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Abstract—A novel approach is proposed for multimodal col-
lective awareness (CA) of multiple networked intelligent agents.
Each agent is here considered as an Internet-of-Things (IoT)
node equipped with machine learning capabilities; CA aims to
provide the network with updated causal knowledge of the state
of execution of actions of each node performing a joint task,
with particular attention to anomalies that can arise. Data-
driven dynamic Bayesian models learned from multisensory data
recorded during the normal realization of a joint task (agent
network experience) are used for distributed state estimation of
agents and detection of abnormalities. A set of switching dynamic
Bayesian network (DBN) models collectively learned in a training
phase, each related to particular sensorial modality, is used to
allow each agent in the network to perform synchronous estima-
tion of possible abnormalities occurring when a new task of the
same type is jointly performed. Collective DBN (CDBN) learning
is performed by unsupervised clustering of generalized errors
(GEs) obtained from a starting generalized model. A growing
neural gas (GNG) algorithm is used as a basis to learn the
discrete switching variables at the semantic level. Conditional
probabilities linking nodes in the CDBN models are estimated
using obtained clusters. CDBN models are associated with a
Bayesian inference method, namely, distributed Markov jump
particle filter (D-MJPF), employed for joint state estimation and
abnormality detection. The effects of networking protocols and
of communications in the estimation of state and abnormali-
ties are analyzed. Performance is evaluated by using a small
network of two autonomous vehicles performing joint navigation
tasks in a controlled environment. In the proposed method, first
the sharing of observations is considered in ideal condition, and
then the effects of a wireless communication channel have been
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analyzed for the collective abnormality estimation of the agents.
Rician wireless channel and the usage of two protocols (i.e.,
IEEE 802.11p and IEEE 802.15.4) along with different channel
conditions are considered as well.

Index Terms—Abnormality detection, collective awareness
(CA), dynamic Bayesian network (DBN), Markov jump particle
filter (MJPF), self-awareness (SA).

I. INTRODUCTION

INTERNET-OF-THINGS (IoT)-related technologies have
advanced well beyond our imaginations in the past few

years. At present, billions of physical devices worldwide are
connected to the Internet, and most of them can collect and
share large amounts of data. In general, any device can be
thought of as an IoT device if it has networking capabilities.
A usual IoT device can vary from a child’s toy to a driver-less
vehicle. However, IoT has not yet reached a desired level of
maturity, and challenges are still open, such as computation
constraints, heterogeneity, data storage, autonomous capabil-
ities, security, etc. One of the most crucial challenges is the
lack of proper models representing the agent behaviors and
their causal relationships to the surrounding environments and
other objects [1].

Such a representation should be capable to span over vari-
ables at different abstraction levels to allow, for example, better
explainability of autonomous agent’s choices both online and
offline (ex-post). Moreover, the representation learned in a
data-driven way from observed sensory data when the agent
performs an experience for the first time (possibly driven by
an external control) [2]. With machine learning algorithms
and signal processing techniques, the IoT nodes can include
such learning capabilities. Artificial self-awareness (SA) has
an essential role in this framework.

SA is a broad concept that defines the agent’s ability to
focus on the inner self-state in relation to the external environ-
ment [3]. Nowadays, machine learning provides an extensive
set of methods and techniques to estimate SA models from
data sequences. This work considers self-aware agents and
provided a methodology by which collective awareness (CA)
of a group of agents can be defined and achieved. Moreover, it
shows how the proposed techniques can be suitable for jointly
building individual and collective representation of the state
of development of a task with respect to SA models learned
from previous experiences.
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Bayesian network (BN) techniques are the reference
approach here used to represent awareness models. Models
are composed of multiple variables, hierarchically organized
into layers. The sensors perceive the layers associated with
the observations variables. In contrast, hidden layers repre-
sent variables with direct or indirect causal relationships with
observations at different abstraction levels.

Dynamic BNs (DBNs) introduce temporal links that con-
nect BNs variables at successive time instants, allowing to
describe also causal, temporal relationships, i.e., behaviors of
the same object as represented by dynamic series of proba-
bility states of variables in time. dynamic BNs DBNs allow
an agent to explain the temporal series of observed sensor
data at different abstraction levels thanks to the global model’s
generative property. The same property can apply for simulta-
neous observation of objects doing collaborative tasks. Links
among DBNs related to each object can explain coupling con-
ditional probabilities describing reciprocal influences among
such objects. This generative capability makes coupled DBNs
attractive for composing the basis of SA representation in an
agent.

However, as SA models are data driven, i.e., learnable from
the data inference, DBNs’ generative capabilities must be aug-
mented by the ability to incrementally learn new DBNs from
sensor observations when such observations correspond to new
experiences. This implies that inference on such models also
includes anomaly detection and incremental learning steps in
addition to classical Bayesian prediction-estimation filtering.

Supposing that SA knowledge at a certain point of agent life
is set using DBN models learned from sensorial data connected
to the agent’s past experiences. Then the problem is to define
a Bayesian inference process capable of allowing the agents
to continuously check and monitor whether available DBN
generative models can predict well the current observations in
doing the current task. When it comes to a new experience
that the agent cannot use the embedded knowledge of learned
models to predict and reliably estimate it’s own context state
(abnormal situations), it requires incremental learning of new
models to enrich it’s own SA memory.

The main contributions of this article can be summarized
as follows.

1) A method proposed to learn CA models from low
dimensional data sequences of a network of intelligent
entities. For the inferences, a Markov jump particle fil-
ter (MJPF) based on generalized DBN models is used
and extended to become able to detect abnormalities at
different abstraction levels.

2) The robustness of the distributed abnormality detec-
tion feature of models concerning a realistic commu-
nication channel model is investigated. Evaluated the
performance in order to estimate, on the one hand, the
reliability and accuracy of abnormality detection under
the hypothesis of perfect communication (i.e., no data
loss and transmission delays), and, on the other hand,
analyzed the robustness of the system model against
packet losses and transmission delays of the commu-
nication channel among objects by considering different
protocols and channel conditions.

The remainder of this article is structured as follows. The
main state-of-the-art contributions regarding self-aware entities
and networks are reported and summarized in Section II.
Section III covers some of the definitions found in the existing
literature related to the concepts used in this work. Section IV
reports our proposed strategy for developing models to repre-
sent CA and to detect abnormality situations. Different features
of the models and the capability to detect abnormality at dif-
ferent levels is discussed. The experimental setup and the
communication system are described in Section V. Section VI
discusses the results obtained at different abstraction levels
of the models. Conclusions and future work are drawn in
Section VII.

II. STATE OF THE ART

Artificial intelligence is the concept that allows
agents/machines to perform any task autonomously in
any situation. Under the umbrella of artificial intelligence,
applications, such as machine learning, deep learning, etc.,
are increasingly used to implement solutions in various
fields, including self-driving vehicles. The intense use of
machine learning techniques applied to the sensory data
helps deal with the system’s uncertainty to a certain extent.
Such multisensory data used to build models that can make
predictions of the agents’ future states.

Over many years, SA has been studied in multiple research
disciplines, such as cognitive sciences, psychology, and phi-
losophy [4]–[7]. Moreover, according to the definition in [8],
the circumstantial cues remind the agents of themselves and
lead to give more attention to self and away from the envi-
ronment. On the other hand, Goukens et al. [9] proposed the
idea of private and public SA. Duval and Wicklund of [8]
and Goukens et al. [9], examine the impact of private SA in
decision making. The SA concept widely studied in biology,
which has been reproduced in artificial systems to enrich the
capability of autonomy in different fields, including machine
learning and robotics [10], [11]. The main challenge in most of
these approaches is how SA capabilities integrate into artificial
agents.

An artificial agent can be considered self-aware if it can
dynamically observe itself and its surrounding environment
through different exteroceptive and proprioceptive sensors and
learn and maintain a contextual representation by processing
the observed multisensorial data [3]. Developing SA in artifi-
cial agents will reduce human efforts in different areas, and in
some fields, the human operator can be entirely replaced by
machine intelligence.

The term collective consciousness was introduced by the
French sociologist Émile Durkheim (1858–1917) to refer
to the shared beliefs and moral attitudes that operate as
a unifying force within society [12]. Collective conscious-
ness or CA plays a significant role when a group of agents
needs to perform a task by co-operating and communicat-
ing to achieve collective or individual goals. Bourazeri and
Pitt [13] investigated the key requirements to achieve collective
action in decentralized community energy systems (dCES);
CA to enhance the sense of collective responsibility, social
networking to promote self-organization.
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Each agent in the multiagent system can take autonomic
actions to a certain extent along with the ability to interact
with other agents [14]. A group of such self-aware agents
can form a network that has CA capabilities. With such an
ability, each agent in the system should be aware of itself
and other agents’ activities. Distributed state estimation and
tracking are fundamental collaborative information processing
problems in wireless sensor networks (WSNs). Multisensor
fusion and tracking problems have a long history in signal
processing, control theory, and robotics [15]–[18]. Moreover,
the distributed state estimation issues in wireless networks
with packet-loss have been the center of much attention
lately [19]–[21]. There has been a significant development
in the study of Kalman filtering in the presence of data
packet drops [21]–[24]. The recent advances in the WSN tech-
nology also boost the study of a distributed Kalman filter
(DKF) [25]–[28], where each sensor node in the WSN can
compute local estimates via Kalman filtering based on its own
observations and the information sent from its neighboring
sensors. The existing literature shows that it lacked a proper
model to represent a group of agents’ behavior and underlying
reasons in different situations.

This work has developed multimodal CA models by con-
sidering exteroceptive and proprioceptive sensory data from
all the agents in the network. Each of the considered modality
extracts different system features that help to enrich contex-
tual awareness to detect abnormalities at different abstraction
levels.

III. DEFINITIONS

This section includes some of the definitions found in the
existing literature related to the concepts used in this work.

1) Ego-Thing: Ego-thing can be defined as intelligent
autonomous entities that can perceive their internal
as well as external parameters and adapt themselves
when they face abnormal situations [29]. In this arti-
cle, ego-thing, agent, object, and vehicle are used as
synonymous.

2) Self-Awareness:
a) SA can be seen as the capacity to become the

object of one’s own attention. It occurs when an
organism focuses not only on the external envi-
ronment but on the internal self; it becomes a
reflective observer by processing private & public
self-information [30].

b) SA is a capability of an autonomous system to
describe the acquired knowledge about itself and
its surroundings with appropriate models and learn
new models incrementally when it comes to new
experiences [3].

3) Collective Awareness: CA is an extension of SA concept
to a network of ego-things that cooperate to perform
a given task with different interdependent roles. CA
allows the network to understand whether perception-
action information processing models they are provided
of allow then to predict the dynamic evolution of the
current situation, as well as to coherently detect global
anomalies in a distributed way [31].

4) Multimodality: Different sensor modalities can be used
by an agent to collect information by its own sensors
about its own state (proprioceptive) and context one
(exteroceptive); consequently, CA makes it necessary
to be capable of learning models from heterogeneous
sensor modalities. The capability to estimate causal
dynamic connections of generalized variables related to
different modalities is a key aspect to allow agents to
be provided of CA models related to co-operative tasks
they have to perform.

IV. DESIGN AND IMPLEMENTATION

The data-driven method introduced to learn CA models for a
network of ego-things considers low dimensional multimodal
sensor data. Low-dimensional data here consists of extero-
ceptive sensor data related to the position of entities in an
environment and two different combinations of proprioceptive
control information that are causally connected to the motion
(i.e., derivatives of position) of ego-things.

Dynamic Bayesian data-driven model learning is used for
abstracting at different levels of dynamic rules driving the col-
lective behavior of a group of ego-things in a training phase.
The model learning process initially performed consists of the
estimation of a generative model and its component pieces.
This includes learning continuous dynamic conditional proba-
bilities, semantic vocabularies at discrete levels. The necessity
of establishing in the model condition bidirectional proba-
bilities among exteroceptive and proprioceptive DBNs also
implies estimating co-occurrence matrices.

The learned generative models allow predictions of a part of
variables not yet observed and the observation of new variables
(for example, in future time instants) allows anomaly detec-
tion. For example, the probabilistic distance between predicted
future states of the entities and the observed sensory likeli-
hoods in those moments can be used to estimate instantaneous
anomaly at the continuous level. The generative nature of DBN
models allows probabilistic inference methods to be defined
that differ also depending on the type of DBN chosen to rep-
resent data. For example, Kalman filtering, Hidden Markov
models, and particle filters (PFs) can be used for Bayesian
inference on simpler DBNs containing only observation and
hidden state nodes [32], [33]. MJPF [34], [35] works instead
of on DBNs with three levels of variables, i.e., including dis-
crete switching variables. MJPF Bayesian inference can enrich
to make available beyond prediction and state joint estimates
at discrete and continuous levels, also probabilistic anomaly
estimation as a SA component.

In CA, multiple DBNs related to multiple agents should
become coupled to represent collective interactions. In this
case, inference methods like MJPF can still apply, despite
the inference steps have to manage the higher complexity
of prediction models. In this latter case, as agents on the
field sparsely collect observations used by MJPF, the impor-
tant aspect is determining the impact of using communication
schemes to share such observations among agents in the
network. Sharing allows CA to be possible simultaneously in
each agent in a distributed way. Effects of the wireless channel
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Fig. 1. Block diagram: Training phase.

due to packet loss over the model performances so become
important to be modeled and analyzed as done in this article.

The description of the proposed method is divided into two
parts: 1) learning of CA models (offline phase) and 2) testing
the fitness models (online inference phase) and the following
sections explain the various steps involved in the process.

A. Collective Awareness Model Learning (Offline)

This work considers three different modalities, each of them
able to capture a part of the essential information necessary
to provide collective-awareness (CA) to the network of ego-
things. The possibility to estimate direct causal relationships
between the environment state and the network of agents states
when they perform a co-operative task considered to select
such modalities. The model learning steps are the same for all
the modalities and assumed that the multimodal acquired data
sequences are available for all the networked ego-things. The
block diagram representation of the training phase is shown
in Fig. 1.

1) Preprocessing and Estimation of Generalized Errors:
Once the sequences of multimodal data samples are avail-
able, time alignment is performed to match their timestamps.
The first level of synchronization occurs between heteroge-
neous data of every single ego-thing (intrasynchronization).
Ad-hoc intersynchronization is also necessary among the data
collected by different ego-things that are part of the consid-
ered network as they can be of different clocks. Three sensor
modalities here considered are odometry (X–Y positions) as
exteroceptive data, control Steering angle-Power (S − P) and
control Steering angle-Velocity (S−V) as proprioceptive data.
The chosen sensor data are low dimensional, i.e., each pro-
vided a 2-D vector of observations for a single ego-thing. In
this article, with no lack of generality, a network of two ego-
things is considered to provide experimental results on CA,
so 4D sensor data sequences are used for collective model
learning for each modality.

Let Z(e1,e2,...,en),c
k be the measurements from all the ego-

things related to modality “c” at the time instant k and

X(e1,e2,...,en),c
k be the associated joint latent state variables. The

measured observations can be mapped to the latent states by
the following observation model:

Z(e1,e2,...,en),c
k = g

(
X(e1,e2,...,en),c

k

)
+ εk (1)

where εk represents the vector composed of measurement
errors (for each ego-things) at a time step k. g() is a function
that, in this article, is assumed to be linear.

This assumption meets easily by considering low-
dimensional exteroceptive and proprioceptive sensory data to
learn switching DBN models. The sensors can design to cal-
ibrate to acquire these features around working points, so
allow statistical linearization of the relation between obser-
vation and hidden latent variables. This assumption here
allows the paper to focus on nonlinearities in the dynamic
models that DBNs can learn through switching models and
can be related to the agent’s capability to predict and
detect anomalies in their dynamic behaviors. However, the
proposed method already proved to be extendable to situa-
tions where it used high dimensional data (like videos) and
nonlinear observation models. In this case, the problem is
more complex because some times the function g() is also
not known as has to be estimated jointly with prediction
components of the generative model. Tools like generalized
adversarial networks (GANs) and variational autoencoders
(VAEs) have to be integrated into the DBN to map observed
sensory data into generalized state variables of the DBN
model [36], [37]. This goes beyond the scope of this article, as
explained.

Learning a DBN model is a recursive incremental process.
In fact, the input information to the learning steps consists
of a state grounded set of deviations of observed data from
predictions provided by the inference process associated with
an already existing generative model, i.e., an initial DBN.
Generalized error (GE) is used as the definition of an error
that consists of coupled information, including a state and the
deviation found in the state for higher-order derivatives (e.g.,
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in this article limited to first-order state derivative). The detec-
tion of GEs (e.g., a mismatch between Bayesian predictions
and updates) is done through anomaly detection. At the same
time, learning is a process of finding a new DBN that mini-
mizes the presence of GEs in a given sequence. It showed that
an initial reference generalized filter [38] could be applied low
dimensional data to produce GEs. In this article, this is done
with each modality data sequences to produce the GEs from
which to learn the task model.

The initial model is based on a null force filter (unmotivated
Kalman filter in this work) that assumes the absence of forces
between consecutive time instances. It is equivalent to suppose
that the agent’s state vector at a time instant k +1 will remain
unchanged with respect to the previous time instant k except
for low variance Gaussian perturbations. When the observed
data series do not follow this rule, record the derivatives’ errors
in a given position (i.e., GEs associated with anomalies) and
post-process to learn a new model. This corresponds to obtain
a new DBN where the associated inference model (in our case,
an MJPF) will generate minimal GEs if applied to similar
sequences as those from which the model was learned.

The GEs related to modality “c” can be written as

X̃
c
k =

[
Xc

k Ẋc
k Ẍc

k · · · X
d,c
k

]ᵀ
(2)

where d indexes the dth time derivative of the state. In 2,
all components are random vectors. To describe errors jointly
from different entities, one can organize such vectors in dif-
ferent ways. Here, for example, a vector in (2) is described
below in (3) that includes all vectors of all the entities for a
certain fixed derivative order, i.e., d = 0. Other similar vectors
can write for higher level derivatives

Xc
k =

[
Xe1

k ,Xe2
k , . . . ,Xen

k

]ᵀ
. (3)

In this work, we have limited the GEs to first-order deriva-
tives, and models have been learned accordingly.

2) Joint Vocabulary Learning: Once the GEs are estimated,
the very next step is to perform unsupervised clustering as part
of the learning process of the collective DBN (CDBN) gener-
ative model (refer Fig. 3). The probabilistic links that connect
variables in the CDBN are also estimated within this process.
A hierarchical switching 2-time slice DBN (2T-DBN) [39] is
chosen as the Generative model, and it is shown in Fig. 3.
The model is composed of two levels beyond the observa-
tion level: a continuous and a discrete generalized state level.
Unsupervised clustering allows learning a semantic vocabulary
consisting of clusters of GEs with similar state and derivative
values. A different switching variable assigns to each cluster,
and this variable represents the discrete switching variable.
As each cluster is characterized by its own average derivative,
a different linear dynamic model at a continuous level asso-
ciate with each cluster label, so specifying a further element
for the generative model. Such local conditional elements of
the generalized model are useful for allowing the model to
represent a piece-wise linear dynamic behavior (one way of
approximating nonlinear models) for each modality.

The sequential probabilistic trajectories of multiple switch-
ing variables, i.e., modes of behavior of the dynamic system,

can be represented by transition matrices at the discrete level.
Switching models are associated with inference methods: for
example, MJPFs can be seen as composite joint filters, where
Kalman filter (KFM) is used at the continuous level to allow
inferences on local linear components of a dynamic model. PF
acts as a second filter on the discrete switching variables to
regulate switches among successive elements of the piece-wise
linear discrete dynamics.

The learning of a DBN switching model from GEs implies
the capability to cluster GEs into groups that show similar
properties (similar dynamic linear behavior in state regions).
To this end, the unsupervised clustering is necessary. The unsu-
pervised clustering approach used to obtain clusters from GEs
is the growing neural gas (GNG) algorithm [40]. The input
multimodal GEs data sequences provided to each GNG here
consists of GEs computed separately applying an initial filter
to different agents data collected when performing a collective
task.

In this article, the algorithm used implies separate cluster-
ing to be applied to different vectors associated with a given
derivative [refer (2)]. A successive hierarchical clustering step
is applied to obtain GEs clustering thanks to synchronization
information. Two ego-things are here considered for simplic-
ity so that the input of each GNG consists of a 4-D vector.
Therefore, for each modality, two GNGs have to be performed,
one for the GE’s state component in (2), noted as GE0, and
the second for the derivative component GE1 as provided by
the initial filter. For example, the input vectors to the GNGs
belong to the odometry modality is in the form as

GNG1,Xc
1,k = [

x1 y1 x2 y2
]ᵀ (4)

GNG2,Xc
2,k = [

ẋ1 ẏ1 ẋ2 ẏ2
]ᵀ
. (5)

The output of each GNG consists of a set of clusters, each
one characterized by the mean and the covariance matrix
of GEs being attributed to that cluster, so providing an
uncertainty-based boundary of each cluster. A cluster can see
as nodes of a graph of switching variables. Each node groups
a subset of samples of GEs (i.e., GE0 or GE1) that have a low
distance wrt the mean of the region associated with the node.
The nodes produced by GNGs are the discrete components or
switching random variables of the CDBN model. For instance,
the group of nodes created by a GNG of modality “c” of lth
order time derivative vector of GEs written as

Sc,l = {S1, S2, . . . , Sm} (6)

where m represents the maximum number of nodes produced
by the GNG. The co-occurrence matrix requires a further post
clustering step taking into account relationships between dif-
ferent GE spaces to find the temporal correlation between
the switching variables. The nodes activating at the same
time instance from GE0 and GE1 discrete cluster spaces are
grouped as part of the hierarchical successive clustering step
to form words. An example of a word is

Wc =
[
S0

i S1
j

]T
(7)

where Si represents the ith element of the group of nodes
produced by GNG1 belongs to GE0. Likewise, S1

j represents
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the jth element of the list of nodes produced by GNG2 (i.e.,
the GNG belongs to GE1 space).

A unique label assigned for each word or combination of
nodes and the complete list of formed vocabulary is called
dictionary. The resulting dictionary is

Dc =
{(

W(1),cL1

)
,
(

W(2),cL2

)
, . . . ,

(
W(m),cLm

)}
(8)

where L represents each word’s unique label, m represents
the index of the maximum number of elements in the dictio-
nary. The dictionary information is used in MJPF for the joint
prediction and estimation of future states of the ego-things.

3) Feature Extraction: In this step, co-occurrence proba-
bility matrix has been estimated from the complete list of
words. It provides the information about the GNG nodes
enable in GE1 space corresponds to nodes in GE0 space. The
co-occurrence matrix for modality c can be represented as

Tc =
⎛
⎜⎝
θ11 θ12 · · · θ1n
...

. . .

θm1 θm2 · · · θmn

⎞
⎟⎠. (9)

The rows of the matrix 1-m called transitional elements
correspond to the total number of nodes generated from gener-
alized error 0 (GE0) by GNG1. Similarly, the columns of the
matrix 1-n are absorbing elements represent the total nodes
produced by GNG2 of generalized error 1 (GE1). Each of
the matrix elements θ is an estimation of the probability of
occurrence between GE0 and GE1 spaces. For example, θ13
is a co-occurrence probability value between the first node of
GNG 1 to the third node of GNG 2. The causal relationships
between different GE spaces help extract various features of
the discrete cluster level from each modality’s viewpoint and
summarized in the following.

1) Odometry X–Y: The initial generalized filter produces
GEs from the exteroceptive sensory data of odome-
try. Then discretized the GEs by GNGs and obtained
GE0 and GE1 cluster spaces. The generalized GE0
encodes the location information of the ego-things,
and at the same time, GE1 gives focus to the direc-
tion of movements. Then, the co-occurrence matrix is
estimated; it provides information about the causal rela-
tionships between GE0 and GE1 cluster spaces. In other
words, for a given node in GE0 space (embed the posi-
tion information), the co-occurrence matrix tells the
possible future direction of movements of ego-things
(i.e., the possible nodes enable in the GE1 space) in
probabilistic terms. All the information extracted from
the GE0 and GE1 clusters, along with the help of the
co-occurrence matrix, used to learn a filter. This filter
produces errors or abnormalities when the prediction
deviates from the actual measurements. Inside the filter,
the spatial features embedded. Therefore, it can differen-
tiate the types of dynamics of the ego-things based on
spatial co-ordinates in the provided context. When an
agent network experience different from the one used to
learn the filter, it will produce abnormality errors. That
means the anomaly detection occurs when the exist-
ing filter fails to represent the new situation with the

knowledge it already has. A new filter will be learned
in this situation to embed the knowledge acquired from
the current experience. If a similar experience happens
in the future, the filter will represent the situation, and
the knowledge will help in the joint decision-making of
ego-things. This is an evolving concept; more details and
results are provided in Section VI-A. The extracted fea-
ture from the exteroceptive odometry data will enrich
each ego-things’ contextual awareness in the network.
In this level of abstraction, it can detect the spatial
anomalies.

2) Control S–P: Contrary to odometry modality, the con-
trol S–P modality extracts a slightly different feature of
the networked system of ego-things. The filter differen-
tiates the agents’ types of dynamics, and the location
does not play any role. The activated GNG nodes in the
cluster space of GE zero (GE0) during the ego-things’
linear movement enable a specific subset of nodes in the
GE1 (derivative) space. Similarly, the dynamics in the
curved part of the trajectory activates another subset of
nodes in both GE0 and GE1 discrete spaces. The filter
produces abnormality if the network goes through a dif-
ferent movement pattern than the one used for learning
the filter. This feature helps to enrich the SA of each
agent in the network.

3) Control S–V: In line with the S–P modality, S–V modal-
ity also identifies the different types of dynamics of
the agents’ network. Nevertheless, the performance dif-
fers based on the joint behavior of the proprioceptive
low dimensional data used for learning the filter. When
the joint nature of the low-dimensional variables, i.e.,
steering and velocity, varies while performing a dif-
ferent task and movement patterns, the filter detects
the abnormality. This is considered SA property as the
used proprioceptive sensory data sequences represent the
ego-things’ internal behaviors.

Some of the important results of this discrete level filter, along
with continual learning, are presented in Section VI-A.

Finally, the availability of words (estimated from clusters of
GEs) allows the final step to learn the prediction models at the
discrete level. To this end, the temporal transition probability
between the discrete vocabulary of words can be computed by
looking at the relative frequency of time transitions of data.
The time sequence is analyzed again to this end to label each
observation with words found by clustering and the frequency
of changes estimated to complete the DBN model transition
probabilities at the discrete switching variable level.

4) CDBN Models: The previous sections present all the
necessary steps involved in learning CDBN models. Each
agent in the network learns three CDBN models in total, and
each of them represents a particular sensory modality. As states
before, all learned models are replica inside each ego-things
in the network. The set of CDBN models learned by ego-thing
ep and eq is the same for each other ego-thing in the system,
and can be written as

CDBNep =
{

CDBNc1,CDBNc2,CDBNc3
}

= CDBNeq ∀p, q ∈ N (10)
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Fig. 2. General block diagram of CDBN model testing for two ego-things network. The processes involved in this test phase are common for all the filters
learned during the training phase. The red dotted lines indicate communication over the wireless channel.

where c1, c2, and c3 represents the odometry, control S–P
and control S–V modalities, respectively. Fig. 3 shows the
representation of learned CDBN model (by considering two
ego-things). The square nodes are discrete, and round nodes
are continuous. The horizontal arrows that are in green and
blue colors represent the conditional probability between two
consecutive time instances at continuous as well as discrete
levels. Moreover, the vertical arrows (orange and black in
color) describe the causalities between inferences of differ-
ent ego-things at discrete, continuous states and observation
levels.

B. Model Testing (Online Phase)

This part explains the inference process applied to
sequences when a given DBN model has been learned and
is available. The inference process occurs at different levels
of the CA models learned in the training phase. All the fil-
ters in this work are using the same method shown in Fig. 2.
Therefore, they can produce new GEs that can be potentially
useful for the continual learning of new models. Despite here,
we describe a single step in this direction.

The filters produced at the intermediate level [i.e., Filter(s)
A in Fig. 1] have tested and analyzed the obtained results. The
features extracted of the ego-thing by the estimation of the
co-occurrence probability matrix used for this purpose. Each
of the filters learned in the training phase will pass through
the process shown in Fig. 2 (during the test phase) to detect
abnormalities and to learn new filters whenever abnormalities
occur. The results of the evolving emergent concept have been
presented in Section VI-A.

1) Joint States Estimation and Abnormality Measurements:
The process flow diagram of the filter testing is shown in
Fig. 2. We have proposed to apply a dynamic switching model
called MJPF [29], [34] to make inferences on the CDBN mod-
els learned in the training phase (refer Fig. 3). In MJPF, we use
Kalman filter (KF) [41] in continuous state space and PF [42]
in a higher hierarchical discrete level. Each dynamic model
in the continuous state is associated with one of the discrete
set of vocabulary variable. The co-occurrence and transition
probability matrices model the switching probability from one
mode to another. A detailed description of MJPF is described
in [43, Sec. 2]. Here we provide a brief description to under-
stand better how generative DBN models learned can drive
the inference process and the related anomaly detection and
fixing of GEs.

The objective of MJPF is to iteratively estimate the joint
posterior of discrete variables together with continuous states
based on an observation sequence. The joint posterior decom-
poses into a categorical distribution, represented through a
set of weighted particles and a set of continuous distri-
butions assumed to be constituted by linear and Gaussian
variables. The different continuous distribution is associated
with different values of discrete variables.

An MJPF is an inference mechanism associated with a
switching DBN model, consists of a prediction/update steps.
The particles are predicted using the Gaussian proposal func-
tion q = p(Wk + 1/Wk) using Monte Carlo chain concepts
associated with a specific algorithm (for example, sequential
importance resampling (SIR) PF [44]). To this end, the part
of the generative model named temporal transition probabil-
ity, estimated in the training phase, can be used. However,
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Fig. 3. Single CDBN model for two agent network.

each particle prediction can perform at the continuous level by
the KF applied to the different linear dynamic models learned
during the training phase (using each cluster information).

The propagation of particles allows the prediction of joint
continuous/discrete posterior. The update step provides the
new observed sensory data sample to the filter; this generates
message passing through the DBN, allowing to update before
continuous state variable inside the KF of a particle by means
of innovation. Then the message reaches the discrete level
where the difference wrt the transition model prediction intro-
duces a new update. Updating allows the global weight of
particles to be estimated to represent the new posterior.

In the case of the proposed approach, the posterior probabil-
ity density function associated with a switching model learned
DBN related to modality c is

p
(

Wk
c, X̃(e1,e2,...,en),c

k /Zk
(e1,e2,...,en),c

)

= p
(

X̃(e1,e2,...,en),c
k /Wk

c,Zk
(e1,e2,...,en),c

)

× p
(

Wk
c/Zk

(e1,e2,...,en),c
)

(11)

where Wk
c is the superstate random variable that represents

words learned through clustering as the higher hierarchical
level vocabulary of switching variables; X̃(e1,e2,...,en),c

k repre-
sents the joint continuous state of all the ego-things at time
instant k.

D-MJPF uses (11) as the target posterior to be iteratively
estimated jointly at the discrete and continuous state. The
particles’ weight is iteratively computed and allows to approx-
imate the posterior. The predicted particles that better match
observations obtain the maximum weight, and their positions

indicate where the higher probability mass of the posterior is
concentrated. D-MJPF can apply to the sensory observed data
variables of each modality. However, classical MJPF not hav-
ing anomaly detection capability. To this end, an additional
functionally has to be added to the D-MJPF.

The abnormality estimation collectively computed in each
ego thing constitutes the collective anomaly detection step.
The abnormality information allows each ego-thing to mea-
sure how well the learned models fit the currently observed
sequence. The anomaly metric used in this work is the filters
innovation and estimated by the formula

δk,c = Z(e1,e2,...,en)
k,c − HX(e1,e2,...,en)

k,c (12)

where δk,c represents the innovation term, Z(e1,e2,...,en)
k,c is the

observations from all the ego-things that belong to modal-
ity c, H is the observation matrix and X(e1,e2,...,en)

k,c is the states
estimated by the MJPF at time instant k.

In MJPF, we treated the states of all the ego-things together.
Each discrete zone has a number of KFs associated with it. The
total number of KFs associated with each zone depends upon
the number of particles assigned by the discrete level vocabu-
lary. Each KF will calculate the innovation term and average
for the estimation of abnormality. Suppose the model detects
abnormal situation by testing with data set from a different
experience than the one used in the training phase. In that case,
the system stores the abnormality data and then learn a new
model from the data. If no abnormality is detected (the inno-
vation metric elements are zero), higher-level state estimation
will be performed, and the process is repeated. By learning a
new model from the abnormality data, the system can represent
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Fig. 4. Network model for two ego-things. The communication shown is from the ego-thing 1 (sender) to ego-thing 2 (receiver), and the same is for the
receiver to the sender.

the new situation. If the system encounters similar experiences
in the future, it will infer with the stored representation.

2) Wireless Channel Effects Over the Model Performance:
The network model of the ego-things is shown in Fig. 4. It
shows the connections from sender ego-thing (ego-thing 1)
to the receiver ego-thing (ego-thing 2); the same is assumed
for the receiver ego-thing to the sender. Three environmental
conditions, such as ideal (no loss), urban and rural, with two
protocol standards implemented in the simulator. This work
considered only the PHY and MAC layers of the protocols
(IEEE 802.15.4 and IEEE 802.11p).

The throughput of IEEE 802.15.4 is minimal and is less
than the PHY bit rate of 50 kb/s. Continuous transmission of
packets is not possible as the PHY layer needs to wait for Acks
and the CSMA/CA has many timers. By taking into account
the PHY layer and MAC layer overheads, the applications
have only access to a theoretical maximum of about 50 kb/s.
Therefore, we used a data rate of 50 kb/s in this work. When
using 802.15.4, the type of network is an unslotted CSMA
for the MAC layer, and the network is PAN with the first
node (that starts the network) is the coordinator. Therefore,
the connectivity type is ad-hoc if the number of ego-things is
more than two. But IEEE 802.11p supports device-to-device
(D2D) connectivity among ego-things even if it consists of
many IoT nodes.

The data gathered by the exteroceptive and propriocep-
tive sensors are encoded for the transmission over the
wireless channel. The encoded data is sent over the chan-
nel, the receiver ego-thing collects this data and per-
forms a decoding operation. Then, the joint data (of the

sender and receiver ego-things) synchronize to match their
data-acquisition time-stamps. A D-MJPF makes inferences,
matches the predicted collective states with the observed
sensory data to detect the abnormality.

The theoretical analysis of the channel’s impact over the
data is analyzed in this part, and then the metrics introduced
in the next section are used to evaluate the model performance
in the presence of packet loss and delays occurring in the
channel. In Fig. 2, the red dotted line indicates the data
exchange between the ego-things. The D-MJPF will behave
differently in situations like lost or delayed packets than how
it behaved in an ideal (no loss) situation. The prediction step
of the filter will perform jointly, and in the updating step,
estimates the posterior for each ego-thing separately. Then
estimate the innovation metric separately for each ego-thing.
For instance, if the ego-thing 1 (e1) is not received packets
from ego-thing n (en) within an allowed time frame or the
packets lost in the channel, the filter will continue prediction
based on the previous prior state estimate. Therefore, the co-
variance uncertainty increase more until the next observation
arrives. As a result, the filter’s innovation term will become
higher during those intervals of packets loss. In case the delay
is more than the allowed time, the system will treat this
situation as equivalent to lost packets. An example plot of
the filter behavior in the presence of lost packets is shown
in Fig. 5.

The delay and the loss depend on various factors, such as the
distance between the ego-things, the communication protocol
in consideration, transmission power, the frequency, environ-
mental factors, etc. In this work, we have considered a Rician
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Fig. 5. Example of model behavior over lost packets. The confidence interval becomes high when the model not receiving real observations from the agents
in the network.

channel for the study of fading between two ego-things. We
have chosen this channel model by considering the distance
between the two vehicles not being too high, and the Line of
Sight (LOS) component exists between the objects. However,
we also investigated the case where No LOS (NLOS) elements
exist.

The probability density function of Rician distribution is

f (x|υ, σ ) = x

σ 2
exp

(−(x2 + υ)2

2σ 2

)
I0

(xυ

σ 2

)
(13)

where I0(xυ/σ 2) is the modified Bessel function of the first
kind and order zero, υ and σ are the signal strength of the
dominant and of the scattered paths, respectively. Rician K
factor is

K = υ2

2σ 2
. (14)

It expresses the ratio between the LOS path power com-
ponent to the remaining multipath components. Therefore,
υ2 and 2σ 2 are the average power of the LOS and NLOS
multipath components. As the direct wave weakens, the Rice
distribution becomes Rayleigh. The K-factor value zero is
equivalent to Rayleigh distribution.

3) Model Performance Evaluation Metrics: The match-
ing and verification operation was performed after estimating
abnormality by the models inside each of the networked
ego-things (refer Fig. 2).

In all circumstances, models inside each ego-thing can
ensure perfect observations from its own sensors. The mod-
els inside each ego-thing can predict their own future
state and abnormality measurements without any problems.
Simultaneously, the ground truth sensory data sent to other
ego-things undergoes the channel effects, such as packet loss
or delay while transmitting through the wireless channel.

Consider an ego-thing e1, the CDBN models inside esti-
mates the abnormality for itself by the ground truth observa-
tions collected by own sensors. This abnormality measurement
we considered as a reference signal. Simultaneously, the same
sensory data from ego-thing e1 has been communicated to a
second ego-thing e2, and the CDBN models inside ego-thing
e2 performs abnormality estimation. This time, the transmit-
ted observations were affected by the loss and delay and,
consequently, the models’ state prediction and abnormality
estimation capability.

To measure the models’ performance degradation, we have
initially estimated the mean squared error (MSE) [45] between
the reference abnormality signal and the estimated abnormality

after the influence of the wireless channel. The MSE values
present the discrepancy between the two abnormality signals
estimates for the same ego-thing. When more packets are lost
in the channel or the delay becomes more than expected, the
MSE values increases. In the future, the estimation of MSE
values can be used to define further the threshold of how much
loss the model can accept to assure a certain level of quality
in performance.

The formula to estimate MSE is as follows:

MSE = 1

n

n∑
i=1

(
ψi − ψ̂i

)2
(15)

where ψi is the reference signal, and ψ̂i is the signal to be
compared. In our case, the reference signal (i.e., ψi) is the
abnormality estimated without delay or loss, and ψ̂i is the
anomaly estimated after the packet loss or delay occurred.
The estimated error value tells the reliability of the model for
determining an abnormality under the channel’s effects.

For an in-depth analysis of the model performance by con-
sidering the impact of the communication channel, we have
considered metrics, such as accuracy and F1 score [46] in
addition to MSE estimation. The accuracy is a measure of all
the correctly identified samples in the anomaly measurements
and is calculated by

ACC = TP + TN

TP + FP + TN + FN
(16)

where TP (true positive) is an outcome when the model cor-
rectly predicts the anomaly and a TN (true negative) is an
outcome where the model correctly predicts the normal situ-
ation. Similarly, FP (false positive) is an outcome where the
model incorrectly predicts the anomaly, and FN (false nega-
tive) is an outcome where the model incorrectly predicts the
normal situation.

On the other hand, the F1 score is the harmonic mean
of precision and recall and gives a better measure of the
incorrectly classified cases than the accuracy. The estimation
formula is

F1 score = 2 ∗ (Precision ∗ Recall)

(Precision + Recall)
(17)

where Precision is give by

Precision = TP

TP + FP
(18)

and Recall can be estimated by the following formula:

Recall = TP

TP + FN
. (19)
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Fig. 6. Environment and the vehicles used for the experiments. (a) Testing
environment. (b) iCab platforms.

The accuracy metric is used when TP and TN are more
important, while the F1 score becomes an important measure
when FP and FN are crucial.

We have used the above evaluation metrics to compare
the model performance under the communication channel’s
influence by considering different protocols and presented the
results and analysis in Section VI.

V. EXPERIMENTAL STUDY

This section explains the case study and the data sets
used to validate the proposed methodology. Two intelli-
gent autonomous vehicles named iCab (Intelligent Campus
Automobile) having the same setup [47] used in this work
and shown in Fig. 6(b). Each vehicle is equipped with sen-
sors, such as one lidar, a stereo camera, laser rangefinder, and
encoders. This work concentrated on the low-dimensional data
of control, i.e., steering angle (s), velocity (v), and power (p),
along with the odometry data (x and y positions) of the vehi-
cles. The collected data is synchronized (intra and Ad-hoc inter
synchronization) to align their timestamps. The two iCab vehi-
cles perform joint navigation tasks in the rectangular trajectory
shown in Fig. 6(a) by keeping their position one after the other
with a minimum distance among them. The vehicle navigates
in the front called header (iCab1) and the one follows is the
assistant (iCab2).

To train and validate the performance of the CA models,
mainly used three low dimensional data combinations, such
as Odometry (X − Y), steering-power (S − P), and steering-
velocity(S − V) from Scenarios I and II described as follows.

1) Scenario I [Perimeter Monitoring (PM)]: The iCab vehi-
cles jointly perform platooning operation in a closed
environment, as shown in Fig. 6(a). The navigation oper-
ation performed four times, one after the other, and
collected the multisensory exteroceptive and proprio-
ceptive data. The assistant vehicle (iCab2) mimics the
actions of the header (iCab1) vehicle. Fig. 7 plots the
odometry (x and y positions) data from both vehicles
for the Scenario I PM task, blue and red circles indicate
the starting positions of iCab vehicles. Moreover, Fig. 8
shows the example control signal plots of iCab1 vehicle,
and the iCab2 control signals are similar as it mimics
the action of the leader vehicle. In Fig. 8(a) and (b), the
drop in values happened when vehicle maneuvering in
the curves of the rectangular trajectory, and during rec-
tilinear motion, the values of steering and velocity are

Fig. 7. Odometry data for PM task (training data).

Fig. 8. Control signal plots of iCab1. (a) Steering. (b) Velocity. (c) Power.

more steady. In Fig. 8(c) shows the fluctuations in power
values during the curved trajectory motion.

2) Scenario II (Emergency Stop): While both iCab vehi-
cles jointly navigate in a rectangular trajectory one after
the other, a random pedestrian suddenly crosses in front
of the header vehicle. As soon as the header detects
the pedestrian’s presence, the vehicle automatically exe-
cutes an emergency brake and waits until the pedestrian
crosses and then continues the navigation operation.
Subsequently, the assistant vehicle (iCab2) detects the
anomaly in the header vehicle and performs an emer-
gency brake operation until the header vehicle starts
its movement again. The Odometry (X − Y) and con-
trol data combinations of Steering-power (S − P) and
Steering-velocity (S − V) from this scenario used to
test the fitness of switching CDBN models learned in
the training phase. There are two sets of data of three
combinations (X−Y , S−P, and S−V) prepared from
Scenario II. Fig. 9 shows the plot of Odometry (X−Y)
data. The first one is the emergency brake operation exe-
cuted once in the complete navigation in the rectangular
trajectory called Emergency stop 1 (ES1), as shown in
Fig. 9(a). The second data set is collected while the
pedestrian appeared twice, and an emergency stop was
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Fig. 9. Odometry data of test scenarios. (a) Emergency stop 1 (ES1).
(b) Emergency stop 2 (ES2).

Fig. 10. Clustering of GEs odometry X − Y (training data). Nodes indicate
the cluster centers of associated data points. (a) GE0 space. (b) GE1 space.

performed twice during the platooning operation per-
formed in the rectangular trajectory. This second set of
data is named ES2 (Emergency stop 2) and is shown in
Fig. 9(b).

In the real iCab experiments, the vehicles are connected
with a base station to exchange data between them, not
directly connected. We need an additional simulator for only
the connection part to check how the model performance is
affected by packet loss and delays happen by the wireless
communication channel’s influence. For this purpose, we have
used a simulated environment to exchange all the sensory
data (Odometry and two combinations of control data along
with their timestamp information) between the ego-things and
measured the model’s performance by considering various
parameters. We have used the opportunistic network environ-
ment (ONE) simulator in this work [48], and the graphical user
interface (GUI) of the simulator is shown in Fig. 17. Simulated
dynamic ego-things scenarios with two different protocols,
such as IEEE 802.11p and IEEE 802.15.4, and compared the
performance.

The IEEE 802.11p protocol is one of the most feasible and
widely considered standards in the intervehicles communica-
tion scenario, especially in autonomous vehicle networks [49].
On the other hand, IEEE 802.15.4 is suitable for low-
cost, low-speed ubiquitous communication between connected
devices [50]. Additionally, a new interface has been created in
the ONE simulator to model the channel between the ego-
things as a Rician channel and set different values for its
parameters, including transmitted power, central frequency,
receiver sensitivity, and Rician K-factor.

The data to be communicated between the ego-things are:
X−Y position, steering angle (S), rotor velocity (V) and rotor
power (P) of the iCab vehicles with their respective time

stamps. In this way, we assume that the amount of data to
be sent is 4 B for the position + 2 B for the steering angle +
2 B for the rotor power + 4 B for the time stamp. By con-
sidering only Physical and MAC layers, the total size of each
data packet for IEEE 802.11p is 48 (28 + 6 + 14) B, and for
IEEE 802.15.4 is 29 (9 + 6 + 14) B.

VI. RESULTS

This section presents the results obtained by the proposed
methodology applied to the real experimental data sets. Mainly
three-level results demonstrated: first two levels treated the
model performance in ideal condition, i.e., without considering
channel effects. The final part includes comparing D-MJPF
performance with different evaluation metrics by considering
two protocols and channel conditions.

A. Phase 1: Discrete Cluster Level Abnormality Detection

The performance of the initial filters [i.e., Filter(s) A in
Fig. 1] assessed with the ego-things various features learned by
co-occurrence probability matrices. All the filters pass through
the processes shown in Fig. 2 during the test phase. Scenario II
data sets (ES1 and ES2) of different modality used in this
part. The detailed analysis of the results is presented only for
the Odometry modality to show the evolution of the emergent
concept of continual learning (refer Section IV-A2). However,
a brief description of the results from other modalities (i.e.,
control S−P and control S−V) provided.

1) Odometry: An initial filter (i.e., unmotivated KF) applied
to the Scenario I PM data of odometry (refer Fig. 7)
and obtained GEs as output. By applying the GNG
algorithm on the GEs (i.e., GE0 and GE1), discrete
cluster space generated as shown in Fig. 10(a) and (b),
respectively. The same colored nodes in plots Fig. 10
represent the mapping of GE0 and GE1 space found
by the co-occurrence matrix. Each type of dynamics
(i.e., horizontal, vertical, and curve motion) and loca-
tion co-ordinates (i.e., lower, upper, right, and left) of
the ego-things PM task trajectory (refer Fig. 7) enable
a different subset of nodes in GE0 and GE1 clus-
ter space. For example, Zone A (horizontal lower) in
GE0 space [refer Fig. 10(a)] maps to Zone A (the
cloud of cyan colored nodes) in GE1 space [refer
Fig. 10(b)]. It is evident from the plots that the odome-
try modality extracts spatial features to detect a spatial
abnormality. A filter A1 collectively learned from the
information acquired by GEs cluster spaces and co-
occurrence matrix of Scenario I PM data of odometry
can predict the future nodes enable in GE0 and GE1
space (refer Section IV-A2) and their correlation. This
filter A1 tested with Scenario II, ES1 data set [refer
Fig. 9(a)] where the ego-thing pass through a different
dynamics (i.e., emergency stop operation). Here, the pre-
dicted discrete nodes (letters) mismatch with the nodes
(letters) enabled by the observed sensory data sequence
everywhere except the interval where the emergency stop
operation performed and is shown in Fig. 11(a). The
projected segment and the nodes in red color indicates
the presence of an abnormality. Whenever the ego-thing
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Fig. 11. Emergent concept of odometry: GE1 space (a) Test data 1 (ES1);
(b) Test data 2 (ES2). The projected segments and the nodes in red colors
indicate the presence of abnormality.

Fig. 12. Clustering of GEs: Control S–P (training data). Nodes indicate the
cluster centers of associated data points. (a) GE0 space. (b) GE1 space.

passes through new experience (i.e., detected abnormal-
ity), it will automatically execute a new filter model
learning from the new experience data set. A filter called
A2 learned from this data can represent similar sce-
narios in the future with embedded knowledge. In the
next step, the filter (A2) tested with another data set of
Scenario II, ES2 [refer Fig. 9(b)] where the pedestrian
appears at two spatial locations of the vehicle maneuver-
ing trajectory. The estimated anomaly is shown as the
projected segment and nodes in red color in Fig. 11(b).
The additionally enabled nodes are only in one spa-
tial location (i.e., on the right-hand side) even though
the emergency stop operation performed twice. It means
that the filter A2 was well able to encode the first emer-
gency stop with the embedded knowledge as it happened
in the same spatial location of the data used to learn
filter A2. But the second emergency stop operation per-
formed in a different location, and A2 was unable to
represent this situation and generated an anomaly. From
this anomaly data, the ego-thing will learn a new filter
(i.e., A3) that can embed this new experience’s knowl-
edge to make inference in the future when the ego-thing
pass through a similar experience. If we analyzed the
plots, Figs. 10(b) and 11(a) and (b) together, the evolu-
tion of emergent concept is self explanatory. Whenever
the system endures new experiences, automatically learn
new filters to represent similar future experiences of ego-
things (by the knowledge encoded in the learned filters).
Consequently, contextual awareness and the collective
decision-making process of the system increases.

2) Control S–P: This modality considers the propriocep-
tive sensory data of the control Steering-Power (S−P)

Fig. 13. Clustering of GEs: Control S–V (training data). Nodes indicate the
cluster centers of associated data points. (a) GE0 space. (b) GE1 space.

combination. The GEs discrete spaces produced from
the PM task (Scenario I) control S–P plotted in Fig. 12.
The clustering of the GE0 shown in Fig. 12(a) and (b)
is the GE1 space (i.e., Ṡ−Ṗ discrete space). The nodes
marked as Zone B in Fig. 12(a) and (b) shows the map-
ping between GE0 and GE1 spaces captured by the
co-occurrence matrix. In GE0 space [refer Fig. 12(a)],
the steering angle values are either zero or near to zero
for the linear movement of the ego-thing, and the values
become more negative during the movement in curves
(the considered data sets only consist the left-hand side
curved movements). Simultaneously, the power values
are almost stable during rectilinear movements, and in
curves, it acquires different values. Similarly, in the GE1
space [refer Fig. 12(b)] Zone B represents the linear
movements, Zone A and Zone C correspond to the nodes
activated during the vehicles’ curved motion. Contrary
to odometry modality, S − P modality is good for dif-
ferentiating the types of ego-things different dynamics.
When the learned filter from GEs of training data set
tested with ES1 and ES2 task of Scenario II, few addi-
tional nodes activated to represent the emergency brake
operation abnormality. Each of the abnormality is con-
sidered as a new feature to learn new filters. Contrary
to odometry, the concept learned with control S–P able
to detect and differentiate the anomaly during either the
ego-things are in linear motion or the curved trajectory.
The spatial location is not significant in this case. This
emergent concept learned from the proprioceptive con-
trol modality enriches the SA of each ego-things in the
network.

3) Control S–V: The plots of discrete space for control S–V
modality are shown in Fig. 13. Zone A in GE0 space
[refer Fig. 13(a)] represents the rectilinear movement
of the ego-thing, and it enables the nodes located in
Zone B of GE1 space, as shown in Fig. 13(b). Similarly,
Zone B in GE0 space activates either Zone A or Zone C
in the GE1 space. During linear movement, the steering
acquired zero or nearby values, but the velocity would be
maximum. During curves, steering values can be more
positive or more negative. In our considered scenarios to
collect data sets, the vehicles perform only curve to the
left side so that steering values are more negative. This
modality helps to understand the different movement
patterns of the ego-things and enrich the SA. The con-
cept learned for S–V modality shown similar results of
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Fig. 14. Abnormality measurements for odometry. (a) iCab1. (b) iCab2.

Fig. 15. Abnormality measurements for control (SP): (a) iCab1. (b) iCab2.

S–P modality except for the difference in the collective
behavior of the data variables considered.

The continual learning of filters from ego-things new expe-
riences are self-explainable in this sense. The peculiar features
will be encoded inside the filter learned from different expe-
riences of ego-things. The filter models learn and update
incrementally whenever the system passes through new expe-
riences, as shown in Fig. 2. In this way, the agents are more
intelligent; they have the functionality of detecting abnormality
and describing it at different abstraction levels.

B. Phase 2: Anomaly Detection by D-MJPF

In this part, we have applied D-MJPF on the CDBN mod-
els [Filter(s) B in Fig. 2] learned from the data sequences by
considering three different modalities. Inside each ego-thing,
three models learned in total from the data of PM task per-
formed by two vehicles. The considered low dimensional data
combinations are X–Y position odometry data, steering-power
(S–P), and steering-velocity (S–V).

To test the models’ efficiency, we have used the ES1 data set
of the aforementioned variable combinations of Scenario II.
The models were able to detect the vehicles’ emergency
brake’s abnormal behavior when a pedestrian appears in front
of the header vehicle. Figs. 14–16 show the abnormality plots

of Odometry X − Y , control S − P, and control S − V , respec-
tively, for iCab1 and iCab2 vehicles. The region inside the
dotted rectangular box represented the interval when vehicles
performed emergency brake operation. The abnormality metric
used was the innovation of the D-MJPF, i.e., the difference
between the predicted states and the ground truth observations
[refer (12)]. As shown in Figs. 14–16, there is a significant rise
in the innovation measurements during the intervals when the
emergency brake operation executes.

The data-driven models can not only provide a global
estimation of anomalies based on the whole set of
multidimensional generalized variables used in the models but
also provide an insight of anomaly related to single specific
components of the model. For example, the model learned
from S–P data sequences was able to estimate the behavior of
only steering (S) or only power (P) of the vehicle efficiently.
It is an additional explainability feature of the model.

C. Evaluation of Model Performance After the Channel
Effects

Inside each vehicle, we have three different CDBN models
(represented as three different colored blocks in Fig. 2), and
the models inside each ego-thing are the same. In Phase I and
Phase II of CDBN model testing, we assumed all the ground
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Fig. 16. Abnormality measurements for control (SV): (a) iCab1. (b) iCab2.

Fig. 17. GUI of ONE simulator.

truth observations are available to all the ego-things without
data packet loss and delay.

The ONE simulator here used to measure the channel effects
over the transmitting data. A network can be affected by
different types of delays, such as a propagation delay, transmis-
sion delay, queuing delay, and processing delay [51]. However,
this work considered the propagation delay, and the packets
arrive with a considerable delay are assumed equivalent to lost
packets.

In ONE simulator, included six routing protocols, such
as direct delivery (DD), first contact (FC), Spray-and-Wait,
PRoPHET, MaxProp, and Epidemic, and set the movement
model as MapBasedMovement [48]. However, we have cho-
sen DD as the number of dynamic objects is limited to two in
this work. The real trajectory data of the PM task (Scenario I)
described in Section V is inserted in the simulator as the
well known text (WKT) file format and created two dynamic
nodes that represent the header (iCab1) and assistant (iCab2)
vehicles. Fig. 17 shows the simulator environment.

The parameters used in ONE simulator are summarized
in Table I. Both of the protocol have some features and, at
the same time, some limitations. For example, IEEE 802.15.4
protocol allows low power transmission, but we need to com-
promise with the low data rate, which leads to more packet
loss. On the contrary, the IEEE 802.11p protocol supports a
high data rate, but the transmission power is comparatively

TABLE I
SIMULATION PARAMETERS FOR ONE SIMULATOR BY CONSIDERING

PROTOCOL IEEE 802.11P AND IEEE 802.15.4

TABLE II
DATA DELIVERY PROBABILITY OVER TWO DIFFERENT PROTOCOLS,

DATA RATES AND K-VALUES

high. The K-factor value of 3 refers to the rural environ-
ment, and the loss becomes less. Whereas the loss increases
when K-value becomes low, such as zero, it represents the
urban environment where NLOS components are available.
The receiver sensitivity column shows the minimum values
of the signal-to-noise ratio (SNR) at the receiver to guarantee
successful data reception [52].

The data delivery probability between the sender vehicle
and receiver vehicle has been estimated and summarized in
Table II. As expected, the probability values are low where
the NLOS component presents, i.e., K = 0 and increased for
the LOS scenario, i.e., K = 3 (rural environment). When more
data packets lose, the CDBN model performance degrades in
the estimation of future sates of the vehicles, and as a result,
abnormality estimation gets affected.

The abnormality estimated in Section VI-B by the D-MJPF
in ideal condition compared with the estimated abnormality in
the presence of channel effects. For the evaluation of models
performance, we have used different metrics, such as MSE,
Accuracy and F1 score (refer Section IV-B3).

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on May 19,2021 at 10:51:00 UTC from IEEE Xplore.  Restrictions apply. 



THEKKE KANAPRAM et al.: DYNAMIC BAYESIAN COLLECTIVE AWARENESS MODELS FOR NETWORK OF EGO-THINGS 3239

TABLE III
IEEE 802.15.4 MODEL PERFORMANCE EVALUATION

TABLE IV
IEEE 802.11P, DATA RATE: 18-MB/S MODEL PERFORMANCE EVALUATION

TABLE V
IEEE 802.11P, DATA RATE: 27-MB/S MODEL PERFORMANCE EVALUATION

We presented here the results for the header vehicle (iCab1)
only. The CDBN models of the header vehicle (iCab1)
estimated anomaly by own multi sensory observed data.
Simultaneously, the same data transmitted to the assistant
vehicle (iCab2) over the wireless channel. The CDBN mod-
els inside the assistant vehicle estimate the header vehicle’s
abnormality along with its own abnormality.

The estimated results (MSE, Accuracy and F1 score) are
summarized in Tables III–V. The model’s performance was
least (highest MSE value) when used the IEEE 802.15.4 pro-
tocol (refer Table III) standard, and the K-factor value is zero.
However, the MSE metric is not taking into account accu-
racy, precision, etc. So that we further estimated the accuracy
and F1 score for better studying and analyzing the model
performance. Accuracy and F1 score were high when used
IEEE 802.11p with a data rate of 18 Mb/s as in Table IV,
and MSE values were least in this case as expected. This is
considered as the best performance under the channels’ influ-
ence. Table V summaries the model’s performance when used
IEEE 802.11p with a 27-Mb/s data rate. The Accuracy and F1
score were better than IEEE 802.15.4 and worse than IEEE
802.11p, 18-Mb/s data rate.

In summary, data rates, transmission power, received sensi-
tivity, environmental conditions, etc., plays a role in the model
performance. We need to carefully set the parameters and
choose the appropriate protocol by studying the application
area and the resources available. In this work, the payload
size was not so big, so that the model performances did not
degrade too much. Once the payload size goes high, it affects
the model performance. In the future, the work will extend
with a larger payload size and also include more parameters.

VII. CONCLUSION

This article presented a method to develop multimodal CA
for networked IoT nodes performing joint tasks. The IoT nodes

in his work are autonomous vehicles, and each of the vehicles
is assumed to be having machine learning capabilities. The
CDBN models learned from exteroceptive and proprioceptive
sensory data have the functionality to extract unique features
of the system related to self and CA and detect abnormalities
happening anywhere in the networked ego-things. The CDBN
models are data driven and capable of detecting abnormalities
at different abstraction levels. The distributed state estimation
is performed by D-MJPF associated with each CDBN model.
The models inside each agent can synchronously estimate the
possible abnormalities around any of the agents in the network.
Moreover, the models can describe abnormality related to
single specific components of the vector used for model
learning; this is an additional explainability feature of the
models.

In the offline training phase, the multisensory data col-
lected when the agents are performing a joint task is used
to learn the CDBN models. In the online test phase, the
model’s fitness tested with the data sets from a new joint
task different than the one used in the training phase. The
presented results at different abstraction levels provide evi-
dence for our method’s efficiency in detecting abnormal
situations in the networked agents. Moreover, we have ana-
lyzed the effects of wireless communication channels on
the model performance by considering different communi-
cation protocols and channel conditions. Then finally com-
pared the obtained results by different performance evaluation
metrics.

Future research could analyze the model performance
when more ego-things are communicating. Moreover, dif-
ferent metrics for the abnormality estimation can be
included in the model and compare the performance. It can
also embed additional functionalities to extract more net-
worked ego-things features by including different cooperative
scenarios.
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