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A Noncontact Ballistocardiography-Based IoMT
System for Cardiopulmonary Health Monitoring

of Discharged COVID-19 Patients
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Abstract—We developed a ballistocardiography (BCG)-based
Internet-of-Medical-Things (IoMT) system for remote monitoring
of cardiopulmonary health. The system composes of BCG sen-
sor, edge node, and cloud platform. To improve computational
efficiency and system stability, the system adopted collaborative
computing between edge nodes and cloud platforms. Edge nodes
undertake signal processing tasks, namely approximate entropy
for signal quality assessment, a lifting wavelet scheme for sep-
arating the BCG and respiration signal, and the lightweight
BCG and respiration signal peaks detection. Heart rate vari-
ability (HRV), respiratory rate variability (RRV) analysis and
other intelligent computing are performed on cloud platform. In
experiments with 25 participants, the proposed method achieved
a mean absolute error (MAE)±standard deviation of absolute
error (SDAE) of 9.6±8.2 ms for heartbeat intervals detection,
and a MAE±SDAE of 22.4±31.1 ms for respiration intervals
detection. To study the recovery of cardiopulmonary function in
patients with coronavirus disease 2019 (COVID-19), this study
recruited 186 discharged patients with COVID-19 and 186 control
volunteers. The results indicate that the recovery performance of
the respiratory rhythm is better than the heart rhythm among
discharged patients with COVID-19. This reminds the patients
to be aware of the risk of cardiovascular disease after recovering
from COVID-19. Therefore, our remote monitoring system has
the ability to play a major role in the follow up and management
of discharged patients with COVID-19.

Index Terms—Ballistocardiography (BCG), cardiopulmonary
health, discharged patients with coronavirus disease 2019
(COVID-19), Internet of Medical Things (IoMT), noncontact
health monitoring.
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I. INTRODUCTION

THE ONGOING coronavirus disease 2019 (COVID-19)
pandemic has caused tens of millions of people

worldwide to be infected. COVID-19 is the result of
infection by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2); this virus can cause severe acute respiratory
syndrome, which can induce the generalized attenuation of
excitatory pathways that regulate the respiratory and car-
diovascular systems [1]. SARS-CoV-2 attacks not only the
respiratory system but also the cardiovascular system [2]–[5].
Documented evidence has revealed that approximately 20%
and 15% of patients with COVID-19 develop acute respiratory
distress syndrome and sustain myocardial injury [2],
respectively. Patients with cardiopulmonary injury are at
risk of chronic cardiopulmonary complications after recovery.
Therefore, the physical health of discharged patients who have
recovered from COVID-19 should be evaluated to determine
the long-term effects of COVID-19.

Heart rate variability (HRV) and respiratory rate variabil-
ity (RRV) are major indicators of cardiopulmonary health. In
addition, the HRV and RRV can be further used for sleep stag-
ing modeling and sleep-disordered breathing (SDB) diagnosis.
Conventionally, heart rate (HR) and respiratory rate (RR)
are monitored using electrocardiogram (ECG) and respiratory
signals through contact sensors. However, such monitoring
equipment is often limited by patient compliance, analyzable
wearing time, electrode skin irritation, and sleep disturbance.
Especially for patients with COVID-19, this contact monitor-
ing method can increase the probability of cross-infection and
the measurement load. Ballistocardiography (BCG) is a non-
contact technique for recording subtle motions of the human
body caused by cardiac ejection and breathing. It can be mea-
sured using beds [6], [7], wheel chairs [8], [9], and weighting
scales [10], [11]. The main advantages of using BCG signal to
monitor HR and RR are its convenience, low cost and noncon-
tact monitoring method. In addition, the rapid development of
the Internet of Medical Things (IoMT) has increased the use
of remote health monitoring systems in home health care. To
reduce frequency of contact between patients and doctors, the
IoMT-driven remote monitoring system shown in Fig. 1 is a
candidate for the follow up of discharged COVID-19 patients.

In the IoMT system, the edge device as the node of data
collection and processing is the core component of the system.
Some BCG-based IoMT systems have been developed for
family vital sign parameter monitoring. Various sensors are
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Fig. 1. Remote monitoring for discharged COVID-19 patients.

used to acquire BCG signals. These sensors mainly include
polyvinylidene fluoride film (PVDF) [12], electromechanical
films (EMFi) [13], hydraulic sensors [14], strain Gauges [15],
and fiber Bragg grating sensors (FBGSs) [16]. For exam-
ple, Brüser et al. [17] used PVDF as a piezoelectric material
to develop a film sensor that is placed under the bed sheet
where the chest is located to measure pressure changes on
the bed attributable to breathing movement and heartbeats.
To increase the accuracy of BCG analysis, some studies have
designed more complex systems or sensor networks. For exam-
ple, Kortelainen and Virkkala [18] developed a smart mattress
consisting of 160 EMFi sensors distributed throughout it that
can obtain a BCG signal from multiple locations. Nevertheless,
the improvement of BCG signal quality has remained lim-
ited; systems that use multiple BCG signals have increased
complexity. The key to BCG measurement system design is
not novel sensors or device structures but the stability and
reliability of the measuring instrument.

BCG signals are extremely susceptible to interference
from various types of noises and motion artifacts. Therefore,
research on anti-interference algorithm is the key to improve
the accuracy of BCG analysis. For example, Antink et al. [19]
used a continuous local interval estimator (CLIE) approach
to estimate the beat-to-beat intervals (BBIs). To reduce
the influence of frequent motion artifacts on the analysis
results, the CLIE method used ultrashort-term HRV analy-
sis. Brüser et al. [20] employed three estimators, namely
an autocorrelation function, an average magnitude difference
function, and maximum-amplitude pairs, to calculate BBIs by
using a sliding time window. Paalasmaa et al. [21] first adap-
tively inferred the heartbeat shape from the signal by using
hierarchical clustering. Subsequently, BBIs were detected by
identifying the positions where the heartbeat shape best fits
the signal. Although these methods can accurately calculate
the average HR per minute, their measurement accuracy for
a single heartbeat interval is insufficient. This directly affects
the accuracy of HRV measurement.

In this study, we achieved the remote monitoring of users’
cardiopulmonary function through the reasonable allocation
of computing resources to edge devices and cloud platform.
First, a series of signal preprocessing is performed on the edge
device. Then the processed data are uploaded to the cloud
platform through the wireless network for further analysis and
modeling. Our study has three main contributions.

1) The system based on the proposed noncontact method
is the first in the world to be used for the cardiopul-
monary function monitoring and management in dis-
charged patients who had recovered from COVID-19.

This system provides a novel solution for the follow-up
and monitoring of these patients.

2) To improve the robustness of the HRV analysis algo-
rithm, this study first used approximate entropy to judge
signal quality for eliminating signal segments that are
severely damaged by interference, thereby improving the
accuracy of J-J interval (interval between adjacent J
peaks on BCG signal) extraction.

3) To reduce the computational load in edge node, this
study proposed a lightweight J peaks detection method.
The method first used the proposed fuzzy positive and
negative slope discrimination (F-PNSD) algorithm to
detect peaks in the BCG envelope and then accurately
searched for corresponding J peak positions in BCG
according to the peak point in the envelope.

In addition, this system can be used for the noncon-
tact monitoring of cardiopulmonary function in patients with
COVID-19, which will effectively reduce the contact between
doctors and patients.

The remainder of this article is organized as follows.
Section II describes BCG mechanism and the proposed IoMT
system; Section III presents an anti-interfering BCG and respi-
ration signal peaks detection method, including signal quality
assessment (SQA), BCG and respiratory signal separation, and
peaks detection; Section IV presents experimental results and
discussion; Finally, Section V concludes this article.

II. BCG MECHANISM AND PROPOSED IOMT SYSTEM

A. BCG Mechanism

The BCG signal is caused by the rhythmic systole and
diastole of the heart and the resulting periodic pumping in
the blood vessels. During ventricular systole, when blood is
ejected into the large blood vessels, the body’s center of mass
moves toward the body’s head. In the other direction, when
blood moves toward blood vessels peripheral to the heart, the
center of mass moves toward the feet [22]. A schematic of
this process is illustrated in Fig. 2(a). The center of mass shift
is caused by the combined forces of heart activity, breathing,
and body movement. Therefore, the original signal is mainly
composed of the three aforementioned signal components. A
standard BCG heartbeat mainly contains H, I, J, K, L, M, N
waves, as shown in Fig. 2(b). The signals of the HL interval
form a W-shaped wave group that represents heart systole.
The L-N waves represent the diastole. Among all waves, the
J wave has the largest amplitude, indicating the ejection pro-
cess after blood enters the descending aorta. The magnitude
of I-J wave amplitude reflects the strength of ventricular con-
tractility. Therefore, the BCG signal contains substantial heart
activity information.

B. Proposed BCG Sensor

The proposed BCG system uses the piezoelectric ceramic
sensor to obtain BCG signals. The piezoelectric effect is a
phenomenon in which piezoelectric materials generate electri-
cal charges in response to applied mechanical pressure. The
piezoelectric element of a BCG sensor produces the electrical
charge signal corresponding to the vertical acceleration of the
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Fig. 2. (a) Aortic arch and force vector originating from left ventricular
ejection. Image from literature [21] and (b) typical BCG signal waveform.

Fig. 3. BCG sensor interface circuit design.

body’s center of mass. The total charge Q is proportional to
the external pressure F applied to the piezoelectric component,
defined as

Q = pF = pma (1)

where p is piezoelectric constant, m and a are overall body
mass and acceleration, respectively.

Because the output of the piezoelectric element is a charge
signal, it must be converted into a voltage signal for further
processing and analysis. This requires an interface circuit with
high input impedance and low input bias [9]. To this end, a
piezoelectric sensor and operational amplifier cascade circuit
was designed as presented in Fig. 3. The insulation resistance
R1 of the sensor is high and can be approximated as an open
circuit. The capacitor Ci passes the alternating current and
blocks the direct current. Therefore, only dynamic charges
caused by dynamic pressure can enter the interface circuit
through Ci. In the integral operation circuit, the conversion

Fig. 4. Proposed IoMT system framework.

relationship between the output voltage Uo and charges Q is
as follows:

Uo =
1

jωCf

1
jωCi

Ui = Ci

Cf
Ui = Ci

Cf

Q

Ci
= Q

Cf
. (2)

In addition, the setting of the parallel resistance Rf can effec-
tively prevent saturation of the operational amplifier caused by
major interference from body motion. Because a BCG signal
from respiratory activity mainly ranges from 0.1 to 10 Hz,
1/2πRf Cf is set to be less than the lower limit frequency
(0.1 Hz) to ensure the passband range of the signal.

C. Architecture of BCG-Based IoMT System

Thanks to the development of IoMT technology, the BCG-
based IoMT system has been applied to the follow up of
discharged patients with COVID-19. As shown in Fig. 4, the
proposed IoMT system composes of edge device, transport
layer, cloud platform, and application layer.

BCG is collected by the edge sensor placed under the pil-
low, and then is amplified and processed at the edge node.
The amplified signal is converted into a digital signal by an
analog-to-digital conversion (A/DC) chip. Finally, the SQA,
signal separation, as well as BCG and respiration signal
peaks detection are performed sequentially at edge node. In
the transport layer, the smartphone or other smart devices
receive real-time HR and respiration rate information from
edge devices via Bluetooth. Meanwhile, continuous heart-
beat and breathing intervals information are uploaded to the
cloud platform via wireless network. The cloud platform is
first used to store and manage basic user information and
physiological data. More importantly, it undertakes the cloud
computing task for the further data analysis (HRV, RRV, etc)
and modeling (sleep staging, SDB, etc) are performed. The
application layer mainly plays the role of interacting with users
and doctors. In the doctor-side, the preliminary analysis and
diagnosis results are sent to the doctor via the Internet. Based
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on this information, doctors conduct more in-depth individual-
ized diagnosis, and prescribe individualized prescriptions and
rehabilitation guidance to users through Web services. Users
can view HR, breathing rate, intelligent analysis reports and
doctor’s prescriptions in real time through smart terminals.

III. ANTI-INTERFERING BCG AND RESPIRATION

SIGNAL PEAKS DETECTION

After the BCG signal is collected by the sensor, it is first
preprocessed at the edge device, including SQA, signal sepa-
ration, as well as BCG and respiration signal peaks detection.
Accurate peak point detection is a prerequisite for HRV and
RRV analysis, further modeling and intelligent diagnosis. In
this section, we present an anti-interfering BCG and respiration
signal peaks detection method.

A. Signal Quality Assessment

In automatic health monitoring, the SQA plays a major role
in applications such as arrhythmia recognition, HRV analysis,
RR detection, and sleep monitoring [23]–[25]. BCG signals
are corrupted by various artifacts and noise, including base-
line wander (BW) due to breathing and abrupt changes (ACs)
due to body movement, power-line interference, and device
noise. Artifacts and noise can reduce BCG signal quality.
Specifically, ACs may severely corrupt the morphology of the
IJK complex wave. The presence of ACs makes it more dif-
ficult to determine the feature points of the waveform. The
AC component has a higher amplitude than BW does at low
frequencies (< 0.8 Hz); the two components merge into abrupt
BW in this frequency band.

We extract the abrupt BW by using an infinite impulse
response (IIR) low-pass filter with a cutoff frequency of
0.8 Hz. Fig. 5 illustrates the abrupt BW signal separated from
the raw BCG signal. The abrupt BW has short-term high-
amplitude variation in AC segments. Therefore, the separated
abrupt BW signal can be used to determine the quality of the
BCG signal. Let x[n], n = 0, 1, 2, M − 1 be a discrete-time
raw BCG signal. The abrupt BW signal is given as

a[n] = x[n] − x̂[n] (3)

where a[n] is abrupt BW signal and x̂[n] is the BCG signal
including high frequency noise.

In this study, information entropy is used as signal quality
index (SQI). The entropy of a signal represents the aver-
age uncertainty of the signal source. As the uncertainty of
the information source increases, its entropy value increases.
Approximate entropy (ApEn) is an entropy algorithm suitable
for processing short-term signals. It is approximately equal
to the negative average natural logarithm of the conditional
probability of maintaining similarity between a subsequence
of length m and m + 1 [26]. The calculation process of ApEn
is presented in Algorithm 1. To determine the signal quality
of a short period, the abrupt BW signal a[n] is first segmented
into continuous blocks of 1 s. Then, the kth block of a[n] is
expressed as

Uk(n) = a(kL + n), n = 1, 2, . . . , L; k = 0, 1, . . . (4)

Fig. 5. Abrupt BW signal separated from the raw BCG signal.

where Uk(n) is the kth block of a[n] and L is the size of blocks.
Subsequently, ApEn is solved in each block. To adaptively
detect ACs in BW, signal quality is determined by comput-
ing the dynamic ApEn difference between adjacent blocks,
calculated as

di = ApEni+1 − ApEni (5)

where di is the ApEn difference between ith block and i+1th
block. The calculated di is then compared with a preset thresh-
old for AC discrimination in the BW signal. The decision
criteria is as follows:

SQIi =
{

1, ‖di‖ < β

0, otherwise
(6)

where SQIi represents the SQI of the ith block, β is the pre-
set threshold. In this study, BCG signal quality is classified
into two grades: good (SQI = 1) versus bad (SQI = 0).
Good-grade BCG blocks are further processed, whereas bad-
grade blocks are discarded. The dynamic ApEn difference
method can effectively avoid BCG block with slowly varying
BW being recognized as unacceptable. Moreover, poor-quality
signals are not further processed, thereby reducing the com-
putational load of edge devices and increasing signal analysis
accuracy in cloud platform.

B. Separating BCG and Respiratory Signals

The previous section demonstrates that the raw BCG signal
is a superposition of the BCG signal, respiratory signal, and
noise. The BCG and respiratory signal are important param-
eters of vital signs that reflect cardiopulmonary function. For
further analysis, the extraction of BCG and respiratory sig-
nal is necessary. The most important information of these two
signals resides in the 1–10 Hz and 0.1–0.5 Hz ranges, respec-
tively. A wavelet transform (WT) can be used to decompose
a signal into different frequency bands. Because a wavelet
has a flexible shape and short duration, the wavelet signal
processing method can accurately capture transient features,
such as J-wave. In the traditional WT algorithm (i.e., Mallat
algorithm), the input signal is convolved with high-pass and
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Algorithm 1 Approximate Entropy Algorithm
input: U(n)→abrupt BW signal;
Output: approximate entropy;

1: given a time series U = {u1, u2, . . . , uN} , a non-negative
integer m ≤ N, and a positive real number r, defined
the blocks ym(i) = {ui, ui+1, . . . , ui+m−1} and ym(j) =
{uj, uj+1, . . . , uj+m−1};

2: calculate the distance between two blocks as
d(ym(i), ym(j)) = max(

∣∣yi+k − yj+k
∣∣)

3: calculate the value Cr
m(i) = Nm(i)

/
(N − m + 1), where

Nm(i) is number of d(ym(i), ym(j)) < r;
4: computing: �m(r) = ∑N−m+1

i=1 ln Cr
m

/
(N − m + 1)

5: increase the space dimensionality to m + 1, calculate
�m+1(r);

6: approximate entropy: ApEn(m, r, N) = �m(r) − �m+1(r)

low-pass filters to separate high-frequency and low-frequency
information. However, this method is based on the Fourier
transform operation, which has strict requirements for the com-
puting power and memory of the edge device. The lifting
wavelet scheme (LWS) is a novel wavelet construction method
based on the space domain and does not depend on the Fourier
transform, also known as second-generation wavelets. It effec-
tively improves the speed of the WT. This scheme reduces
the number of arithmetic operations by a factor of nearly
two [27]. Therefore, we used the LWS to separate the BCG
and respiratory signals and reduce the computational load and
memory overhead of the edge devices. Lifting WT (LWT) is
divided into two parts: 1) decomposition and 2) reconstruction.
Reconstruction is the inverse transformation of decomposition.
Decomposition includes the following three main steps.

1) Splitting: This operation divides the original signal sj

into two interrelated odd oj−1 and even ej−1 samples

oj−1 = {
oj−1,k = sj,2k+1

}
(7)

ej−1 = {
ej−1,k = sj,2k

}
. (8)

2) Prediction: This operation uses ej−1 to predict oj−1,
the prediction operator is represented by the function
P. The difference dj−1 between oj−1 and P(ej−1) rep-
resents their similarity. The dj−1 is wavelet coefficient,
which represents the high frequency component of sj.
The prediction can be formulated as follows:

dj−1 = oj−1 − P
(
ej−1

)
. (9)

3) Updating: This operation first selects an updating opera-
tor U, and subsequently updates the even sequence ej−1
to obtain the updated sequence sj−1, which is called the
scale coefficient, as follows:

sj−1 = ej−1 + U
(
dj−1

)
. (10)

The three aforementioned constitute one iteration of the
LWT. The sj−1 represents the smooth part of the input signal,
which can be iterated as the input of the subsequent lifting
algorithm. The prediction and updating operator are functions
that depend on the wavelet family used. The operators used

Fig. 6. Example of BCG and respiratory signal extraction using LWS.

are formulated as follows:

P
(
ej−1,k

) = (
ej−1,k + ej−1,k+1

)
/2 (11)

U
(
dj−1,k

) = (
dj−1,k + dj−1,k+1

)
/4. (12)

The sampling frequency of the raw BCG signal is 100 Hz.
six-layer LWT is used in this study. The BCG and respiratory
signals are extracted through the combined reconstruction of
wavelet coefficients and scale coefficients in the second, fifth,
and sixth layers. The results are showed in Fig. 6.

C. Hilbert Transform

The HRV analysis relies on accurate heartbeat detection. In
a typical BCG heartbeat, the J wave has the larger amplitude
than other waves. The J peak is usually used as fiducial point
for heartbeat segmentation. However, because the BCG wave-
form can oscillate and have noise interference, directly using
the fiducial point detection algorithm on the basis of wave
amplitude may cause false detection of the J peak. To over-
come this problem, the Hilbert transform (HT) was used in
this study to obtain a fundamental frequency that is synchro-
nized with the HR from a BCG signal. The HT of a signal is
expressed as

ŝ(t) = H[s(t)] = 1

π

∫ +∞

−∞
s(τ )

1

t − τ
dτ (13)

where s(t) is the input signal and ŝ(t) represents the output
through HT system. After filtering out the respiratory signal,
BCG signal can be modeled as

s(n) = a(n) cos(2π f0n) + e(n) (14)

where a(n) represents the heartbeat envelope that models rep-
etition of J wave in a BCG signal. Its frequency spectrum is
mainly composed of the fundamental and harmonics frequency
corresponding the HR. The a(n) is unobservable, and only its
version modulated by modulation frequency with f0 can be
observed. To obtain the pulse envelope of heartbeats, we per-
form HT on BCG signal. The HT of a signal is equivalent
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Fig. 7. Principle diagram of peak detection for BCG and respiration signal.
(a) Example of the BCG envelope signal attained using the HT; (b) peak
detection in the BCG envelope by comparing the maximum-amplitude points
in signal segments with smaller size; (c) peak detection for respiration by
comparing the maximum-amplitude points in signal segments with larger size;
(d) BCG peak detection by using the envelope peak.

to inputting the signal to a system with a response function
of h(n) = 1/πn. Therefore, HT can produce a phase shift
of 90 degrees for input signal. This procedure can be used to
approximate the output signal of HT[s(n)] by using (15) when
noise is negligible

ŝ(n) ≈ a(n) sin(2π f0n). (15)

Thus, an analytic signal with the input signal s(t) as its
real component and the output signal ŝ(t) as its imaginary
component is obtained. The expression is

p(n) = s(n) + iŝ(n). (16)

The heartbeat envelope a(n) can be obtained by calculating
the amplitude of p(n), which is expressed as

a(n) =
√

s(n)2 + ŝ(n)2. (17)

Fig. 7(a) shows an example of the heartbeat envelope
attained using the HT. We further detect the J wave in the
BCG signal on the basis of its envelope.

D. BCG and Respiration Signal Peaks Detection

The peak detection is decisive operation for HRV and RRV
analyses. To reduce computational complexity, we proposed a
lightweight and efficient peak detection algorithm called fuzzy
positive and negative slope discrimination (F-PNSD). In this
method, the signal is first divided into equal time segments,
and the peak points in the signal are detected by identifying
the maximum-amplitude points in these signal segments. If the
maximum amplitude of any signal segment is lower (higher)
than that of the signal segment after it, then the slope of the
signal is positive (negative). When the slope switches from
positive to negative, the maximum value of the last segment

with a positive slope is considered the peak value of the sig-
nal. The BCG envelope and respiration signal are separated
into segments, as shown in Fig. 7. Switches from a positive to
a negative slope are shown in segments S5-S6 and S3-S4 in
Fig. 7(b) and (c), respectively. The peak points in S5 and S3
segments with the last positive slope are detected as points P
and Q in BCG envelope and respiration signal. The number of
peaks detected in the signal depends on the segment size. The
smaller the segment size, the more peaks are detected in the
signal, and vice versa. Because the heartbeat cycle is shorter
than the respiratory cycle, to ensure that the peak point is not
missed, the BCG envelope signal has smaller segments. For
peak detection in the BCG signal, the peaks of the BCG sig-
nal and its envelope do not coincide at the exact same time.
Therefore, the peak of the BCG signal must be more accu-
rately identified according to the determined peak point of the
envelope signal. In fact, the BCG peak is located near the
peak of its envelope signal. The BCG peak location can be
expressed as follows:

t2 = t1f + (indexmax(BCG(t)) − τ)

f
(18)

where t represents time interval [(t1f − τ) : (t1f + τ)], t1 rep-
resents peak location of the corresponding BCG envelope, τ is
the set search radius, and f is sampling rate of signal. The func-
tion indexmax returns the index of largest value within search
radius. The relative location between the BCG and envelope
signal is marked in Fig. 7(d).

IV. RESULTS AND DISCUSSION

In this section, the performance of the proposed car-
diopulmonary health monitoring system was evaluated and
validated. Finally, the system was used to monitor the HRV
and RRV of discharged COVID-19 patients, and then to assess
their cardiopulmonary function. The experimental setup for
cardiopulmonary health monitoring is shown in Fig. 8.

A. Data Sets Acquisition

To evaluate the accuracy of heartbeat and respiration period
segmentation, we simultaneously collected golden standard
signal (ECG, respiration) and BCG data using BIOPAC
MP150 and Witheart Youthope Lite (our BCG monitoring
device) from 25 participants with average age in 30.5 ± 5.2
years and average weight in 55.7 ± 10.9 kg. The signals were
recorded from each participant for 5 minutes. The sampling
frequency of ECG and respiratory signal was 250 Hz, and that
of BCG signal was 125 Hz.

To study the cardiopulmonary function of discharged
COVID-19 patients, the proposed system was also used
to evaluate the cardiopulmonary function of discharged
COVID-19 patients during sleep. The experiment was car-
ried out from April 3, 2020 to April 3, 2021. The BCG data
were collected from 186 discharged COVID-19 patient (in
Wuhan, average age in 49.4 ± 11.4) and 186 healthy vol-
unteers (in Beijing, Guangzhou and Hangzhou, average age
in 49.4 ± 11.2). The two groups of participants are matched
for age, gender, and underlying diseases. This study was
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Fig. 8. Experimental setup for cardiopulmonary health monitoring in partic-
ipants using the proposed system. (a) Signal measurement scenario. (b) our
hardware equipment.

TABLE I
FOUR METRICS FOR PERFORMANCE ESTIMATION OF HEARTBEAT

USING DIFFERENT METHODS

approved by the ethics committee of Wuhan Jinyintan Hospital
(Approval number: KY-2020-40.02).

B. Accuracy Evaluation of Period Segmentation

The accuracy of heartbeat and respiration period segmenta-
tion is the prerequisite of HRV and RRV analyses. We used
four metrics to quantitatively evaluate the performance of the
proposed method for BCG J-J interval segmentation. The J-J
interval in BCG and the R-R interval in ECG are equivalent,
and both represent one heartbeat period, as shown in Fig. 9(a).
The four metrics were as follows.

1) Mean Absolute Error (MAE): MAE indicates the average
value of absolute error between J-J intervals from BCG
and R-R intervals from ECG.

2) Standard Deviation of Absolute Error (SDAE): SDAE
reflects the dispersion of absolute error between J-J

Fig. 9. Comparison of heartbeat detection based on ECG and BCG signals
from a recording with large interference. (a) Definition of J-J interval and
R-R interval. (b) J-peaks detection in BCG and R-peaks detection in ECG.
(c) tracking comparison of heartbeat interval for five minutes between BCG
and ECG.

intervals and R-R intervals. A low SDAE indicates that
the measuring error of J-J intervals fluctuates in small
range.

3) Coverage: The ratio between the numbers of heart-
beat detected from BCG and from ECG. The coverage
indicates the heartbeat recall rate from BCG.

4) Pearson Correlation Coefficient (PCC): PCC measures
the linear correlation between J-J interval sequences
from BCG and R-R interval sequences from ECG.

We compared the performance of the proposed method with
other competitive methods using the four aforementioned met-
rics on our database. The results are summarized in Table I.
The proposed method performed the high on the three metrics
of MAE (9.6 ms), SDAE (8.2 ms), and PCC (0.993). The cov-
erage of 0.985 is slightly lower than that of 0.987 and 0.992
in [9] and our method without SQA, respectively. It can be
seen that the SQA improves the detection accuracy of the J-J
interval by discarding poor quality signals, while also reducing
the Coverage metric. The accuracy of the J-J interval is more
important for HRV analysis than Coverage. Lydon et al. [28]
detected the peaks of the envelope obtained by an energy
function for heartbeat detection. Lydon et al. [28] used slid-
ing windows to restrict the search range for peak detection in
BCG. When signal quality is poor, both methods usually cause
the heartbeat to be lost or over-detected. Rosales et al. [30]
detected the heartbeat in a sliding window by analyzing the
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Fig. 10. Example of HR and RR monitoring using the proposed system: (a) continuous monitoring curves of HR and RR at one of the days; (b) benchmark
value of HR and RR at each day.

fundamental frequency of the BCG envelope signal. Although
this method can prevent interference, the calculated heartbeat
interval is actually the average interval of all heartbeats in the
window. Thus, the heartbeat intervals extracted by this method
are not suitable for HRV analysis. Xie et al. [9] first used the
clustering method to automatically learn individualized heart-
beat templates and then performed heartbeat recognition based
on HT and PCC. The method achieved a coverage of 0.987.
This method is advantageous because it can reduce the rate of
missed heartbeats, but accurately locating the J peaks in BCG
with large body movement interference is difficult. Our method
first uses a simple algorithm to perform peak detection on the
BCG envelope and then uses these peaks as reference points to
further search for corresponding peaks within a small range in
BCG. By using the coarse-to-fine peak detection, our method
could accurately detect heartbeats even when the BCG signal
quality is low. Fig. 9 compares heartbeat detection between
BCG and ECG. In this study, the PanTompkins algorithm was
utilized to detect R-peak in ECG due to its robustness [31].
Fig. 9(b) indicates that the proposed method accurately detects
J peaks in a BCG segment with considerable interference
and noise. The tracking comparisons for approximately 5 min
between BCG and ECG intervals are illustrated in Fig. 9(c).
The blue and orange curves represent the ECG and BCG heart-
beat intervals, respectively. We can see that the BCG interval
could better track the ECG interval changes except for a few
abnormal values. The abnormal values were mainly caused by

short-term ACs in the BCG signal that were replaced with
the averages of nearby values in subsequent processing. The
accuracy of the BCG interval met the requirements for HRV
analysis.

To evaluate the accuracy of respiration period segmentation,
we utilized two metrics similar to the evaluation for the accu-
racy of heartbeat period segmentation. The definitions of the
two metrics were as follows.

1) Mean Absolute Error: MAE indicates the average value
of absolute error between respiration intervals from
separated respiration signal and gold-standard respira-
tion intervals. The gold-standard respiration intervals
are extracted from directly measured respiration
signal.

2) Standard Deviation of Absolute Error: SDAE reflects
the dispersion of absolute error between respiration
intervals and gold-standard respiration intervals. A low
SDAE indicates that the measuring error of respiration
fluctuates in small range.

From Fig. 6, we can see that the respiration signal is
similar to the cosine signal. The peak detection of the res-
piration signal is easier than J-peak detection of the BCG
with the complex waveform. We did not detailedly analyze the
evaluation results for the accuracy of respiration period seg-
mentation. The proposed method achieved MAE ± SDAE of
22.4 ± 31.1 ms. Therefore, the accuracy met the requirements
for RRV analysis.
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Fig. 11. Comparison of HRV (SDNN, SDANN, LF, HF) between recovered
patients with COVID-19 and controls using boxplots.

In addition, the proposed method may have some limi-
tations. In this evaluation experiment, we did not consider
the impact of severe heart disease on the accuracy of the
algorithm. The BCG signal records the weak body vibra-
tions caused by the rhythmic heartbeat and ejection. However,
severe heart diseases (myocardial infarction, arrhythmia, etc.)
can cause rhythmic changes in heart beat and ejection, which
in turn affect the waveform shape of the BCG signal. The
abnormal change of the waveform shape may reduce the accu-
racy of the J wave detection algorithm. Therefore, we need
to evaluate the effectiveness of algorithms for common heart
diseases in the next work.

C. HR and RR Monitoring for Discharged COVID-19 Patient

HR and RR are the prerequisites for HRV and RRV
analyses. At the same time, medical experts can directly
judge the health status of cardiopulmonary function based
on the change curve of HR and RR. To facilitate doctors
to grasp more comprehensive HR and RR information, we
have developed relevant interactive interfaces at the appli-
cation layer of the system. Fig. 10 presents the monitoring
data of a discharged COVID-19 patient in the interactive
interfaces. The continuous fluctuation curves of HR and RR
at a night is shown in Fig. 10(a). The yellow and blue curve
represent HR and RR, respectively. The system automatically
determines the bedtime and bed away time according to the
detected BCG signal, and recognizes the time to fall asleep
and wake up according to HRV and RRV. The sleep stag-
ing based on HRV and RRV is shown in bottom of the
chart. The HR and RR monitoring data for this volunteer
for 30 consecutive days are shown in Fig. 10(b). Here, HR
is expressed by the benchmark value of the day, which is
obtained by calculating the mode of the continuous HR of the
day. The same is true for RR. In the doctor-side, specialists
can access this information through the Internet, and then

TABLE II
FOUR HRV MEASURES

provide patients individualized diagnosis and rehabilitation
guidance.

D. HRV Analysis for Discharged COVID-19 Patients

HRV is the physiological phenomenon of the variation in
the time interval between consecutive heartbeats and pro-
vides information about the balance between the sympathetic
and parasympathetic nervous systems. Low HRV indicates
autonomic nervous system dysfunction, which is related to
impaired heart function. HRV can be evaluated with vari-
ous measure. The proposed system analyzed the HRV through
SDNN, SDANN, LF, and HF, which are explained in Table II.
In this study, a total of 372 participants completed follow-
up, and 42 participants of them were excluded because of
excessive abnormal values; the monitoring data of 164 dis-
charged patient with COVID-19 and 166 healthy controls were
used for HRV analysis. Each participant had at least one con-
tinuous monitoring record for more than 10 h. We obtained
the long-term HRV by calculating the average value of 5-
min HRV over 1 day. Fig. 11 presents boxplots of the four
HRV measures for discharged COVID-19 patients and con-
trols. The symbol “+” within boxplots represents the sample
mean of HRV. The results show that time domain measures
(SDNN, SDANN) and frequency measures (LF, HF) differed
significantly between the two groups. The HRV of discharged
COVID-19 patients is significantly lower than that of con-
trols. SteelDwass and MannWhitney tests were performed to
test for significance. The four measures could be used to
separate the two groups in a statistically significant manner
(p < 0.001). This indicates that COVID-19 patients have not
returned to normal levels on dynamic adjustment of HR after
discharge. Currently, two opinions prevail regarding the rea-
sons for HRV reduction after recovery from COVID-19. One
opinion is that this is related to direct cardiac injury due to
COVID-19. Theoretically, direct injury can damage the car-
diac pacing or conduction system, leading to changes in HRV.
The second opinion to be considered is an autonomic ner-
vous system. Studies have demonstrated that low HRV is
widespread in patients infected with SARS-CoV-2, and the
reason may be that the virus can attack the sympathetic and
parasympathetic nerve fibers [32], [33]. Weakened sympatho-
vagal activity can reduce HRV. The HRV of patients who
recovered from COVID-19 remained lower than that of healthy
individuals in this study, indicating that the injury to the heart
or autonomic nervous system caused by SARS-CoV-2 is long
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TABLE III
FOUR RRV MEASURES

Fig. 12. Comparison of RRV (SDNN, SDANN, LF, HF) between recovered
patients with COVID-19 and controls using boxplots.

lasting. Therefore, patients should be aware of the risk of
cardiovascular disease after recovering from COVID-19.

E. RRV Analysis for Discharged COVID-19 Patient

To assess the recovery of lung function in discharged
patients with COVID-19, we used measures similar to those of
the HRV analysis to analyze the RR. The four RRV measures
are detailed in the Appendix. Fig. 12 presents the comparison
of RRV between discharged COVID-19 patient and controls by
using boxplots. The RRV analysis also uses four measures of
SDNN, SDANN, LF, and HF, which are described in Table III.
We can see that RRV did not differ significantly between the
recovered patients and the healthy controls. The p-value was
considerably higher than 0.05. As far as we know, some stud-
ies have shown that the HR and RR irregularities in COVID-19
patients during their illness are significantly higher than those
in the normal population [34], [35]. This indicates that respi-
ratory rhythm in patients with COVID-19 can quickly return
to normal levels after recovery. In other words, the respira-
tory rhythm of COVID-19 patients is easier to recover than
the heart rhythm. However, this conclusion was obtained from
an analysis of single-source data; further medical research is
warranted for verification.

V. CONCLUSION

This article proposed a noncontact IoMT system for mon-
itoring cardiopulmonary function. The system can separate
BCG and respiration signals from the pressure signal obtained
from a BCG sensor placed under the patient’s pillow and fur-
ther perform HRV and RRV analysis by using the extracted
HRs and RRs. A robust method for HR and RR detection
was proposed. The experimental results from 25 participants
indicated that the accuracy of the proposed method meets the
requirements for HRV and RRV analyses. Furthermore, our
devices were used to monitor the HRV and RRV of discharged
patient with COVID-19. The results indicate that the recovery
performance of the respiratory rhythm is better than the heart
trhythm among discharged patient with COVID-19. Although
this conclusion requires further medical research and verifica-
tion, the proposed system undoubtedly provides a new solution
for the monitoring of discharged patients with COVID-19. In
further research, we will continue to monitor the heart recovery
of these patients through our system. In addition, our system
can be further used to monitor cardiopulmonary function in
patients with active COVID-19. Its noncontact remote moni-
toring feature can effectively reduce contact between doctors
and patients, thereby reducing the probability of doctors being
infected.
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