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Abstract—Various recent research works have focused on
the use of electroencephalography (EEG) signals in the field
of biometrics. However, advances in this area have somehow
been limited by the absence of a common testbed that would
make it possible to easily compare the performance of dif-
ferent proposals. In this work, we present a dataset that has
been specifically designed to allow researchers to attempt new
biometric approaches that use EEG signals captured by using
relatively inexpensive consumer-grade devices. The proposed
dataset has been made publicly accessible and can be downloaded
from https://doi.org/10.5281/zenodo.4309471. It contains EEG
recordings and responses from 21 individuals, captured under
12 different stimuli across three sessions. The selected stimuli
included traditional approaches, as well as stimuli that aim
to elicit concrete affective states, in order to facilitate future
studies related to the influence of emotions on the EEG signals
in the context of biometrics. The captured data were checked
for consistency and a performance study was also carried out in
order to establish a baseline for the tasks of subject verification
and identification.

Index Terms—Biometrics, consumer-grade device, dataset,
EEG, session.

I. INTRODUCTION

MANY applications in the currently emerging digital
world require person identification methods to secure

access control. In this context, biometrics are turning out into
an alternative to other more traditional access methods based
on keys, ID cards or passwords. Traditional access control
approaches require the individuals to remember or possess
some information or item that must be presented to the access
system. Presenting the correct information/item grants access
to the individual. Biometrics are defined as the “automated
recognition of individuals based on their biological and be-
havioural characteristics” [1]. Typically, biometrics systems
consist of a device that captures a characteristic, e.g. a camera
or microphone, a database that stores information about the
persons registered in the biometrics system, algorithms for
processing the acquired characteristics, e.g. signal processing
algorithms, and finally a decision system that compares the
stored and the captured characteristics and decides whether
they belong to the same person [2]. Success in the comparison
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of the biometrics trait grants access to a system or identifies
an individual. Traditional biometrics approaches include fin-
gerprint recognition, face recognition, iris recognition, voice
recognition, and others.

Electroencephalography (EEG) signals, i.e., the recording of
the electrical activity of the brain, present some major advan-
tages when compared to other biometrics modalities: they are
resilient to physical injuries, extremely hard to reproduce, and
cannot be furtively captured at a distance [3]. These properties
have motivated extensive research in the last few years, aimed
at proposing reliable EEG-based solutions for biometrics (e.g.
[4], [5], [6]) and included studies on using different types of
stimuli [7], as well as on the influence on the EEG signal of
the emotion they potentially elicit [8], [9]. However, the use
of EEG signals for biometrics also faces important challenges,
mainly related to practicality. EEG signals are contaminated
by unwanted artefacts caused by, e.g., ocular, muscle, cardiac
and respiratory activity, requiring a relatively intensive pre-
processing of the signal. Hence, the time it takes to perform
EEG-based user authentication is substantially higher than
the time required by other competing biometric authentication
schemes [10]. In addition, high precision devices are generally
expensive, and require specific capturing protocols to ensure
an adequate placement of the electrodes and the absence of
electrical and electromagnetic interference.

EEG-based biometrics is still at its early stages. The absence
of a public benchmark dataset has forced some researchers
to evaluate their methods using datasets that were designed
for a purpose other than biometrics; or proprietary databases
of generally small size that have not been made public, thus
preventing a fair comparison between different proposals. In
addition, and despite the high performance of medical-grade
devices for EEG-based biometrics, their practical suitability
has been called into question not only because of their cost,
but also due to the tedious preparation needed for acquiring
the signals. This has motivated the development of consumer-
grade EEG recording devices with a smaller number of elec-
trodes as a more practical alternative. Although these devices
offer a lower spatial resolution than medical-grade systems,
they also simplify deployment in real-life scenarios.

Given this context, we believe that a database specifically
designed for EEG-based biometrics with consumer-grade de-
vices is a definite contribution to the future development of the
state-of-the-art. First, it is a step forward to define a common
ground that allows for a fair comparison between different
proposals. Second, there are specific factors that should be
considered when assessing any biometrics approach, and a
careful design may help in establishing research routes that
were partially disregarded in previous works. This includes a)
using different types of stimuli to be able to properly test
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both identification and verification scenarios; and b) using
recordings from multiple sessions to assess the permanence
property of the suggested mechanisms.

In this paper, we present BED (Biometric EEG Dataset),
a dataset specifically designed to test EEG-based biometric
approaches that use relatively inexpensive consumer-grade
devices. This dataset, along with usage instructions, can be
downloaded from https://doi.org/10.5281/zenodo.4309471 and
includes EEG responses from 21 subjects to 12 different stim-
uli, across 3 different chronologically disjointed sessions. We
have also considered stimuli aimed to elicit different affective
states, so as to facilitate future research on the influence
of emotions on EEG-based biometric tasks. In addition, we
provide a baseline performance analysis to outline the potential
of consumer-grade EEG devices for subject identification and
verification. It must be noted that, in this work, EEG data
were acquired in a controlled environment in order to reduce
the variability in the acquired data stemming from external
conditions.

The rest of this paper is organised in five sections. Section
II describes the related literature and provides a general
background covering consumer-grade EEG-based biometrics.
Section III provides a detailed description of the dataset,
including the stimuli used, the equipment employed and the
acquisition setting and protocol. Section IV contains an anal-
ysis of the participants’ responses that supports the subjects’
engagement during the signal capturing process. Section V
describes baseline experiments for cross-session subject iden-
tification and verification. Finally, section VI summarises the
major conclusions that can be drawn from this work.

II. BACKGROUND

Although EEG signals were initially used to assist the
diagnosis of certain pathological conditions and disorders [11],
[12], [13], [14], [15], their suitability and great potential
to discern between individuals has attracted the interest of
biometrics researchers. During the two first decades of this
century, EEG signals have been extensively employed with the
aim to properly identify individuals [16], [17], [18]. The vast
research in this area has motivated a number of surveys, some
covering the future perspectives and the theoretical aspects
of EEG-based biometric identification systems [19], [20] and
others more focused on the practicality and usability issues of
EEG as a biometric signal [21].

However, and despite the large amount of research publica-
tions found in the area, there is a lack of a standard benchmark
that allows for a fair comparison between methods. This
has led many authors to create proprietary datasets, designed
according to their particular experimental setting [17], [18],
[22], [23], [24], [25], [26], [27], [28], [29], [30]. Other authors
have used public EEG datasets that were originally designed
for purposes other than biometrics [8], [31], [32], [33]. This
includes the one by UCI (University of California, Irvine) [34]
and VEP (Visual Evoked Potentials) [35], which were initially
conceived for image speech and alcoholism detection, respec-
tively; or DEAP [36], MAHNOB-HCI [37], DREAMER [38],
SEED [39], and the Lakhan et al. [40] datasets, which were

constructed with emotion recognition in mind. In addition,
little attention has been given to consumer-grade EEG devices,
despite their importance in easing deployment in practical
applications [21].

To achieve a sound experimental setting for practical bio-
metrics, the dataset used needs to satisfy certain conditions
related to data capturing and type of stimuli used. More
specifically, it should facilitate practical applicability of the
registration and verification/identification procedures, it should
contain a variety of stimuli for evaluating their suitability, and
it should allow the evaluation of the temporal stability of the
extracted biometrics patterns by containing data from multiple
acquisition sessions.

Regardless of the signal acquisition device, the person-
specific patterns contained in brain signals may strongly
depend on many factors, including the task type the sub-
ject is performing. Hence, biometric systems based on EEG
signals should consider different stimuli in order to study
their potential capabilities. In this line, different approaches
are found in the literature, mainly focusing on three different
types of pattern elicitation mechanisms: resting-state, cognitive
tasks, and sensory stimuli [21]. Resting-state and sensory
stimuli are the most common protocols used for identifying
individuals, e.g., [41], [42], [43], [44], while cognitive tasks
are more common for authentication purposes, e.g., [45], [46].
If one objective of the proposed dataset is to cover both the
identification and authentication scenarios, it should not be
limited to a single type of pattern elicitation and cover at least
the three basic mechanisms mentioned above.

A common mistake in the evaluation of EEG-based biomet-
ric approaches relates to template ageing, i.e., “the increase in
error rates caused by time-related changes in the biometric
pattern, its presentation and the sensor” [47]. To properly
evaluate a biometric system, data acquisition should happen
over time, along several sessions. This practice is encouraged
since it allows to ensure the temporal stability of the extracted
patterns and the proposed solution. Surprisingly, only a few
studies on EEG-based biometrics have considered the aspects
of time and template ageing [25], [26], [48]. Most research
described in a recent survey [21] and other remarkable works
in the area use data acquired during a single session, e.g.,
[16], [18], [22], [27], [28], [49], or have used several ses-
sions but constructed the training and validation sets mixing
the samples from all sessions, disregarding the acquisition
date [50]. Although they have generally claimed high accuracy
results [22], such setting is generally biased towards high
classification rate [23] and can be affected by a large number
of session-specific factors that include, between many others,
the exact positioning of the electrodes in the scalp, capacitative
coupling of electrodes and cables with other devices, induction
loops created between the employed equipment and the body,
power supply artefacts, and others [24]. Therefore, although
such studies provide proof that subject-related patterns can
successfully be extracted from EEG signals for EEG-based
biometrics applications, they do not examine the permanence
of such patterns across time and thus their applicability for
practical real-world EEG biometrics systems.

TABLE I provides a summary of the results achieved in
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TABLE I: Summary of relevant literature in EEG-based biometrics

Reference # of
Participants

# of
Sessions

Cross-
Session

Public
Dataset Recording Device Stimuli Metrics

[16] 50 1 No No Brain Vision
Sine gratings

Low-frequency words
Images

Acc. 100%

[17]
45 (1 session)
15 (2 Sessions)
9 (3 sessions)

3 Yes No Undisclosed Acronyms inter-mixed with
fillers from other lexical types Acc. 93%

[18] 6 1 No No Emotiv EPOC† Eyes open/ Eyes closed Acc. 88%
[50] 10 5 No No gMobilab+ Eyes open/ Eyes closed Acc. 97%

[22] 29 1 No No g.tec
Brain Products Images 10.7% FAR / 100% TAR

[23] 9 2 Yes No Custom-made in-ear [51] No stimuli HTER 17.2

[24] 45 6 Yes No Galileo BE
Light Amplifier

Eyes open / Eyes closed
Mathematical Computation

Speech Imagery
EER 6.7

[25] 9 2 Yes No Undisclosed Muscle Movement Acc. 77.8%
[26] 15 3 Yes No Undisclosed Acronyms Acc. 93%
[27] 10 1 No No Undisclosed VEP Acc. 90%

[28] 120 1 No Yes
[35] Undisclosed VEP Acc. 98.12%

[29] 12 12 Yes No Biosemi Motor Imagery
Speech Imagery HTER 34.9%

[30] 15 2 No No Neurosky Mindset†

Breathing
Motor Imagery
Speech Imagery

Audiovisual Stimuli
Cognitive Tasks

Pass-thought

HTER 1.1%

[31] 6 (UCI)
120 (VEP) Undisclosed No Yes

[34], [35] Undisclosed Imagined Speech
VEP Acc. 99.6%

[46] 12 1 No No Emotiv EPOC† Thought Acc. 66.67%
[49] 21 2 No No Emotiv EPOC† Card Counting Acc. 72%

[8]
32 (DEAP)

28 (MAHNOB)
15 (SEED)

1 (DEAP)
1 (MAHNOB)

3 (SEED)
Yes Yes

[36], [37], [39]
Biosemi Active II‡

ESI NeuroScan‡
Audiovisual Stimuli Acc. 79.34%

[32] 23 1 No Yes
[38] Emotiv EPOC† Audiovisual Stimuli Acc. 94%

[33] 26 3 Yes No Emotiv EPOC+† Emotion Images Acc. 34.9%
Notes: † denotes consumer-grade devices and ‡ medical-grade devices. Acc: Accuracy, FAR: False Acceptance Rate, TAR: True Acceptance Rate, HTER: Half Total Error Rate,
EER: Equal Error Rate.

some of the most relevant studies, along with the charac-
teristics of the databases that were used in each of them.
The performance metrics used are as reported in the original
works, and include Accuracy (Acc), False Acceptance Rate
(FAR), True Acceptance Rate (TAR), Half Total Error Rate
(HTER) and Equal Error Rate (EER). Despite the relatively
high accuracy achieved by some of the methods, none of these
works has considered a cross-session study in a public dataset
specifically designed for biometrics. Therefore, they do not
ease comparison with the rest of the literature.

III. DATASET DESIGN

The aspects described above have all been taken into
account to produce a new public dataset specifically designed
to test biometric approaches. This repository contains three
sessions separated in time, considers a wide set of stimuli
and has been produced by using a low-cost off-the-shelf EEG
recording device. In addition, and as a consequence of recently
published studies that report further gains when the emotional
state is taken into account [8], [9], [33], we have also con-
sidered image-based stimuli that were specifically selected to
elicit a set of representative emotional responses. This section
describes the specific characteristics of this dataset. Baseline
experimental results obtained with it are later reported in
Section V.

A. Stimuli used during EEG acquisition
We have considered the use of an extensive set of stimuli in

order to provide support for a large variety of different settings.
The presented stimuli contain the most common ones found
in the literature [4], [16], [24], and others aimed at supporting
future studies on the potential influence of affect. A total of
4 categories of stimuli were recorded for posterior analysis,
which are described below:

1) Affective Stimulus (AS): These are a set of images
that aimed to elicit typical emotional responses during EEG
acquisition. They were obtained from two publicly avail-
able image datasets that are commonly used in affect detec-
tion studies [52], i.e., the Geneva Affective Picture Dataset
(GAPED) [53] and the Open Affective Standardised Image Set
(OASIS) [54]. GAPED contains 730 different images with a
resolution of 640 × 479 pixels encoded in JPEG format and
rated in terms of arousal and valence within the range [0, 100].
These images are organised along the following six categories:
snakes, spiders, human concerns (depicting scenes violating
human rights), animal mistreatments, neutral and positive.
OASIS has 900 different images with a resolution of 500×400
pixels, also encoded in JPEG format. The images are rated
in terms of arousal and valence within the range [1, 7], and
responses by gender are also reported. This dataset contains
images that belong to one of the following four mutually
exclusive groups: animals, objects, people, and scenes. It must
be noted that image #I537 was discarded from the set due to
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Fig. 1: Positioning of images from the GAPED and OASIS
datasets in Valence-Arousal space. Images marked with a red
“×” are the ones selected for this study.

very explicit adult content.
These two datasets contain a total of 730 + 900 = 1 630

images, from which 48 were selected according to their
valence and arousal labels, in order to obtain a representative
set with intense emotional content. To this end, the valence
and arousal labels in each dataset were first normalised to the
range [−1, 1]. Then, the resulting valence/arousal space was
divided into 12 equal regions, as shown in Fig. 1. Finally,
we selected the 4 images from each region whose valence
and arousal values were the farthest from the absolute neutral
emotion (0, 0). These 48 images were divided into 4 different
sets of 12 images each, with each set containing exactly one
image from each of the regions, thus each of the 4 images from
each region was allocated to a different set. One of these sets
was randomly selected to be shown to the participants in all
three sessions, while the other three sets were assigned to one
session each. In each session, each subject would first see the
12 common images shared between sessions, and then the 12
additional images assigned to the specific session.

2) Cognitive Stimulus - Mathematical Computations (MC):
Cognitive tasks in the form of two-digit additions were used
in this study with a threefold purpose: (a) generate cog-
nitive imagery-related patterns in the participant, (b) bring
the participant back to a neutral emotion state after been
exposed to an affective stimulus, and (c) check the participants
engagement with the experimental process by checking the
correctness of their answers. Following a similar approach to
the Affective Stimuli, we randomly created 4 sets of 12 two-
digit addition operations. These operations were designed so
that the numbers to be added would be between 11 and 99,
and the participant would have to carry for both digits. Out of
the 4 sets, one was randomly selected to be used in all three
sessions, while the remaining 3 sets were randomly assigned
to one session each. At each session, participants would first
be presented with the set of operations shared across the three
sessions, followed by the set of operations for each respective

Fig. 2: Electrodes’ location on the human scalp.
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Fig. 3: EEG signal (1 s) from participant #1 (session #1).

session.

3) Visual Evoked Potentials (VCx and VFx): Visual Evoked
Potentials (VEP) have traditionally been used for the diagnosis
of different conditions [55], such as Alzheimer [56]. More
recently, various researchers have proposed the use of VEP
for the extraction of user-specific patterns [4], [31]. In this
work, the subjects were presented with VEP at four different
frequencies, i.e., 3, 5, 7, and 10 Hz, as commonly performed
in the literature [57]. Shown patterns included the standard
checker-board pattern with pattern reversal (VC3, VC5, VC7,
VC10), as well as flashing VEP with a plain colour, set as
black (VF3, VF5, VF7, VF10). The decision of using the
second type of VEP was influenced by the indication in the
VEP standard [57] that the flashing versions yield higher
correlates with the individual.

4) Resting-state: The resting-state protocol has been largely
adopted in the literature due to its simplicity [4], [24], [58],
[59]. The protocol consists of relaxation with eyes closed
(RC), or with the eyes open (RO). The screen in front of
the participants remained switched-off during the resting-
state protocol in order to avoid any potential effect on the
participants.
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Fig. 4: Flow diagram illustrating the experimental protocol

B. Signal Acquisition

The experiments were performed in a laboratory environ-
ment, with controlled illumination and isolated from sources
of noise or distraction. No specific protection against electrical
and electromagnetic interference was used. 14-channel elec-
troencephalography (EEG) signals were captured at a sampling
frequency of 256 Hz using the Emotiv EPOC+ [60] wireless
EEG headset. The Emotiv EPOC+ system is a commercially
available low-cost EEG capturing device that is equipped with
16 contact sensors, fixed on flexible plastic arms that are
placed against the scalp of the user. Fourteen of the contact
sensors are placed in locations (Fig. 2) that closely align with
the AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8,
AF4 locations of the Modified Combinatorial Nomenclature
(MCN) [61], which extends the international 10-20 system
and are used for signal recording, while two contact sensors
located at the M1 and M2 mastoid locations are used as
reference. Although the number of channels of the captured
EEG signals (signal sample shown in Fig. 3) is lower than
commonly used medical-grade devices due to the reduced
number of electrodes, studies have shown that the Emotiv
system is a viable alternative to expensive and non-portable
medical-grade EEG devices [60], [62], as also evidenced by
its successful use in various studies on affective computing [8],
[38], [63], [64] and on EEG-based biometrics [18], [46], [49],
[65], [66], [67]. Furthermore, the Emotiv EPOC+ headset has
a built-in digital 5th order sinc filter and applies digital notch
filters at 50Hz and 60Hz for reducing noise and artefacts in
the acquired signal [68].

A computer equipped with an Intel Core i7-7700K @4.20
GHz CPU and 64 GB of DDR4 RAM memory, running MS
Windows 10, was used for signal recording. Since the Emotiv
EPOC+ headset connects to the computer via proprietary radio
communication, participants and supervising researchers were
instructed to switch off any electronic devices that may trans-
mit signals, such as mobile phones, smart-watches, Bluetooth
devices, etc., in order to avoid any potential interference with
EEG signal transmission during the experimental sessions.

C. Acquisition Protocol

A total of 26 healthy participants (22 male and 4 female)
were initially recruited for the creation of the presented
dataset. Unfortunately, data from five of these participants had
to be discarded due to erroneous signal acquisition, resulting

in a dataset composed of data from 21 participants (18 male
and 3 female), aged between 23 and 47 (µage = 30) years old.

Prior to the experiment, potential participants were informed
about its purpose and procedure and were also warned that
images with some explicit adult content might be shown.
Furthermore, potential participants were instructed not to
participate if they suffered from any form of epilepsy, photo-
sensitivity or related conditions, due to the viewing of VEP.
After asking any questions that they may had and agreeing to
participate, the subjects were asked to sign a consent form.
Hereby, they explicitly stated that they did not suffer from
any form of epilepsy, photo-sensitivity or related conditions;
were informed in detail about the protocol, including the type
of images that they would see; agreed to participate in the
study; and granted permission to use or publish the acquired
data in anonymised form for research purposes. Immediately
after, participants were verbally provided with more detailed
instructions about the experimental procedure and the use of
the Self Assessment Manikins (SAM) to provide feedback
about the emotion they felt, according to the directions in-
cluded in [69]. The Emotiv EPOC+ EEG headset was then
positioned on the head of the participants and the supervising
researchers proceeded to check the quality of the signal
acquisition. Once the quality of electrode contact was verified
using the Emotiv Xavier Control Panel software and successful
signal acquisition was confirmed via manual inspection of the
plotted EEG signals, the supervising researchers instructed the
participant to start the experiment whenever they felt ready and
comfortable, and left the room.

The software for displaying the described stimuli
was developed in Python using the pygame library
(https://www.pygame.org). This library provides tools
for drawing 2-D graphics and also controlling the frame rate
of the displayed content, which was needed to generate the
VEP. An overview of the experimental protocol followed
in each session of the experiment is provided through the
flowchart in Fig. 4.

The first part of the experiment consisted of alternating
between an Affective Stimulus and a Cognitive Stimulus. First,
an image was shown for 5 s. Afterwards, the participant was
asked to provide feedback about the emotion felt after being
exposed to the image, by using the SAM that was displayed
in the middle of the screen. This was done in order to (a)
validate that the image stimuli were correctly selected, and
(b) allow future researchers to create affect-based strategies, as
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(a) Valence

(b) Arousal

Fig. 5: Self-Assessment Manikins (SAM) used.

suggested in [8]. Assessment was provided in terms of valence
and arousal by double clicking on the respective manikins,
or on the boxes between them, as shown in Fig. 5. The
responses were later normalised to the range [−1,+1] for
further analysis. After providing the feedback for the image,
the participant was shown a two-digit addition operation that
they needed to solve using the keyboard to fill the answer
field. Both the numeric pad and the typewriter keys could
be used for typing the answer. Mistakes could be corrected
using the Backspace or the Delete buttons and the answer was
submitted by pressing the Enter button. No feedback regarding
the correctness of the submitted answer was provided to the
participant in order to avoid distracting them with feelings
of success or failure that may affect the EEG signals. This
procedure was repeated 24 times, until all the 24 images and
the 24 two-digit addition operations selected for the session
were shown.

After the Affective and the Cognitive stimuli, the participant
was instructed to rest with the eyes closed for a total of 120 s.
A sound emitted by the computer notified the participant that
the 120 s had elapsed. Next, standard checker-board VEP were
shown with increasing frequency (χ = 3, 5, 7, 10) Hz for 30 s
at each frequency. In between VEP, participants were given
a sort rest period of 10 s. Then, the screen was switched-off
and the participant was instructed to rest for 120 s keeping
their eyes open. Afterwards, the subject was presented with
the final stimulus, i.e., flashing VEP shown with increasing
frequency (χ = 3, 5, 7, 10) Hz for 30 s at each frequency. A
sort rest period of 10 s between each frequency was also given,
similar to the checker-board VEP procedure. Once all flashing
VEP stimuli had been shown to the participant, the session
was considered complete and the researcher returned to the
room to remove the EEG sensor from the participant’s head
and check that the data had been recorded correctly. In the
mean time, the participant was offered some complimentary
sweets, coffee, water, or other non-alcoholic beverages.

The protocol described above was repeated three times for
each participant in different days, a week apart from each
other. The protocol followed for each session was the same,
with the only difference being the sets of images and two-
digit addition operations used at each session, as explained in
Sections III-A1 and III-A2.

IV. ANALYSIS OF THE PARTICIPANTS RESPONSES

In order to ensure a consistent labelling and that subjects
were engaged during the sessions, we performed an in-depth
analysis of the participants’ answers. First, we evaluated the
subjects’ answers to the SAM by computing their correlation
with the expected responses according to the image labels
in the corresponding image datasets. Second, we evaluated
the consistency of the emotional labels provided by the par-
ticipants across the three sessions. Finally, we analysed the
success of the participants at solving the cognitive task (two-
digit additions).

A. Correlation of emotional labels

In order to quantitatively evaluate the consistency of the
participants’ answers to the SAM, we computed the Pearson’s
correlation coefficient (ρ) between the average values provided
by all participants and the answer expected according to the
labels provided in the corresponding dataset.

For valence, this analysis led to a Pearson’s ρ =
{0.9710, 0.9824, 0.9752}, for the first, second, and third
session, respectively. The strong linear correlation between the
participants’ and the expected responses is easily observable
in Fig. 6a, 6c, and 6e. This trend can also be observed
when data from all sessions are examined together. In this
case, the Pearson’s correlation coefficient was ρ = 0.9788
(Fig. 6g). For arousal, the computed correlation was ρ =
{0.8431, 0.8568, 0.7538} for the first, second, and third
session, respectively. This high correlation can also be ob-
served in Fig. 6b, 6d, and 6f. When all three sessions are
jointly considered, the correlation coefficient was ρ = 0.8223
(Fig. 6h). The strong linear correlation between the average
emotion ratings provided by the participants and the expected
ratings, according to the available labelling, supports that a)
our population voted similarly as the participants in OASIS
and GAPED; b) the rating scales were correctly understood
by the participants; and c) the selected images are suitable
for the secondary purpose of this dataset, i.e., affect-enabled
subject-recognition.

If the correlation with the expected answer is computed
per subject, the average value is slightly smaller for valence,
with ρ = {0.8231, 0.8506, 0.8507} for the first, second, and
third session, respectively. However, the arousal dimension
presents significantly lower average correlation scores (ρ =
{0.3701, 0.4183, 0.3299}). These figures show that the arousal
scale is far more subjective than the valence one, and ratings
may have a stronger dependency on the subjects’ background,
thus showing a higher variance. This finding is also consistent
with the results reported in [54] for the OASIS dataset, stating
that the relatively lower reliability of the arousal scale was
in part due to a lack of internal consistency across gender
groups, as well as with the findings of Warriner et al. [70]
who showed that ratings of valence are relatively consistent
across participants while arousal is much more variable.

B. Agreement between sessions

Additionally, the inter-session agreement of the participants’
responses across the three sessions has been assessed by
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Fig. 6: Scatter plot, expected response vs average response,
per session and emotional dimension

computing the Kendall’s coefficient of concordance (Kendall’s
W ) [71] for each of the participants separately, using the
12 images that were repeated in every session. Since our
population and number of measurements are relatively small,
we have followed the recommendation in [72] and replaced the
traditional Friedman’s χ2 statistic by the F statistic in Eq. 1
in the computation of the p-values. The F distribution has
two parameters that represent the degrees of freedom for the
numerator and denominator. These are ν1 = n− 1− ( 2

m ) and

Arousal Valence
0

0.2

0.4

0.6

0.8

1

K
en

da
ll’

s
W

Fig. 7: Kendall’s coefficient of concordance.

ν2 = ν1 · (m− 1), with n being the number of measurements
and m being the number of times a measurement has been
taken. In our case, m = 3 is the number of sessions and
n = 12 the number of images that were recurrently used across
all sessions.

F =
(m− 1)W

(1−W )
(1)

A median Kendall’s W = 0.9285 (p << 0.05) was obtained
across participants for valence, and a median W = 0.7918 for
arousal (p < 0.05 in all but five subjects), as shown in Fig. 7.
These values show a very high inter-session agreement for
valence ratings and a moderate one for arousal ratings.

C. Validation of engagement

In order to validate that the participants were engaged
in the labelling process and did not answer at random, we
evaluated their performance on the addition operations that
were presented to them. Fig. 8 shows the percentage of
correct answers per user. On average, the participants correctly
answered 88.89% of the calculations, which supports the
participants’ active engagement. Only participant #3 had
a considerably lower performance (59.72%). Nevertheless,
he was not discarded from the dataset since the Pearson’s
correlations between his emotion ratings and the expected ones
(ρValence = 0.76, ρArousal = 0.36) was in line with the average
values reported in Section IV-A.

V. BASELINE EXPERIMENTAL RESULTS

The aim of this study is to provide a benchmark dataset for
EEG-based subject verification and identification. Verification
refers to the task of deciding whether a user is whoever they
claim to be. In this scenario, the query is only compared to the
template of the requested identity, and the user is accepted or
rejected depending on whether the result of the comparison is
above or below a certain threshold. In contrast, identification
refers to the task of deciding who the user is from a pool of
possible profiles. In this context, the query is compared to all
the available profiles and assigned to the identity that provides
the best match.

To complement the dataset, we have carried out a set
of supervised classification experiments in order to establish
some baseline results in both the verification and identification
scenarios. These experiments evaluated the performance when
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Fig. 8: Performance on the cognitive task per participant, in terms of the percentage of correctly solved mathematical operations.

using different combinations of features and stimuli. It must
be noted that the intention of the conducted experiments was
not to show the best feature extraction and/or classification
methods, but rather to provide a better understanding of the
data and their potential. Consequently, performance-related
restrictions were not considered.

A. Data preparation and feature extraction

In order to remove artefacts, such as those originating from
muscle movement, jaw clenching, or eye blinking, we used
the EEGLAB toolbox [73] to pre-process the EEG signals by
applying the PREP pipeline [74]. The PREP pipeline consists
of the following steps: (1) removal of line-noise with filtering,
(2) referencing of the signal relative to an estimate of the
“true” average reference, and (3) detection and interpolation
of bad channels, relative to the reference. After pre-processing,
we extracted the following features from the EEG signals:

1) Mel Frequency Cepstral Coefficients (MFCC): MFCC
features have been widely used in speech recognition appli-
cations [75], [76], and their use has recently been extended
to EEG-based biometrics [24], [77]. The procedure for the
extraction of MFCC from each EEG channel consists of
applying the Fourier Transform, then a filterbank in the Mel
scale, and finally the Discrete Cosine Transform. In this case,
we applied a filterbank with 18 filters and obtained the first 12
coefficients after dropping the DC coefficient, as proposed in
[78]. The final feature vector was created as the concatenation
of the 12 cepstral coefficients from each of the 14 EEG
channels, leading to a total of 12× 14 = 168 features.

2) Autoregression Reflection Coefficients (ARRC): ARRC
features have been used for EEG-based verification and iden-
tification in various studies [24], [77]. In this work, reflection
coefficients were extracted from each EEG channel from a
12-th order autoregressive model created by solving the Yule-
Walker equations. This process led to 12 ARRC features per
EEG channel, adding up to a total of 12× 14 = 168 features.

3) Spectral Features (SPEC): Four spectral features were
extracted from the commonly used [79] θ (4-8 Hz), β (12-30
Hz), γ (30+ Hz), and α (8-12 Hz) bands of each of the EEG
signal’s channels. The four computed spectral features were
the spectral centroid, spectral bandwidth, spectral crest factor,
and spectral flatness, and were computed as proposed in [80].
The final feature vector was created as the concatenation of
the 4 spectral features from each of the 4 bands of the 14 EEG
channels, leading to a total of 4× 4× 14 = 224 features.

The extracted features are also provided in our dataset, along
with the raw data, to ease future comparison of approaches
against the baseline provided.

B. Baseline subject verification evaluation

Following previous work on the field of EEG-based biomet-
rics [24] and in order to provide baseline subject verification
results for the proposed dataset that adhere to the state-of-the-
art, we used Hidden Markov Models (HMM) to model the
EEG signal’s temporal evolution for each user. We did this in
the same way as in [24], except that we used regular HMM in-
stead of left-right models because of their higher performance
in our case. Furthermore, it must be noted that continuous
variables with a multigaussian probability distribution were
used for the HMM. The exact procedure used is explained
below in greater detail. In this explanation, we refer to the
signal associated to the c-th channel of an EEG recording r
as r(c), with c = 1, 2, ..., 14.

The strategy followed for training the HMMs was to
segment the recordings into consecutive overlapping epochs
e(c). Each of these epochs had a length of 5 s with 50%
overlapping. Due to possible disconnections of the recording
device, captured signals with less than 3 s worth of data were
discarded from further analysis and recordings with duration
between 3 and 5 s were treated as a single epoch. The different
epochs were split into H overlapping frames of 1 s and 50%
overlapping, and represented as a sequence of observations
o(c), so that o(c) =

[
f
(c)
0 , f

(c)
1 , ..., f

(c)
H

]
where f

(c)
h is the

h-th frame of the epoch e(c). Each frame was then used in
order to extract the feature vectors f̂ ch, each containing Q
features, with QMFCC = 12, QARRC = 12, and QSPEC = 16.
Finally, the sequence of observations in the feature space ô(c)

was obtained as ô(c) =
[
f̂
(c)
0 , f̂

(c)
1 , ..., f̂

(c)
H

]
. The resulting

observation sequences ô(c) are used to build a Markov Model
λ(c) with N = 4 hidden states, by using the Baum-Welch
algorithm [81].

Similarly to previous works [24], the similarity between
each observation sequence of the verification session and the
generated models has been calculated by computing the a
posteriori log likelihood l(c) = P (ô(c)|λ(c)), once the most
probable path of hidden states is estimated using the Viterbi
algorithm. The decision rule for accepting or rejecting an
epoch according to the C models of any given subject is:
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TABLE II: Verification results for Session 2 when the system is trained with data from Session 1

Metric Feature AS MC RC RO VC3 VC5 VC7 VC10 VF3 VF5 VF7 VF10 Avg. (St. Dev.)

AUC
MFCC 0.7699† 0.6917 0.7567 0.6617 0.6099 0.6846 0.6476 0.6250 0.6602 0.6632 0.7017 0.7431 0.6846 (0.0486)
ARRC 0.7320 0.7034 0.7285 0.6765 0.5420 0.6611 0.6714 0.5725 0.6425 0.6813 0.7478 0.7479† 0.6756 (0.0626)
SPEC 0.7465 0.7035 0.7192 0.6528 0.5934 0.7567 0.6771 0.6424 0.6687 0.6606 0.7380 0.7571† 0.6930 (0.0499)

EER
MFCC 0.2633† 0.3085 0.2792 0.3601 0.4092 0.3315 0.3643 0.3886 0.3503 0.3573 0.3183 0.2826 0.3344 (0.0434)
ARRC 0.2911 0.3180 0.2961 0.3355 0.4594 0.3282 0.3409 0.4234 0.3604 0.3314 0.2865 0.2733† 0.3370 (0.0531)
SPEC 0.2880 0.3135 0.3164 0.3660 0.4209 0.2669 0.3392 0.3729 0.3593 0.3667 0.2837 0.2622† 0.3296 (0.0471)

Notes: † denotes the best performance per EEG feature used for the respective metric. Results in bold denote the best performance per stimulus used for the respective metric.
AUC: The higher the better. EER: The lower the better.

TABLE III: Verification results for Session 3 when the system is trained with data from Session 1

Metric Feature AS MC RC RO VC3 VC5 VC7 VC10 VF3 VF5 VF7 VF10 Avg. (St. Dev.)

AUC
MFCC 0.7109 0.6706 0.7030 0.7321 0.6505 0.7070 0.6514 0.5539 0.6044 0.7575† 0.6870 0.6493 0.6731 (0.0538)
ARRC 0.6487 0.6668 0.7643† 0.6797 0.5932 0.7251 0.6069 0.6059 0.5905 0.7061 0.6514 0.6636 0.6585 (0.0524)
SPEC 0.6385 0.6204 0.6922 0.7122† 0.6322 0.6958 0.6579 0.5569 0.6356 0.6756 0.6803 0.6255 0.6519 (0.0410)

EER
MFCC 0.3113 0.3389 0.3190 0.2963 0.3574 0.3172 0.3616 0.4386 0.4010 0.2642† 0.3209 0.3728 0.3416 (0.0457)
ARRC 0.3587 0.3348 0.2567† 0.3354 0.3959 0.2922 0.3860 0.3874 0.4008 0.2997 0.3582 0.3454 0.3459 (0.0432)
SPEC 0.3821 0.3847 0.3357 0.3152† 0.3776 0.3322 0.3637 0.4445 0.3495 0.3278 0.3337 0.3842 0.3609 (0.0346)

Notes: † denotes the best performance per EEG feature used for the respective metric. Results in bold denote the best performance per stimulus used for the respective metric.
AUC: The higher the better. EER: The lower the better.

DoC =

{
1 if 1

C

∑C
c=1 d

(c) ≥ φC
0 otherwise

(2)

where φC is the minimum number of channels that have to be
accepted in order to accept the epoch and d(c) is defined as:

d(c) =

{
1 if l(c) ≥ φt
0 otherwise

(3)

where φt is the threshold for deciding whether to accept or
reject the c-th channel of the epoch.

The evaluation process was designed so as to resemble
a real-life usage scenario of the proposed approach. This
was done by using the data acquired during one session for
enrolment, and data acquired at another later session to test
the verification performance. To also evaluate performance
degradation due to time ageing, we have trained the subject
models with data from the first session and independently
tested them by using data from the second and third sessions.

The verification performance was evaluated in terms of
Equal Error Rate (EER) and Area Under the Curve (AUC).
TABLES II and III show these results for each stimulus
(columns) and EEG feature (rows). The values reported cor-
respond to the best average results, obtained by varying
the thresholds φC and φt as in [24]. The average of the
performance metrics across all types of stimuli per EEG
feature was also computed and reported in the last column
of TABLES II and III, in order to provide an indication of
the overall performance of the different types of features.
Results presented are not conclusive with regard to the most
convenient features, as their performance varies along the
different types of stimuli. However, the type of stimuli seems
to have a higher influence on verification performance. In
particular, affective image stimuli (AS) and resting-state with
the eyes closed (RC) seem to perform slightly better.

A clearer and more interesting effect can also be observed
by comparing the last column of the two tables, if we take into

TABLE IV: Subject identification accuracy for different ac-
quisition protocols

Stimulus ARRC SPEC MFCC

AS 0.2320 0.3593 0.4025†

MC 0.2207 0.3392† 0.2641
RC 0.3100 0.3790 0.4779†

RO 0.1006 0.2306† 0.1583

VC3 0.1429 0.3117† 0.3117†

VC5 0.1223 0.2314 0.2926†

VC7 0.1637 0.0664 0.2434†

VC10 0.0873 0.1179 0.2140†

VF3 0.2254 0.2910 0.2992†

VF5 0.2061 0.2193 0.2719†

VF7 0.1397 0.1747† 0.1703
VF10 0.1921 0.1747 0.2838†

Notes: Values in bold refer to the best accuracy per feature. † denotes the best
accuracy per stimulus.

account that the difference in the time elapsed between training
and test in TABLE III is double than the one in TABLE II.
The average performance along all different types of stimuli
decreases consistently with time, and suggests the existence
of an ageing effect that has a negative impact on performance
as the time elapsed between enrolment and test measurements
increases.

C. Baseline subject identification evaluation

In addition to the presented verification results, we have also
used the proposed dataset for biometric identification. Subject
identification was modelled as a multi-class classification
problem with one class per participant, using the 5 s EEG
epochs previously created as the input. Data from sessions 1
and 2 were used for training and data from session 3 were
used to test the trained models. Such setting maximises the
amount of training data without simultaneously using data
from a same session for training and test, and also benefits
from the incremental learning effect reported in [29] by having
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training data from more than one session. For each of the
stimuli and each of the features, one multi-class ensemble
classifier was trained and fine-tuned using Matlab’s (R2016b)
built-in hyperparameter optimisation, which selects the best
hyperparameters, including the ensemble aggregation method.
Features in this experiment were extracted directly from each
of the epochs, instead of dividing the epochs into frames.

Results for the subject identification experiments are dis-
played in TABLE IV. From this table, it can be observed that
MFCC features provide the best performance for the majority
of stimuli. This is true for all cases except MC, RO, and VF7,
for which the SPEC features provided the highest accuracy.
ARRC features did not provide the best results in any case.

The highest subject identification accuracy reached 47.79%
for the MFCC features and the RC stimulus. The second
highest accuracy was 40.25%, for the MFCC features and
the AS stimulus. Furthermore, the second best identification
performance for all stimuli other than VC7 and VF10 was
achieved using the SPEC features, with the ARRC features
providing the worst performance for all stimuli except for
VC7 and VF10. A Wilcoxon’s signed rank test between the
results for the MFCC and the ARRC features resulted in
a p << 0.05 but was not conclusive when comparing the
results for MFCC and SPEC (p = 0.1016). On the contrary, a
comparison between the results for ARRC and SPEC resulted
in a statistically significant difference (p < 0.05).

It is worth pointing out that the highest identification
accuracy for each type of feature (MFCC, ARRC, SPEC)
was always achieved for the resting-state with eyes closed
(RC) stimulus, leading to an accuracy considerably higher
than under the second best performing stimulus for each
type of features (+7.54%, +1.97%, +7.8% respectively).
Furthermore, the second best identification accuracy for each
type of features was achieved when using the images as the
stimulus (AS), demonstrating its superiority compared to other
more commonly used stimuli.

The subject identification procedure was then repeated sepa-
rately for each EEG channel, using only the features computed
from each channel for training and testing the machine learn-
ing models. Unfortunately, no consistent conclusions could
be extracted regarding each channel’s performance using the
three examined features. Consistent to our findings shown in
TABLE IV, the highest identification accuracies were achieved
using the resting-state with eyes closed (RC) stimulus for the
vast majority of channels and features, reaching a highest
accuracy of 0.4027 for channel 1 (AF3) using the MFCC
features, 0.2544 for channel 7 (O1) using the ARRC features,
and 0.3790 for channel 9 (P8) and the SPEC features. It is
evident that the highest single-channel accuracies for each
feature type are lower than the highest accuracies achieved
using all the EEG channels, as shown in TABLE IV.

VI. CONCLUSIONS

In this work, we have introduced BED, a new dataset for
EEG-based biometrics that takes into consideration the specific
characteristics of the biometric context. This dataset contains
EEG recordings from 21 different individuals when using

12 different stimuli, captured along three different recording
sessions, each separated across time by a week. Both the raw
signals and the features used in this paper are provided as
part of the dataset. Preliminary results have been evaluated
in two typical biometric scenarios, namely verification and
identification. In the first of these tasks, the best results
were obtained when using resting-state with eyes closed and
images as the stimuli, with an AUC above 0.7 in most cases.
For identification, best results were achieved when using the
resting-state with eyes closed stimulus, independently of the
type of features; and MFCC features provided in general better
performance, showing the best accuracy for 9 out of 12 stimuli.
In general, these results suggest a better performance of the
resting-state with eyes closed stimulus in both verification and
identification tasks.

The presented dataset and baseline results provide re-
searchers with a valuable tool to evaluate their proposals and
develop other characterisations for EEG signals that help in
identifying patterns that are closer related to the individual. In
addition, the dataset also supports attempts to consider the
influence of emotions in the EEG signal, by using image-
based stimuli and self-reported emotional labels related to the
emotion that the participants experienced. Furthermore, the
BED dataset will allow researchers to study multiple aspects
of low-cost EEG biometrics, such as the effects of template
ageing in relation to different stimuli for signal acquisition,
the effects of different stimuli and/or the emotional state of
the individual on identification/verification performance, the
effects of different stimuli and emotional state on EEG signals,
and others.

Nevertheless, EEG-based biometrics is at its early stages
and there are still many open questions that will have to
be answered before it becomes a practical proposition. For
example, whether EEG biometrics is sufficiently reliable to
recognise a person after months or years from when the system
was trained is an issue which is not currently supported by
any existing dataset. Our dataset provides some support to
evaluate template ageing, but this is limited to a relatively
short period of time (two weeks). Some previous research
works also support that template ageing does occur, and report
a larger decrease in system performance for longer periods of
time, e.g., [26], [82]. However, further research is required to
quantify the potential impact of ageing on the applicability of
EEG biometrics when a large time span between training and
recognition is expected.
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