
1

Leaky Nets: Recovering Embedded Neural Network
Models and Inputs through Simple Power and
Timing Side-Channels – Attacks and Defenses

Saurav Maji, Utsav Banerjee, and Anantha P. Chandrakasan
Dept. of EECS, Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract—With the recent advancements in machine learning
theory, many commercial embedded micro-processors use neural
network models for a variety of signal processing applications.
However, their associated side-channel security vulnerabilities
pose a major concern. There have been several proof-of-concept
attacks demonstrating the extraction of their model parameters
and input data. But, many of these attacks involve specific
assumptions, have limited applicability, or pose huge overheads to
the attacker. In this work, we study the side-channel vulnerabili-
ties of embedded neural network implementations by recovering
their parameters using timing-based information leakage and
simple power analysis side-channel attacks. We demonstrate our
attacks on popular micro-controller platforms over networks of
different precisions such as floating point, fixed point, binary
networks. We are able to successfully recover not only the
model parameters but also the inputs for the above networks.
Countermeasures against timing-based attacks are implemented
and their overheads are analyzed.

Index Terms—embedded neural networks, micro-controllers,
side-channel, timing, simple power analysis (SPA), defenses

I. INTRODUCTION

Machine learning (ML), particularly with neural network
(NN)-based approaches, have become the de-facto solution for
diverse applications such as image recognition [1], medical
diagnosis [2] and even game theory [3]. Rapid progress
in ML theory has led to the deployment of these neural
networks on edge devices. Recent years have witnessed a large
number of neural network hardware accelerators designed
on ASIC as well as FPGA platforms [4], highlighting the
popularity of NNs for achieving energy-efficient inference.
Most commercial micro-controllers are equipped with data
acquisition units, peripherals, communication interfaces and
even radio frequency (RF) modules, making them an extremely
attractive choice for implementing system-on-module (SOM)
solutions [5], [6], [7]. Therefore, many NN algorithms have
been implemented on such low-cost micro-controllers [8],
[9], [10] for achieving energy-efficient sensing and decision
making.

Corresponding author: Saurav Maji (email: smaji@mit.edu)
© 2021 IEEE. Personal use of this material is permitted. Permission from

IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

A revised version of this paper was published in the IEEE Internet of Things
Journal (JIoT) - DOI: 10.1109/JIOT.2021.3061314

Embedded neural network implementations, e.g., in health-
care electronics, use locally stored models which have been
trained using private data [11] and are considered as intellec-
tual property (IP) of the organizations training them. [12] had
investigated that machine learning models could leak sensitive
information about the individual data records over which the
model was trained. For many critical applications, like patient-
specific diagnosis, the NN model contains private information
about the patient and should never be compromised because of
privacy concerns. In many of these situations, the NN models
provide a competitive edge to the organization or individuals
involved, and hence must not be disclosed. Recent years have
witnessed new techniques of adversarial attacks on neural
network models. These adversarial attacks can sometimes be
easier to mount if the underlying NN model is known (known
as white-box attacks [13]). All the above discussions strongly
motivate the need to keep the neural network model secret.

Additionally, the inputs to the neural network must also
be protected from being recovered by adversaries and eaves-
droppers. In all medical applications, the inputs to the neural
network are user-specific data that should not be compromised
for obvious privacy concerns [14]. As the raw sensor data
is directly fed to the NN, attacking the first NN layer is a
preferred choice for recovering the input.

Side-channel attacks (SCA) [15] are a major concern in
embedded systems where physical access to the device can
allow attackers to recover secret data by exploiting information
leakage through power consumption, timing, and electro-
magnetic emanations. Common SCA attacks belong to the
following two categories [15]: (a) Simple power analysis (SPA)
which uses the coarse-grained data dependencies in timing,
power consumption or electromagnetic (EM) emanations for
identifying the secret value and (b) Differential power analysis
(DPA) which involves statistical analysis of data collected
from ensemble of operations to extract the secret value through
fine-grained data dependencies in power consumption or EM
emanations. SCA attacks have traditionally been applied for
recovering the secret cryptographic keys from the side-channel
information [15], [16], [17], [18]. However, side-channel at-
tacks on micro-controller-based NN implementations are also
gaining popularity [19], [20], [21], [22], [23]. In this work, we
focus on exploiting the side-channel vulnerabilities of embed-
ded NN implementations to recover their model parameters
and inputs with simple power / timing analysis and providing
optimized countermeasures against timing-based attacks.

ar
X

iv
:2

10
3.

14
73

9v
1

 [
cs

.C
R

]
 2

6
M

ar
 2

02
1

https://dx.doi.org/10.1109/JIOT.2021.3061314

2

II. RELATED WORK

Side-channel analysis for attacking neural network imple-
mentations has started to gain importance in the recent years.
[19] reverse engineered two popular convolutional neural
networks (AlexNet and SqueezeNet) using memory and timing
side-channel leakages from off-chip memory access patterns
due to adaptive zero pruning techniques. [20] recovered the
complete model of the NN operating on floating point numbers
through electromagnetic side-channels using correlation power
analysis (CPA) [24], which is a special case of DPA, over the
multiplication operations. There have also been few attacks tar-
geting the recovery of network inputs. The inputs of an FPGA-
based NN accelerator for MNIST dataset were recovered in
[21] from the power traces using background model recovery
and template matching techniques. [22] used horizontal power
analysis (HPA) [25] to predict the input using side-channel
leakage from electromagnetic emanations, by correlating the
waveform of each multiplication operation with Hamming
weight model of the product. [23] used timing side-channel
from floating point operations to predict the inputs.

Previous work in this field primarily uses correlation-based
attacks [20], [22] or power template attacks [21] on floating
point computations, which involve significant memory and
computation overheads in terms of storage and processing
of a large number of measured waveforms. [19] assumes
knowledge of the memory access patterns, which may not be
always applicable. Furthermore, the accuracy of recovery for
correlation-based methods is largely dependent on the signal-
to-noise ratio (SNR) of the power waveforms [21] or on the
number of neurons and size of the model parameters [20],
[22], which limits the applicability of these methods only to
implementations with high SNR or larger models. For input
recovery, [21] assumes complete knowledge of the model
parameters in the first layer, which is not always possible. The
attacks for [21], [22], [23] have been demonstrated only on
the MNIST dataset with hand-written digits [26]. Furthermore,
the defenses for these attacks have not been implemented and
neither have their overheads been analyzed.

III. OUR CONTRIBUTIONS

The key contributions of our work are as follows:
1) Our demonstrated attacks involve inexpensive timing-

based side-channel and simple power analysis (SPA)
techniques. The timing / SPA attacks operate in real-
time and are much easier to demonstrate.

2) Our proposed techniques of NN model / input recov-
ery are minimally constrained in terms of SNR of
measured waveforms and model complexity.

3) Our techniques have been applied to neural networks
with different precisions (e.g. floating point, fixed
point, binary NNs) and diverse inputs (MNIST[26],
CIFAR-10 [27] and ImageNet [28]).

4) Our attacks have been demonstrated over multiple em-
bedded micro-processor platforms such as ATmega-
328P, ARM Cortex-M0+ and RISC-V.

5) Software countermeasures against timing-based at-
tacks have been proposed and their implementation
overheads were also analyzed.

Fig. 1: (left) Organization of a convolutional neural network,
and (right) Internal composition of an individual neuron.

IV. THREAT MODEL

A. Attack Scenario

We will be working with convolutional neural networks
(CNNs) because of their wide applicability to popular appli-
cations [1], [2], [4]. A CNN comprises a number of neurons
arranged in layers. The neuron of a given layer receives
some input values, does some computations and propagates
its output to its successive layer. The neuron multiplies the
input ip with corresponding weights wt, accumulates them
along with the bias b and generates the pre-activation pa. Thus,
every neuron essentially performs an ensemble of multiply-
accumulate (MAC) operations (pa =

∑
ip× wt+b) and then

passes pa through a non-linear activation function to generate
its output out (Fig. 1). We will use the commonly used non-
linear activation function ReLU (Rectified Linear Unit) which
produces out = pa for pa ≥ 0 and out = 0 for pa < 0.
For common applications, the final layer outputs the class
corresponding to the maximum pa as the classified output
category. Hence, we will use this comparison operation as the
non-linear activation function for the final layer.

The scope of this paper is only related to timing-based
and SPA-based side-channel techniques. In this paper, we
demonstrate that our proposed attacks are easier to perform
and the data extraction process is much simpler compared
to CPA, DPA and other statistical attacks that require larger
amounts of data. However, please note that the statistical
attacks are practical (as have been demonstrated in [20], [22])
because of the high SNR of micro-controller platforms, and
must also be considered for overall side-channel security. We
will briefly discuss these attacks in Section X, where we
show that countermeasures against timing attacks may still
be susceptible to higher-order statistical attacks.

B. Attacker’s Capabilities

We consider a passive attacker, whose functionality is very
similar to that of an eavesdropper. The following assumptions
are considered for the attacker:
• The attacker is capable of measuring timing and power

side-channel information leaked from the implementation
of the NN without interrupting the normal execution.

• The attacker is capable of recovering the exact sequence
of execution of the operations (e.g. multiply, add, non-
linear activation, etc). [20] has shown that these individual
operations have distinct EM signatures to identify them.
However in this paper, we use the power waveforms to
identify the operations being executed (Section V).

3

(a) (b)

Fig. 2: Attack scenario for embedded neural network (a) model
parameter recovery and (b) input data recovery.

• Model recovery: The attacker is assumed to have full
control over the inputs of the neural network, i.e. the
attacker can feed crafted inputs to the network and
observe associated power / EM waveforms. However,
the adversary cannot change the format / precision of
the input. For common image recognition applications,
the input is an 8-bit unsigned integer. Thus, the neural
network accepts inputs only in this format.

• Input recovery: The attacker receives side-channel in-
formation from execution of the NN. However, no infor-
mation is assumed to leak from other sources.

We elucidate the threat model using the example of a fitness
tracker (Fig. 2) which contains a NN model for classifying
ECG signals. The fitness tracker can be separately character-
ized by providing controlled inputs and observing the side-
channel leakages (timing, power and EM side-channels). For
recovering the user input, the fitness tracker operates in its
normal mode (collecting user’s ECG data and classifying it).
The timing / power / EM information are collected during this
mode using low-power trojans or EM probes and processed to
recover the private user data. Fig. 2 assumes both power / EM
side-channels for a generic use-case. However, we will restrict
our study to only the use of power waveform.

V. EXPERIMENTAL SETUP

Our attack methodology and proposed countermeasures are
experimentally demonstrated on the widely used ATmega328P,
ARM Cortex-M0+ and RISC-V micro-processors. The current
consumption is measured by placing a small series resistance
(Rs = 10Ω) between the power supply and the supply pin
of the chip. The voltage difference across Rs is amplified
using an AD8001 current feedback amplifier and the waveform
is captured using a high-speed Tektronix MDO3024 Mixed
Domain Oscilloscope at a sampling rate of 250 MSamples/s
(Fig. 3).

We demonstrated our attacks on three popular IoT plat-
forms. Atmel ATmega328P [29] and ARM Cortex-M0+ [30]
micro-processors are very popular commercial platforms for
embedded applications and provide high signal-to-noise ratio
(SNR) side-channel measurements. RISC-V micro-processors
[31] are gaining popularity for low-power signal processing
at IoT edge nodes, so we also evaluate our techniques on a
custom-designed RISC-V chip [32], [33].

Fig. 3: Measurement setup for ATmega328P micro-controller,
showing the target board with current-sensing differential
amplifier and oscilloscope for capturing power waveforms.

.

The common step for every attack is the identification of the
relevant NN operations (e.g. multiplication, addition, ReLU)
from the power waveform. The power waveform consists of
distinct power peaks corresponding to these computations. Fig.
4 shows an example of the characteristic power waveform
with multiplication, addition, and ReLU operation. A trigger
signal is used to automate the data capture process through
the oscilloscope. Simple signal processing techniques such
as windowing, correlation, and template matching algorithms
based on prior characterization can be additionally used to
refine this process. [20] and [19] have described attacks that
use coarse-grained parameters to extract the macro-features of
the NN model (e.g. number of layers, number of neurons).
In this work, we assume that these parameters are extracted
using similar methods. We will instead focus on recovering
the micro-parameters (e.g., weights, bias, etc).

Commercial micro-controller platforms contain peripheral
units like interrupt controllers, serial communication interfaces
and data converters which may significantly affect the power
consumption. However, we have rigorously ensured through-
out this work that none of the peripherals are active during the
execution of the NN so as not to affect the identification of
the NN operations from power and timing measurements. For
better refining the data acquisition process, the measurements
of the NN operations are synchronized using appropriate trig-
ger signals to indicate beginning and end of the computation.
This assumption models the real-life scenario quite well. In
a real use-case, the micro-controller will acquire the data
and then execute the NN for appropriate decision making.
Therefore, with high probability, all peripheral activities will
be observed only before and after the NN operation. In order
to further refine the identification process, a combination of
both power and EM-based signal acquisition techniques along
with improved signal processing techniques can also be used.

4

Fig. 4: Identification of various operations from the observed
power waveform.

In Sections VI and VII, we first demonstrate all our
proposed attacks on the ATmega328P micro-controller [29]
available on the Arduino Uno board [34]. Then, we extend
them to Cortex-M0+ and RISC-V in Section VIII.

VI. MODEL RECOVERY

We will now discuss our proposed methods to extract
the model parameters for neural networks with following
precisions: floating point (Section VI-A), fixed point (Section
VI-B), binary NNs (Section VI-C).

A. Floating point neural networks

Floating point NNs operate on real numbers, which are
represented according to the IEEE-754 format [35]. This 32-
bit number x = (x31...x0) 2 is comprised of: 1 sign bit x31, 8
biased exponent bits x30...x23 and 23 mantissa bits x22...x0.
The number x is computed as follows, as shown in eq. 1.

x = (−1)x31 × 2(x30...x23)2-127 × (1.x22..x0)2 (1)

Specifications: We will demonstrate our attack on the
example neuron of TABLE I (with the corresponding weights
and bias displayed in its 1st column). We will assume that the
inputs ip′s are constrained to be unsigned 8-bit integers. This
is very similar to that of an actual NN where the 1st-layer
neurons accepts the actual data (integer inputs). This is also
the worst case scenario in terms of maximally constrained
inputs (constrained to be integers). However, our discussed
methodology can be applied for any choice of inputs.

TABLE I: EXAMPLE NEURON FOR FLOATING POINT-BASED
MODEL RECOVERY (WITH THE DISPLAYED WEIGHTS AND BIAS)

PARAMETERS MANTISSA ZERO PARAMETERS
(ACTUAL) (RECOVERED) CROSS. IP. (RECOVERED)

wt0 = 1.0390× 2-2 1.0391 ip
(1)
0 = 196 1.0391× 20

wt1 = −1.6702× 2-3 1.6641 ip
(2)
1 = 74 −1.6641×2-1

wt2 = −1.0855× 2-6 1.0859 ip
(3)
2 = 213 −1.0859×2-4

wt3 = 1.1803× 2-2 1.1797 ip
(1)
3 = 173 1.1797× 20

wt4 = 1.1255× 2-7 1.1250 ip
(3)
4 = 188 1.1250× 2-5

b = −1.5906× 25 −196× 1.0391× 20 = −1.5911× 27

Note: The cells corresponding to zero-crossover inputs ip
(1)
k , ip(2)k and

ip
(3)
k along with its associated recovered weights are marked in white,

light gray and dark gray colors respectively.

Methodology: Steps I-IV describe the detailed methods for
extracting the parameters of the 1st layer, while step V shows
how to extend it to successive layers.

Step I. Extraction of mantissas of weights (1.mwt):
The timing side channel information from floating point-
based multiplication operation is used to recover the weight
mantissa 1.mwt. Let T (ip × wt) denote the time (in cycles)
taken to perform the multiplication of weight wt and input
activation ip. From our characterization of the floating point
multiplications on the ATmega328P platform, we found that
the timing of the multiplication operation T (ip × wt) is
dependent on the mantissa of the operands (1.mip and 1.mwt)
and is independent of the exponents involved. Hence, we can
denote this mathematically as T (ip×wt) ≡ T (1.mip×1.mwt).

For a given weight mantissa 1.mwt, we obtain a map-
ping between all possible input activation mantissas 1.mip
(i.e., 1.mip ∈ [1, 2)) and the timing of the corresponding mul-
tiplication operation T (1.mip × 1.mwt). This mapping is de-
noted as 1.mip

1.mwt−−−−−−−→
1.mip∈[1,2)

T (1.mip×1.mwt). Fig. 5 shows the

T (1.mip×1.mwt) with the horizontal axis displaying 1.mip and
the vertical axis displaying 1.mwt. Each column represents the
mapping 1.mip

1.mwt−−−−−−−→
1.mip∈[1,2)

T (1.mip × 1.mwt) corresponding

to its weight mantissa 1.mwt. Instead of exhaustive range of
1.mip ∈ [1, 2), we only consider the following input mantissas
of eq. 2 for constructing this look-up table (LUT).

1.mip = 1
ip′

128
, ip′ ∈ {0, 1, ..., 127} (2)

As discussed earlier, the mantissa contains 23 bits. However,
as shown in [20], it becomes sufficient to extract only the
7 most significant bits of the mantissa. The error introduced
because of this truncation is less than 1%. Also, floating point
numbers with 7 mantissa bits (instead of 23 mantissa bits), and
usual 7 exponent bits and 1 sign bit, (known as bfloat16
[36]) are becoming popular. Thus, only the following weight
mantissas are considered in the LUT of Fig. 5:

1.mwt = 1
wt′

128
, wt′ ∈ {0, 1, ..., 127} (3)

From our characterization of the floating point-based mul-
tiplication operations on the Arduino ATmega328P platform,
we find that 1.mip

1.mwt−−−−−−−→
1.mip∈[1,2)

T (1.mip × 1.mwt) is unique

for every 1.mwt. In other words, no two columns of Fig. 5 are
same. An unknown weight mantissa 1.mwt0 is obtained by cor-

relating its 1.mip
1.mwt0−−−−−−−→

1.mip∈[1,2)
T (1.mip×1.mwt0) mapping with

all the columns of Fig. 5 and selecting 1.mwt corresponding
to the highest correlated column. The actual and the extracted
mantissas for the example neuron are shown in TABLE I, and
they match very closely.

Step II. 1st round of weight and bias extraction: For
the following steps, we utilize the timing side-channel of the
ReLU operation. As shown in Fig. 6, the timing of the ReLU
operation is dependent on the inputs. For +ve inputs, the
execution of the ReLU operation takes fewer cycles, whereas
for −ve inputs, it uses more cycles.

5

Fig. 5: Timing of T (1.mip × 1.mwt) for different weight
mantissas 1.mwt (eq. 3) and input mantissas 1.mip (eq. 2)

Fig. 6: Timing side-channel for floating point ReLU.

For determining the exponents, we utilize the concept of
zero-crossover input (very similar to the concept described
in [19]). We define the zero-crossover input ip(1)

k as the valid
input of ipk for which the following equation (ipk × wtk + b)

crosses 0. This means that
((

ip
(1)
k − 1

)
× wtk + b

)
and(

ip
(1)
k × wtk + b

)
are of opposite signs. To obtain the value of

the zero-crossover input ip(1)
k , all the other inputs except ipk of

the neuron are set to 0. This forces the pre-activation function
to be pa = (ipk × wtk + b). Now, ipk is incremented succes-
sively from 0 to 255 and the timing of the ReLU operation
is observed. The distinct timings of the ReLU operation for
+/− inputs can be used to detect when pa changes its sign.
The value of the input for which this transition occurs is the
zero-crossover input ip(1)

k . We determine the value of this zero-
crossover input corresponding to every input / weight pair.
However, not all input / weight pair will have a zero-crossover
input. The zero-crossover input ip(1)

k is obtained only when b
and wtk are of opposite signs and |wtk×255| > |b|. As shown
in eq. 4, at zero-crossover input ip(1)

k ,
(
ip

(1)
k × wtk + b

)
≈ 0,

and hence wtk can be expressed in terms of b and ip
(1)
k .(

ip
(1)
k × wtk + b

)
≈ 0⇒ ip

(1)
k ≈

−b
wtk

(4)

TABLE I shows the obtained ip
(1)
k for our example neuron.

For many weights (e.g., wt1, wt2, and wt4), ip(1)
k could not be

obtained because either b and wtk are of same sign or because
|wtk×255| < |b|. For these weights wtk, the sign of the ReLU
function remains unchanged for ipk ∈ {0, ..., 255}

We will now exploit the obtained values of the zero-
crossover inputs ip

(1)
k to determine the value of the corre-

sponding weights wtk. We can determine the exponents of the
weights correct only up to a constant factor. Let us select any
weight wtref with a valid ip

(1)
ref value as the reference weight

(e.g. for our neuron, we choose wt0 as the reference weight)
and let us denote its exponent to be eref, that is unknown. We
would now determine the exponents of all the other weights
relative to eref. Thus, all the weights would be computed
correct to the unknown factor 2eref . The exponent ek of the
weight wtk is obtained with respect to eref using eq. 5.

ek − eref =

⌈
log2

(
1.mref

1.mk
×

ip
(1)
ref

ip
(1)
k

)⌋
(5)

The dxc operation of eq. 5 rounds x to its nearest integer.
Please refer to Appendix A for the derivation of the equations.
The values of ek−eref obtained using eq. 5 is shown in TABLE
I. As shown in TABLE I, the estimated exponents are correct to
a constant difference of −2. This factor of eref = −2 remains
unknown to the attacker. We will show in Step V that the
unknown scaling factor does not affect the correctness of the
computation.

The value of sgn(b) is obtained by setting all the inputs
ipk = 0 (thus, ensuring that pa = b) and then observing the
timing of the ReLU operation. The value of sgn(wtk) for all
those indexes (k) having valid ip

(1)
k values is opposite to that

of sign(b). For our example neuron, sgn(b)= −1 and hence,
sgn(wtk)=1 for all indexes (k) having valid ip

(1)
k values.

The bias b is obtained from eq. 4 (by using 1.mref instead
of generic weight 1.mk) as shown in eq. 6. This bias b is
calculated in TABLE I.

b ≈ −wtref × ip
(1)
ref = (−1)sgn(b) × 1.mref × 2eref × ip

(1)
ref (6)

Step III. 2nd round of weight extraction: In order to
determine some of the remaining weights, we will use a variant
of the zero-crossover input ip(2)

k as the valid input of ipk for
which (ipk × wtk + 255× wtref + b) crosses 0. The choice of
wtref remains the same as that of Step II. In order to determine
ip

(2)
k , we initialize ipref to 255 and all the other inputs except

ipk to 0. We now increment ipk from 0 to 255 and observe
the change in sign of the ReLU function to detect ip(2)

k .
Extending the discussions from Step II, we find that ip

(2)
k

is obtained only when sgn(b)=sgn(wtk) and |wtk × 255| >
|(b + 255× wtref)|. Following the analysis in Appendix A, we
can obtain the unknown exponent ek- eref using eq. 7.

ek − eref =

log2

1.mref

1.mk
×

(
255− ip

(1)
ref

)
ip

(2)
k

 (7)

Continuing with wtref = wt0, TABLE I shows the obtained
ip

(2)
k terms (marked in light-gray color) and the recovered

weights for our example neuron.

6

Step IV. 3rd round of weight extraction: In the previous
steps, we were able to recover all the weights, for which
wtk lies outside the range [− b

255 − wtref,− b
255]. In order to

determine the remaining weights wtk, we define a variant of
the zero-crossover input ip

(3)
k as the valid input of ipref for

which the following equation (ipref × wtref + 255× wtk + b)
crosses 0. It should be noted here that index ip

(3)
k corresponds

to the input ipref instead of ipk, i.e. for ip
(3)
k , we have the

equation
(
ip

(3)
k × wtref + 255× wtk + b

)
changing sign. The

choice of wtref remains the same as that of Step II. Following
the analysis in Appendix A, we can obtain the unknown sign
and exponent ek − eref informations using eq. 8 and eq. 9
respectively.

sgn(wtk) = sgn

(
ip

(3)
k

ip
(1)
ref

− 1

)
× sgn(b) (8)

ek − eref =

log2

1.mref

1.mk
×

∣∣∣ip(3)
k − ip

(1)
ref

∣∣∣
255

 (9)

TABLE I shows the recovered weights relative to 2eref obtained
using eq. 8 and eq. 9. For wtk ∈ (− b

255 − wtref,− b
255), it is

guaranteed that ip
(3)
k ∈ {1, 2, ..., 255}. Thus, all the weights

can be determined after this step.
Step V. Model recovery from successive layers: Having

determined the weights and biases of the first layer, we now
successively determine weights and biases of the next layers.
For detecting weight mantissas of the successive layers, we
construct suitable lookup tables as per the output of the
previous layer. The scaling factors for each layer will get
accumulated as we reverse engineer each layer. For a feed-
forward neural network, these scaling factors also do not affect
the output of the comparison operation to determine the most-
probable class. Hence, we can safely ignore the scaling factors
while retaining the exact functionality of the original NN.

The above analysis assumes ReLU operation as the non-
linear activation function. This is the worst-case situation
in terms of extraction of the weights. Use of other non-
linear activation functions like sigmoid, tanh, softmax or
argmax (comparison for finding the maximum class) leaks
more information from its timing side channel (as shown in
Fig. 7) and hence, can be used to easily recover the unknown
scaling factors.

(a) sigmoid(x) = 1
1+e-x (b) tanh(x) = ex−e-x

ex+e-x

Fig. 7: Timing side-channel for (a) sigmoid and (b) tanh
floating point non-linear activation functions.

B. Fixed point neural networks

Fixed point NNs are extremely popular from the perspec-
tive of hardware implementations because their corresponding
operations can be mapped very effectively to the processor’s
arithmetic hardware [4].

Assumptions: For our example neuron of TABLE II, the
inputs ip’s are 8-bit unsigned integers, whereas the weights
(wt’s) / bias (b’s) are quantized to 4-bit / 8-bit signed integers.
The pre-activations pa are rectified using the ReLU operation,
quantized to 8-bit unsigned integer and then used as the input
to the neuron for the next layer. The bit-precision of the
inputs, weights and biases have been chosen here for ease
of demonstration.

Methodology: The steps for recovering fixed point model
parameters are described below:

Step I. Construction of the lookup table: The fixed point
ReLU, similar to floating point ReLU, suffers from timing
side-channel leakage depending on the sign of the operands
and hence, can be used to determine the sign of pa (Fig. 8).

We construct a lookup table (LUT) of the zero-crossover
inputs Ib,wt =

⌈−b
wt

⌉
for every possible weight (wt)-bias (b)

pair. Fig. 9 displays this LUT of Ib,wt as a color map, with
the x-axis / y-axis displaying the bias / weights respectively.
Ib,wt can be determined only when sgn(wt) 6= sgn(b). Without
loss of generality, we only consider wt > 0 and b < 0.
Accordingly, the x-axis comprises of |b| ∈ {1, 2, ..128} and
the y-axis comprises of |wt| ∈ {1, 2, ..., 8}. It should be noted
that this LUT is constructed independent of the targeted neuron
and needs to be constructed only once.

Fig. 8: Timing side-channel for fixed point ReLU computation.

Fig. 9: LUT of Ib,wt =
⌈−b
wt

⌉
for fixed point model recovery.

7

TABLE II: EXAMPLE NEURON FOR FIXED POINT-BASED MODEL
RECOVERY (WITH THE DISPLAYED WEIGHTS AND BIAS)

PARAMETERS
ZERO-

PARAMETERS
ZERO-

CROSSOVER CROSSOVER
INFORMATION INFORMATION

wt0 = −1 ip
(1)
0 = 108 wt5 = 2 ip

(2)
5 = 46

wt1 = −3 ip
(1)
1 = 36 wt6 = −6 ip

(1)
6 = 18

wt2 = 4 ip
(2)
2 = 23 wt7 = 5 ip

(2)
7 = 19

wt3 = −7 ip
(1)
3 = 16 wt8 = 0 −

wt4 = −8 ip
(1)
4 = 14 b = 108

Note: The cells corresponding to zero-crossover inputs ip
(1)
k and ip

(2)
k are

marked in white and light gray colors respectively.

Step II. Recovery of the bias: We determine the zero-
crossover input ip

(1)
k (defined as the valid value of ipk for

which ipk × wtk + b crosses 0), for all the possible wtk − b
pairs of the neuron. Similar to Section VI-A, ip(1)

k is obtained
by setting all the inputs except ipk to 0 and incrementing ipk
until the ReLU operation changes its sign (observed from its
timing side channel). TABLE II displays the obtained ip

(1)
k

values.
From the ensemble collection of ip(1)

k , we determine the bias
|b| by locating the column of the LUT in Fig. 9 which uniquely
contains all the obtained ip

(1)
k values. TABLE II shows the

obtained ip
(1)
k zero-crossover inputs for our example neuron.

|b| = 108 of LUT of Fig. 9 uniquely contains all of the
obtained ip

(1)
k values. By observing the timing of the ReLU

operations after setting all the inputs to 0, we found that the
bias is positive and hence, b = 108.

Step III. 1st round of weight recovery: After determining
b, we back-calculate weight wtk from ip

(1)
k by looking at the

column of the LUT corresponding to b and finding the weight
corresponding to Ib,wt = ip

(1)
k . The sign of wtk is opposite to

that of the sign of bias b. In this step, we were able to recover
the weights wtk for which sgn(wtk) 6= sgn(b).

Step IV. 2nd round of weight recovery: To recover the
remaining weights wtk with sgn(wtk) = sgn(b), we select a
known weight wtref and fix its corresponding input ipref such
that (ipref × wtref + b) is also 8-bit signed integer but with
opposite sign of b. Similar to Step III in Section VI-B, we
now obtain the zero-crossover input ip(2)

k as the valid value of
ipk for which (ipk × wtk + ipref × wtref + b) crosses 0.

For our example, we choose wtref = wt0 = −1 and
ipref = 200 and then obtained all possible values of ip

(2)
k

in light-gray color in TABLE II. From the LUT, we were
able to determine wtk from the LUT column corresponding
to |108 + 200× (−1)| = |92|. For our example neuron, we
were able to correctly recover the remaining weights wtk for
which sgn(wtk) = sgn(b). The above steps can then be applied
sequentially to determine the parameters of the successive
layers in layer-wise fashion.

It is important to note that for many cases, the weights
/ bias cannot be uniquely determined. In such situations,
the attacker need to suitably determine different vari-
ants of zero-crossover inputs under different conditions(

e.g.
⌈
−(b+ipm×wtm)

wtk

⌉
or
⌈

−b
wtk+wtm

⌉)
.

It is important to reiterate that the LUT construction is a
one-time process (independent of the NN model to be used)
and the same LUT can be used to recover NN parameters as
many times as required, thus making our methods extremely
practical. The LUT for floating point NN (shown in Fig. 5)
is specific to the underlying micro-controller platform (its
variants for ARM Cortex-M0+ and RISC-V RV32IM are
shown in Fig. 15:I(a) and II(a) respectively), whereas the LUT
for fixed point NN (shown in Fig. 9) is platform-independent.

C. Binary neural networks
For binary neural networks (BNNs), the weights wt are

constrained to ±1. However, the bias b is a signed integer.
Binarized neural networks [37] are a special class of BNNs
where even the activations are also quantized to ±1 (except
the inputs to the first layer). BNNs are popular for energy-
constrained devices because of reduced memory requirements
and elimination of the multiplication operation [38]. In this
section, we will discuss the extraction of the model parameters
of binary neural networks. The case of binarized neural
network can be dealt with appropriate modifications.

ip0wt0 wt1 × + b ReLU out1 −1 ip1
−33 −→

Fig. 10: Example BNN-based neuron for demonstrating the
model recovery attacks.

We will now demonstrate our methodology of the model
recovery using the example neuron of Fig. 10:

Step I. Extraction of weights (wt): The multiplication
operation comprises of either directly passing ip or conditional
negating it (depending on whether wt is +/− 1 respectively)
and then adding it to pa. This conditional negation of ip (for
wt = −1) leads to more number of cycles and thus, produces a
timing side-channel. A major advantage is that all the weights
wt’s can be extracted in parallel using this information.

Step II. Extraction of bias (b): After extracting, the
weights wt’s, we initialize the inputs such that pa is mini-
mized. For our example neuron of Fig. 10, ip0 is set to 0
and ip1 is set to 255. We then increment pa by the smallest
quanta by appropriately setting the inputs, till pa changes its
sign. This change in sign is observed by change in the timing
of the ReLU operation (same as that of the fixed point ReLU
operation in Fig. 8). For our example neuron, we perform this
operation by decreasing ip1 to 0 while keeping ip0 = 0 and
then increasing ip0 gradually. For our example neuron, we
find that pa changes its sign when ip0 is 33 and ip1 is 0. Thus
b = − (wt0 × 33 + wt1 × 0) = −33.

Step III. Extension to successive layers: We proceed
successively layer-wise to recover the weights (wt’s) and
biases (b’s) using Steps I and II respectively.

We validated our attack methodology on a real 2-layer
perceptron neural network for MNIST digit recognition, with
different bit precisions adapted for floating point, fixed point
and binary networks. For floating point, all the weights and
bias were recovered with < 1% error. Exact model recovery
was achieved for both fixed point and binary networks.

8

VII. INPUT RECOVERY

We will now discuss the recovery of inputs for float-
ing point (Section VII-A) and normalization-based (Section
VII-B) NNs. Extraction of sparse inputs (e.g. MNIST [26]) for
zero-skipping-based NNs is also discussed in Section VII-C.
We will demonstrate our methodology for common image
recognition applications which use 8-bit unsigned integers. It
is important to reiterate that for input recovery, the attacker is
assumed to have pre-characterized the hardware platform.

A. Input recovery for floating point neural networks

Any 8-bit unsigned integer input ip can be represented as
an equivalent floating point number with its mantissa and
exponent as shown below in eq. 10.

ip = 1.mip × 2eip , 1.mip ∈
{

1, ..., 1
127

128

}
, eip ∈ {0, ..., 7}

(10)
Step I. Extraction of mantissa (1.mip): The timing side-

channel of floating point multiplication was used to recover the
mantissa of the weights in Section VI-A. We adopt the same
approach for extracting the input mantissa by constructing
a LUT of 1.mwt

1.mip−−−→ T (1.mip × 1.mwt) mapping for all
the possible input activation mantissas 1.mip and all unique
1.mwt’s in the 1st layer (that directly accepts the inputs). For an

unknown input ip0, we obtain its corresponding 1.mwt
1.mip0−−−−→

T (1.mip0 × 1.mwt) mapping and then match it with the pre-
characterized LUT to determine 1.mip0 .

The requirement of no prior knowledge about wt / 1.mwt is
one of the major advantage of this method. The weights can
be known or can be extracted using the method discussed in
Section VI-A. The accuracy of mantissa extraction depends on
the number of unique weight mantissas involved. All current
NNs use more than sufficient number of unique mantissas in
the first layer to recover all 1.mip values exactly.

Step II. Extraction of exponent (eip): For floating point
multiplication operation, where one operand ip is an integer
(e.g., obtained from sensor), ip is first converted to floating
point number and then multiplied using the conventional
floating point multiplication. For the ATmega328P platform,
the timing of the integer-to-float conversion can be used to
recover the exponent of the input ip, as shown in Fig. 11.
Please refer to the detailed analysis of the integer-to-float
conversion process in Appendix B.

Fig. 11: Timing side-channel of the integer-to-float conversion
is used to recover the equivalent exponent eip.

B. Input recovery using normalization operation

We propose a SPA-based input recovery method that is
strictly applicable when the inputs are normalized using
division operation (sometimes used during pre-processing of
data). In our demonstration, the input ip is normalized to
[0,1] using ip

255 and the output op is stored as a 16-bit fixed
point representation (op0 ·op-1...op-15). This division operation
involves a series of conditional subtractions depending on the
exact bit sequence of the output. Only when the quotient bit
is 1, the divisor is subtracted from the dividend (as commonly
done in conventional division operation). As shown in Fig. 12,
bits corresponding to 1 in op give rise to a double peak in the
power trace and consume more timing, which can be used to
recover ip.

Fig. 12: Input recovery for fixed point normalization operation
using SPA attack over the power waveform.

Fig. 13 shows the inputs recovered using the proposed
techniques for ImageNet (“red car” and “dog”), CIFAR10
(“horse” and “ship”) and MNIST (“digit 0”) dataset. Exact
input recovery was achieved in all cases for both (b) and (c).

(a) (b) (c)

Fig. 13: (a) Actual inputs and recovered inputs using (b)
floating point NN-based input recovery (Section VII-A) (c)
normalization-based input recovery (Section VII-B).

C. Sparse input recovery for zero-skipping neural networks

For high energy-efficiency, zero-skipping-based neural net-
works do not execute any multiplication when either of the
operands is 0 [39]. For ip = 0, the corresponding weights are
not fetched from the memory for multiplication. This timing
helps to recover specialized sparse inputs like MNIST reason-
ably well by separating zero v/s non-zero inputs (Fig. 14).
However, this method cannot be applied to general images.

(a) Original MNIST inputs (b) Recovered MNIST inputs

Fig. 14: MNIST input recovery for zero-skipping-based NN.

9

Fig. 15: Side-channel leakages from (I) ARM Cortex-M0+ and (II) RISC-V RV32IM micro-processors: (a) floating point
multiplication timing (input and weight parameters same as Fig. 5); Timing side-channel of (b) floating point ReLU, (c) fixed
point ReLU, (d) integer-to-float conversion and (e) fixed point normalization operation.

.

TABLE III: SPECIFICATIONS OF EMBEDDED MICRO-PROCESSORS USED FOR OUR EXPERIMENTAL DEMONSTRATION

Processor Architecture Addition Multiplication Division Floating point

Atmel ATmega328P [29], [34] 8-bit
Hardware Hardware

Software Software
(8-bit + 8-bit) (8-bit × 8-bit)

ARM Cortex-M0+ [30], [40] 32-bit
Hardware Hardware

Software Software
(32-bit + 32-bit) (32-bit × 32-bit)

RISC-V RV32IM [32], [33] 32-bit
Hardware Hardware Hardware

Software
(32-bit + 32-bit) (32-bit × 32-bit) (32-bit / 32-bit)

10

VIII. EXTENSION TO OTHER PLATFORMS

Next, we discuss the extensions of our previously discussed
attack techniques to the following embedded platforms:

ARM Cortex-M0+: We demonstrate the attacks on the AT-
SAMD21G18 ARM Cortex-M0+ micro-controller [30] avail-
able in the Adafruit Metro M0 Express board [40]. It has a 32-
bit architecture with a single-cycle 32-bit × 32-bit hardware
multiplier. It does not have a hardware floating point unit
(FPU) and supports only software implementations of floating
point arithmetic.

RISC-V RV32IM: We also demonstrate our attacks on a
custom RISC-V micro-processor chip supporting the RV32IM
instruction set [32], [33]. This processor has no hardware FPU
and performs floating point operations in software. However,
apart from the 1-cycle hardware multiplier, it also has a 32-
cycle constant-time hardware divider, as the RV32IM instruc-
tion set includes both multiplication and division instructions.

Figs. 15 (I) and (II) display the relevant timing side-channel
leakages from ARM Cortex-M0+ and RISC-V processors
respectively. Table III also presents the specifications of the
three micro-processors used for our experimental evaluations.
The major observations are summarized below:

• The floating point multiplication operation timings for
both Cortex-M0+ and RISC-V (Fig. 15:I-II(a)) show first-
order trends and hence, allows an attacker to retrieve the
mantissa information of the weights, as was analyzed in
Section VI-A.

• The floating point ReLU (Fig. 15:I-II(b)) and fixed
point ReLU (Fig. 15:I-II(c)) operations have timing side-
channels differentiating positive and negative inputs. This
can be used to identify zero-crossing points and hence,
are in agreement with the previously described attacks
(Section VI-A and VI-B).

• The integer-to-float conversion process of Cortex-M0+
(Fig. 15:I(d)) has negligible information leakage. Thus,
the values of the exponent cannot be determined from this
timing information. Also, the floating point multiplication
timing (Fig. 15:I(a)) has fewer variations and hence, a
lot of weights are required to identify the input mantis-
sas precisely. Thus, the input recovery for Cortex-M0+
is difficult to perform. The integer-to-float conversion
process for RISC-V (Fig. 15:II(d)) takes constant time
(irrespective of the input), hence the exponent information
cannot be recovered. Hence, the extraction of inputs for
floating point-based NNs is also difficult to perform on
the RISC-V platform

• In case of Cortex-M0+, the fixed point division operation,
in software, has timing proportional to hamming weight
of the output (Fig.15:I(e)), and hence can be used to
recover the inputs. The custom RISC-V chip has a
32-cycle hardware divider, because of which the nor-
malization operation takes constant time (Fig. 15:II(e)).
Thus, normalization-based input recovery attacks (Sec-
tion VII-B) can be prevented by having a constant-time
dedicated hardware divider, albeit at the cost of increased
logic area in the chip.

IX. PROPOSED COUNTERMEASURES

Finally, we propose countermeasures against the previously
discussed attacks and analyze their implementation overheads.

Floating point MAC operation: The primary reason for the
timing side-channel leakage of floating point-based multipli-
cation operation is that the output of every stage is represented
according to the IEEE-754 representation [35]. So, instead
of representing the numbers according to the conventional
IEEE-754 representation, we alternatively represent them by
equalizing the exponents with respect to the maximum expo-
nent emax in the layer and storing only the modified mantissa
information along with the signs. Thus, any generic floating
point weight wt is modified to be represented in fixed point
as: wt = (wt23, wt22, ..., wt0)2 = (−1)swt × 1.mwt × 2ewt-emax ,
which requires storage of only 3 bytes (instead of 4 bytes).
For example, if the wt’s of a layer are 1.75× 20, −1.32× 2-1

and 1×2-2, we normalize them by 20 and store the weights as
1.75,−0.66 and 0.25 respectively. The input activations (ip),
similar to weights (wt), are also normalized.

TABLE V shows the overheads for our proposed defense
for floating point operations on different platforms. The tim-
ing of the multiplication operation increased by ∼ 2× for
ATmega328P. However, the timing of an ensemble of 25 MAC
operations didn’t show a proportional increase because the
addition operations are now simplified to traditional fixed point
signed additions.

ReLU operation: We propose the following constant-time
implementation of the ReLU operation for 8-bit input pa:

out = (∼ (pa >> 7)) & pa

Here, the sign bit (most significant bit) of pa is extracted,
right-shifted and inverted to create a mask. The mask consists
of all 0’s for negative inputs and all 1’s for positive inputs.
This mask is AND-ed with original pa to compute the final
output out. Our proposed ReLU operation for 8-bit integer
operands is shown in TABLE IV along with the intermediate
values of computation. None of the intermediate steps of our
proposed method is data-dependent, and hence not susceptible
to timing attacks. Our proposed method is applicable to both
fixed point and floating point operands (using our previously
proposed representation). TABLE V show the timings of our
proposed ReLU implementation for 16-bit fixed point and 32-
bit floating point inputs respectively. The additional steps lead
to increase in cycle count for our proposed constant-time fixed
point ReLU operation. However, the performance improves
for floating point ReLU because the expensive floating point-
based comparison operation is eliminated.

TABLE IV: PROPOSED CONSTANT-TIME RELU FOR 8-BIT INTE-
GER OPERANDS (EXEMPLIFIED BY +VE AND -VE INPUTS)

out = (∼(pa >> 7)) & pa

pa -12310 12310
100001012 011110112

∼(pa>>7) 000000002 111111112

out 000000002 011110112

11

TABLE V: PERFORMANCE ANALYSIS OF SIDE-CHANNEL COUNTERMEASURES FOR COMMON NN OPERATIONS

Atmel ATmega328P ARM Cortex-M0+ RISC-V RV32IM
Metric

Default Solution Default Solution Default Solution
Cycles for multiplication op. 147.6 (avg.) 300 201.3 (avg.) 59 146.9 (avg.) 8
Cycles for 25 MAC op.† 6828 8541 8406 2258 7530 209
Storage space for weights 1× 0.75× 1× 0.75× 1× 0.75×
Cycles of ReLU +ve input 68 36 90 10 56 6
(floating point) 0 input 56 (constant time 88 (constant time 77 (constant time

-ve input 61 for any input) 87 for any input) 57 for any input)
Cycles of ReLU +ve input 10 19 2 9 3 6
(fixed point) 0 input 7 (constant time 1 (constant time 2 (constant time

-ve input 7 for any input) 1 for any input) 2 for any input)
† The weights are uniformly chosen from (-1,1) and the inputs are chosen from (0,1).
Note: All the operation-specific cycles measurements reported in this paper may incur few extra cycles because of reading/writing of data.

Fig. 16: Histogram for the cycle counts of conventional and
proposed floating point-based multiplication operation of ip ∈
{0, ...255} with wt=2.34 for ATmega328P.

.

Input recovery: Our proposed normalized representation
for floating point operands removes any timing side-channel
during MAC operations. Therefore, the previously described
attacks (Section VII-A) for extracting the equivalent mantissa
information is no longer applicable. This is better elucidated in
Fig. 16, which plots the histogram of the inputs with respect to
the cycle counts for conventional and proposed multiplication
operation (ip ∈ {0, ...255} and wt = 2.34) for ATmega328P.
The variation in the timing of the conventional multiplication
operation for constant wt leaks some information about ip.
However, our proposed constant-time multiplication removes
any timing-based leakage of inputs. Similarly, for NN with
division-based input normalization, the division operation can
be completely eliminated by appropriately scaling the relevant
parameters of the first layer of the NN. This allows the
NN to directly take in the raw inputs without the need for
normalization.

X. FUTURE WORK

We now discuss some future extensions of this work:
I. Extension to statistical attacks: In this paper, our

primary focus was to recover the model parameters of NN
using only timing side-channels and SPA. While the proposed
countermeasures provide constant-time operation, they may
not necessarily defend against other attacks like differential
power analysis (DPA) and correlation power analysis (CPA).

Fig. 17: CPA of constant-time fixed point multiplication based
on: (a) sign and (b) magnitude of the weight.

(i) We performed CPA over the proposed constant-
time fixed point multiplication operation on the Arduino
ATmega328P platform. Unsigned integer inputs ip ∈
{0, 1, ..., 255} were provided and the byte-wise hamming
weight of ip × wt model was used for the CPA. Fig. 17(a)
demonstrates that CPA over the most significant byte of the
output ip × wt was successful in identifying the sign of wt.
Similarly, Fig. 17(b) shows that CPA over the least significant
byte of the output ip × wt was successful in revealing |wt|.
[20], [22] describes the use of CPA and statistical techniques
to recover complete neural networks.

(ii) Even though the ReLU operation has been made
constant time (TABLE IV), the mask ∼ (pa >> 7) consists
of all 0/1’s for −/+ve inputs, thus leaking some information
using hamming weight (and possibly power). The t-test result
over the proposed ReLU operation is shown in Fig. 18. The
two groups A and B contain power waveforms corresponding
to randomly selected +ve and -ve inputs respectively. We get
|t| > 4.5 for more than 25 measurements, which proves that
these two groups have distinct power signatures.

12

Fig. 18: Leakage assessment t-test for constant-time ReLU.
The crossing of the t-value threshold is shown in the inset.

Another viable direction to explore is the use of algebraic
side-channel analytic techniques [41], [42], [43]. In contrast
to the conventional divide-and-conquer / statistical techniques
(e.g., CPA, DPA), the algebraic techniques require minimum
data complexity at the cost of more complex and sensitive
computational steps. Thus, it seems that algebraic techniques
might be a better choice for recovering the model parameters
and statistical techniques are more suited for the input recovery
attacks (real-time operation with minimal complexity at the
edge nodes). The use of hybrid techniques like soft analytical
side-channel attacks (SASCA) [44] also seems to be promising
as it combines the low time-memory complexity and noise
tolerance of standard DPA with the optimal data complexity
of algebraic side-channel attacks. All the common operations
execute in multiple cycles and thus, involve many intermediate
steps. The dependencies between these intermediate variables
make them suitable for algebraic attacks.

II. Extension to hardware platforms: The attacks which
were described in this paper assume that the timings of indi-
vidual NN operations can be extracted. While this condition
is relatively easy to meet on embedded micro-controllers, it
is very difficult to achieve in the case of custom-designed
hardware units such as FPGA or ASIC platforms. For im-
proved throughput and energy-efficiency in such hardware
accelerators, the common NN operations (e.g., MAC, ReLU)
are executed in parallel, using an array of processing elements
(PEs). In this situation, it will be difficult to obtain the timing
and power corresponding to individual operations. So, the
methods described in this paper may not be directly applicable
to FPGA and ASIC implementations. However, following a
similar methodology with larger lookup tables and crafted
inputs, it may still be possible to attack such custom hardware
accelerators, and this will be explored in the future.

XI. CONCLUSION

In this work, we have demonstrated the recovery of model
parameters and inputs for common neural network (NN) im-
plementations with different precisions, such as floating point,
fixed point and binary, on three different embedded micro-
controller platforms (Atmel ATmega328P, ARM Cortex-M0+
and RISC-V RV32IM) using only timing and simple power
analysis side-channel attacks. Timing side-channel leakage
from the multiplication and non-linear activation function

computations was utilized to recover model parameters of
floating point NNs. For fixed point and binary NNs, zero-
crossover input information obtained from the timing side-
channel of the non-linear activation function was used with
strategically crafted inputs for model recovery. The inputs of
floating point NNs were recovered using timing side-channel
information from integer-to-float conversion and multiplication
operations. Input recovery for fixed point NNs with input
normalization was performed using simple power analysis
(SPA) attack on the division operation. We have also proposed
software countermeasures against these side-channel attacks
and analyzed their implementation overheads.

The feasibility and simplicity of our attacks, with minimal
storage and computation requirements, emphasize the side-
channel security concerns of embedded neural network im-
plementations and the need for defending against them. The
performance overheads of our proposed software-based coun-
termeasures also motivate the design of custom side-channel-
resistant hardware for embedded neural network accelerators.

ACKNOWLEDGMENT

The authors acknowledge the funding support from Analog
Devices and Texas Instruments. The authors sincerely thank
Dr. Samuel H. Fuller, Prof. Vivienne Sze, Maitreyi Ashok and
Kyungmi Lee for their valuable suggestions. The authors are
also thankful to the editors and the anonymous reviewers for
their insightful comments which helped improve the quality
of the paper.

APPENDIX

A. Extended analysis of floating point model extraction

(1) Derivation for 1st round of weight extraction:
Rewriting eq. 4 for wtref, we obtain eq. 11.(

ip
(1)
ref × wtref + b

)
≈ 0⇒ ip

(1)
ref ≈

−b
wtref

(11)

Dividing eq. 4 by eq. 11, expressing wt in terms of mantissa,
sign and exponent and using the fact that sgn(wtk)=sgn(wtref)
we obtain eq. 12-14.

ip
(1)
k

ip
(1)
ref

≈
(
wtref

wtk
=

1.mref × 2eref

1.mk × 2ek

)
(12)

⇒ ek − eref ≈ log2

(
1.mref

1.mk
×

ip
(1)
ref

ip
(1)
k

)
(13)

⇒ ek − eref =

⌈
log2

(
1.mref

1.mk
×

ip
(1)
ref

ip
(1)
k

)⌋
(14)

Here dxc round of x to the nearest integer.
(2) Derivation for 2nd round of weight extraction:

For the definition of ip(2)
k we have:(

ip
(2)
k × wtk + 255× wtref + b

)
≈ 0 (15)

⇒ ip
(2)
k ≈

− (b + 255× wtref)

wtk
(16)

13

Rearranging eq. 11 and eq. 16 (by eliminating b), expressing
wt in terms of mantissa, sign and exponent and using the fact
that sgn(wtk) 6=sgn(wtref), we obtain eq. 17-18.

ip
(2)
k(

255− ip
(1)
ref

) ≈ (−wtref

wtk
=

1.mref × 2eref

1.mk × 2ek

)
(17)

⇒ ek − eref =

log2

1.mref

1.mk
×

(
255− ip

(1)
ref

)
ip

(2)
k

 (18)

(3) Derivation for 3rd round of weight extraction:
For the definition of ip(3)

k we have:(
ip

(3)
k × wtref + 255× wtk + b

)
≈ 0 (19)

⇒ ip
(3)
k ≈

− (b + 255× wtk)

wtref
(20)

Rearranging eq. 11 and eq. 20 and expressing wt in terms
of mantissa, sign and exponent, we obtain eq. 21-23.

ip
(1)
ref − ip

(3)
k

255
≈
(

wtk

wtref
=

(−1)sgn(wtk) × 1.mk × 2ek

(−1)sgn(wtref) × 1.mref × 2eref

)
(21)

⇒ ek − eref =

log2

1.mref

1.mk
×

∣∣∣ip(3)
k − ip

(1)
ref

∣∣∣
255

 (22)

When
(
ip

(1)
ref − ip

(3)
k

)
> 0, we get sgn(wtk)=sgn(wtref).

When
(
ip

(1)
ref − ip

(3)
k

)
< 0, we get sgn(wtk) 6=sgn(wtref).

Thus, using the fact sgn(wtref) 6=sgn(b), we can write:

sgn(wtk) = sgn

(
ip

(3)
k

ip
(1)
ref

− 1

)
× sgn(b) (23)

B. Analysis of integer-to-float conversion for ATmega328P

Algorithm 1 Integer-to-float conversion

1: procedure INT2FLOAT(ip) . Returns r ← ip as float
2: e← 7 . e stores the exponent of r
3: z ← ip� e . z stores the mantissa of r
4: while z < 1 do
5: z ← 2× z
6: e← e− 1
7: end while
8: r ← z × 2e . z stores the final exponent
9: return r

10: end procedure

The integer-to-float conversion process for ATmega328P
is explained in the form of a pseudo-code in Algorithm 1.
Relevant comments are shown alongside using . symbol.

Explanation: For an 8-bit unsigned integer ip, the exponent
is initialized to the maximum possible value (7) and the
mantissa z is set to ip

128 . Throughout the code, it is ensured
that ip is equal to z × 2e. To convert to the IEEE-754 [35]
representation, the mantissa z needs to lie between [1, 2).
Hence z is left shifted (× 2) and the exponent e is reduced

by 1, until z ∈ [1, 2). The number of times the while loop in
lines 4-7 of Algorithm 1 gets executed directly depends on the
exponent, as shown in Figure 11.

REFERENCES

[1] A. Krizhevsky et al., “ImageNet Classification with Deep Convolutional
Neural Networks,” in NeurIPS, 2012.

[2] N. Tajbakhsh et al., “Convolutional Neural Networks for Medical Image
Analysis: Full Training or Fine Tuning?” IEEE T-MI, 2016.

[3] O. E. David et al., “DeepChess: End-to-End Deep Neural Network for
Automatic Learning in Chess,” in ICANN, 2016.

[4] V. Sze et al., “Efficient Processing of Deep Neural Networks: A Tutorial
and Survey,” Proceedings of the IEEE, 2017.

[5] K. Y. R. Lu et al., “Wearable System-on-Module for Prosopagnosia
Rehabilitation,” in IEEE CCECE, 2016.

[6] C. Qiu et al., “A Wireless Wearable Sensor Patch for the Real-Time
Estimation of Continuous Beat-to-Beat Blood Pressure,” in IEEE EMBC,
2019.

[7] S. Maji et al., “A Low-Power Dual-Factor Authentication Unit for
Secure Implantable Devices,” in IEEE CICC, 2020.

[8] A. Gural et al., “Memory-Optimal Direct Convolutions for Maximizing
Classification Accuracy in Embedded Applications,” in ICML, 2019.

[9] I. Fedorov et al., “SpArSe: Sparse Architecture Search for CNNs on
Resource-Constrained Microcontrollers,” in NeurIPS, 2019.

[10] S. Heller et al., “Hardware Implementation of a Performance and
Energy-optimized Convolutional Neural Network for Seizure Detection,”
in IEEE EMBC, 2018.

[11] J. Maier et al., “Real-Time Patient-Specific CT Dose Estimation using
a Deep Convolutional Neural Network,” in 2018 IEEE NSS/MIC, 2018.

[12] R. Shokri et al., “Membership Inference Attacks Against Machine
Learning Models,” in IEEE Symp. on Security & Privacy, 2017.

[13] A. Chakraborty et al., “Adversarial Attacks and Defences: A Survey,”
arXiv preprint arXiv:1810.00069, 2018.

[14] S. J. Nass et al., “The Value and Importance of Health Information
Privacy,” in Beyond the HIPAA Privacy Rule: Enhancing Privacy,
Improving Health Through Research. National Academies Press, 2009.

[15] R. Spreitzer et al., “Systematic Classification of Side-Channel Attacks:
A Case Study for Mobile Devices,” IEEE Commun. Surv. Tutor., 2018.

[16] P. C. Kocher, “Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems,” in IACR CRYPTO, 1996.

[17] J.-F. Dhem et al., “A Practical Implementation of the Timing Attack,”
in Int. Conf. on Smart Card Research and Adv. Appl., 1998.

[18] U. Banerjee et al., “Power-based Side-Channel Attack for AES Key
Extraction on the ATMega328 Microcontroller,” MIT Computer Systems
Security, 2015.

[19] W. Hua, Z. Zhang, and G. E. Suh, “Reverse Engineering Convolu-
tional Neural Networks Through Side-channel Information Leaks,” in
ACM/ESDA/IEEE DAC, 2018.

[20] L. Batina et al., “CSI NN: Reverse Engineering of Neural Network Ar-
chitectures Through Electromagnetic Side Channel,” in USENIX Security
Symposium, 2019.

[21] L. Wei et al., “I Know What You See: Power Side-Channel Attack on
Convolutional Neural Network Accelerators,” in ACM ACSAC, 2018.

[22] L. Batina et al., “Poster: Recovering the Input of Neural Networks via
Single Shot Side-channel Attacks,” in ACM CCS, 2019.

[23] G. Dong et al., “Floating-Point Multiplication Timing Attack on Deep
Neural Network,” in IEEE SmartIoT, 2019.

[24] E. Brier et al., “Correlation Power Analysis with a Leakage Model,” in
IACR CHES, 2004.

[25] C. Clavier et al., “Horizontal Correlation Analysis on Exponentiation,”
in ICICS, 2010.

[26] Y. LeCun et al., “MNIST Handwritten Digit Database,” 1999.
[27] A. Krizhevsky et al., “CIFAR-10 (Canadian Institute for Advanced

Research),” 2009.
[28] J. Deng et al., “ImageNet: A Large-Scale Hierarchical Image Database,”

in CVPR09, 2009.
[29] Microchip Technology Inc., “ATmega328P Datasheet.”
[30] Microchip Technology Inc. , “ATSAMD21G18 Datasheet.”
[31] Z. Li et al., “Design and Implementation of CNN Custom Processor

Based on RISC-V Architecture,” in IEEE HPCC/SmartCity/DSS, 2019.
[32] U. Banerjee et al., “An Energy-Efficient Reconfigurable DTLS Cryp-

tographic Engine for Securing Internet-of-Things Applications,” IEEE
JSSC, 2019.

[33] U. Banerjee et al., “Sapphire: A Configurable Crypto-Processor for Post-
Quantum Lattice-based Protocols,” IACR TCHES, 2019.

14

[34] Arduino, “Arduino Uno Rev3.”
[35] “IEEE Standard for Floating-Point Arithmetic,” IEEE Std 754, 2019.
[36] D. Kalamkar, et al., “A Study of BFLOAT16 for Deep Learning

Training,” arXiv preprint arXiv:1905.12322, 2019.
[37] M. Courbariaux et al., “Binarized Neural Networks: Training Deep

Neural Betworks with Weights and Activations Constrained to +1 or
-1,” arXiv preprint arXiv:1602.02830, 2016.

[38] E. Nurvitadhi et al., “Accelerating Binarized Neural Networks: Compar-
ison of FPGA, CPU, GPU, and ASIC,” in FPT, 2016.

[39] S. Han et al., “EIE: Efficient Inference Engine on Compressed Deep

Neural Network,” in ACM/IEEE ISCA, 2016.
[40] Adafruit Industries, “Adafruit METRO M0 Express – Designed for

CircuitPython – ATSAMD21G18.”
[41] S. Mangard, “A Simple Power-Analysis (SPA) Attack on Implementa-

tions of the AES Key Expansion,” in ICISC, 2002.
[42] K. Schramm et al., “A Collision-Attack on AES,” in IACR CHES, 2004.
[43] A. Bogdanov et al., “Algebraic Methods in Side-Channel Collision

Attacks and Practical Collision Detection,” in IACR INDOCRYPT, 2008.
[44] N. Veyrat-Charvillon et al., “Soft Analytical Side-Channel Attacks,” in

IACR ASIACRYPT, 2014.

	I Introduction
	II Related Work
	III Our Contributions
	IV Threat Model
	IV-A Attack Scenario
	IV-B Attacker’s Capabilities

	V Experimental Setup
	VI Model Recovery
	VI-A Floating point neural networks
	VI-B Fixed point neural networks
	VI-C Binary neural networks

	VII Input Recovery
	VII-A Input recovery for floating point neural networks
	VII-B Input recovery using normalization operation
	VII-C Sparse input recovery for zero-skipping neural networks

	VIII Extension to Other Platforms
	IX Proposed Countermeasures
	X Future Work
	XI Conclusion
	Appendix
	A Extended analysis of floating point model extraction
	B Analysis of integer-to-float conversion for ATmega328P

	References

