of most existing ICSs [52, 53]. To provide a variety of

measurement readings, a pressure sensor (MPL3115A2) is

used to obtain both pressure (20 to 110 kPa) and temperature

values (–40 °C to 85 °C). Various Light Emitting Diode

(LED) devices are deployed as the actuators represent the

controlling parameters that can influence the closed control

loop, such as its switch on/off pump relay or valve. Also,

mobile devices, such as iPhones and Android tablets, are

integrated into this testbed to provide connectivity with the

edge gateway. LANs are represented by laptop and PC devices

connected to the edge gateway by a Wi-Fi access point and

physical switch (i.e., a 2810-24G managed HP Ethernet

switch) respectively. To establish a WAN and external world,

an HP server provides various devices and a router/firewall.

2) System software components: Various open-source

software tools freely available online are used to perform

specific tasks. An OpenPLC server runs on a Raspberry Pi B+

device and connects to an OpenPLC software (C++ code)

slave that runs on an Arduino Mega 2560 device. The

OpenPLC [29] is an open-source fully functional PLC that

supports MODBUS/TCP connectivity and ladder logic as a

programming language for process control. A simple ladder

logic program is created to read the values from an analog

sensor, process them based on a function block, and react by

sending a command to the actuator. A Node-Red [30]

application is used to perform the functionalities of the edge

gateway. It is a programming tool for wiring together

hardware devices, APIs, and online services with multiple

libraries for connecting physical devices, such as a MODBUS

PLC, digital sensor, LED, and many more. Multiple Node-Red

flows (JavaScript codes) are created to perform the edge

gateway’s functionality, connect the PLC, I/O devices and

other physical assets to the edge gateway, and then the

external world. Also, additional flows are created to store real-

time data (data historian) and analyze it, control I/O devices,

and simulate a closed control loop to provide different limited-

range random values of temperature, pressure and humidity

measurements. The Node-Red application also helps to

establish an API and Web-SCADA. The edge gateway runs

txThing Constrained Application Protocol (CoAP) [31]

(building based on twisted Python library, as one of the most

common CoAP Python framework), Apache2 web server,

MYSQL database, Secure Shell (SSH), Dnsmasq (for

providing Domain Name Service (DNS), Dynamic Host

Configuration Protocol (DHCP), router advertisement and

network boot) and Host access point daemon (Hostapd) to

provide access points for wireless mobile devices and other

services for end-users as well as physical control devices.

VMware workstation pro [32], a virtualization tool, is used to

create multiple virtual machines at a Windows laptop and PC.

The laptop provides a mail service and CoAP client scripts.

The hMailserver [33] is run on a Windows virtual machine to

provide SMTP mail services, with Python scripts used on

another Windows virtual machine to simulate CoAP client

behavior. The virtual machines on the PC provide

management (Windows) for various services and internal

attack tools (i.e., kali Linux).

The iPhone mobile devices use three applications installed

from the App Store, the “CoAPClient” app for connecting to

the CoAP server, Shortcuts app for creating repeated scripts

over SSH and Mail app for receiving notifications from the

edge gateway as e-mail. The tablet device runs on a Chrome

web browser to access Web-SCADA and the ESXi 6.7

hypervisor [32] is used for virtualization. Multiple virtual

machines are created to act as a virtual router/firewall with

pfsense software [34], a cloud server running a mosquito

MQTT broker [35] to receive data from the edge, MYSQL

storing the received data in an indexed database, and a shiny

server with the R language [36] creating a cloud data analytics

application while other virtual machines act as an API, Web-

SCADA, remote maintenance and external attacker tool (i.e.,

Kali Linux). The virtualization technique is adopted since it is

often inexpensive, reduces the amount of equipment required

and simplifies the physical compositions of systems. The

iMacro [37] is used to automate the behavior of human on web

interfaces, and Python scripts for automating SQL clients.

3) Communications and physical links: In this

implementation, the heterogeneous application layer

(messaging) protocols concentrating mainly on those that are

common in IIoT are used. For physical media, both wired and

wireless communication (Ethernet IEEE 802.3 and Wi-Fi

IEEE 802.11 respectively) are employed, with the PLC, PC

and WAN devices configured to use the former and the mail

server, CoAP simulator and mobile devices the latter. The

edge gateway is configured to use both. The legacy industrial

protocol MODBUS/TCP, the most common industrial

protocol in brownfield implementations, is used to connect the

PLC device to the edge gateway and the MODBUS serial to

connect the Arduino/ slave device to the PLC, i.e., the

Raspberry Pi B+/master. The fieldbus serial communications

I2C and 1-wire connect the sensor and actuators to the edge

Fig.1. Testbed architecture

gateway as I/O devices. The DNS and CoAP protocols enable

a mobile device to connect to the CoAP server and access

point at the edge gateway while the SSH protocol is used in

most devices deployed to perform remote access and

management. The MQTT protocol, the second common

protocol after HTTP in IoT, publishes data to the cloud server

and WebSocket accesses APIs from mobile devices and the

local API-edge gateway monitor. The HTTP protocol is used

for Web-SCADA from an external network (WAN), SMTP,

and IMPA ones to send and receive e-mail notifications and

SQL to access a local data historian.

C. Cases using Brown-IIoTbed functionalities

 Uses of the proposed testbed are discussed in the following

examples of cases of generalized and non-specific systems.

They concern the complete proposed system and are aimed at

illustrating the feasibility of our proposed testbed, Brown-

IIoTbed, as our focus is on hardware and software

implementations for security testing:

Case1. Quick checkup and response using mobile

application: A connected worker uses his/her mobile

application to send a request to the edge gateway over the

CoAP protocol-wireless network, asking for the current

reading value of the I2C sensor. He/she can also send a

command to switch on/off the actuator, that is, the I-wire LED

at any time.

Case 2. Notification and warning via e-mail: The edge

gateway connects to the local mail server to send an email

notification via the SMTP protocol to a connected worker’s

mobile. This email confirms that a specific command has been

sent to the actuator or initiates a warning that the sensor values

have exceeded a predefined threshold.

Case 3. Running of Python script to log on to edge gateway

and repair malfunction: A connected worker uses an iPhone

mobile device to connect to the edge gateway over the SSH

protocol and run Python scripts to repair a specific physical

device malfunction, such as disabling a pump relay (i.e.,

LED), on site with no need for any manual action.

Case 4. SCADA alarm and notification pop-up: When a

pump valve is opened or closed (i.e, Switch on/off LED)

based on a decision received from a PLC or microcontroller, a

message appears in the Web-SCADA interface.

Case 5. Checking and monitoring of physical control systems

on site: The on-site supervisor uses an Android tablet to

access the SCADA interface via the webSocket protocol and

can also view real-time data graphs, current values, and the

actuator’s status using a mobile SCADA.

Case 6. System monitoring: The edge gateway provides local

Fig. 2. Structure of the Brown-IIoTbed

SCADA/API systems over the webSocket protocol that

enables an operator at the edge level to monitor the connected

industrial physical systems and control them locally.

Case 7. Maintenance of IIoT edge gateway: The IT team

can remotely (i.e., over the Internet) access the edge gateway

using the SSH protocol to perform the processes required for

technical maintenance.

Case 8. Remote tuning of PLC parameters: Operators at the

enterprise level can access a Web-SCADA over the Internet

(over HTTP protocol) using his/her authentication credentials

and change the predefined values of the set-points of a PLC

device

Case 9. Ad hoc analytics for optimization: The data

analytics team can access a cloud application to determine

how frequently a specific task related to the relevant sensor

should be performed through searchable and filtered tables.

Case 10. Fault modeling: Through a cloud application, the

data analytics team can create graphs for the sensor data

collected during a specific period. Therefore, they can

discover faults and any bias in the sensor values that help them

identify any kind of malfunction that has happened or will

occur.

Case 11. Addition of new devices at edge: The technical

maintenance team can remotely add a new device to the IIoT

edge gateway and configure it using the SSH protocol.

Case 12. Malfunction in actuators: If a specific actuator

does not act according to the control command received, the

operator will be able to notice this through a Web-SCADA

system to quickly fix the problem remotely.

Case 13. Quick query to edge data historian: An operator

sends a query to the data historian (i.e, a MySQL database in

the edge gateway), asking about the last status of a specific

actuator.

Case 14. Remote starting or stopping of sensor: An operator

can start or stop a sensor from providing any measurement for

local and cloud data historians. The simulated sensors and

their engines are shown at the Web-SCADA/API interface

where the operator can control them.

Case 15. Backup and recovery: A IT maintenance worker

can access the edge devices, collect the desired logs and

perform remote backup, and potentially provide a manual

recovery process for connected industrial devices and edge

gateways.

D. Brown-IIoTbed Setup and Performance

 We implemented Brown-IIoTbed in the IoT lab of UNSW

Canberra, which provides an isolated security testing

environment. As shown in Fig. 3, the testbed setup consists of

the aforementioned hardware, open-source software, and

communications protocols (see Fig. 2). For example, Fig. 3

shows the installed Raspberry Pi and Arduino devices with

their connected electronics components (i.e, sensors, and

LEDs) which represent the physical asset and edge devices.

Furthermore, it shows the management screen of ESXi 6.7

hypervisor which illustrates the WAN network’s devices (e.g.,

Cloud application, and web-SCADA over HTTP), IT services

script on the PC screen, laptop with running CoAP client

scripts, and API on Android tablet.

Brown-IIoTbed is successfully tested with connected wired

 and wireless devices. To evaluate its performance, we

consider the edge gateway network and system activities as it

is the central point of the Brown-IIoTbed at which the

physical and cyber systems are connected. Fig.4 shows the

edge gateway CPU load that is almost around 50% and it

rarely peaks over 75% while Fig.5 shows that the system is

making suitable use of memory where the total memory

utilization is limited to less than 45%. Metrics related to the

system’s input/output activities are shown in Table I. As it can

be observed, the workload of transfer, read, and write requests

per second (their average values are 15.11, 6.13, and 8.98

respectively) is much low which in return has an efficient

impact on the process response time. In overall, the edge

gateway system (Raspberry pi 3 B+ with quad-core processor

CPU) seems to work well. Fig.6 shows the average network

throughput in Gigabit per second (Gbps) over a time interval

(seconds). It can be seen that the average throughput

drastically increases and its values are high. For example, the

average throughput value at time interval 3600 seconds (i.e.,

the successfully transferred data rate in period 3000 to 3600

seconds) is approximately 5 × 10+8 Gbps. Other network data

analytic metrics are also shown in Table I such as average

packet size, bytes/second, and bits/second have values 2153

bytes, 617BK/s, and 4941KB/s respectively.

To ensure the full connectivity and acceptable Quality of

Service (QoS) for IIoT network, it is essential that the jitter,

describing the variance in time delay between packets over

time, does not exceed the certain tolerable value. This value

varies in different applications; however, according to Cisco

[38] the jitter value should be below 30ms and this value may

roughly fit IIoT data streams. In our implementation, it can be

clearly observed from Fig.7 that most of jitter values over time

are expected and less than 30ms. In the light of these jitter

values with existing wireless communication and the

capabilities of edge gateway device (i.e., Raspberry pi 3 B+),

Fig. 3. Brown-IIoTbed setup

we can state that Brown-IIoTbed network performs well. A

response time (i.e., sum of transport latency and processing

time) is another important metric that has a bearing on QoS

and needs to be retained under control. Table I shows the

average of response time for the key Brown-IIoTbed

application protocols. For example, the response time of

MODBUS varies over the time but the average value is

10.94ms. This value fits the MODBUS TCP requirement

where the recommendation for maintaining its value below

20ms [39]. While HTTP takes longer time around 346.95ms as

it, in its way to the edge gateway, goes through router and

firewall. However, it is still below the recommended limit

value (1 second). Other services also provide acceptable

response time including local DNS, CoAP, SMTP, and serial

fieldbus I2C where take 0.201ms, 7.38ms, 12.3ms and 1.34ms

respectively. While for MQTT protocol, as publish-subscribe

protocol, we consider publishing (QoS=2) handshake time

between client and broker (i.e., “publish message”, “publish

received”, “publish release”, and “publish complete” packets).

It is the interval-time between “publish message” and “publish

complete” packets and it takes around 8.6ms in our

implementation. WebSocket also starts out its connection by

HTTP handshake, and then data is exchanged as frames over

WebSocket protocol in persistent connection. Hence, the

WebSocket response time is calculated based on HTTP, and it

takes around 10.18ms. Arguably, this convenient level of

service response times means low transport latency,

appropriate network bandwidth utilization, and the reliable

QoS.

In summary, we can conclude that Brown-IIoTbed

functions well and in a predicted manner. This is because

Brown-IIoTbed is designed in a way that supports edge

computing (using edge gateway), which provides faster

process and storage and sends only the relevant data to the

cloud. Further, it highly depends on emerging application

protocols such as MQTT, CoAP, WebSocket that are designed

to reduce network overhead, address latency and bandwidth

problems, and provide QoS options.

E. Examples of implementation of Brown-IIoTbed

 In this subsection, for the sake of brevity, we will provide

examples of the testbed implementation of the most important

communications, operations, and functionalities of Brown-

IIoTbed.

The telemetry data collected from various physical devices

is published via an MQTT protocol to the broker. Then, a

Fig.7. Network traffic Jitter over one hour

TABLE I
BROWN-IIOTBED PERFORMANCE METRICS OVER ONE HOUR

Avg. Packet size (Byte) 2153

Avg. bytes/s (KiloByte) 617

Avg. bits/s (KiloByte) 4941

Avg. number of transfer request /second issued to

physical device

15.11

Avg. number of read request /second issued to
physical device

6.13

Avg. number of write request /second issued to

physical device

8.98

Avg .MODBUS. Response time (ms) 10.94

Avg.CoAP. Response time (ms) 7.38

Avg.HTTP. Response time (ms) 346.95

Avg. DNS. Response time (ms) 0.201

Avg .I2C Response time (ms) 1.34

Avg. MQTT publish (QoS 2) message handshake

time (ms)

8.6

Avg. SMTP response time (ms) 12.3

Avg.WebSocket.HTTP response time (ms) 10.18

Fig. 4. Edge gateway system CPU Load

Fig. 5. Edge gateway system Memory Utilization

Fig. 6. Network Throughput over time interval

JavaScript function is used to parse the data, change its

format, and send it as a JSON message to the cloud broker; for

example, as shown in Fig. 8, a published packet with 225

bytes of an MQTT message and name [station/I2C slave] is

sent from the edge gateway to the cloud broker. It consists of a

JSON data representation that describes critical information,

such as the device’s ID/type and measurements. While the

edge gateway polls the data from the MPL311A2 sensor using

an I2C fieldbus protocol, parses and acts on received data

format and then sends it in response to a connected client’s

request. This communication is conducted over the CoAP

protocol between the CoAP client’s mobile app (i.e., the

connected worker) and the txThing CoAP server/edge

gateway. The connected worker sends a ‘GET’ request to the

resource path to read the sensor values and can also send a

‘PUT’ request to change the actuator’s states (switch on/off).

To perform this communication between a CoAP client and

server, the original txThing code is updated and a new specific

code for polling and acting on I2C sensor measurements is

developed, as shown in Algorithm I.

Fig. 9 is a screenshot of the cloud application table for ad

hoc analytics. The data collected at the cloud data historian

can be accessed using this application and simultaneously

filtered based on various factors. For example, the time-series

data can be filtered based on the time interval between 2019-

07-12 08:35:45.680 and 2019-08-09 10:41:30.000. Fig.10

shows the Node-Red flows created to connect a PLC with the

edge gateway and other components, with the data register as

the object on the right-hand side. The three registered

addresses are received as voltage values on which the edge

gateway can act and change the format to Celsius values

(using a JavaScript code). This new data format can be passed

to other system components, such as by being published to the

cloud server using the MQTT client node.

V. SECURITY TESTING AND ANALYSIS USING

THE TESTBED

Each component of an IIoT system has a broad attack

surface and may be a target for various cyberattacks. To prove

the feasibility of the proposed testbed for security testing, the

following attack scenarios are studied via experiments.

A. Security threats based on STRIDE model

The Microsoft threat model ‘STRIDE’ (Spoofing (S),

Tampering (T), Repudiation (R), Information disclosure (I),

Denial of service (D) and Elevation of privilege (E)), the most

common threat model, is adopted to describe various attack

types. For the sake of brevity, only one attack scenario is

tested for each attack type.

Test Case 1: Spoofing attack (S)-Address Resolution

Protocol (ARP) spoofing scenario

In the ARP spoofing attack, the attacker sends faked ARP

messages over a local network to link the attacker’s MAC

address with the IP address of the victim device [40]. In our

implementation, the attacker can be between the edge gateway

and router in the same network. The attacker begins to poison

the edge gateway’s ARP cache so that all the traffic from the

edge gateway to the router passes via the attacker’s machine.

Fig. 11 shows an example of HTTP traffic before ARP

spoofing where the Ethernet frame originates from the edge

gateway with a MAC address of b8:27:eb:61:e5:14 to the

router interface with a MAC address of 00:0c:29:6e:a7:ca. Fig.

12 shows the same HTTP traffic after ARP spoofing in which

the frame has a different MAC address, that is, that of the

attacker’s machine of 00:0c:29:5b:a2:99. Through this

process, the attacker can perform more malicious activities,

such as preventing data from being sent to its destination or

injecting false data or commands.

Test Case 2: Tampering attack (T)-poisoning data

analytics at cloud

 A tampering attack is based on the modification of data

exchanged between the client and server [41]. In our

Algorithm I. Generating COAP message

Input: Request
Output: Response

1. Data= Read I2CDataBlock (0x60, 0x00,6)

2. Var temp_value = Read Temperature _ Register ()

3. temp_value = ((Data [4]*256) + (Data[5] & 0xF0)) /16
4. CelsiusTemp = temp_value / 16.0

5. Var pressure_value= Read Pressure_Register()

6. Pressure_value = ((Data[1]*65536) + (Data [2]*256) + Data [3]
 & 0xF0)) / 16

7. Pressure = (Pressure_value / 4.0) / 1000.0

8. Payload = String ({“ Device Name”; “MPL3115A2”, “data”:
 {“Ctemp”:{“Celsius:” CelsiusTemp}, “Pressure”:

 {“Pascalpre”: Pressure}}}

 9. Response = CoAP.Message (code = COAP.Content, payload =
 Payload)

10. Return Response

Fig. 8. MQTT packets captured in Wireshark

Fig. 9. Data table in cloud application

implementation, this attack can occur between the cloud

broker and edge gateway (as a publisher) where an attacker

sends false data to the cloud to fake the sensor measurements.

This injection is performed by a Man-in-the-Middle (MitM)

attack that modifies the data-in-transit. Fig. 13 shows two

superimposed curves in plots of pressure measurements over

time. One is the true data collected from the local data

historian at the edge gateway; the other is collected from the

cloud data historian that is subject to tampering. The false data

is fabricated such that it changes slowly to evade mechanisms

for anomaly detection. This attack can continue for a long time

as various data values are injected with the goal of affecting

the decision-making process.

Test Case 3: Repudiation attack (R)-sending fake

notification and denying it by compromised edge gateway

 A repudiation attack happens when the user denies the fact

that he/she has executed a specific action [42]. In our

implementation, this can be performed by the edge gateway.

The edge gateway often sends a notification to a connected

worker which can be exploited by an attacker sending fake

notifications (that are opposite to the real ones). When a

worker realizes that an e-mail notification is not real, the edge

gateway denies sending it. For example, we use the Node-Red

library to send an e-mail to a connected worker, with each

activity recorded in the Node-Red logs. The attacker can

compromise the edge gateway and use a Python script to

establish a connection to an SMTP server by harvesting

credentials and e-mail accounts from the edge gateway.

Afterward, the attacker can send a fake notification to the

connected worker which will be denied by the edge gateway

as this activity cannot be seen in the Node-Red logs. However,

with adequate auditing and logs of the edge gateway (see Fig.

14), this activity can be proven to be conducted by the edge

gateway using a Python script which indicates that it is due to

either another legitimate user or a malicious one.

Test Case 4: Information disclosure attack (I)-injecting

edge gateway and sniffing fieldbus I2C protocol

 This type of attack aims to acquire specific information

about the system [43]. For example, an attacker can monitor

Fig.11. Traffic from edge gateway to the router before ARP spoofing

Fig. 12. Traffic from edge gateway to the router before ARP spoofing

Fig. 14. Authorization Log

Aug 13 18:12:05 raspberrypi sudo: pi : TTY=pts/1 ;

PWD=/home/pi ; USER=root ; COMMAND=/usr/bin/python

fakeemail.py
Aug 13 18:12:05 raspberrypi sudo: pam_unix(sudo:session):

session opened for user root by (uid=0)
Aug 13 18:12:06 raspberrypi sudo: pam_unix(sudo:session):

session closed for user root

Aug 13 18:15:01 raspberrypi CRON[1736]:
pam_unix(cron:session): session opened for user root by (uid=0)

Fig. 13. Cloud data tampering

Fig. 10. MODBUS/TCP readings of Node-Red flows

and capture the traffic between master and slave devices using

sniffing scripts to understand the conversation between the

endpoints and use the collected information for advanced

attacks. Fig. 15 shows the traffic between the edge gateway (a

master device) and the MPL3115A2 sensor (a slave device)

captured by a sniffer (i.e., Python script), where ‘[‘ represents

for start, Acknowledgment ‘+’ or nor ‘-‘, address (7 or 10

bits), Read/Write bit (1=Read, 0= Write), ‘xx’ two

hexadecimal characters for each data byte and ‘]’ for a stop.

For example, the second part of the message ‘[C0+01+

[C1+5C+84+70+ 17+F0+00-]’ shows the read command

issued by the master device to the slave’s standard address (C1

(0x60 plus read bit)) for the 6 data bytes 5C, 84, 70, 17, F0

and 00. Using this data register’s address and the data bytes,

an attacker can extract the temperature values according to the

formula (((Data [4]*256) + (Data [5] & 0xF0)) /16)16.0), that

is, 23.9375 ℃ which could help the attacker to perform

advanced threats such as a false data injection attack.

Test Case 5: DoS attack scenario (D)-attacking PLC device

using Modbus/TCP protocol

In an attack performed against PLC devices, the attacker

with access to the network floods these devices with Modbus

packets by sending huge numbers of read queries for various

addresses of the targeted PLC [13]. The goal of this DoS

attack can be to cause system disruption and expend

processing resources. Fig. 16 shows the numbers of packets

and transfer requests from a PLC to a connected physical I/O

slave device during the DoS attack. It is clear that there is an

abrupt increase in both these measurements. However, in this

implementation, the PLC device still operates during and after

the attack and proves its availability and resiliency.

Test Case 6: Elevation of privilege attack (E)-unprivileged

subscriber to cloud MQTT broker

 An elevation of privilege attack occurs when an attacker

obtains the rights of authorized users and gains a higher level

of privilege to the system [44]. In our experiments, a

malicious subscriber can connect to the cloud broker to obtain

all the information exchanged between it and the publishers.

This attack can be considered an elevation of privilege as this

unauthorized subscription for several topics at the same time

results in a disclosure of sensitive information exchanged

between endpoints and the state of the broker. An MQTT

subscriber for wildcard topics # and script responses, as shown

in Fig. 17, displays the target broker in its raw format where

the broker’s ‘Mosquito version 1.4.15’, its states and the most

recent published messages, such as the data received from a

PLC Modbus, and simulated devices, are highlighted.

B. Machine Learning approaches for Intrusion detection

 Utilizing Machine learning for analyzing and revealing

malicious behavior is getting predominant as it can extract the

hidden pattern of malicious and normal behavior [45]. Hence,

we implemented machine learning approaches to identify the

aforementioned attacks that have distinguishable features in

network traffic (i.e., ARP spoofing, poisoning, Modbus DoS,

and unprivileged MQTT subscriber). We utilized the most

common algorithms including Random Forest (RF), Decision

Tree (J48), Logistic Regression (LR), K-Nearest Neighbor

(KNN), and Naive Bayes (NB). We collected and processed

the raw network traffic of testbed during normal (without

attack), and attacks using the Wireshark tool and then

extracted the basic features of network traffic conversations.

Examples of these features include the number of packets,

number of bytes, bit rate, duration, and among others [46].

The final dataset has 42594, 145, 149, 1039, and 1534

conversations for normal, ARP spoofing, poisoning, Modbus

DoS, and unprivileged MQTT subscriber respectively. We

utilized the Accuracy (ACU), Precision (P), Recall

(R)/detection rate, and F-Measure (F-M) based on 10-fold

cross-validation to evaluate approaches’ performance.

 Table II shows machine learning approaches for intrusion

detection where all of them achieved a reasonable

performance. However, the RF achieved the best performance

(i.e., 99.9%) in terms of accuracy, precision, recall, and F-

Measure. While the NB achieved the worst performance

compared with others because it assumes the independency

among features, and it classifies the conversation based on the

prior knowledge of the condition that may be related to the

occurrence of conversations. Table III shows the performance

of machine learning approaches in revealing attack types. As

it can be observed, the RF achieved the highest detection rate

Fig. 17. MQTT broker’s subscribing data

Fig. 15. Sample of I2C traffic

[C0+01+[C1+5C+84+70+17+F0+00-]

[C0+01+[C1+5C+84+E0+18+00+00-]

[C0+01+[C1+5C+84+90+18+00+00-]

Fig. 16. Packets and transfer request/second during Modbus DoS attack

| $SYS/broker/subscriptions/count: 20

| $SYS/broker/load/bytes/sent/1min: 4921.41
| station/PLC: {"Device ID":"Slave 2","Device Type":"PLC

MODBUS","Measurement":"16.407","Function":"PLC

Temperature Sensor","Content Type":"Temperature"}
….

| $SYS/broker/version: mosquitto version 1.4.15

| $SYS/broker/bytes/sent: 31348
| $SYS/broker/load/connections/5min: 1.32

| $SYS/broker/timestamp: Tue, 18 Jun 2019 11:42:22 -0300

| station/sensor1: {"Device ID":"Slave 4","Device
Type":"sensor-1","Measurement":17.65,"Function":"Sim-

humditiy Sensor","Content Type":"Humditiy"}

| $SYS/broker/load/messages/received/15min: 27.11
| $SYS/broker/heap/current: 36688

for ARP spoofing (71.0%), and Modbus DoS (99.5%), while

the NB obtained the best detection rate for the poisoning and

unprivileged MQTT subscribers.

C. Security evasion / Malicious reverse shell backdoor

against Router/Firewall for remote command injection

 Edge devices are usually protected from the external world

by firewalls that specify the IP addresses that can legitimately

access their internal networks. However, attackers are always

able to pass such security mechanisms by identifying their

weaknesses, such as misconfigurations, and unpatched

vulnerabilities. In our experiments, a pfsense router/firewall

with vulnerability (CVE-2016-10709) is used. An attacker

starts its exploitation process by scanning and numerating

target devices to identify open ports and collect more system

information. For instance, the output of Nmap command

(Nmap -f –v –O 192.168.10.1) is “PORT STATE SERVICE

443/tcp open https and OS details: FreeBSD 7.0-RELEASE-

p1 - 10.0-CURRENT, FreeBSD 7.2-RELEASE”, which

indicates the possibility of accessing the WebGUI of the

router/firewall device. An attacker can use the default

credentials or perform a phishing attack to gain access to it

and find any vulnerability that can be exploited. Another way

that can be performed is a directory and file traversal (web

application attack) e.g., using the Dirbuster tool against

(https://192.168.10.1:443), to find files that may have

information related to these credentials. Based on the collected

credentials and information, the attacker can exploit the

pfsense software’s vulnerability by injecting malicious PHP

codes and creating reverse shell backdoor for command

injection with root privileges, as shown in Fig.18.

C. Malicious payload hunting and intelligence

As attacks have evolved and attackers keep working on new

techniques and tactics to compromise systems, more

techniques than prevention and reactive detection are required

to reveal their behaviors. Threat hunting [47], which chases an

attacker (rather than being a target and working in the passive

mode), is a reasonable solution. The hunting process for

malicious reverse shell backdoor payload (see Section V- B)

starts by verifying the main hypothesis that “an attacker may

be operating on a reverse shell backdoor that uses to launch

malicious commands with root privileges to the

router/firewall”. To verify this hypothesis, it is necessary to

collect data from multiple sources and, given basic knowledge

of the target device and network, the indicators may be found

in the abnormal network’s connections and system log of

router/firewall.

Firstly, given the network connection data obtained from

the Zeek tool (formally known as Bro) [48], all the client IP

addresses connected to a pfsense router/firewall WebGUI

using open HTTPS port (i.e., 443) can be extracted. The Bro

connection logs (i.e, conn.log) that fit an Excel file are used to

search for connected IP addresses and their accumulated

traffic statistics such as total connections’ duration and

number of data bytes sent. Shown in Fig. 19 are all the IP

addresses that start connections to the router/firewall on port

443, total number of connections (i.e., count), total

connections’ duration (i.e., duration is the difference in time

between the first and last packets seen), maximum and

minimum durations, and total number of sending bytes that are

extracted from the determined connections. As the IP address

192.168.10.151 has a suspicious behavior that is the longest

connection time and most data bytes sent, the question is “Did

the router/firewall connect back to this IP address as this

might be an indicator for reverse shell?”. To answer this, new

queries that return the connections that may have originated

from the router/firewall back to one of the aforementioned IP

addresses are performed. As shown in Fig. 20, the

router/firewall establishes a connection back to the IP address

192.168.10.151 five times on port 4444 with a total duration

of 1344.026 seconds. By tracking the TCP data streams

listener on that port (i.e., 4444) and checking type of

exchanged packets between victim IP (i.e, 192.168.10.1) and

suspicious IP (i.e., 192.168.10.151), we found that most of

exchanged packet types are [PSH, ACK], and [ACK] TCP

packets. This information indicates the possibility of a reverse

shell backdoor that is opened back from the router/firewall to

an attacker’s machine on port 4444 many times over TCP

protocol.

The next step in malicious reverse shell backdoor payload

hunting process is identifying the malicious payload, and this

step is accomplished by analyzing the system logs after

collecting, extracting and parsing them into two columns each

with a timestamp and event in a CSV file, and searching for

TABLE III

DETECTION RATE FOR ATTACKS (%)

Approach
ARP

spoofing

Modbus

DoS

poisoning
Unprivileged

MQTT
Subscriber

RF 71.0 99.5 96.6 99.7

J48 65.5 99.5 96.0 99.7

NB 3.4 89.0 98.7 99.9

LR 3.4 99.0 44.3 0.0

KNN 64.1 98.7 4.7 1.0

TABLE II

PERFORMANCE METRICS

Approach ACU (%)

P (%)

R (%) F-M (%)

RF 99.9 99.9 99.9 99.9

J48 99.8 99.8 99.8 99.8

NB 42.4 95.4 42.3 55.1

LR 95.9 92.7 96.0 94.2

KNN 94.7 92.6 94.7 93.6

Fig. 18. Example of Metasploit command to exploit pfsense vulnerability

msf exploit(unix/http/pfsense_graph_injection_exec) > exploit

[*] Started reverse TCP handler on 192.168.10.151:4444
[-] pfSense version not detected or wizard still enabled.

[*] Payload uploaded successfully, executing

[*] Command shell session 1 opened (192.168.10.151:4444 ->

192.168.10.1:64609) at 2019-10-01 22:38:42 -0500

https://192.168.10.1/

long malicious commands launched by attackers. As shown in

Fig. 21, a Python script is developed to parse the data and

filter the longest commands (more than 250), with the search

yielding a positive finding. Examining the logs, the longest

malicious command with sensitive characters and numbers

(i.e., 1004) is identified as a malicious PHP script injected into

the router/firewall WebGUI whereby the attacker uses a

known vulnerability (unpatched by the system administrator)

in status_rrd graph_img.php to inject an obfuscated malicious

code into a ‘throughput-rrd.file-printf’ command. To obtain

more information about this payload, it is de-obfuscated and

fitted as a text file to the VirusTotal [49] which has multiple

anti-virus tools for detecting malicious files. As shown in Fig.

22, VirusTotal has a high false negative rate, with only one of

its 56 anti-viruses, BKav, identified the text file as a web shell

while most of the anti-virus tools failed to detect a malicious

payload (Metasploit payload) as they do not have a signature

related to this malicious payload. This indicates the

importance of hunting rather than using only detection

engines.

 In summary, the network indicators learned from the first

step, the HTTPS connections over open port 443 with the

router/firewall are leveraged as the starting point for tracking

suspicious behaviors. Finding the longest duration, the largest

number of originated bytes and a reverse connection of the

server to the specific port of a suspicious IP for a long time is

useful for tracking suspicious TCP stream data. Also, filtering

the longest commands in the logs helps to detect a malicious

reverse shell backdoor payload for remote command injection.

All the stacked information confirms the proposed hypothesis.

VI. COMPARISONS AND DISCUSSION

 To compare our new testbed with existing ones, the

following features are used [17, 21, 50]:

 Usability: A testbed should be easy to use, learn,

configure, build, operate and reproduce. Also,

understanding its scenarios and interpreting its output

should be simple.

 Fidelity: The design of a testbed should follow an agreed

international standard architecture, that is, an IIRA model

for IIoT systems (see Section III). This design expects to

cover the IIoT system’s main components and

functionalities. This feature can also focus on

interoperability, and closed control loop as important

characteristics of brownfield IIoT systems.

 Heterogeneity: A testbed should have different physical

access media (i.e., wired and wireless), application and

industrial fieldbus protocols (i.e., CoAP, MQTT, HTTP,

WebSocket, Modbus/TCP, I2C, 1-wire), various devices

(i.e., sensors and physical control devices),

API/applications and web browser interfaces (i.e., cloud,

mobile applications and among others).

 Flexibility and Scalability: A testbed should be able to

be modified, changed, and expanded, including being

adaptable, sustainable and customizable. For example,

new specific-environment sensors over specific

communications should be involved at the edge layer to

connect with the edge gateway. Other devices, simulators,

and applications should be also included.

 Federation: A testbed should offer various experimental

capabilities on the same standardized platform so that

experiments can be repeated.

 Safety, Reliability and Resilience: A testbed should

support an industrial control system’s characteristics of

safety, reliability, and resilience. Examples of a safe

scenario need to be designing a physical control system

with specific parameters for sending alarms and

notifications. The system should behave predictably and

use protocols and a fieldbus that specify safety standards,

such as counters, time-outs, unique sender and receiver

identifications, and cross-checks. Reliability is a testbed’s

capability to perform the required functions under the

stated conditions for a specific time interval: For example,

the actuators are programmed to react to the physical

environment, i.e., switch on/off for specific times

whenever the relevant condition is met. Resilience is a

Fig. 22. Results obtained from VirusTotal

Fig. 21. Parsing and filtering system logs

Fig. 20. List of connections established back from router /firewall

Fig. 19. List of connections established with router/firewall over port 443

testbed’s capability to absorb any incident and continue

working without significant effects: For example, there

should be a recovery and backup procedure for the

collected data. Also, an IIoT system should be supported

by the implementation of specific techniques: For

instance, in the case of a crash, the sensor, controller, and

other devices should still work.

 User Interfacing: Simple tools should be available to fix

a testbed’s malfunction, change its configuration, and

support its programming and logging functionalities: For

example, using SSH connectivity for all system’s devices.

 End-to-End testbed: A testbed should be holistic and

end-to-end to provide three layers of the IIoT system:

edge layer (i.e. physical devices and edge computing),

platform layer (i.e. cloud storage, and analytics), and

enterprise layer (i.e. service and application devices).

 Primary purpose: The key objective is to develop a

testbed with certain levels of specialization, such as

security testing and application for IIoT systems.

Based on these features [17, 21, 50], an analysis of existing

IoT/IIoT testbeds is conducted, with the comparative results

shown in Table IV. It is found that most of the existing

testbeds [15, 17, 20, 21, 23, 24] focused on general IoT system

implementations rather than industrial ones and, at most,

satisfied 7 features for IIoT testbeds, with only one specific for

IIoT ‘INFINITE’ [19]. The ‘INFINITE’ testbed has been built

by the IIC and is still under development. It was not designed

for security testing and there is little public information

available about it. However, our testbed (Brown-IIoTbed)

achieved 13 of the relevant features.

Implementing a holistic end-to-end IIoT system is

considered a highly complex task due to the need to integrate

Operational Technology (OT) systems (i.e., hardware and

software interact with the physical process) and IT systems,

and different functionalities and processes (from the edge and

cloud to services and applications) with maintaining key

characteristics of an IIoT system of safety, reliability, and

resilience. Moreover, the need to support the system’s

heterogeneous nature where there is a wide variety of M2M,

M2H, and H2M communications, various devices, access

media, APIs, and states. Brown-IIoTbed deals with these

challenges by developing a generic, affordable, and high-

fidelity end-to-end IIoT testbed that provides the key

functionalities in a simple and easily understandable manner.

It utilizes cost-effective devices, free open-source software,

and affordable computer devices to provide a testbed that is

scalable, adaptable, and can be reproduced, modified, and

changed to fit the research demand. Brown-IIoTbed covers

existing gaps in the development of IoT/IIoT system testbeds

by supporting various new IIoT application protocols, legacy

industrial protocols, the interoperability among them, and

providing edge computing, and various APIs for visualizations

of data analytics, controlling, and monitoring physical assets.

 Moreover, Brown-IIoTbed deals with one of the greatest

challenges in the IIoT research, that is, security testing. IIoT

security (in particular for brownfield) is considered an

extremely complex process as IIoT systems integrate both OT

and IT technologies, which have different security

perspectives and priorities of data protection, physical process,

and control. Addressing and analyzing the security issues

related to such implementations need to be well understood for

the purpose of identifying potential threats and targets, and

estimating the possible consequences. This is achieved in our

proposed testbed by using a STRIDE model to provide and

analyze examples of potential threats against various IIoT

system components, and machine learning approaches for

intrusion detection. An advanced security testing, vulnerability

exploitation, and malicious payload injection against the

router/firewall are presented. Threat hunting and intelligence

related to a malicious reverse shell payload as an example of

proactive defense techniques are also performed in Brown-

IIoTbed. Our testbed can be also extended with other security

tests that fulfill researchers’ demands.

However, Brown-IIoTbed has several limitations. For

example, since IIoT implementations are still in their early

stages and most of the existing implementations are special

projects rather than standard and publicly-available ones, it is

not possible to make a comparison between Brown-IIoTbed

performance and real systems. We cannot show that the

Brown-IIoTbed behavior is similar to the real system and this

is a key limitation for our work. Nevertheless, we can state

that it has been solved somewhat by adopting IIRA as a

standard reference model to build a high fidelity testbed. But

in the meantime, this remains a limitation. Additionally,

Brown-IIoTbed, like the most advanced testbeds, has limited

ability in simulating real environmental conditions for process

measurement and control systems. Another limitation of

Brown-IIoTbed is the limited edge gateway hardware

capabilities (i.e., Raspberry pi). If an experiment needs to

connect more PLC devices to the edge gateway, this may

cause an increase in the load of the edge gateway and affect its

performance. To expose this limitation, another edge gateway

can be used to connect these PLC devices, and then the two-

edge gateways can be connected together. This will act like a

traditional Distributed Control System (DCS) [12] where

many master devices connect to each other. A further solution

can be achieved by connecting two-edge gateways separately

and directly to the cloud.

VII. Conclusion and Future work

 This paper presents a new IIoT testbed that enables security

researchers to easily reproduce it and test their security

hypotheses while also facilitating analyses of potential attacks,

and attackers’ techniques and tactics. The proposed testbed

(i.e, Brown- IIoTbed) provides generic, holistic, high- fidelity

and simplified end-to-end instance of realistic IIoT systems at

a lower cost without requiring any additional management,

maintenance, high-level skills or domain expertise, and

without causing real systems any physical risk or damage. To

the best of our knowledge, this is the first end-to-end IIoT

testbed that is developed for security testing with the main

focus on Brownfield implementation. We demonstrate the

feasibility of Brown-IIoTbed in conducting security testing by

providing various attacks based on a STRIDE threat model,

Testbed U
F H FL

and
SC

FE

S,

REL

and
 RES

UI E2E Primary Purpose

IIRA I CCL AIP D PAM API/A

Patel et al.[15]              Testing IoT application

Choosri et al. [16]              Smart Traffic light

Deshpande et al. [17]              Industrial automation

Merchant and Ahire

[18]
             Industrial automation

INFINITE [19]   -  -   -    - -
Testing new IIoT

devices/ technologies

FIESTA-IoT [20]     -       -  Testing IoT applications

JOSE [21]              IoT service evaluation

Siboni et al. [22]              IoT security testing

Berhanu, Abie, and

Hamdi [23]
            

Testing healthcare-IoT

security

Hossain et al. [24]             
Generic IoT

experiments

Brown-IIoTbed              IIoT security testing

U: Usability F: Fidelity H: Heterogeneity IIRA: Industrial Internet Reference Architecture

CCL: Closed Control Loop AIP: Application and Industrial protocol UI: User Interfacing PAM: Physical Access Media

API/A: Application Programming Interface /Application FL and SC: Flexibility and Scalability FE: Federation D: Devices

S, REL, and RES: Safety, Reliability, and Resilience E2E: End to End testbed I: Interoperability

: Features considered : Features not considered  : Features not explicitly and completely considered - : not available information

and evasion security/reverse shell backdoor against

router/firewall. We also utilize Brown- IIoTbed to provide

machine learning approaches for intrusion detection, and

perform malicious payload hunting and intelligence as a

proactive defense technique (early detection). The results

show that Brown-IIoTbed is well-structured and performed

satisfactorily for security testing and operated in a way that

will enable researchers to study various security issues. Also,

in-depth analyses and comparisons with existing IoT/IIoT

testbeds are conducted. The overall results prove that Brown-

IIoTbed satisfied the 13 features required for an IIoT testbed

(described in section IV-Table I) and cover the research gaps

regarding existing testbeds.

 In future work, we plan to improve this testbed’s capacity

and performance by deploying more and different sensors,

machines, industrial protocols, and applications, implementing

complex ladder logic programs for PLCs. We will also expand

the capabilities of cloud applications by performing big data

analytics using deep and machine learning techniques. Also,

we intend to generate an intrusion dataset for security research

purposes.

REFERENCES

[1] L. Urquhart, and D. McAuley . Avoiding the internet of insecure

industrial things. Computer law & security review. 2018. pp.450-66.

[2] Industrial Internet Consortium, Industrial Internet of Things Volume

G4: Security Framework. 2016.

[3] M. Assante.A data-driven analysis of vulnerabilites in our industrial

and critical infrastructure 2019, SANS Institute.

[4] T. Morris, W. Gao. Industrial control system network traffic data sets

to facilitate intrusion detection system research. In International

Conference on Critical Infrastructure Protection. 2014. pp. 65-78.

Springer, Berlin, Heidelberg.

[5] Frost & Sullivan. Cyber security in the era of industrial IoT. 2017.

[cited 2019, December]. Avilable online: [https://ww2.frost.com/]

[6] D. Meltzer. Securing the industrial internet of things. ISSAJ.2015,

pp.24-30.

[7] Deutsche Telekom. Security on the Industrial Internet of Things. 2016.

Deutsche Telekom: Germany.

[8] J. Wurm , K. Hoang K, O. Arias, A. Sadeghi,and Y. Jin. Security

analysis on consumer and industrial IoT devices. In 2016 21st Asia

and South Pacific Design Automation Conference (ASP-DAC) 2016,

pp. 519-524. IEEE.

[9] M. Govindarasu, A. Hann, and P. Sauer. Cyber-physical systems

security for smart grid. Power Systems Engineering Research Center.

2012.

[10] R. Mitchell, and I. Chen . A survey of intrusion detection techniques

for cyber-physical systems. ACM Computing Surveys. 2014,pp.1-9.

[11] M. Raciti. Anomaly detection and its adaptation: Studies on cyber-

physical systems (Doctoral dissertation, Linköping University

Electronic Press).

[12] T. Morris, Z. Thornton, I. Turnipseed. Industrial control system

simulation and data logging for intrusion detection system research.

7th Annual Southeastern Cyber Security Summit. 2015, pp. 3-9.

[13] W. Gao, and T. Morris. On cyber attacks and signature based intrusion

 detection for modbus based industrial control systems. Journal of

Digital Forensics, Security and Law. 2014, pp.3-25.

TABLE IV

COMPARISON OF EXISTING TESTBEDS

[14] B. Zarpelão, R. Miani , C. Kawakani, and S. de Alvarenga. A survey

of intrusion detection in Internet of Things. Journal of Network and

Computer Applications. 2017, pp. 25-37.

[15] P. Patel, J. Dave, S. Dalal, P. Patel, S. Chaudhary. A Testbed for

 Experimenting Internet of Things Applications. arXiv preprint

arXiv:1705.07848. 2017.

[16] N. Choosri, Y. Park, S. Grudpan, P. Chuarjedton, and A.

Ongvisesphaiboon. IoT-RFID testbed for supporting traffic light

control. International Journal of Information and Electronics

Engineering. 2015, pp. 102-108.

[17] A. Deshpande, P. Pitale, S. Sanap. Industrial automation using Internet

of Things (IOT). International Journal of Advanced Research in

Computer Engineering & Technology (IJARCET). 2016, pp.266-296.

[18] M. Merchant, and D. Ahire. Industrial automation using IoT with

raspberry pi. International Journal of Computer Applications. 2017,

pp. 44-46.

[19] Industrial Internet Consurtiom (IIC), I.-I.C. INFINITE Industrial IoT

innovation 2014- 2019; Available from: http://www.iotinfinite.org.

[20] Federated Interoperable Semantic IoT Testbeds and Applications.

2015 [cited 2019]; Available from: http://www.fiesta-iot.eu/.

[21] Y. Teranishi, Y. Saito, S. Murono, N. Nishinaga. JOSE: An open

testbed for field trials of large-scale IoT services. Journal of the

National Institute of Information and Communications Technology.

2015;62(2).24.

[22] S. Siboni, V. Sachidananda, Y. Meidan, M. Bohadana, Y. Mathov, S.

Bhairav, A. Shabtai, Y. Elovici .Security Testbed for Internet-of-

Things Devices. IEEE Transactions on Reliability. 2018. Pp.23-44.

[23] Y. Berhanu, H. Abie, and M. Hamdi. A testbed for adaptive security

for IoT in eHealth. InProceedings of the International Workshop on

Adaptive Security 2013, pp.1-8.ACM.

[24] M. Hossain, S. Al Noor, Y. Karim, R. Hasan. IoTbed: A Generic

Architecture for Testbed as a Service for Internet of Things-Based

Systems. InICIOT 2017. pp. 42-49.

 [25] H. Boyes, B. Hallaq, J. Cunningham, T. Watson. The industrial

internet of things (IIoT): An analysis framework. Computers in

Industry. 2018 Oct 1;101:1-2.

[26] S. Lin, B. Miller, J. Durand, G. Bleakley, A. Chigani, R. Martin, B.

Murphy, M. Crawford. The industrial internet of things volume G1:

reference architecture. Industrial Internet Consortium. 2017:10-46.

[27]M. Al-hawawreh, F. den Hartog, and E. Sitnikova. Targeted

Ransomware: A New Cyber Threat to Edge System of Brownfield

Industrial Internet of Things. IEEE Internet of Things Journal. 2019.

[28] M. Tseng, T. Canaran, and L. Canaran. Introduction to edge

computing in IIoT. Industrial Internet Consortium. 2018:1-9.

[29] T. Alves, M. Buratto, F. de Souza, T. Rodrigues. Openplc: An open

source alternative to automation. InIEEE Global Humanitarian

Technology Conference (GHTC 2014) .2014, pp. 585-589. IEEE.

 [30] Node-Red. https://nodered.org/. 2019; [cited 2019 August]. Available

from: https://nodered.org/.

[31] txThings, CoAP protocol implementation for Twisted Framework

2018 [cited 2019 July]; Available from:

https://pypi.org/project/txThings/.

[32] Vmware. Vmware products [cited 2019]. Available from:

https://www.vmware.com.

[33]hmailserver. [cited 2019 July]. Available from:

https://www.hmailserver.com/.

[34] Pfsense. [cited 2019]. Available from: www.pfsense.org.

[35]Eclipse Mosquitto. [cited 2019 june]. Available from:

https://mosquitto.org/

[36] Shiny Server-RStudio. [cited 2019 Junaury]; Available from:

https://rstudio.com/products/shiny/shiny-server/.

[37] iMacro-The world's most popular web automation, data extraction,

and web testing solution. [cited 2019 June]. Available from:

https://imacros.net/.

[38] T. Szigeti,C. Hattingh. Quality of service design overview. Cisco, San

Jose, CA. 2004.

[39] M. Berutti. MODBUS TCP/IP Ethernet to Serial Bridge

Recommendations and Performance.[cited 2020 April]. Available

from: www.mynah.com.

[40] S. Hijazi, and M.S. Obaidat, Address resolution protocol spoofing attacks

and security approaches: A survey. Security and Privacy, 2019. pp. 40-49.

[41] A. Mallik, A. Ahsan, M. Shahadat, J. Tsou. Man-in-the-middle-attack:

Understanding in simple words. International Journal of Data and

Network Science. 2019, pp.77-92.

[42] Saxena, N. and N.S. Chaudhari, Prevention of SMS against Repudiation

Attack over the GSM Network. Journal of Information Assurance &

Security, 2013. 8(3).

[43] Mitchell, R. and R. Chen, Modeling and analysis of attacks and counter

defense mechanisms for cyber physical systems. IEEE Transactions on

Reliability, 2016. 65(1): p. 350-358.

[44] Andy, S., B. Rahardjo, and B. Hanindhito. Attack scenarios and security

analysis of MQTT communication protocol in IoT system. in Electrical

Engineering, Computer Science and Informatics (EECSI), 2017 4th

International Conference on. 2017. IEEE.

[45] M. Al-Hawawreh, E. Sitnikova, and F. den Hartog. An Efficient Intrusion

Detection Model for Edge System in Brownfield Industrial Internet of

Things. In Proceedings of the 3rd International Conference on Big Data

and Internet of Things. 2019. ACM.

[46] A. Rawashdeh, M. Alkasassbeh, and M. Al-Hawawreh, An anomaly-based

approach for DDoS attack detection in cloud environment. 2018. pp. 312-

324.

[47] S. Milajerdi, B. Eshete, R. Gjomemo, V. Venkatakrishnan. Poirot:

Aligning attack behavior with kernel audit records for cyber threat

hunting. In Proceedings of the ACM SIGSAC Conference on Computer

and Communications Security 2019. pp. 1813-1830.

[48] Bro. [cited 2019 Augest]; Available from: https://www.zeek.org/.

[49] Virustotal. 2018; Available from: https://www.virustotal.com/

[50] M. Chernyshev, Z. Baig, O. Bello, S. Zeadally. Internet of Things (IoT):

Research, simulators, and testbeds. IEEE Internet of Things Journal. 2018,

pp.1637-1647.

https://www.vmware.com/
https://www.hmailserver.com/
http://www.pfsense.org/
https://mosquitto.org/
https://rstudio.com/products/shiny/shiny-server/
https://imacros.net/
http://www.mynah.com/

