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Abstract—The coronavirus disease 2019 (COVID-19) has
rapidly become a significant public health emergency all over the
world since it was first identified in Wuhan, China, in December
2019. Until today, massive disease-related data have been col-
lected, both manually and through the Internet of Medical Things
(IoMT), which can be potentially used to analyze the spread of
the disease. On the other hand, with the help of IoMT, the analy-
sis results of the current status of COVID-19 can be delivered to
people in real time to enable situational awareness, which may
help mitigate the disease spread in communities. However, cur-
rent accessible data on COVID-19 are mostly at a macrolevel,
such as for each state, county, or metropolitan area. For fine-
grained areas, such as for each city, community, or geographical
coordinate, COVID-19 data are usually not available, which pre-
vents us from obtaining information on the disease spread in
closer neighborhoods around us. To address this problem, in
this article, we propose a two-level risk assessment system. In
particular, we define a “risk index.” Then, we develop a risk
assessment model, called MK-DNN, by taking advantage of the
multikernel density estimation (MKDE) and deep neural network
(DNN). We train MK-DNN at the macrolevel (for each metro
area), which subsequently enables us to obtain the risk indices
at the microlevel (for each geographic coordinate). Moreover, a
heuristic validation method is further designed to help validate
the obtained microlevel risk indices. Simulations conducted on
real-world data demonstrate the accuracy and validity of our
proposed risk assessment system.

Index Terms—Coronavirus disease 2019 (COVID-19), deep
neural network (DNN), Internet of Medical Things (IoMT),
kernel density estimation (KDE), risk assessment.

I. INTRODUCTION

A CORONAVIRUS disease that was first outspread in
Wuhan city of China in December 2019, named coron-

avirus disease 2019 (COVID-19), raised intense attention not
only within China but also internationally. As an infectious
disease, COVID-19 has been regarded as a significant health
crisis in the U.S. and worldwide due to its rapid outbreak [1],
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Fig. 1. Confirmed cases (a) in the U.S. and (b) in Ohio State (by January
8, 2021) [9]. Size of the circle represents the number of cases in the area.

[2]. As of January 8, 2021, the disease has resulted in over
22 million confirmed cases and 370 700 reported deaths in the
U.S. and over 89 million confirmed cases and over 1.9 million
reported deaths worldwide. Fig. 1(a) shows the distribution of
confirmed cases over states and counties in the U.S. During the
COVID-19 outspread, the Internet of Medical Things (IoMT)
as an extension and specialization of the Internet of Things
(IoT) has been applied to combat COVID-19. On the one hand,
IoMT helps collect informative disease-related data by using
smart sensors [3], [4]. Combined with other related sources,
e.g., demographic and geographical data, these disease-related
data can be potentially used to analyze the spread of the dis-
ease. On the other hand, IoMT can utilize these analysis results
and enable smart medical/personal devices to track and moni-
tor the progression of COVID-19, improve people’s situational
awareness, and hence, may help mitigate the disease spread in
communities [5]–[8].
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However, current accessible data on COVID-19 are mostly
at the macrolevel [10], [11]. As shown in Fig. 1(b), consid-
ering the example of Ohio, only confirmed case information
for counties and metropolitan areas is accessible. Nevertheless,
disease-related data at the microlevel, e.g., for cities and com-
munities, are unavailable to the public. Therefore, we are
faced with the following question: can we model the sta-
tus of the virus outspread and estimate the risk not only at
the macrolevel, e.g., for counties and metros, but also at the
microlevel, e.g., cities, communities, and even geographical
coordinates on the map?

Existing works related to disease risk assessment are lim-
ited. Some of them adopt various statistic or learning tools,
e.g., autoregressive integrated moving average (ARIMA),
logistic regression, and stacked autoencoder, to estimate
the growing cases of certain areas in the long or short
term [12]–[14]. Others focus on combining disease-related
data with multisource data, e.g., Twitter comments and Web
news, to estimate the severity of the disease in certain
areas [42], [43]. To the best of our knowledge, how to estimate
the risk of COVID-19 at the microlevel remains an open and
challenging research problem.

In this article, we develop a two-level risk assessment
system. We first define a “risk index.” Then, we design a
risk assessment model called MK-DNN by taking advantage
of the multikernel density estimation (MKDE) and deep neu-
ral network (DNN). We train MK-DNN at the macrolevel,
and subsequently use the trained model to obtain risk indices
at the microlevel, particularly at each geographic coordinate.
The flowchart of our system is shown in Fig. 2. Specifically,
our system mainly consists of four components, which are:
1) data collection; 2) risk definition; 3) two-level modeling;
and 4) result validation. In the first part, we adopt data from
multisources, including both disease-related and demographic
data, for better analyzing the disease spread. Second, we define
a risk index based on the attributes collected from multisourced
data in order to quantify the risk of COVID-19. Third, we
design a two-level modeling process. At the macrolevel, the
collected multisourced data are used to generate a kernel den-
sity estimation (KDE) map. Then, the features extracted from
these KDE maps and the calculated risk indices by definition
are used to train a DNN at the macrolevel. At the microlevel,
the trained MK-DNN is applied to assess the risk indices at
each geographic coordinate. Since there is no ground-truth data
of risk indices at the microlevel, in the fourth part, we further
design a heuristic scheme to validate the risk indices at the
microlevel estimated by MK-DNN, which is also a two-level
procedure. At the macrolevel, we train a validation network
(an independent DNN) to infer the confirmed case of a metro
area by using MK-DNN assessed risk index of that metro
and the demographic data as the input. At the microlevel, a
similar validation network is applied at the microlevel within
that metro and used to estimate the confirmed case number
at the microlevel. Then, the confirmed case number at the
macrolevel can be estimated by summing up all the estimated
confirmed case numbers at the microlevel. The difference
between the macro and microlevel validation scores can effec-
tively help validate the estimated risk indices at the microlevel.

Fig. 2. Flowchart of the proposed COVID-19 assessment system.

In addition, our microlevel validation also helps optimize the
hyperparameter in MKDE.

The main contributions of this article are summarized as
follows.

1) We define a risk index for quantifying the risk of
COVID-19.

2) We develop a risk assessment model based on MKDE
and DNN, called MK-DNN. We train MK-DNN at the
macrolevel and then apply it at the microlevel to obtain
risk indices.

3) We further design a heuristic validation method to
validate the risk estimated at the microlevel.

4) Simulations based on the up-to-date disease-related data
and demographic data demonstrate the effectiveness of
our proposed COVID-19 risk assessment system.

The remainder of this article is organized as follows.
Section II introduces the most related work for combatting
COVID-19. Section III details the proposed risk assessment
system. In Section IV, we conduct simulations to evaluate the
performance of the proposed COVID-19 assessment model
and further validate the results. Finally, we conclude this article
in Section V.

II. RELATED WORK

In this section, we introduce the works that utilize various
mathematical and learning tools to combat COVID-19. These
works can be generally classified into two categories, the first
of which focuses on disease diagnose and treatment in the
biomedical domain, and the second of which focuses on the
outbreak pattern and trend analysis for the disease.

To diagnose the disease, Chen et al. [17] proposed a
prospective study on applying the deep learning model to
detect coronavirus pneumonia through computed tomogra-
phy (CT) images. Song et al. [18] proposed the details
relation extraction neural network (DRE-Net) to extract the
top-K details in the CT images for identifying patients with
COVID-19. Wang et al. [19] proposed a deep learning-
based detection method, where the authors randomly selected
regions of interest in CT images and used the Inception
network to extract features. Randhawa et al. [20] identified an
intrinsic COVID-19 virus genomic signature and introduced
a machine learning-based approach for the classification of
virus genomes. Xu et al. [21] compared multiple convolu-
tional neural network (CNN) models to classify CT samples
with COVID-19, influenza viral pneumonia, or no-infection.
Rao and Vazquez [22] proposed a machine learning-based
COVID-19 case identification method by using a mobile
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phone-based Web survey. Moreover, to help the treatment
process, Shi et al. [23] proposed a deep learning-based quan-
titative CT Model in predicting the severity of COVID-19
patients. Yan et al. [24] developed a machine learning-based
prognostic model to predict the survival rate for individual
severe patients by using three key clinical features, i.e., lac-
tic dehydrogenase (LDH), lymphocyte, and high-sensitivity
C-reactive protein (hsCRP).

Other works focus on learning the disease outbreak pat-
terns, aiming to analyze the severity for certain areas and
further predict the trend of outbreak. Wang et al. [25] adopted
a logistic model to predict the trend of the epidemic. Similarly,
Hermanowicz [13] used a logistic growth model to estimate
the growing cases in near-real time. Hu et al. [14] developed
a modified stacked autoencoder for real-time forecasting the
confirmed cases of COVID-19 across China. Majumder and
Mandl [26] combined public-available cumulative cases from
the ongoing outbreak with phenomenological modeling meth-
ods to conduct a preliminary transmissibility assessment.
Song et al. [27] developed a health informatics toolbox that
enables public health workers to timely analyze and evaluate
the time-course dynamics of COVID-19 through a Markov SIR
infectious disease process. Zhu et al. [28] introduced the virus
host prediction (VHP) to predict the potential hosts of viruses
using a deep learning algorithm. Chakraborty and Ghosh [12]
presented a hybrid approach based on the ARIMA model and
Wavelet-based forecasting model generating short-term (real-
time) forecasts of the future COVID-19 cases for multiple
countries. Roda et al. [29] proposed a study, indicating that a
simpler model may be more reliable on learning the trend of
the epidemic, and further modeled the potential of a second
outbreak after the return-to-work in the city. Sajadi et al. [30]
presented an analysis of temperature and latitude for predicting
the spreading trend of the COVID-19.

Note that very few works study the risk assessment at
the microlevel. Among them, Jahanbin and Rahmanian [15]
developed a fuzzy rule-based evolutionary algorithm, called
Eclass1-MIMO, which can mine twitter and Web news to
predict morbidity rates in a certain region. Ye et al. [16]
proposed an AI-driven system, called α-Satellite, to extract
features from heterogeneous sources and provide community-
level risk assessment under COVID-19. These works mainly
focus on feature extraction for predicting the risk level for
areas with accessible disease-related data. In this work, we
develop a two-level risk assessment system for estimating the
risk index at the microlevel without available disease-related
data.

III. TWO-LEVEL RISK ASSESSMENT SYSTEM

The structure of our two-level risk assessment system has
been shown in Fig. 2. In the following, we elaborate on the
four system components, i.e., multisourced data collection, risk
definition, two-level modeling, and validation, respectively.

A. Multisourced Data Collection

The severity of disease spread depends on many factors,
such as population density, age distribution, and the increasing

speed of confirmed cases. Properly identifying data sources
helps us better define the risk level and learn a risk prediction
model by mining intrinsic disease spread patterns. Relying on
a single-source data often leads to the learned model mediocre,
because single-source data are not informative for the model to
extract the complex patterns in the data. In our system, large-
scale multisourced data, including both disease-related and
demographic data, are collected for risk defining and model
learning.

1) Disease Related Data: We collect up-to-date public dis-
ease status data from authoritative organizations, e.g., Centers
for Disease Control and Prevention (CDC), and the World
Health Organization (WHO) [31], [32]. The status data include
the accumulated number of confirmed cases, death cases,
recovered cases, and weekly hospitalizations regarding each
state, county, and metros. Based on the collected data, we can
calculate daily cases and increasing rates for each category,
which are also essential features for risk defining and model
learning.

2) Demographic Data: The demographic data are collected
from United States Census Bureau and county government
websites, which include population, population per square mile
(density), area (square miles), age distribution, and housing
units regarding every state, county, metro, and city. Some
attributes are essential indices that reflect the risk level for
corresponding areas. For example, high population density
intuitively leads to a high spread rate of the disease. A large
ratio of senior adults in a particular area may cause more
spread of disease and more severe complications after being
infected due to their lower immunity. To better utilize these
data, we further calculated the median age for each area
as an extra attribute. Moreover, for a better model learning
performance, the model should be applied to more fine-grained
data. Thus, we mainly adopt demographic data over the city
level for model learning.

B. Risk Index Definition

We define a risk index to quantify the risk under COVID-19.
Ideally, the risk level should well reflect the severity of the
epidemic in a certain area, including the ratio and increas-
ing speed of the infection. Thus, both disease-related data,
e.g., the confirmed case number and demographic data are
critical elements for risk definition, which are detailed as
follows.

1) Disease Related Attributes a1: For a given area, the
disease-related attribute includes the confirmed case number,
death case number, increasing speed (new cases), and acceler-
ation (increasing speed of new cases), which is represented by
the vector a1. For example, as of May 11, 2020, the Cleveland
metropolitan area in Ohio State had 2861 confirmed cases,
147 death cases, 66 new cases, and 26 cases on new cases com-
pared with the day before. Thus, the disease-related attribute
a1 ∈ R

4 for the area is denoted as a1 = [2861, 147, 66, 26].
2) Demographic Attributes a2: To generate the risk level,

we mainly adopt population and age-related information,
which are the most critical indices related to the risk
level. Particularly, a2 contains the population, population
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density, and median age. For example, as of the latest data,
the Cleveland metropolitan population has a population of
396 815, a density of 5107 (population per square mile),
and the median age of 35.7. Thus, the demographic attribute
a2 ∈ R

3 for the area is denoted as a2 = [396 815, 5107, 35.7].
By aggregating the fetched attributes through linear com-

bination, we define the risk index R for a specific area as
follows:

R =
κ∑

i=1

αiAR(i), i ∈ [1, κ]

AR = a1 ⊕ a2. (1)

αi is a weight factor that indicates the importance of each
attribute. AR is the set of attributes used for obtaining risk.
AR(i) represents the ith element in AR, where κ is the length
of vector AR. a1 and a2 are the aforementioned disease-related
and demographic attributes. Note that

∑κ
i=1 αi = 1. ⊕ is the

vector concatenation operator.

C. Two-Level Modeling of MK-DNN

We employ a widely used deep learning method,
i.e., DNN [33], [34], to predict the risk index for a partic-
ular area as defined above [35]. However, the COVID-19 data
are not available in the microlevel areas. Here, we apply a
nonparametric statistic tool, i.e., KDE [36], to extract features
for certain areas, which can be used as the input of the DNN
model and, hence, estimate the risk index for the correspond-
ing areas. Specifically, we train and test our DNN model at
the macrolevel using the risk indices that can be directly cal-
culated by the definition as the true label, which is called
macrolevel modeling. The trained DNN can then be applied
to the microlevel to obtain the risk indices, which is called
microlevel modeling. The framework is elaborated as follows.

1) Macrolevel Modeling: In particular, there are four main
procedures, which include coordinate sampling, feature map
building, feature extraction, and training and testing. As men-
tioned above, we consider a metro area at the macrolevel
and a single coordinate at the microlevel. The flowchart of
macrolevel modeling is shown in Fig. 3. Specifically, an inde-
pendent KDE function is applied for each attribute, e.g., the
confirmed case number or population. We adopt a total of K
attributes for building KDEs. Thus, there are a total of K KDE
feature density maps. Note that K is the number of attributes
for building KDEs, while κ is the number of attributes used
for defining the risk index R. We adopt more attributes to build
more feature maps for better model learning performance and,
hence, K > κ . In feature extraction, K learned feature maps
are used to generate features used as the input of the fol-
lowing DNN. In particular, considering a metro area, we first
sample a certain amount of coordinates within the metro area.
The reason for sampling coordinates is to incorporate more
information for model learning. Using a single coordinate to
extract features may be improper and insufficient. By sampling
more coordinates, the metro’s status can be better represented
and the extracted features become more informative. After
sampling, for each feature map, the learned KDE first out-
puts the estimation, called feature density, for each sampled

Fig. 3. Flowchart of the macrolevel prediction. Input a metro coordinate as
example. The output is the predicted risk level for the metro. “Agg” represents
the aggregation function. Mmetro is the metadata of the metro.

coordinate. Then, the output feature densities are aggregated
to a single value, which is considered as the corresponding
extracted feature. By sampling multiple coordinates in a metro
area, more KDE estimated feature densities are considered;
thus, the status of the metro can be well represented. As there
are K feature maps, K features are extracted and input to the
DNN along with the metadata Mmetro for training and testing.
In the following, each main procedure is elaborated.

a) Coordinate sampling: As mentioned above, instead of
using a single coordinate, we sample m coordinates within the
metro area to better represent the metro’s status. In particular,
given a metro with the coordinate cmetro, we draw l × l grids
with a certain interval between nodes, where the center of
the grids is located on cmetro. Note that m = l × l. l and
the interval between nodes are predefined parameters. Thus,
we obtain the sample coordinates for cmetro, that is, c̃metro =
[c(1)

metro, . . . , c(m)
metro].

b) Feature map building: For each attribute, a feature
map is built based on KDE. Taking the attribute of the con-
firmed case number, and the granularity level of metro as an
example, the feature map is built as follows. Considering a
total of n confirmed cases, each case i is assigned with a
coordinate ci = [lati, loni] of the belonged metro. lati and loni

are the corresponding latitude and longitude. Hence, the con-
firmed cases can be represented by cconfirmed = [c1, . . . , cn].
The coordinates of each metro can be obtained from the United
States Census Bureau. Thus, the corresponding KDE function
can be represented as

f (c) = 1

nh

n∑

i=1

φ

( ||c − ci||
h

)
. (2)

c is the coordinate of the interest. ci is the element in cconfirmed.
φ is the nonnegative kernel function. h > 0 is the bandwidth,
which is a smoothing parameter. With (2), the estimated fea-
ture density for any coordinate of interest c can be calculated.
Thus, the corresponding feature map is generated. Note that
KDEs of different attributes may be built based on different
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Fig. 4. Structure of our DNN. K and Kmeta are the lengths of extracted
feature and metadata, respectively. The size of the output layer depends on
the type of the model task. Section IV elaborates both input layer and output
layer sizes.

granularity levels, which means that different KDEs have dif-
ferent resolutions. For instance, for confirmed case and death
case attributes, the most fine-grained granularity is metro level,
so each case is assigned a coordinate of the belonged metro.
For population density attribute, the granularity level can be
finer, i.e., communities in the city. Thus, each node of the pop-
ulation density attribute will be assigned with a coordinate of
the belonged community. Moreover, we remain a consistent
bandwidth of h for each KDE, where different choices of h
are evaluated in the simulation.

c) Feature extraction: Next, we extract features for each
attribute based on the generated feature maps. As there are
a total of K attributes, the extracted feature for a particular
metro area is represented by xmetro = [x1

metro, . . . , xK
metro]. As

it is shown in Fig. 3, to obtain each element xj
metro ∈ xmetro,

m coordinates within the metro have been sampled. We cal-
culate the KDE estimated feature density for each sampled
coordinate and apply an aggregation method to generate xj

metro.
Specifically, considering xj

metro ∈ xmetro, we have

xj
metro = A

(
fj
(

c(1)
metro

)
, . . . , fj

(
c(m)

metro

))
. (3)

A(·) is an aggregation function. j ∈ [1, K] is the index of a
certain attribute, e.g., the confirmed case, population density,
etc. fj(·) is the corresponding KDE function as shown in (2),
where ci ∈ cj. Specifically, we adopt mean aggregation. Thus,
(3) is rewritten as

xj
metro = 1

m

m∑

i=1

fj
(

c(i)
metro

)
, i ∈ [1, m], j ∈ [1, K]. (4)

c(i)
metro is the element in c̃metro. By calculating (4) over K

attributes, we obtain the extracted feature vector xmetro for
the certain metro.

d) Training and testing: So far, we have defined the
risk and extracted feature vector for each macrolevel area,
i.e., a metro. Using extracted feature vector and defined risk
as input and true label, respectively, a learning model can be
trained and tested for predicting the risk index. To design the
structure of our learning model, we mainly consider the fol-
lowing factors. First, as we adopt data from both spatial and
time domains, e.g., confirmed cases, new cases, and accel-
eration (detailed in the simulation), the model capacity is a

Fig. 5. Flowchart of the microlevel prediction. cinterest is the coordinate of
interest, and Minterest is the corresponding metadata.

major concern. Second, the model needs to be trained effi-
ciently for better applicability in real-world applications in
IoMT. Considering these, DNN is adopted in our system due
to its strong ability to learn the nonlinear complex correlations
among data and its high training efficiency compared with
other well-known models, e.g., convolutional or recurrent neu-
ral networks [37]. In particular, the adopted DNN structure is
shown in Fig. 4, where there are a total of three hidden layers.
The size of each hidden layer is displayed in the figure. The
input of the DNN is a vector that concatenates both extracted
feature and the metadata, with the length of K+Kmeta. The out-
put layer size is not fixed because we have developed different
types of model tasks for the performance test. In particular,
we develop both regression and classification tasks to test the
DNN performance, where the mean square error (MSE) and
cross-entropy are adopted for the loss function, respectively.

In the regression task, y and ŷ (subscript metro is
omitted for simplicity) are the defined risk and the predicted
risk, respectively. The corresponding MSE loss can be
calculated by

Lreg = 1

N

N∑

i=1

(
yi − ŷi

)2 (5)

where N is the total number of data samples.
In the classification task, the defined risk y is first cat-

egorized into a p-length one-hot vector y ∈ �p, where
�p = {y ∈ {0, 1}p, 1T y = 1}. p is the number of classes, where
each of them represents different risk level. Correspondingly,
the output of the DNN model becomes ŷ ∈ �′p, where
�′p = {ŷ ≥ 0, 1T ŷ = 1} is predicted score over p classes.
Hence, the corresponding cross-entropy loss is calculated by

Lclass = − 1

N

N∑

i=1

yT
i log ŷi. (6)

By developing both regression and classification tasks, the
performance of the MK-DNN model is extensively evaluated.

2) Microlevel Modeling: By taking advantage of KDE, the
prediction model can be further extended to a microlevel. That
is, for any coordinate of interest, the model is able to out-
put a risk level assessment. In particular, the flowchart of
the microlevel modeling is shown in Fig. 5. Considering a
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coordinate of interest cinterest, we first apply the KDEs gen-
erated from the macrolevel model to calculate the feature
density for K attributes. Thus, the output of KDEs xinterest =
[x1

interest, . . . , xK
interest] is considered as the extracted feature

and inputted to the DNN model trained in the macrolevel
modeling. For Minterest, we directly adopt the corresponding
macrolevel metadata as the metadata of cinterest.

D. Validation

Our model can now be trained over macrolevel and obtain
the risk indices for microlevel areas. Since we have ground-
truth data available at the macrolevel, it is straightforward to
train our risk assessment system and evaluate its performance
at the macrolevel. Since ground-truth data are unavailable
at the microlevel, we evaluate the performance of our risk
assessment system by comparing the sum of the microlevel
confirmed case number and the macrolevel confirmed case
number obtained based on risk indices. Specifically, we design
validation score functions at both macrolevel and microlevel.
The reason for designing validation score functions is to
make evaluation metrics consistent at both macrolevel and
microlevel validations. The consistent validation score func-
tions at both levels can demonstrate the degradation of the
model performance when it is applied at the microlevel.
Intuitively, a small validation score can demonstrate the effec-
tiveness of our model at the microlevel. The details of
macrolevel and microlevel validation processes are presented
as follows.

1) Macrolevel Validation: In macrolevel validation, we ver-
ify the validity of the MK-DNN’s macrolevel-predicted risk
indices. The structure of macrolevel validation is shown in
Fig. 6, where we take a certain metro of interest as the input to
validation. Specifically, the trained MK-DNN is first applied to
generate the corresponding predicted risk level. Here, we adopt
the continuous result from the regression task for validation.
Then, the aforementioned demographic attribute a2 is concate-
nated to the MK-DNN output, which is used as the input of the
validation network. Based on the true confirmed case number
of the metro aconfirmed

1,metro and the predicted result âconfirmed
1,metro , the

network generates a validation score smacro
metro , which is calculated

by

smacro
metro = exp

⎛

⎝−
(

âconfirmed
1,metro − aconfirmed

1,metro

aconfirmed
1,metro

)2
⎞

⎠. (7)

Moreover, we adopt MSE as the loss function to train the
validation network. By minimizing the loss during the training
process, it is obvious to see the validation score smacro

metro will
increase.

As discussed previously, the defined risk is an effective
metric that reflects the ratio of infections in a certain area.
Therefore, by inputting the obtained risk indices and demo-
graphic attributes, the validation score effectively shows the
risk’s validity. A higher score indicates that the obtained risk
index effectively depicts the relation between the demographic
feature and the confirmed case, and can be easily learned

Fig. 6. Process of the macrolevel validation. aconfirmed
1,metro and âconfirmed

1,metro rep-
resent the confirmed case number in the current metro and the predicted
result of the validation network, respectively. a2,metro is the vector of demo-
graphic attributes for the current metro, Mmetro is the metadata. smacro

metro is the
calculated macrolevel validation score.

Fig. 7. Process of the microlevel validation. {c1, . . . , cq} are the coordinates
of q districts. {a2,1, . . . , a2,q} are the corresponding demographic attributes
vectors. aconfirmed

1,metro and {âconfirmed
1,1 , . . . , âconfirmed

1,q } represent the confirmed
case number in the current metro and the predicted results for q districts,
respectively. smicro

metro is the calculated microlevel validation score.

by the network. Conversely, a lower score indicates the inef-
fectiveness of the obtained risk index. Thus, the macrolevel
obtained risk index is validated.

2) Microlevel Validation: Since there are no true data of the
confirmed case and demographic data regarding each coor-
dinate, the macrolevel validation method cannot be directly
applied in the microlevel. However, by taking advantage
of the previously built KDE functions, we are able to esti-
mate the demographic data on a microlevel district. Hence,
with the same validation network trained in the macrolevel, we
can predict the confirmed case number in a microlevel district
using the estimated demographic data. Realizing this, we pro-
pose a heuristic method to indirectly validate the obtained risk
index at the microlevel, which is to evaluate the sum of the
predicted confirmed case numbers in multiple districts. In this
way, the true confirmed case number in the macrolevel can be
utilized for validation. By checking the difference between the
sum value and true macrolevel data, we can obtain the accu-
mulated error of microlevel predictions. Hence, to a certain
extent, the validity of microlevel’s obtained risk indices are
evaluated.

The structure of the microlevel validation is shown in Fig. 7.
Specifically, we first chop a metro into q districts and sample a
coordinate for each of them, hence obtaining a coordinate set
{c1, . . . , cq}. For each coordinate ci, the microlevel modeling
in MK-DNN is applied to obtain risk index ŷi for the corre-
sponding district. Note that a district is fairly small compared
with macrolevel areas. Thus, we directly use the obtained risk
index of the coordinate to represent the corresponding dis-
trict. Then, we estimate the demographic attributes for the
corresponding district. The estimated demographic attributes



WANG et al.: TOWARD COMBATTING COVID-19: RISK ASSESSMENT SYSTEM 15959

for ci are denoted by â2,i. A certain attribute âattr
2,i ∈ â2,i is

calculated by

âattr
2,i = aattr

2,metro
fattr(ci)∑q
j=1 fattr(cj)

. (8)

fattr(·) is the KDE function for the certain attribute. Similar
with microlevel MK-DNN, we directly adopt the correspond-
ing macrolevel metadata as the metadata of each coordinate.
Thus, the validation network trained in macrolevel validation
can be applied to output predicted confirmed case number
âconfirmed

1,i for ci. By summing up q predicted numbers, we
obtain âconfirmed

1,sum , which is used to compared with the true con-
firmed case number of the corresponding metro aconfirmed

1,metro and
finally generate the microlevel validation score smicro

metro. Similar
to (7), smicro

metro is calculated by

smicro
metro = exp

⎛

⎝−
(

âconfirmed
1,sum − aconfirmed

1,metro

aconfirmed
1,metro

)2
⎞

⎠. (9)

So far, both macro and microlevel validation scores are
obtained. Comparing the difference between two scores can
effectively help validate if macrolevel and microlevel obtained
risk indices are consistent. In other words, a small difference
demonstrates that the risk indices obtained at the microlevel
are still effective under our risk definition, while a large dif-
ference demonstrates that the risk indices are far from the
risk definition. In addition, it should be noted that the vali-
dation method is not used to validate the effectiveness of our
risk definition. As risk index is essentially a subjective def-
inition that weighs the severity of the pandemic, to the best
of our knowledge, most existing risk indexing methods focus
on extracting certain attributes to generate risk indices, rather
than validating the effectiveness of the risk definition [16].
In our system, it is either not the main objective to validate
the defined risk indices. The major challenge is to effectively
obtain the risk index for both macro and micro areas, given a
certain risk definition. From the above, this goal is achieved
by using the MK-DNN model to extract features for all points
(coordinates) on the map, hence enabling the model to obtain
risk index for both macrolevel and microlevel areas. In the
following section, we show the performance of the MK-DNN
model and apply validation methods to help verify the results.
Moreover, as the microlevel validation utilizes the KDEs of
the MK-DNN model, the hyperparameter setup in KDEs may
somehow influence the validation score. Hence, microlevel
validation can additionally help optimize the hyperparameter
in KDE. Further discussion is given in the following section.

IV. PERFORMANCE EVALUATION

In this section, we conduct the performance evaluation of
the proposed MK-DNN model and show the validation results.
In particular, we first introduce the details of the data set
adopted for the simulation and data preprocessing. Then, we
show the defined risk indices for macrolevel areas, followed
by the training and testing results of macrolevel MK-DNN
and the microlevel MK-DNN obtained hotspot map. We also

introduce other well-known deep learning models and a state-
of-the-art risk assessment model for performance comparison.
In the end, we validate risk indices obtained by both macro
and microlevel MK-DNN.

A. Data Set and Data Preprocessing

For disease-related attribute a1, we adpt the up-to-date data
set “U.S. Metropolitan Daily Cases with Basemap” from a
public research data repository, Harvard Dataverse [38], [39].
The data set includes time-series confirmed and death
COVID-19 cases in the U.S. metropolitan areas from January
22, 2020, to July 29, 2020, 190 days. We picked the metropoli-
tan areas in OH state for system performance evaluation,
which includes 36 areas. Thus, both the confirmed and the
dead cases data contain a total of 36 × 190 = 6840 raw
data items. To fully incorporate the spatial–temporal corre-
lations in the model learning, we also introduce the daily
confirmed cases (new cases) and increment daily confirmed
cases (acceleration), where the number of new cases is cal-
culated by the confirmed case data of current and past one
time slots, the acceleration is calculated by the data of cur-
rent and past two time slots. Hence, the data correlations of
time domain (including two past time slots) are considered by
the model. Especially, the acceleration clearly depicts whether
the pandemic curve is becoming flattened, which can be an
important metric for risk indexing. Intuitively, as new cases
and acceleration have sufficiently represented the severity of
the pandemic status, in order to limit the redundancy of the
data, we did not incorporate data of earlier time slots in our
model. Thus, there are a total of four disease-related attributes
adopted.

For demographic attributes a2, we collect data from the
United States Census Bureau [40]. The data set was updated
on July 1, 2019, which includes population, population den-
sity, median age, age distribution, gender distribution, and
persons per household (2014–2018) for each metropolitan
area. The age distribution includes population for age intervals
[0, 4], [5, 24], [25, 44], [45, 64], [65, 84], and [85,∞). Thus,
there are a total of 11 demographic attributes.

Therefore, there are a total of 4+11 = 15 attributes used for
model learning. Among these attributes, four of them, includ-
ing population density, median age, gender distribution, and
persons per household, are used as metadata. Thus, there are
a total of K = 11 feature density maps built. Moreover, we col-
lect coordinates of each metro from the “United States Cities
Database,” a data set built by Simplemaps using the authori-
tative sources, such as the U.S. Geological Survey and U.S.
Census Bureau [41]. The coordinate data set is updated as of
September 11, 2019.

B. Define Risk

As introduced in Section III-B, (1) is applied to aggre-
gate features in AR. Note that each attribute in AR is
normalized into the interval of [0, 1] before generating the
risk index. The weight α of the seven attributes in AR is
set to [0.2, 0.1, 0.2, 0.2, 0.1, 0.1, 0.1], which is correspond-
ing to the attribute of confirmed case, death case, daily case,
acceleration, population, population density, and median age,
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Fig. 8. Defined risk indices for metropolitan areas in Ohio state. The size
of dot represents the risk index for the corresponding area.

respectively. The defined risk index for each metro is then
normalized into the interval of [0, 10]. We show the gener-
ated risk indices for metropolitan areas as the date of July 29,
2020, in Fig. 8, where the size of the marker in the figure
represents the defined risk index of the corresponding area.
It can be easily noticed from the figure that there are two
metropolitan areas having much higher risk levels than the
rest. These two areas, respectively, correspond to Cleveland
and Columbus metros in Ohio, which are the most crowded
two metropolitan areas in Ohio. As of July 29, 2020, Cleveland
and Columbus metropolitan areas have an accumulated 15 892
and 22 557 confirmed cases, respectively, which are the high-
est two in Ohio. Thus, it can be found that the defined risk
indices properly indicate the severity level of infections in the
corresponding areas.

C. MK-DNN Evaluation

As the risk indices of macrolevel areas, i.e., metros, are
defined, we set up the MK-DNN model for training and
testing. First, a KDE is set up for each attribute in both
disease-related and demographic data sets. Then, we gener-
ate the training samples of DNN based on KDE’s output and
set up the DNN model for two-level modeling. Both regres-
sion and classification tasks are conducted in the macrolevel
DNN training process. Moreover, we compare our MK-DNN
model with other commonly used deep learning models. After
macrolevel training, we apply our model to the microlevel and
show the obtained risk hotspot maps.

1) KDE Setup: For each attribute, we build up a corre-
sponding KDE function. As it is aforementioned, according
to the attribute value in each metro, we first assign the corre-
sponding number of nodes to the coordinate of the metro and
then apply (2) to build up the corresponding feature density
map. We adopt the Gaussian function as the kernel function.
The bandwidth h, as a hyperparameter, needs to be properly
set for optimal performance. Ideally, h is expected to be as
small as possible, leading to a much more accurate estimated
density over a certain area. However, as h decreases, fewer
nodes on the map are incorporated to calculate the density,
which leads the generated feature map less smooth. Different

h are tested in the following simulation for seeking the optimal
bandwidth. Note that the unit of distance between coordinates
is transferred into radians for the simulation, where a radian
of 0.01 approximately equals 63.6 km.

As the KDEs are built up, the training sample xmetro =
[x1

metro, . . . , xK
metro] for a certain metro of interest can be

formulated.
2) DNN Setup: The DNN used in the simulation contains

three hidden layers with 64, 128, and 32 nodes, respectively.
The input layer has the size of 15 (11 extracted features + 4
metadata attributes), as aforementioned. The size of the output
layer is dependent on different tasks. In the regression task,
the output layer size is 1, which is a continuous risk index in
[0, 10]. In the classification task, the task label is transferred
to discrete 11 levels, [0, 1, 2, . . . , 10], where each level i is
represented by a one-hot vector y = [y1, . . . , y11], y ∈ �11,

where yi = 1. Thus, the size of the output is changed to 11
correspondingly. The activation function for the hidden lay-
ers in both regression and classification tasks is set to “relu.”
For the output layer in regression and classification tasks, the
activation functions are “sigmoid” and “softmax,” respectively.
The regression task uses MSE as the loss function, while the
other uses multiclass cross-entropy.

3) Two-Level Modeling: Different bandwidths h, including
0.001, 0.002, 0.003, 0.004, and 0.006, have been tested in
this section. For both regression and classification tasks, the
number of training epochs is 150. 80% of data is used for
training, and 20% for testing.

Our model is run on a PC with 64-GB RAM and a GPU of
NVIDIA RTX 3090 and implemented with the python deep
learning library Keras. We show the performance of MK-DNN
in Fig. 9. The first two rows in the figure are the training
and testing performance of macrolevel modeling in MK-DNN
with different h. The first row is the regression loss and the
second is classification accuracy. The third row is the risk
hotspot map generated by the microlevel modeling of the cor-
responding MK-DNN. For the regression loss, it can be easily
found the performance of “h = 0.001” and “h = 0.003”
are better than the rest, where the MSE of which converge
at the value lower than 0.2. As the bandwidth h increases,
both the train and test loss dramatically increase, especially in
“h = 0.014,” where the test loss even cannot converge after
150 epochs of training. The reason is that when h becomes
larger, each KDE incorporates more nodes to calculate the
feature density of a certain coordinate, which leads the esti-
mated density distribution less informative. Hence, the DNN
model fails to learn effectively. This also can be noticed easily
in the microlevel prediction results, which is in the third row
of Fig. 9.

Regarding the microlevel prediction, the regression model
of MK-DNN is applied to the sampled coordinates in Ohio. In
particular, we chop the map into a grid with each grid size of
0.05 degrees (0.00087 of radian). For each grid, we implement
the microlevel MK-DNN to obtain the risk indices. From the
figure, we observe that when the bandwidth of KDE is small,
the trained DNN becomes relatively rigid and only marks the
metropolitan areas as high risk. As the bandwidth increases,
the DNN marks certain microlevel areas as high risk. However,
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Fig. 9. Performance of MK-DNN. The first two rows are the learning results of regression and classification tasks, respectively. The third row is the
risk hotspot maps obtained by the microlevel modeling. (a) Regression loss, h = 0.001. (b) Regression loss, h = 0.003. (c) Regression loss, h = 0.006.
(d) Regression loss, h = 0.01. (e) Regression loss, h = 0.014. (f) Classification accuracy, h = 0.001. (g) Classification accuracy, h = 0.003. (h) Classification
accuracy, h = 0.006. (i) Classification accuracy, h = 0.01. (j) Classification accuracy, h = 0.014. (k) Predicted risk hotspot, h = 0.001. (l) Predicted risk
hotspot, h = 0.003. (m) Predicted risk hotspot, h = 0.006. (n) Predicted risk hotspot, h = 0.01. (o) Predicted risk hotspot, h = 0.014.

as the bandwidth becomes too large, as shown in Fig. 9(n)
and (o), it is hard to differentiate the risks between areas,
which is because the KDE improperly incorporates a much
larger area to calculate feature density.

D. Validation

After the MK-DNN is trained, we further conduct our
validation simulation to validate both macro and microlevel
obtained risk indices. In macrolevel validation, we first train
the validation network by inputting the obtained risk and
demographic attributes to validation network. The label of
the input samples are the corresponding confirmed case num-
ber. Note that the validation network is trained based on the
data from macrolevel areas, i.e., metros with disease-related
data. Besides, the risk indices used in the macrolevel valida-
tion network training is the output of the regression model of
macrolevel MK-DNN. Here, we, respectively, use bandwidths
of 0.001, 0.003, and 0.006 to test the training performance
and the validation score for macrolevel validation. In the fol-
lowing microlevel validation, we, respectively, apply three
trained validation networks to further validate the risk obtained
by microlevel MK-DNN with the corresponding bandwidth.
Similar as before, 36(metros) × 190(timeslots) = 6840 data
items are formed for validation network training and testing.

The ratio of training and testing is 80%:20%. The loss function
is set to MSE.

Fig. 10 shows the training and testing loss of the validation
networks and the corresponding validation scores. After 500
epochs of training, the test loss and the corresponding valida-
tion score are as follows. When h = 0.001, the loss and score
converge at 89.46 and 0.82, respectively. When h = 0.003,
they converge at 50.62 and 0.87. Moreover, they converge at
55.58 and 0.85, when h = 0.006. It should be noticed that
the input and the output of the validation network are actu-
ally the output and input of the MK-DNN model, respectively.
Thus, it is reasonable to see that the obtained risk is highly
related to the confirmed case number because the MK-DNN
is fully trained for risk prediction. Furthermore, we compared
our model with other existing methods in Table I. In partic-
ular, we show the validation scores of three most significant
metropolitan areas in Ohio, which are Cleveland, Columbus,
and Akron, along with the average results of all 36 metros in
Ohio. We adopt risk indices defined in [16] for comparison,
which is called α-Satellite risk assessment. In particular, we
change our MK-DNN’s obtained risk indices to risk indices
given by α-Satellite and keep the rest setup the same for a fair
comparison. It can be noticed that our obtained risk indices
and α-Satellite obtain similar validation scores by using the
same MK-DNN, which indicates both our obtained risk indices
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(c) (d)
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Fig. 10. Results of macrolevel validation. (a) Loss of the macrolevel valida-
tion network, h = 0.001. (b) Macrolevel validation score, h = 0.001. (c) Loss
of the macrolevel validation network, h = 0.003. (d) Macrolevel validation
score, h = 0.003. (e) Loss of the macrolevel validation network, h = 0.006.
(f) Macrolevel validation score, h = 0.006.

and α-Satellite are informative and highly related to confirmed
case. Moreover, we compare the performance of our MK-DNN
with regular DNN, and logistic regression model. It also can
be observed that the performance of regular DNN and logis-
tic regression model significantly decays compared with the
MK-DNN, because the MK-DNN extracts more features by
applying MKDE. In the next step, we further extend the val-
idation to the microlevel, in which there are no true data of
confirmed case. Considering the macrolevel validation score as
a benchmark, we check the decay on the microlevel validation
score to evaluate the validity of MK-DNN microlevel output.
The decay of the performance can further help evaluate the
bandwidth setup in the MK-DNN model.

In the microlevel validation, we first chop a metro
(macrolevel area) into grids with the same setup in MK-DNN
microlevel modeling and apply the microlevel MK-DNN to
obtain risk index for each grid. The validation network trained
in macrolevel validation is applied on each grid to predict the
corresponding confirmed case. We also compare our method
with α-Satellite in this section. As there are microlevel areas
in microlevel, α-Satellite may have missing risk values for
certain areas. We complement them with the corresponding
macrolevel area’s risk given by α-Satellite. The results are
shown in Table I. It can be found h = 0.003 has the high-
est score of 0.8518 compared with others, which is fairly

TABLE I
MACROLEVEL AND MICROLEVEL VALIDATION SCORE FOR THREE MAJOR

METROS IN OHIO STATE AND THE AVERAGE RESULT OF ALL METROS

close to the macrolevel validation score of 0.8732. As the
comparison, the scores of α-Satellite significantly decays as
there are missing values in some microlevel areas. In other
words, simply applying macrolevel risk indices to microlevel
may not be accurate and lead to the decrease of the validation
score. Moreover, when h becomes lower or higher, the valida-
tion score decreases with varying degrees. As discussed in the
simulation of microlevel modeling, an excessively low or high
h will lead the KDE function to become too rigid or smooth,
respectively. Thus, the microlevel validation score not only
validates the microlevel MK-DNN obtained risk indices but
also helps select 0.003 as the best bandwidth in the MK-DNN
model among all the choices.

So far, in the simulation, we first show the visualization
results of our defined risk indices. Then, we present the
learning performance of our MK-DNN model, which demon-
strates the model can accurately predict the risk index for the
macrolevel areas and further obtain risk indices for microlevel
areas. From the learning performance of MK-DNN, it can
be concluded that the MKDE-extracted features are infor-
mative and based on which the model can be trained to
output effective results. In the validation, we compare our
model with a state-of-the-art existing risk assessment model
and other well-known learning models. From the comparison,
we first demonstrate the MK-DNN outperforms the regular
DNN and logistic regression models and then observe that our
system can effectively obtain more informative risk indices for
microlevel areas compared with the existing risk assessment
model.

V. CONCLUSION

In this work, we proposed a risk assessment system to help
IoMT applications combat COVID-19 based on MKDE and
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DNN, which is called MK-DNN. Considering the limitation
in the public COVID-19 data set, multiple authoritative data
types are acquired and utilized in the system. A two-level
modeling was designed to enable the MK-DNN effectively
obtain risk indices on a more fine-grained map, especially
for the area that lacks disease-related data. Furthermore, since
the MK-DNN cannot be trained in the microlevel due to the
lack of disease-related data, a heuristic risk validation method
was proposed, which is to evaluate the accumulated error
in microlevel outputs through the designed validation score
functions and further help optimize the hyperparameter in MK-
DNN. Simulation on the real-world data shows the accuracy
and validity of our MK-DNN risk assessment system.
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