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An Efficient and Secure Multidimensional Data
Aggregation for Fog-Computing-Based Smart Grid

Omar Rafik Merad-Boudia and Sidi Mohammed Senouci , Member, IEEE

Abstract—The secure multidimensional data aggregation
(MDA) has been widely investigated in smart grid for smart
cities. However, previous proposals use heavy computation oper-
ations either to encrypt or to decrypt the multidimensional data.
Moreover, previous fault-tolerant mechanisms lead to an impor-
tant computation cost, and also a high communication cost
when considering a separate identification phase. In this arti-
cle, we propose an efficient and secure MDA scheme, named
ESMA. Unlike existing schemes, the multidimensional data in
ESMA are structured and encrypted into a single Paillier cipher-
text and thereafter, the data are efficiently decrypted. For
privacy preserving, the Paillier cryptosystem is adopted in a fog
computing-based architecture, and to achieve efficient authentica-
tion, the batch verification technique is applied. Besides, ESMA is
fault tolerant, i.e., even if some of the smart meters fail to
send their data, the final aggregation result will not be affected.
Furthermore, ESMA can be adapted to respond to other queries
than the summation of data. The performance analysis demon-
strates the cost efficiency of ESMA both in computation and
communication and the scalability as well. For instance, with
a 16-bits size for each data type and 500 reporting smart meters,
40 data types can be supported in a single Paillier ciphertext.
ESMA also resists various security attacks and preserves the
user’s privacy.

Index Terms—Data aggregation, fault tolerance (FT), fog
computing, security and privacy, smart cities, smart grid (SG).

I. INTRODUCTION

THE SMART grid (SG) network is the next-generation
power grid network, which utilizes modern information

and communication technologies and enables two-way com-
munication between customers and service providers. Many 
electric utility companies have already substituted or intro-
duced SG alongside the traditional power grid [1]. This gives
electric utility companies the capability to perform fault diag-
nosis and to considerably enhance their power generation,
distribution, transmission, and control. This can also avoid
power blackouts and give the ability to anticipate power 
demands and facilitate the integration of renewable energy
technologies in the grid [2], [3]. In SG, utility companies use
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smart meters (SMs) to gather real-time consumption data and
other information. The SM is considered as the most critical
element placed at the user side. It enables customers to report
their real-time consumption data (e.g., every quarter hour) to
the control center (CC), and based on these data, the CC
can anticipate power demands and adjust power generation,
dynamic pricing, and so on. For instance, Kumari et al. [4]
proposed a solution that accurately predicts future load con-
sumption based on historical data using deep learning to save
energy at the demand side and reduce energy production at
the supply side of the system. However, SG is subject to sev-
eral threats against security and privacy, e.g., by analyzing the
real-time electricity usage data, an attacker would be able to
threaten the user’s privacy, and thus, inferring the user’s life
habits such as when a user exits the house. Consequently, some
cryptographic techniques should be used to preserve the user’s
privacy [5].

The concept of data aggregation in the context of SG
is introduced in [6]. A traditional data aggregation scheme
considers a gateway node that aggregates the SMs reports
and sends the result to the CC, enabling the utility com-
pany to get the total consumption data. This gives the
company the capability to dynamically adjust power distri-
bution according to these data and to protect users’ privacy
as well. Recently, a fog computing architecture has been
considered in SG for efficient aggregation [7]. With the
help of such architecture, Nazmudeen et al. [8] proposed
a framework for a distributed data aggregation. As stated
in [9], traditional in-network aggregation’ architectures face
resource and scalability problems. They employ less pow-
erful intermediate nodes and a large number of end nodes
are usually connected with one intermediate node. By con-
sidering fog nodes (FNs), we can exploit FN’s intrinsic
abilities in terms of communication, computation, and stor-
age, leading, therefore, to the optimal use of these nodes
for aggregation purposes. This can also resolve the band-
width and latency issues that arise in a cloud computing
architecture [7].

Although previous solutions [6], [9]–[19] can prevent the
disclosure of sensitive information to the adversary or the
utility company, there are, however, some unresolved issues.
First, the data aggregated are likely to be multidimensional
(electricity consumption record, time, consumption purpose,
etc.). Hence, more data provided more efficient is the analysis.
Some works only enable one-dimensional aggregation (ODA),
i.e., every dimension is processed separately. Moreover,
existing multidimensional aggregation (MDA) schemes use
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complex cryptographic operations to encrypt or to decrypt the
multidimensional data. Second, in some schemes, there is no
mechanism for FT, in fact, in SG, SMs could malfunction for
a certain amount of time and thus could not send their reports
to the FN. In previous schemes, the CC has to ask FNs for the
nonresponding SMs that leads to an important delay, and the
aggregation process is then halted. Finally, previous schemes
are only conceived to respond to the sum query. However, the
CC may need other statistical functions than summation such
as variance to further analyze power consumption. This could
allow the detection of abnormal situations and load imbalance.
Moreover, the CC may need to learn about the number of cus-
tomers whose SM’s reading is higher than a threshold, and also
the total usage of these customers for predicting better power
generation.

For these reasons, we propose ESMA, an Efficient and
Secure Multidimensional data Aggregation for fog computing-
based smart grid (FCSG). The main contributions of this article
can be summarized as follows.

1) We propose an efficient MDA for FCSG. In ESMA,
even if the data of each SM are multidimensional, the
data reported to FN would still be a single Paillier
ciphertext. Besides, we employ an encoding function
that gives the CC the capability to efficiently recover
the aggregated data from the ciphertext. The computa-
tion and communication resources are then conserved in
comparison to previous schemes.

2) We employ the Paillier Cryptosystem and its homomor-
phic property to preserve user’s privacy. So, the FN
performs aggregation on ciphertexts, which prevents the
disclosure of sensitive data. Also, we propose a fault-
tolerant mechanism to ensure that the final aggregated
data recovered at CC are correct even if some nodes are
malfunctioning.

3) We illustrate how ESMA can be adapted to answer other
queries than summation. We also provide security anal-
ysis and performance evaluation to show the security
and the efficiency of ESMA in comparison with the
previous work.

The remainder of this article is organized as follows.
Section II introduces the related work. Section III presents
the system models and design goals. Section IV describes the
preliminaries of ESMA before presenting its technical details
in Section V. Section VI presents how ESMA can respond
to other queries and Section VII discusses security analysis.
Finally, Sections VIII and IX give the performance evaluation
and conclusion, respectively.

II. RELATED WORK

In this section, we present an overview of traditional solu-
tions to secure data aggregation in SG [10]–[14], and also the
recently proposed ones in the context of FCSG [9], [16]–[19].
Introduced in [6], protecting the user’s privacy via data aggre-
gation has recently become one of the most attractive research
topics. Li et al. [6] introduced secure in-network aggregation
in the context of SG; they employ homomorphic encryp-
tion (HE) to avoid the disclosure of user’s private data to
intermediate aggregator nodes. Lu et al. [10] used Paillier HE

and employed a super-increasing sequence to secure MDA,
an additional exponentiation operation is computed for every
dimension by SM. Boudia et al. [11] proposed an elliptic
curve-based secure MDA using El Gamal HE with multiple
public keys. Their scheme does not require complex cryp-
tographic operations en route and leads to lower overhead.
However, an additional elliptic curve scalar multiplication is
computed for every dimension by SM. Ming et al. [12] and
Zuo et al. [13] employed a super-increasing sequence with
El Gamal HE to achieve MDA. In these two schemes, the
CC has to solve the discrete logarithm problem (DLP) to
retrieve the aggregated data. Badra and Zeadally [14] proposed
a lightweight secure ODA using symmetric HE and Diffie–
Hellman methods. Shen et al. [15] introduced the malicious
data mining attack and proposed a secure ODA using Paillier
HE and bilinear maps.

Recently, many solutions have been proposed in the con-
text of FCSG. Lyu et al. [9] proposed a privacy-preserving
fog-enabled aggregation scheme using one-time pad HE. The
authors consider ODA and an FN that aggregates the col-
lected data, decrypts, and then encrypts noisy aggregation.
They propose a fault-tolerant mechanism to achieve resilience
to node failures. However, an additional phase is required
for this purpose, which leads to additional communica-
tion cost. Moreover, data integrity is not ensured in their
scheme. Liu et al. [16] presented a fog-enabled aggrega-
tion scheme that employs a double trapdoor HE to encrypt
one-dimensional data. Note that their scheme can achieve
MDA by using a super-increasing sequence. However, sim-
ilarly to the work in [10], an additional heavy computation
cost will be added for every dimension. Okay et al. [17]
proposed two efficient and lightweight secure aggregation pro-
tocols for FCSG. The authors employ Domingo-Ferrer HE
and Paillier HE to encrypt ODA. They present mathemati-
cal models for these protocols and give extensive simulations
and comparisons. Saleem et al. [18] proposed an efficient
and privacy-preserving ODA for FCSG. The authors exploit
a modified version of Paillier HE in order to encrypt the meter-
ing data and use MAC for DI. They propose a fault-tolerant
mechanism to achieve resilience to node failures. However,
the CC has to compute the discrete logarithm to retrieve
the aggregated data. Furthermore, the fault-tolerant decryp-
tion cost increases with the increasing number of faulty SMs.
Zhao et al. [19] proposed an ODA scheme for FCSG that
achieves multifunctional statistics; the authors employ some-
what homomorphic encryption (SHE) to preserve the user’s
privacy. However, their proposal incurs high overheads in
terms of communication and computation.

We compare in Table I the aforementioned works in
terms of the data type (DT), the considered architec-
ture (CA), the used technique (UT), fault tolerance (FT),
source authentication (SA), and data integrity (DI). The
authors of these works either consider data aggregation with
one dimension [6], [9], [16]–[19] or use heavy computation
operations to encrypt or to decrypt the multidimensional
data [10]–[13]. Note that these schemes are only conceived to
respond to the sum query. Also, the FT mechanisms proposed
in some schemes, e.g., the scheme in [9], requires a separate
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TABLE I
COMPARATIVE ANALYSIS OF PREVIOUS SCHEMES

phase to identify the faulty SMs and thus incurs a high com-
munication cost. To overcome these drawbacks, we introduce
in ESMA an encoding function to efficiently structure and
secure the multidimensional data. ESMA can be adapted to
respond to other queries than the summation of data without
additional overhead. Moreover, the proposed FT mechanism
preserves network resources.

III. MODELS AND DESIGN GOAL

In this section, we define our network model, attacker
model, and identify the design goal of ESMA.

A. Network Model

Similar to the previous work based on a fog computing
architecture proposed for SG [7]–[9], [16]–[19], we consider
in ESMA a three-level system. Fig. 1 shows a large num-
ber of SMs in the first level, FNs in the second level, and
the CC in the third level. We consider that the CC covers
k2 FNs and each FN in turn covers k1 SMs. The CC is
responsible for collecting the users’ data to anticipate power
demands and to adjust power generation, dynamic pricing, and
so on. Each SMij(i = 1, . . . , k1, j = 1, . . . , k2) collects the
multidimensional data, performs cryptographic operations, and
sends a report to the corresponding FNj. Once received, the
reports are homomorphically aggregated by FNj. The result
is then forwarded to the CC. After the reception of the FNj’
report, the CC performs decryption and gets the aggregation
result. This can help the CC to make appropriate decisions.
For generating the public/private keys used in the Paillier
cryptosystem and other secret parameters, we consider a trust
authority (TA), which is a fully reliable entity. After providing
the corresponding secret parameters to all of the entities in the
system, TA will no longer be required in the MDA process.

B. Attacker Model

In our attacker model, we consider that FNs and CC are
honest-and-curious, i.e., they follow the protocol faithfully but
are curious about the multidimensional data contained in the
reports, e.g., by keeping all of the reported data to optimize
the chance to retrieve user’s private data. Besides, we consider
that the users are honest and will not report false consumption
data. However, there exists an external adversary A that can
eavesdrop the communication flows and try to identify the
report’s content. A can also launch active attacks, such as

Fig. 1. System model.

data modification, false data injection, replay, or stealing the
user’s private data by intruding the database of CC and FN.

In addition to the aforementioned attacks and due to the SM
wastage, we also assume that certain SMs could be in failure
status and thereby will fail to send their data to FN.

C. Design Goal

Our design goal is to propose a fault-tolerant, efficient, and
privacy-preserving MDA scheme for FCSG such that the CC
can obtain multiple real-time data from one single aggregated
data. Specifically, the following goals should be satisfied.

1) The user’s private data cannot be compromised by A.
The CC is the only entity that can read the aggregated
multidimensional data in ESMA, and no one can have
access to the sensitive individual data, including the CC.

2) FNs and CC should be able to verify the authenticity of
the received reports. They should also detect if a report
has been modified during the transmission and comes
really from the legal entity.

3) The proposed scheme should be fault tolerant. When
certain SMs fail to communicate their data, they should
be detected by the corresponding FN and reported to
the CC.

4) The computation cost of cryptographic operations
performed at SM, FN, and CC should be effi-
cient. Moreover, the multidimensional data should be
encrypted into one single ciphertext to reduce the cost
of communication.

IV. PRELIMINARIES

In this section, we briefly introduce the security techniques
used in ESMA, such as the Paillier homomorphic cryptosystem
and bilinear maps.

A. Paillier Homomorphic Cryptosystem

The Paillier homomorphic cryptosystem is a classic
encryption [20] that can achieve additive homomorphism
property. The encryption is proved to be semantically secure
against chosen-plaintext attacks. Thus, it has been widely
exploited in secure data aggregation protocols (see Table I).
The key generation, encryption, and decryption processes
operate as follows.

1) Key Generation: Given a security parameter κ , two κ bit
prime numbers p0 and q0 are randomly selected. Let the
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TABLE II
NOTATIONS

RSA modulus n = p0q0 and λ = lcm(p0 −1, q0 −1).We
define a function L(u) = u − 1/n and calculate μ =
(L(gλ mod n2))−1 mod n, where g is the generator of
Z

∗
n2 such that gcd(L(gλ mod n2), n) = 1. The public key

is the tuple (n, g) and the corresponding private key is
the tuple (λ, μ).

2) Encryption: Choose a random number r ∈ Z
∗
n to encrypt

a given message m ∈ Zn : c = E(m) = gm · rn mod n2.
3) Decryption: For the ciphertext c, the correspond-

ing plaintext is calculated by m = D(c) =
L(cλ mod n2) μ mod n.

B. Bilinear Maps

Let G1 be an additive group and G2 be a multiplicative
group, both of prime order q, i.e., |G1| = |G2| = q. A bilinear
map e : G1 × G1 = G2, which has the following properties.

1) Bilinearity: ∀P, Q ∈ G1 and ∀a, b ∈ Z
∗
q,

e(aP, bQ) = e(P, Q)ab

2) Non Degeneracy: ∃P ∈ G1 where e(P, Q) �= 1G2
3) Computability: ∀P, Q ∈ G1, there exists an efficient

algorithm to compute e (P, Q) in polynomial time.
We use the notation Gen to denote the algorithm, taken

as input a security parameter κ1, which outputs a 5-tuple (q,
P, G1, G2, e), where q is κ1-bit prime, G1 and G2 are two
cyclic groups with order q, P ∈ G1 is a generator, and e is
a nondegenerated and computable bilinear map.

V. OUR PROPOSED ESMA SCHEME

In this section, we present ESMA for FCSG; it mainly con-
sists of five main parts: 1) system initialization; 2) registration;
3) SM report generation; 4) data aggregation; and 5) data read-
ing. A list of acronyms and symbols used in this article along
with their meaning is shown in Table II.

A. System Initialization

For the fog-based SG system under consideration, we sup-
pose that TA bootstraps the whole system and in charge of
system parameters configuration. The parameter generation
and the secret shares generation processes operate as follows.

1) Parameter Generation: Besides producing two security
parameters (κ , κ1), as mentioned in Section IV, the
TA randomly selects two κ-bit large prime numbers p0
and q0 and computes n = p0q0 and λ = lcm(p0−1, q0−
1). Then, the TA constructs a function L(u) = u − 1/n
and calculates μ = (L(gλ mod n2))−1 mod n, where
g is the generator of Z

∗
n2 such that gcd(L(gλ mod n2),

n) = 1. The public key is the tuple (n, g) and the cor-
responding private key is the tuple (λ, μ). Furthermore,
given κ1, TA generates the bilinear parameters (q, P, G1,
G2, e) by running Gen(κ1). Then, TA defines a secure
cryptographic hash function H : {0, 1}∗ → G1.

2) Secret Shares Generation: Using a pseudorandom num-
ber generator function, TA generates k1∗k2 secret shares
xij ∈ Z

∗
n, (i = 1, . . . , k1, j = 1, . . . , k2) and computes x0j

such that

x0j =
k1∑

i=1

xij mod n, where j = 1, . . . , k2. (1)

Note that the adversary cannot calculate x0j without knowing
all secret shares xij.

B. Registration

All SMij, FNj, and CC need to be registered in the TA, we
illustrate this phase as follows.

1) Registration of SMij: The SMij (for all i ∈ {1, 2, . . . , k1})
first chooses an identity IDij. Then, TA randomly
chooses a number skij ∈ Z

∗
q and computes pkij = skijP,

and securely delivers skij to SMij. Moreover, TA trans-
mits the secret xij.

2) Registration of FNj: The FNj (for all j ∈ {1, 2, . . . , k2})
first chooses an identity IDj. Then, TA randomly chooses
a number skj ∈ Z

∗
q and computes pkj = skjP. Finally,

the TA securely delivers skj to FNj.
3) Registration of CC: The CC first chooses an identity

IDCC. Then, TA transmits the tuple (λ, μ), and the secret
shares xij along with x0j.

At the end of this phase, TA publishes the system parameters
as {e, q, n, g, P, pkij, pkj, G1, G2, H}.

C. Smart Meter Report Generation

As the client’s consumption information is periodically
reported to FN, e.g., every quarter hour, to protect consumer
privacy from exposure, an SM needs to encrypt such private
information. Thus, each SMij measures and generates its l
types of data (mi1, mi2, . . . , mil). The following specific steps
are performed.

Step-1: Let z be the maximum number of bits that
could represent a DT m, SMij encodes its l types of
data (mi1, mi2, . . . , mil) into (di1, di2, . . . , dil) and constructs
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Dij as follows:

dik = (mik)2‖0θ , k = 1, . . . , l (2)

where θ = (⌈
log2(k1)

⌉+ z
) ∗ (k − 1)

Dij = di1 + di2 + · · · + dil. (3)

After encoding, SMij computes Dij

Dij = Dij + xij mod n. (4)

Step-2: SMij chooses a random number rij ∈ Z
∗
n, and

computes the ciphertext as follows:

Cij = gDij · rn
ij mod n2. (5)

Step-3: SMij uses its private key skij to compute the
signature as follows:

σij = skijH
(
Cij
∥∥IDij

∥∥TS
)

(6)

where TS is the current timestamp.
Step-4: SMij sends, to the corresponding FNj, the

data packet that contains {Cij, IDij, TS, σij}. It is necessary to
stress that every SMij should produce and encrypt a message
Dij as above. An example with l = 3 is depicted in Fig. 2.

D. Data Aggregation

This part consists of two possible phases. In the case if all of
the SMij send their reports, FNj will perform an all-inclusive
data aggregation; otherwise, it will perform a fault-tolerant
data aggregation.

1) All-Inclusive Data Aggregation: If all of the SMij report
their data to the corresponding FNj, FNj will first perform the
batch verification to verify the received signatures, i.e., check
whether

e

⎛

⎝P,

k1∑

i=1

σij

⎞

⎠ =
k1∏

i=1

e
(
pkij, H

(
Cij‖IDij‖TS

))
. (7)

If the equation does hold, it means the signatures are valid.
The correctness is as follows:

e

⎛

⎝P,

k1∑

i=1

σij

⎞

⎠ = e

⎛

⎝P,

k1∑

i=1

skijH
(
Cij‖IDij‖TS

)
⎞

⎠

=
k1∏

i=1

e
(
P, skijH

(
Cij‖IDij‖TS

))

=
k1∏

i=1

e
(
pkij, H

(
Cij‖IDij‖TS

))
.

Note that the batch verification reduces the number of pair-
ing operations from 2k1 to k1 + 1. After checking the validity,
FNj aggregates all the ciphertexts and sends the aggregated
message to the CC. The following steps are performed.

Step-1: FNj aggregates the k1 encrypted ciphertexts as

Cj =
k1∏

i=1

Cij mod n2

Fig. 2. Example of Dij with l = 3.

=
k1∏

i=1

gDij · rn
ij mod n2

= g
∑k1

i=1 Dij ·
⎛

⎝
k1∏

i=1

rij

⎞

⎠
n

mod n2

= g
∑k1

i=1(Dij+xij) mod n ·
⎛

⎝
k1∏

i=1

rij

⎞

⎠
n

mod n2. (8)

Step-2: FNj uses its private key skj to compute the signature
as follows:

σj = skjH
(
Cj
∥∥IDj

∥∥TS
)

(9)

where TS is the current timestamp.
Step-3: FNj sends, to the CC, an all-inclusive report that

contains {Cj, IDj, TS, σj}.
2) Fault-Tolerant Data Aggregation: If some SMs break-

down, FNj will not receive the corresponding packets. Let Uij

be the set of all legitimate SM devices and U′
ij be the set of

failed SM devices (U′
ij∈ Uij). Consequently, we have

x0j �=
∑

i∈Uij/U′
ij

xij mod n. (10)

Thus, this phenomenon will directly affect the correctness
of the final decryption result. FNj needs to send the set U′

ij to
the CC. Therefore, in this case, FNj first validates the received
signatures, i.e., check whether

e

⎛

⎜⎝P,
∑

i∈Uij/U′
ij

σij

⎞

⎟⎠ =
∏

i∈Uij/U′
ij

e
(
pkij, H

(
Cij
∥∥IDij

∥∥TS
))

. (11)

If the equation does hold, it means the signatures are valid.
Then, it performs aggregation on the received ciphertexts
and computes the fault-tolerant aggregated ciphertext. The
following specific steps are performed.

Step-1: FNj aggregates the received ciphertexts as

C′
j =

∏

i∈Uij/U′
ij

Cij mod n2

= g
∑

i∈Uij/U′
ij
(Dij+xij) mod n ·

⎛

⎜⎝
∏

i∈Uij/U′
ij

rij

⎞

⎟⎠

n

mod n2.

(12)
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Step-2: FNj uses its private key skj to compute the signature
as follows:

σ ′
j = skjH

(
C′

j

∥∥IDj
∥∥TS

)
(13)

where TS is the current timestamp.
Step-3: FNj sends, to the CC, a fault-tolerant report that

contains {C′
j, IDj, TS, σ ′

j , U′
ij}.

E. Data Reading

This part consists of two possible phases. If the CC
receives an all-inclusive report from FNj, it will perform an
all-inclusive data reading; otherwise, it will perform a fault-
tolerant data reading.

1) All-Inclusive Data Reading: Upon receiving the all-
inclusive report from FNj, CC first verifies the signature
according to the following equation:

e
(
P, σj

) = e
(
pkj, H

(
Cj
∥∥IDj

∥∥TS
))

. (14)

If the equation does hold, it means the signatures are valid.
After checking the validity, CC decrypts the aggregated cipher-
text Cj and retrieves the aggregated data by performing the
following steps.

Step-1: CC decrypts the aggregated ciphertext Cj. From (8),
by taking

M =
k1∑

i=1

(
Dij + xij

)
mod n, and R =

k1∏

i=1

rij.

The report gM ·Rn mod n2 is still a ciphertext of the Paillier
Cryptosystem. Thus, CC uses the tuple (λ,μ) to recover M as

M = L
(

Cλ
j mod n2

)
μ mod n. (15)

Step-2: After decrypting, CC uses x0j to obtain
∑k1

i=1 Dij as

k1∑

i=1

Dij = M − x0j mod n. (16)

Step-3: CC uses the decoding function to retrieve each
aggregated data

∑k1
i=1 dik. CC divides the binary representa-

tion of
∑k1

i=1 Dij into l blocks of bits, the length of each block
is (�log2(k1)�+ z). Thus, the first (�log2(k1)�+ z) least signif-
icant bits correspond to the aggregation result

∑k1
i=1 mi1 and

so on. The CC then retrieves the aggregation result of each
type of data as

⎛

⎝
k1∑

i=1

Dij

⎞

⎠

2

=
k1∑

i=1

mil

∥∥∥∥∥∥
· · · · · ·

∥∥∥∥∥∥

k1∑

i=1

mi2

∥∥∥∥∥∥

k1∑

i=1

mi1.

(17)

Due to overflow during aggregation, the required extra bits
cannot be more than �log2(k1)� when k1 numbers are added.
This explains why we choose to pad (�log2(k1)� + z)*(k −
1) zeros after mik in every dik. Fig. 3. shows the aggregated
data retrieved by the CC when k1 = 4 and l = 3, where Dij

was generated by SMij.

Fig. 3. Example with k1 = 4 and l = 3.

2) Fault-Tolerant Data Reading: Upon receiving the fault-
tolerant report from FNj, CC first verifies the signature
according to the following equation:

e
(

P, σ ′
j

)
= e

(
pkj, H

(
C′

j

∥∥IDj
∥∥TS

))
. (18)

If the equation does hold, it means the signatures are valid.
CC decrypts the aggregated ciphertext C′

j and retrieves the
aggregated data by performing the following steps.

Step-1: CC decrypts the aggregated ciphertext C′
j as

M′ = L
(

C
′λ
j mod n2

)
μ mod n. (19)

Step-2: After decrypting, CC computes x′
0j as

x′
0j =

∑

i∈Uij/U′
ij

xij mod n. (20)

Step-3: CC uses x′
0j to obtain the fault-tolerant aggregated

multidimensional data
∑

i∈Uij/U′
ij

D′
ij = M′ − x′

0j mod n. (21)

Step-4: CC uses the decoding function, as described earlier,
to retrieve the fault-tolerant aggregation result of each type of
data as

⎛

⎜⎝
∑

i∈Uij/U′
ij

D′
ij

⎞

⎟⎠

2

=
∑

i∈Uij/U′
ij

m′
il

∥∥∥∥∥∥∥
· · · · · ·

∥∥∥∥∥∥∥

∑

i∈Uij/U′
ij

m′
i2

∥∥∥∥∥∥∥
∑

i∈Uij/U′
ij

m′
i1. (22)

VI. ANSWERING OTHER QUERIES

In this section, we discuss how to adapt ESMA to
answer other queries, namely, variance report query and
set-aggregation report query.

A. Variance Report Query

The CC may need other statistical functions than summa-
tion such as variance to further analyze power consumption.
This could allow the detection of abnormal situations and load
imbalance. In the following, we present how ESMA can be
adapted to achieve dual-functional MDA for FCSG, which
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can support, for each type of data, aggregation of mean and
variance at the same time. Observe that

VAR(mi1) =
∑k1

i=1 m2
i1

k1
−
(∑k1

i=1 mi1

k1

)2

= 1

k1

k1∑

i=1

m2
i1 − 1

k2
1

⎛

⎝
k1∑

i=1

mi1

⎞

⎠
2

. (23)

If the CC needs to perform a variance analysis on
multidimensional data, each SMij add the data (m2

i1,
m2

i2, . . . , m2
il) in addition to (mi1, mi2, . . . , mil) and encode

them as follows:

dik =
(

m2
ik

)

2
‖(mik)

2
‖0θ , k = 1, . . . , l (24)

where θ = (2�log2(k1)� + 3z) ∗ (k − 1) and (mik)2 is padded
by zeros in the left to be represented in (�log2(k1)� + z) bits.

Due to square calculation, the required bits for m2
ik cannot

be more than 2z where z is the maximum number of bits that
could represent a DT. This explains why we choose to pad
(2�log2(k1)� + 3z) ∗ (k − 1) zeros in every dik. The SMij then
follows the same steps as previously described to produce its
report. At the end of the decryption phase, CC retrieves the
queried data as follows:
⎛

⎝
k1∑

i=1

Dij

⎞

⎠

2

=
k1∑

i=1

m2
il

∥∥∥∥∥∥

k1∑

i=1

mil

∥∥∥∥∥∥
· · · · · ·

∥∥∥∥∥∥

k1∑

i=1

m2
i1

∥∥∥∥∥∥

k1∑

i=1

mi1.

(25)

B. Set Aggregation Query

We suppose that there exist f subsets corresponding to
f electricity consumption ranges, such that [R1, R2), [R2,
R3), . . . ,[Rf ,+∞). The CC may need to calculate the total
consumption and also the number of users of each subset in
a period [21]. In the following, we show how ESMA can be
adapted to achieve the data aggregation of multisubset for
FCSG. We assume that if the electricity consumption data,
generated by SMij, mi ∈ [Rs, Rs+1), SMij will lie in the subset
Us ⊂ U, where U = U1 ∪U2 ∪· · ·∪Uf , and Us ∩Ut = ∅, for s,
t = 1, 2, . . . , f , s �= t. We also have E = E1 +E2 +· · ·+Ef , E1
is the total electricity consumption of the subset U1 and so on.
We can then consider for each subset a block of bits in our
encoding function. Each SMij encodes its data mi ∈ [Rs, Rs+1)

into Dij as follows:

Dij = 1‖(mi)2‖0θ , s = 1, . . . , f (26)

where θ = (2 ∗ �log2(k1)� + z) ∗ (s − 1) and (mi)2 is padded
by zeros in the left to be represented in (�log2(k1)� + z) bits.

The SMij then follows the same steps as previously
described to produce its report. Afterward, FNj aggregates the
number of users and total usage of each subset. At the end of
the decryption phase, CC retrieves the queried data as follows:

⎛

⎝
k1∑

i=1

Dij

⎞

⎠

2

= ∣∣Uf
∣∣ ∥∥Ef

∥∥ · · · |U2| ‖E2‖ |U1| ‖E1. (27)

VII. SECURITY ANALYSIS

In this section, we analyze the security of ESMA. In par-
ticular, we show how ESMA can protect the user’s individual
data, and ensure data integrity and source authentication.

A. Privacy Protection

In the SM report generation phase, the sensitive
multidimensional data dij is blinded by adding the secret
key xij modulo n to get the ciphertext: Cij = gdij+xijmod n ·
rn mod n2. SMij sends Cij to the corresponding FNj instead
of dij directly. The FNj is then unable to decrypt the received
ciphertext and to read the sensitive data dij without know-
ing the Paillier private key and xij. The Paillier cryptosystem
is semantically secure, so the encryption is secure against
any form of ciphertext analysis. User’s multidimensional data
(mi1, mi2, . . . , mil) in dij are also semantic secure and pri-
vacy preserving. Furthermore, due to the randomization of r,
the Paillier encryption can resist dictionary attacks, since the
encryption of the same data will result into different cipher-
texts with very high probability. This ensures that even if the
adversary A eavesdrops the communication or even intrudes
into the FNj database and gets Cij, he will not have access to
the user’s private data Dij.

In the data aggregation phase, FNj performs aggregation
operation directly on ciphertexts. For the CC, after decryp-
tion, it only has the data sum for every dimension. Even if A

intrudes into the CC database, he cannot retrieve the individ-
ual multidimensional data, i.e., (mi1, mi2, . . . , mil). Therefore,
the privacy of individual data is ensured in ESMA.

Furthermore, ESMA ensures that a colluding set of users
cannot compromise the privacy of other users. In fact, if A

compromises the users’ privacy, he can access the private data
and retrieves the secret share xij. In ESMA, there is no corre-
lation between the randomly generated shares by TA, namely,
the secret shares xij ∈ Z

∗
n. So, compromising the secret shares

of a few users will not reveal the secret shares of remaining
users. Suppose the case where A succeeds in compromising
k1 − 1 users that belong to a certain FNj, and gets their secret
shares x1j, x2j, . . . , xk−1j. For k1 −1 users, (1) can be rewritten
as follows:

x0j =
k1−1∑

i=1

xij + xk1j mod n. (28)

Data privacy of the remaining user is still maintained
because A does not have the sum of the secret shares x0j of
CC nor the Paillier private key, thereby, A will not be able to
compromise xk1j. Consequently, in ESMA, regardless of the
number of compromised users, A cannot access the private
data of the other users.

B. Data Integrity and Authentication

In ESMA, the BLS short signature [22] is adopted to sign
the user’s private data and the aggregated data. For the message
{Cij, IDij, TS, σij} sent by SMij, the corresponding FNj first
checks IDij and TS and then verifies the message’s integrity
by checking if (7) holds. We can see that each element of the
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Fig. 4. Computation cost at SM.

message is involved in verification, and any manipulation of
the message will cause inequality. Therefore, the message’s
integrity sent by SMij can be verified by FNj. Similarly, when
receiving the message {Cj, IDj, TS, σj} sent by FNj, CC first
checks IDj and TS and then verifies the message’s integrity
by checking if (14) holds. From the equation, each element of
the message is involved in verification, and any manipulation
of the message will cause inequality. Therefore, the message’s
integrity sent by FNj can be verified by CC.

The signature σij of SMij is generated with the correspond-
ing private key skij, and the signature σj of FNj is generated
with the corresponding private key skj. Since the adversary
does not know the private keys skij and skj, it cannot produce
the correct messages. Therefore, ESMA can guarantee that all
users and their private data are legitimate.

Data integrity and authentication are then provided since
the BLS signature is provably secure [22]. Consequently, A

cannot launch active attacks without being detected. The
TS included in the packet can prevent replay attacks. Any
data modification or false data injection can be detected when
the recipient fails to check the signature validity.

VIII. PERFORMANCE EVALUATION

Tonyali et al. [23] analyzed the cost generated when using
HE in SG in terms of bandwidth and end-to-end delay. The
authors state that computation and communication costs and
scalability impact severely the network reliability and must be
considered. Consequently, in this section, we first compare, in
terms of computation and communication cost, ESMA with
previous works, and then we analyze its scalability.

A. Computation Cost

Using well-known cryptographic libraries, MIRACL [24],
and PBC [25], we compute the cost of the cryptographic oper-
ations used in ESMA and previous schemes. We consider for
Paillier encryption a 1024-b n and for pairing a base field
size of 160 b. For ECC, we use the standard curve secp160-
r1. Table III shows the results obtained on a computer with
Intel Core i5-2430 2.4-GHz CPU and 2-GB RAM. Note that
multiplication in Zn2 , modular addition, and hash operations
are negligible compared to exponentiation in Zn2 and pairing
operations. We compare ESMA with the schemes that achieve
MDA, namely, EPPA [10], Boudia et al. [11], Ming et al. [12],
and Zuo et al. [13] (see Table I).

TABLE III
COST OF CRYPTOGRAPHIC OPERATIONS

In ESMA, when SMij produces its report, it requires 2 Ce

to generate Cij and Cm to generate σij. In EPPA [10], SMij

performs (l + 1)Ce and Cm to generate the ciphertext and
the signature. In [11], SMij performs 2(l + 1)Cpm. In [12],
SMij performs 4 Cpm. In [13], SMij performs CE−ElGamal and
2Cexp. We present a comparison in Fig. 4. The results show
that ESMA significantly reduces the computation cost at the
user side in comparison with EPPA scheme which also utilizes
Paillier to achieve MDA. In [11], the cost increases linearly
with the number of DTs. In [12] and [13], the cost is efficient;
however, as we will see later, this advantage is lost at CC
where the decryption operation requires solving DLP which
is a heavy computation in the case of large plaintexts.

In ESMA, EPPA, and [13], when FNj (gateway in the case
of EPPA and [13]) receives all of the reports from the cov-
ered SMij, it first performs a batch verification to verify the
data that needs (k1 + 1)Cp. Then, it aggregates the ciphertexts
and produces a signature, which consists of several negligible
multiplications in Zn2 and Cm (multiplications in Zn and Cexp
in [13]). Consequently, at FNj, the costs are almost the same,
except for [11] and [12], which employ an Elliptic curve-
based batch verification that is more efficient than pairing one.
However, in the fog computing paradigm, FNs are considered
to have more computational abilities than traditional gateways.
Thus, the aggregation operation can be efficiently computed.

In ESMA and EPPA [10], when CC (OA in the case of
EPPA) receives a packet from FNj, it first performs 2Cp to
verify the data and then retrieves the aggregation result by
performing Ce. In [11], the CC performs 3Cpm and l times
a reverse mapping function which requires solving the ECDLP
to recover M. To verify and retrieve the data in [12], the CC
performs 4Cpm and a computation of the ECDLP to recover
M, while in [13], the CC performs 2 (k1 + 1) Cp, CD−ElGamal
and a computation of the DLP to recover M. By consider-
ing Pollard’s lambda method to compute DLP and ECDLP,
we conduct experiments to compute the execution time at CC
using MIRACL. The method requires a time complexity of
O(l · √

k1 · 2z), O(
√

l·k1·2z), O(
√

(l + 1)·k1·2z) in [11]–[13],
respectively. The results presented in Fig. 5 show that regard-
less of the size of the aggregation result M, EPPA and
ESMA have the same computation overhead at CC. However,
in the other works, the higher is the size of the aggregation
result, the higher is the computation time. In fact, an aggre-
gate size higher than 40 b cannot be efficiently recovered
at CC at all. Ugus et al. [26] stated that in the El Gamal
additive encryption scheme, the final aggregation must be
small enough for realistic applications (e.g., 3 bytes) allowing
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Fig. 5. Computation cost at CC vs. The aggregate size.

a successful recovery at the decryption device. Consequently,
the schemes of Boudia et al. [11], Ming et al. [12], and
Zuo et al. [13] cannot be practical for large aggregation
results for SG. The super increasing sequence has been uti-
lized in [12] and [13] with El Gamal HE to achieve MDA. In
these two schemes, the CC has to solve the DLP to retrieve
the aggregated data. Boudia et al. [11] used El Gamal HE
with multiple public keys. However, in this case, also, the CC
has to compute the ECDLP to retrieve the aggregated data.
In the aforementioned schemes, the authors use heavy com-
putation either to encrypt [10], [11] or to decrypt [11]–[13]
the multidimensional data. Consequently, ESMA is the most
efficient.

In 2019, Saleem et al. [18] have proposed a fault-tolerant
mechanism to achieve resilience to node failures in their
ODA scheme for FCSG. However, in their proposal, the fault-
tolerant decryption cost increases at CC with the increasing
number of faulty SMs. In fact, the more are the number
of faulty SMs more cryptographic operations are executed
at CC. Furthermore, the decryption at CC requires solving
DLP to recover the aggregation result. In ESMA, regardless
of the number of faulty SMs, the cost of the fault-tolerant
decryption at CC is always the same. Fig. 6 shows the effi-
ciency of our fault-tolerant decryption compared to that of
Saleem et al. [18].

B. Communication Cost

In MDA schemes, l types of data are encrypted and sent
by each SM to the corresponding aggregator. The communi-
cation overhead can be divided into two parts: 1) SM-to-FN
communication and 2) FN-to-CC communication. In ESMA,
Cij, IDij, TS, and σij are sent from SM to FNj, where Cij ∈ Zn2

and σij ∈ G1. Let the size of IDij and TS be all 8 B.
Therefore, the communication cost SM-to-FN is 2048 + 64
+ 160 = 2272 b. Next, we analyze FN-to-CC communication.
In ESMA, {Cj, IDj, TS, and σj} are sent from FNj to CC,
where Cij ∈ Z

2
n and σij ∈ G1. Therefore, the communication

cost FN-to-CC is 2048 + 64 + 160 = 2272 b. The comparison
of communication cost with previous MDA schemes is shown
in Table IV.

We depict in Fig. 7 the comparison in terms of commu-
nication cost SM-to-FN for 20 types of data. It can be seen
that ESMA incurs lower communication overhead than [11].

TABLE IV
COMMUNICATION OVERHEAD COMPARISON

Fig. 6. FT decryption cost at CC.

Fig. 7. SM-to-FN communication cost.

The cost of communication is approximately equal to that
of [10] and [13]. However, in comparison with [9], the com-
munication overhead is higher in ESMA. The reason is that
Ming et al. [12] employed in their scheme elliptic curve groups
for encryption and signature, which leads to cost-efficient com-
munications. Nevertheless, first, as previously mentioned, the
main drawback of their proposal is that the CC has to compute
the ECDLP, which severely limits the upper bound. Second,
they consider a finite field with a 160-b q, the plaintext space
is then severely limited for the considered super-increasing
sequence, which has an impact on the number of DTs as
well. The same observation can be made for [11] and [13].
In ESMA, there is no extra computation at SM and CC. The
plaintext is up to 1024 b and an important number of DTs can
be supported in a single ciphertext.

C. Scalability Analysis

In ESMA, we use an encoding function to structure the
multidimensional data in Zn. In our implementation, we con-
sider a 1024-b n in Paillier encryption. However, Paillier can
support larger key sizes, such as 2048 and 4096 b for improved
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TABLE V
SCALABILITY ANALYSIS

TABLE VI
STORAGE OVERHEAD COMPARISON

security. Recall that each SMij encodes its l types of data
(mi1, mi2, . . . , mil) into (di1, di2, . . . , dil) as

dik = (mik)2‖0θ , k = 1, . . . , l

where θ = (⌈
log2(k1)

⌉+ z
) ∗ (k − 1).

In Table V, we show, according to n, z, and k1, the number
of DTs l that can be supported in a single ciphertext. The table
shows that using our encoding function, an important number
of DTs l can be supported in a single Paillier ciphertext. For
instance, with z = 16 b and 500 reporting SMs, 40 DTs can
be supported in a single ciphertext. Note that the number z
can be significantly reduced with a reference technique, such
as presented in [27] for efficient communications in sensor
networks [28]. The plaintext space in previous works cannot
support a large number of DT as mentioned earlier.

D. Storage Analysis

In ESMA, each SM stores in its memory its ID, the public
key of CC, a private key, and a secret share. Each FN stores its
ID, the public key of each covered SM, and a private key. In
EPPA [10], each SM stores its ID, l generators, n, and a private
key. Each FN stores the public key of each covered SM and
a private key. In [11], each SM stores its ID, l public keys,
a generator G, and a private key. Each FN stores the public
key of each covered SM and a private key. In [12], each SM
stores its ID, l big primes ai, the CC’s public keys, a generator
P, a secret share, and a private key. Each FN stores the public
key of each covered SM, P, and a private key. In [13], each
SM stores its ID, the CC’s public key, l big primes ai, g, and
a private key. Each FN stores the public key of each covered
SM and a private key. A comparison with previous works is
presented in Table VI. Note that the points on the curve are
considered in their uncompressed form. The main observation
we can make is that the storage overhead in previous schemes
depends on the number of DTs l. In our work, the overhead
is 3264 b whatever the number l.

IX. CONCLUSION

In this article, we proposed ESMA, an efficient and secure
MDA for FCSG. ESMA can structure and encrypt the
multidimensional data into a single Paillier ciphertext. Thanks
to the encoding function employed, which also gives the ability
to the CC to recover the aggregated data for every dimen-
sion efficiently and securely. The security analysis shows that
the privacy, confidentiality, integrity, and authentication of the
data are provided. The performance analysis shows the scala-
bility advantage of ESMA, the efficiency of our fault-tolerant
mechanism, and also, the cost-efficiency of ESMA in terms of
computation and communication. ESMA can also be adapted
to respond to other queries than summation. Therefore, it
satisfies the application needs of SG for smart cities.
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