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A Decoupled Access Scheme with Reinforcement
Learning Power Control for Cellular-Enabled UAVs
Yao Shi, Mutasem Q. Hamdan, Student Member, IEEE, Emad Alsusa, Senior Member, IEEE, Khairi A. Hamdi,

Senior Member, IEEE, and Mohammed W. Baidas, Senior Member, IEEE

Abstract—This paper proposes a downlink/uplink decoupled
(DUDe) access scheme for cellular-enabled unmanned aerial
vehicle (UAV) communication systems. To minimise interference,
the proposed scheme separates the control and data links of
UAVs, as well as the uplinks (ULs) and downlinks (DLs) of ground
users (GUEs), onto different serving base-stations and operating
frequencies. Since power availability is a major constraint in
UAV communications, two power allocation schemes based on
Q-learning (QL) and deep Q-learning (DQL) are proposed
to optimize the communication energy-efficiency (EE) of this
DUDe network. To quantify the improvements achieved, the
proposed schemes are compared with the fractional power control
(FPC) scheme used in 4G and 5G networks, as well as, a
convex optimization based optimal power allocation scheme.
The results demonstrate that the proposed DUDe scheme can
achieve up to several times higher sum-rates and EE in the UL
direction than its coupled counterparts. Moreover, it is shown
that the EE performance of the QL and DQL power allocation
schemes approach the optimal performance and surpass the
conventional FPC scheme by 80% − 100% in the UHF band,
and by 160%− 170% in the mmWave band.

Index Terms—Cellular-enabled UAV communication, downlink
and uplink decoupling, Q-learning, deep Q-learning, millimeter-
wave communications

I. INTRODUCTION

The worldwide market for unmanned aerial vehicles (UAVs)
has rapidly expanded over the past decade, with UAV-based
services becoming a driver of financial developments and
opportunities for the telecom operators [1]. UAVs can be
aerial users to assist with aerial mapping, disaster rescue,
agricultural irrigation, etc. [2]–[4], or, flying base-stations
(BSs) to boost throughput, coverage, and quality-of-service
(QoS) of cellular networks [5]–[7]. Currently, most UAVs
in the market rely on direct point-to-point communication
with ground control stations (GCSs) or ground pilots, and
transmit over the unlicensed spectrum, such as Wi-Fi [8].
Despite the fact that the unlicensed spectrum is free and can
fulfill some applications (e.g. visual line-of-sight (LOS) aerial
photography), it offers unstable data rates, and is vulnerable
to interference. The rapidly growing number of UAVs and
increasing communication requirements for UAV applications
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call for a more reliable and effective communication system.
A promising solution is to utilize cellular networks to sup-
port UAV communications, leading to cellular-enabled UAV
communications [9,10].

LTE-enabled UAV communications have been approved
by 3GPP [11], with their feasibility demonstrated in [1,12];
however, the interference between UAVs and ground user
equipments (GUEs)/ground base-stations (GBSs) is still a ma-
jor concern. This is because most of the UAV-GUE/GBSs links
are LOS, and, UAVs usually have omnidirectional antennas,
which causes more interference to GUEs. Most of the current
research solves this problem by power control, resource block
(RB) allocation, and/or trajectory design [13]–[17]. Although
some of the existing solutions are efficient and robust, in
this paper, this problem is solved from a new perspective by
eliminating interference via effective decoupled base-station
(BS) association and spectral resource allocation.

In heterogeneous networks (HetNets), the transmit power
of macro BSs (MBSs) is much higher than that of small
BSs (SBSs), and thus, more UEs are connected to the MBSs,
since the MBSs can provide higher biased reference signal
received power (RSRP) in the downlink (DL) [18]. However,
in the uplink (UL), the received signal strength depends on the
UE-BS distance, and the MBS’s edge UEs may suffer from
poor QoS which deteriorates with higher operating frequen-
cies. Under these circumstances, downlink/uplink decoupled
(DUDe) access was initially proposed in [19] to allow UEs
to connect to different BSs in the UL and DL, as opposed
to 1G-4G networks where the UEs are associated with the
same BS in both link directions. According to DUDe, the
UEs can connect to the nearest BS in the UL rather than
the same DL serving BS. The first DUDe access scheme—
namely minimum path-loss (min-PL)—was proposed in [19],
where the UEs are connected to the BS with the lowest path-
loss in the UL. The UL performance improvement brought
by DUDe is investigated in [20], where it is shown that
DUDe can improve the load balancing, especially for ultra-
dense networks. Inspired by such findings, and in comparison
with existing works, this paper decouples the links from the
perspective of serving BSs and the operating frequency bands
in the downlink and uplink. By utilizing different frequency
bands for the LOS and non-LOS (NLOS) links, and also for
the data links and control links, the interference between UAVs
and GUEs can be eliminated from the very beginning.

Energy-efficiency (EE) optimization is essential for UAV
communications, as efficient energy utilization can prolong
the operation of UAV applications for the network stake-
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holders, ultimately improving users experience (e.g. in pro-
cessing sensory data and flight times for the UAVs) [21].
Due to the rapid changes in the UAV wireless environment—
such as air-to-ground channels, spatial and time variations of
non-stationary signal behaviour, and detection of UAVs via
UAVs-enabled protocols—conventional optimization methods
with ideal assumptions (e.g. perfect CSI) may not work in
practical and real-time applications. Hence, it is necessary
to augment classical algorithms and solutions with artificial
intelligence (AI) and machine learning (ML)-based techniques
[22]. Moreover, when both UAVs and GUEs transmission
resources are optimized, the network access schemes can be
designed to overcome the classical methods’ excessive over-
head and delays, while incorporating ML techniques to achieve
an acceptable/sub-optimal EE solution in rapidly changing
wireless environments.

Reinforcement learning (RL) algorithms are among the most
promising ML techniques to use in radio resource management
(RRM) for UAV-enabled cellular communications [23]. This
is due to the nature of RL, which is based on maximizing a
reward function by exploring the action(s) domain—via trial-
and-error interactions—to allow the learner to discover the best
choices based on the received rewards [24]. In turn, RL has
become a base for resource allocation in wireless networks,
due to its simplicity and ability to provide reliable and efficient
learning through interaction with the network. Q-learning (QL)
is a model-free RL approach, which is based on finite states
and actions to obtain acceptable/near-optimal solutions with
low computational-complexity [25]. However, in QL, the sizes
of the state and action spaces grow exponentially for each
additional unknown network feature and/or parameter, leading
to the curse of dimensionality, especially in the training phase.
Alternatively, deep Q-learning (DQL) has been proposed,
which utilizes a deep neural network (DNN), called deep
Q-network (DQN) along with other techniques (e.g. replay
memory) to perform a stable and efficient training, and reliably
estimate the Q-function [26]. Particularly, DQL is based on
quickly performing predictions using only a small number of
simple operations to obtain an output, which greatly reduces
execution time. Consequently, deep RL approaches have found
numerous applications in cellular networks [27]–[29]. Add to
this the 3GPP technical requirements for the enhancement of
UAVs [30], which only proposes AI/ML to control the UAVs,
but did not discuss how AI/ML can be used in the scheduling
and resource allocation. This motivates us to investigate the
potentials of AI/ML techniques in cellular-enabled UAVs by
applying QL and DQL as resource allocation tools.

A. Related Works

Recently, a number of research works have proposed
learning-based resource allocation for cellular-enabled UAV
networks [28]. For instance, in [31], an interference man-
agement scheme is proposed with the aim of achieving a
tradeoff between maximizing EE and minimizing wireless
latency and interference to the ground network. Specifically,
a DQL algorithm based on echo state network (ESN) cells is
devised to allow each UAV to map each observation of the

network state to an action, and hence learn its optimal path,
transmit power and cell association. The proposed algorithm
has been shown to minimize the interference to the GUEs and
the transmission delay of the UAVs. A 3D energy-efficient
and fair UAV scheduling scheme based on deep RL (DRL)
is proposed in [32] to allow the UAVs to hover around
and serve the users, and also recharge their batteries. The
proposed algorithm has been shown to outperform existing
scheduling algorithms in terms of coverage, energy-efficiency
and fairness. In [33], a novel DRL-based control algorithm is
devised for energy-efficient coverage and connectivity, which
is demonstrated to outperform baseline schemes in terms of
coverage, fairness and energy consumption. In [34], a DRL-
based channel and power allocation scheme for UAV-enabled
IoT systems is proposed. Particularly, the UAV-BS is able
to schedule channels and allocate transmit power for uplink
transmissions to maximize the minimum energy-efficiency
among all the IoT nodes, yielding superior performance over
state-of-the-art schemes. In [35], a DRL-based approach for
distributed energy-efficient multi-UAV navigation has been
proposed to ensure long-term communication coverage, while
optimizing geographical fairness, UAV energy consumption
and connectivity. A Q-learning algorithm has been designed
in [36] for the optimal positioning of UAV small cells, with
the aim of maximizing the network lifetime. In [37] and
[38], the proposed QL- and DRL-based methods have been
applied to UAV-BSs with energy constraints to achieve energy-
efficiency and coverage fairness to the GUEs, while reducing
the collision incidents and co-channel interference (CCI). The
majority of researchers have considered UAVs as BSs, rather
than UEs and to the best of our knowledge, none of the
prior works in the literature have considered decoupled access
in cellular-enabled UAVs with RL-based power control for
energy-efficiency maximization, except our previous work in
[39], where we solved the formulated problems using conven-
tional convex optimization methods. However, in this paper,
the formulated problems are solved using the proposed QL
and DQL algorithms, which are model-free, and can handle
none convex problems with stochastic transitions. Moreover,
we show that the performance of our proposed RL-based
algorithms approach that of the upper-bound solution obtained
in [39].

B. Main Contributions

The main contributions of this paper can be summarized as
follows:

• A DUDe access scheme is proposed for UAVs and GUEs,
in which the serving BSs and operating frequency bands
of UAV data links and control links, as well as GUE ULs
and DLs are decoupled.

• A novel and simple QL algorithm is proposed for EE-
maximizing power control, while alleviating the excessive
computational delays of the classical fractional program-
ming and successive convex approximation solutions.
This algorithm has outperformed the benchmark schemes
in terms of EE.
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• A novel DQL algorithm is proposed to optimize the EE
and overcome the large state-action matrix in the QL al-
gorithm. Although the DQL performance is slightly worse
than the QL, it outperforms the conventional fractional
power control (FPC) scheme.

• The performance of the proposed DUDe QL and DQL
power control schemes are compared with state-of-art
alternatives in terms of EE, sum-rate and data rate per
GUE/UAV. It is demonstrated that the proposed DUDe
can achieve several times higher sum-rates and EE than
the coupled benchmark counterparts. The QL (DQL)
power control scheme improves EE by around 80%
(100%) for the UHF band, and by around 160% (170%)
for the mmWave band, in comparison to conventional
FPC scheme.

C. Organization

The rest of this paper is organized as follows. Section II
describes the system model, while Section III introduces the
DUDe cellular-enabled UAV communication scheme. Section
IV formulates the GUEs and UAVs EE maximization prob-
lems based on the DUDe access scheme, with constraints
on the maximum transmit power and minimum data rate per
GUE/UAV. Section V outlines the QL and DQL algorithms
for EE maximization, while Section VI discusses their im-
plementation. Section VII evaluates the performance of the
proposed QL and DQL power control schemes, and compares
them with several benchmarks. Finally, Section VIII draws the
conclusions.

II. SYSTEM MODEL

A. Network Model

An OFDMA HetNet consisting of MBSs, SBSs, UAVs and
GUEs is considered, which are deployed uniformly with den-
sities of λm, λs and λg , respectively. The horizontal positions
and heights of the UAVs also follow uniform distribution with
intensity λu. The full-buffer UE traffic model is assumed in
this paper1.

B. Propagation Model

The path-loss L(d) is given by

L(d) = 20 log

(
4πd0f

c

)
+ 10φ log

(
d

d0

)
+ χ, (1)

where d0 refers to close-in reference distance, f denotes the
operating frequency, c represents the speed of light, d is the
GUE/UAV-BS distance, φ is the path-loss exponent, and χ
is the log-normal shadowing. The blockage models for the
mmWave links of GUEs and UAVs are different. For GUEs,
the generalized blockage ball model in [40] is adopted, which
is widely accepted in many studies [41,42]. Particularly, if the
distance between a GUE/UAV and its serving BS is less than
µ = 200 m, this link is assumed to be LOS with probability ω
= 0.2; otherwise, this link is assumed to be NLOS. For UAV

1It is noteworthy that UE is used to collectively refer to a GUE or a UAV.

communications, the blockage model in [43] is utilized, where
the LOS probability is given by

PrA(LOS, θ) =
1

1 + exp(−b(θ − a))
, (2)

in which θ is the elevation angle of the UAV at the BS antenna,
and a and b are S-curve parameters related to the environment.

C. Antenna Elements

In this work, it is assumed that the BSs, UAVs and GUEs
support both mmWave and ultra-high frequency (UHF) bands.
Specifically, each BS, UAV and GUE is assumed to have one
UHF omnidirectional antenna, while uniform planar square ar-
rays (UPA) with half-wavelength antenna element spacing are
utilized for mmWave transmissions [44]–[46]. The mmWave
BS antenna gain is modeled as

Gb(Θ) =

{
GM , |Θ| ≤ Θb/2,
Gm, otherwise, (3)

where Θb is the mainlobe beamwidth, GM is the mainlobe
gain, and Gm is the sidelobe gain. The mmWave GUE/UAV
are assumed to be in perfect alignment with their serving BSs
[46]. Table I summarizes the antenna parameters.

TABLE I
ANTENNA PARAMETERS

Frequency Band UHF mmWave mmWave
Number of antenna elements 1 4 16

Half-power beamwidth (degree) Θb 360 49.6 24.8
Main-lobe gain (dBi) GM 0 6 12
Side-lobe gain (dBi) Gm 0 -0.8839 -1.1092

D. Transmission Rate

The greedy RB allocation algorithm in [47] is adopted,
where each RB has bandwidth B. For each GUE/UAV, all
the RBs that are not yet assigned are sorted according to their
corresponding signal-to-interference-plus-noise (SINR) values,
and those with high SINR are preferentially assigned to the
GUE/UAV. The transmission rate between transmitter i ∈ I =
{1, 2, ..., I} and its receiver m ∈M = {0, 1, 2, ...,M} on RB
n ∈ N = {1, 2, ..., N} is expressed as2

Ri,m,n = B log2

1 +
Pi,nGi,m|hi,m,n|2∑

j∈I,j 6=i
Pj,nGj,m|hj,m,n|2 + σ2

 , (4)

where Gi,m is the antenna gain. Moreover, σ2 = N0B is
the variance of the AWGN, where N0 is the noise spectral
density. Also, Pi,n is the transmit power of transmitter i on
RB n, and |hi,m,n|2 is the channel gain between transmitter
i and receiver m on RB n, which includes both fading
and path-loss. The fading models of the mmWave and UHF
communications are Nakagami−m fading [48], and Rayleigh
fading [49], respectively.
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TABLE II
TRANSMISSION PARAMETERS OF THE DIFFERENT SCHEMES

Scheme DUDe Coupled (UHF) Coupled (mmWave)
Direction DL UL DL UL DL UL
Frequency Band mmWave UHF mmWave UHF UHF mmWave
Bandwidth 4.8 MHz 1.2 MHz 4.8 MHz 1.2 MHz 1.2 MHz 4.8 MHz
UE GUE GUE UAV GUE GUE UAV+GUE GUE UAV+GUE
Cell Association Biased RSRP Min-PL Biased RSRP Biased RSRP

Fig. 1. Cell Association and Interference map of the proposed scheme.

III. DUDE ACCESS FOR UAVS AND GUES

The requirements for UAV data links and control links
are quite different. Particularly, UAV data links require high
data rates that can be of the order of hundreds of Mbps. On
the contrary, UAV control and non-payload communication
(CNPC) links are of low data rate [1], but require low-
latency, and ultra-reliability, which is difficult to guarantee
in cellular networks due to interference [50]. This motivates
the splitting of the UAV data links from the control links.
Likewise, the GUE ULs and DLs are imbalanced. Also, there
is a significant gap between the the BS UL and DL coverage,
and GUEs require much higher data rate in DL than in
UL. Thus, transmitting over high-frequency bands in the DL
and low-frequency bands in the UL is intuitive. Additionally,
transmitting on a dedicated band helps eliminate interference,
and guarantee the reliability of control links.

Taking the above two aspects into consideration, a DUDe
access scheme for cellular-enabled UAV communications is
proposed. Specifically, GCSs operating on the L/C bands are
deployed to support CNPC links to avoid excessive switching
of serving BSs during the flight, and provide wider coverage.
In particular, approximately 17 MHz (960-977 MHz) in the
L-band and 61 MHz (5.03-5.091 GHz) in the C-band are
presently allocated for UAV CNPC links [51]. On the other
hand, UAV data links are mainly UL, LOS-dominated, and
require high data rates. In this case, mmWave communication
is particularly suitable. Although some may question the
practicability of mmWave-enabled UAV communication, the
challenges and solutions have been well addressed in [52,53].
Furthermore, to prevent the interference between UAVs and

2As both UL and DL are considered in this paper, a transmitter can be a
GUE/UAV or BS.

GUEs in the UL, UHF bands are utilized for the GUE
UL transmission, and the min-PL scheme is utilized for BS
association, such that the UL coverage can be guaranteed
and the GUE/UAV-BS distances are shortened. As for GUE
DL transmission, UHF bands are utilized to provide umbrella
coverage, while mmWave bands are applied to improve the
data rate over LOS links. The biased RSRP scheme is applied
for DL BS access. Moreover, time-division duplexing (TDD)
and static consistent DL/UL configuration are considered in
this paper, such that cross-link interference is avoided [54].
For both mmWave and UHF band communications, 50%
subframes/symbols are used for UL transmission, and the
remaining 50% subframes/symbols are used for DL transmis-
sion, while special subframes are neglected3. The whole band
allocation and cell association strategy of the proposed DUDe
scheme is given in Table II. Moreover, Fig. 1 illustrates the
cell association and interference map of the proposed scheme,
where the dotted lines refer to interference.

IV. ENERGY-EFFICIENCY MAXIMIZATION

As the battery capacities of UAVs and GUEs are limited, the
aim of this paper is to optimize their EE. In order to solve this
problem, the network interference is analyzed first. As shown
in Fig. 1, in the DL, NLOS GUEs transmit over the UHF band.
Thus, the GUEs in different cells cause inter-cell interference
(ICI) to each other, leading to an interference-limited scenario.
Also, LOS GUEs transmitting over the mmWave band suffer
from interference; however, since mmWave signals are sensi-
tive to blockage, and beamforming is applied, the interference

3In LTE TDD, if a subframe is configured for DL (or UL), all of the
symbols within the subframe should be used as DL (or UL). However, in 5G
NR, the symbols within a slot can be configured in various ways [55].
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level becomes negligible (i.e. a noise-limited scenario [56,57]).
In the UL, all GUEs transmit over the UHF band, and suffer
from ICI, while all UAVs transmit over the mmWave band,
and the interference can be ignored. Due to the application of
decoupling in terms of operating bands and associated BSs,
the interference between UAVs and GUEs is greatly reduced,
which is very different from the scenario in most existing
research. The communication EE of UAVs and GUEs in the
UL is optimized in this paper, and the DL EE can be obtained
analogously.

A. Optimal GUEs EE Maximization

The data rate of GUE i to its serving BS m over RB n is
expressed as

RGi,m,n (P) = B log2

(
1 + γGi,n

)
, (5)

in which γGi,n =
Pi,n|hi,m,n|2∑

j∈IG,j 6=i

Pj,n|hj,m,n|2+σ2 is the received SINR,

while IG is the GUEs index set over the UHF band. Also, P
is the power allocation matrix of all GUEs over all RBs. In
turn, the data rate of GUE i over its allocated RBs is

RGi (P) =
∑

n∈NUHF

RGi,m,n (P) , (6)

while its total transmit power consumption is

PGi (P) =
∑

n∈NUHF

Pi,n, (7)

where NUHF is the index set of UHF RBs. In turn, the GUEs
EE maximization (GUEs-EE-MAX) problem is formulated as

GUEs-EE-MAX: (8)

max
P

EEG (P) =

∑
i∈IG RGi (P)∑
i∈IG PGi (P)

(8a)

s.t. RGi (P) ≥ RGmin,∀i ∈ IG, (8b)

PGi (P) ≤ PGmax, ∀i ∈ IG, (8c)

Pi,n ≥ 0, ∀i ∈ IG,∀n ∈ NUHF . (8d)

where PGmax and RGmin are the maximum transmit power and
minimum data rate of each GUE, respectively. In problem
GUEs-EE-MAX, (8a) is the objective function, while Con-
straint (8b) guarantees that the total rate of each GUE is
higher than the minimum data rate. Constraint (8c) ensures
the transmit power of each GUE does not exceed the maxi-
mum transmit power, while Constraint (8d) enforces the non-
negativity of the transmit power of each GUE.

Remark 1: The rate function of each GUE is non-convex
because of the interference terms, and thus the objective func-
tion EEG (P) is non-convex either [58]. Also, the constraints
set is non-convex due to the minimum rate constraint.

To solve problem GUEs-EE-MAX, an efficient power al-
location scheme is proposed in our previous work [39], which
utilizes a lower-bound rate approximation, convex variable
substitution, Dinkelbach’s inner-layer algorithm [59], and an
iterative outer-layer algorithm to efficiently obtain the global

optimal EE solution. The overall complexity of the proposed
power allocation scheme is O

((
1
ε2 log(|IG|)

)2)
, where ε is

the error tolerance (i.e. stopping criterion).

B. Optimal UAVs EE Maximization

Different from GUE communications, UAV communica-
tions is noise-limited. The transmission rate between UAV i
and its serving BS m over RB n is denoted by

RAi,m,n (Pi,n) = B log2

(
1 + γAi,n

)
, (9)

in which γAi,n =
Pi,nGi,m|hi,m,n|2

σ2 is the received SINR, and
IA is the UAVs index set. The data rate of UAV i on all its
allocated RBs is expressed as

RAi (P) =
∑

n∈NmmW

RAi,m,n (Pi,n) , (10)

where NmmW is the index set of mmWave RBs.
Remark 2: The sum-rate function RAi (P) can be verified

to be concave in P, since the data rate function RAi,n (Pi,n) is
concave in Pi,n [60].

The total transmit power consumption of UAV i is

PAi (P) =
∑

n∈NmmW

Pi,n. (11)

The UAVs EE maximization (UAVs-EE-MAX) problem is
written as

UAVs-EE-MAX: (12)

max
P

EEA (P) =

∑
i∈IA RAi (P)∑
i∈IA PAi (P)

(12a)

s.t. RAi (P) ≥ RAmin,∀i ∈ IA, (12b)

PAi (P) ≤ PAmax, ∀i ∈ IA, (12c)

Pi,n ≥ 0, ∀i ∈ IG,∀n ∈ NmmW . (12d)

where PAmax and RAmin are the maximum transmit power and
minimum data rate of each UAV, respectively.

Remark 3: The EEA (P) function is a ratio of a concave
function

∑
i∈IA RAi (P) to a linear function

∑
i∈IA PAi (P)

in P.
Problem UAVs-EE-MAX is globally optimized in our pre-

vious work [39] via convex variable substitution and Dinkel-
bach’s algorithm, with overall computational-complexity of
O
(

1
ε2 log(|IA|)

)
.

The GUEs-EE-MAX and UAVa-EE-MAX power alloca-
tion schemes are utilized in this paper as optimal benchmarks.
Another benchmark is the FPC scheme adopted in 4G and 5G
cellular networks [61,62], where the transmit power (in dBm)
of a GUE/UAV is given by

Pi,n =
1

N ′
min{Pmax, 10 log10N

′ + wL+ P0}, (13)

where Pmax is the GUE’s/UAV’s maximum transmit
power, N ′ is the number of allocated RBs, w ∈
{0, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} is the compensation factor for
path-loss L and P0 is the target received power.
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V. RL-BASED OPTIMIZATION OF ENERGY-EFFICIENCY

A. Q-Learning (QL)

In this work, the power control is centralized, and the
QL agent is assumed to be located at the MBS, where the
learning process is modeled as a Markov decision process
(MDP). Now, let S be the set of possible transmit power
states over the assigned RBs, and A(s) be the discrete set
of actions in terms of the transmit powers over the assigned
RBs in state s. Assuming discrete time-steps t resembling
the training rounds, the QL agent takes a(t) ∈ A

(
s(t)
)

based on some policy φ. Particularly, φ (s,a) represents the
probability of taking action vector a in state s4. By applying
a(t) ∈ A

(
s(t)
)

and transitioning from state s(t) to s(t+1), a
reward r(t+1) ,

(
s(t),a(t)

)
is given to characterize the benefit

from taking action vector a(t) in state s(t). The well-known QL
algorithm aims to find the optimal policy φ∗ that maximizes
an expected reward function. Thus, let the future cumulative
discounted reward at time-step t be given by [63]

R(t) =

∞∑
τ=0

δτr(t+τ+1), (14)

where δ ∈ [0, 1) is the discount factor for future rewards. Also,
let the Q-function associated with policy φ as the expected
reward when a is taken in state s, as

Qφ(s,a) = E
[
R(t)|s(t) = s,a(t) = a

]
, (15)

which satisfies the Bellman optimality equation as [64]

Qφ(s,a) =

R(s,a) + δ
∑
s′∈S
Pa
s,s′

 ∑
a′∈A(s′)

φ (s′,a′)Qφ (s′,a′)

 ,

(16)

with R(s,a) = E
[
r(t+1)|s(t) = s,a(t) = a

]
being the ex-

pected reward of (s,a) ∈ S × A. Moreover, Pa
s,s′ =

Pr
(
s(t+1) = s′|s(t) = s,a(t) = a

)
represents the transition

probability from state s to state s′ upon applying a. In turn,
the optimal Q-function associated with φ∗ is obtained as

Qφ∗ (s,a) = R(s,a) + δ
∑
s′∈S
Pa
s,s′ max

a′
Qφ∗ (s′,a′) . (17)

The QL agent assigned a Q matrix for each GUE/UAV in the
network, denoted Q(s, a), which serves as a lookup table for
each action-value combination. Moreover, the QL algorithm
updates each entry in the Q matrix in each time-step t as

Q
(

s(t), a(t)
)
← (1− η)Q

(
s(t), a(t)

)
+ η

(
r(t+1) + δmax

a
Q
(

s(t+1), a
))

,
(18)

where 0 < η ≤ 1 is the learning rate to control the speed
of reaching a solution. To avoid being stuck at non-optimal
policies and to deal with the exploitation versus exploration

4It should be noted that both s and a are of dimension 1×N , where N is
the number of the reused RBs in the system.

trade-off issue [65], the ε-greedy policy is used for each time-
step t, which implies that the QL agent takes action a∗ that
maximizes the Q-function with probability 1− ε+ ε

|A(s)| for
exploitation, and a random action with probability ε + ε

|A(s)|
for exploration [65].

In this work, the reward function r(s, a) takes one of the
predefined values v1 > v2 > v3, described as

r(s, a) =


v1, (EE≥ ζmin) ∩ (Ri≥Rmin) ∩ (Pi≤Pmax),

v2, (EE≥ ζmin) ∪ (Ri≥Rmin) ∩ (Pi≤Pmax),

v3, otherwise,
(19)

where EE is the energy-efficiency value, Ri is the data
rate of GUE/UAV i, and Pi is its the total transmit power
over all used RBs, with thresholds ζmin, Rmin, and Pmax,
respectively. Every time an the action vector a is selected,
the MBS calculates the rewards, and measures how well the
action vector contributes to the maximization of GUEs/UAVs
energy-efficiency, while ensuring the minimum date rate and
maximum transmit power constraints are satisfied. The QL
algorithm is outlined in Algorithm 1, which summarizes
the process of evaluating the Q values, and obtaining the
GUEs/UAVs allocated RBs states, and transmit power action
vectors.

Algorithm 1 Q-Learning
1: Initialization: Q(s, a) with zero values, δ, η, and ε.
2: for each time-step t do
3: For the current state s(t), pick the action vector a(t) using the

ε-greedy policy, as

a(t)←

argmax
a

Q
(

s(t+1), a
)
, with prob. 1−ε+ ε

|A(s(t))| ,

a random action vector, with prob. ε+ ε

|A(s(t))| .

4: Perform action a(t), obtain reward r(t+1) = r
(

s(t), a(t)
)

and

observe the new state s(t+1).
5: Update Q

(
s(t), a(t)

)
as

Q
(

s(t), a(t)
)
← (1− η)Q

(
s(t), a(t)

)
+ η

(
r(t+1) + δmax

a
Q
(

s(t+1), a
))

.

6: Set t← t+ 1 and current state s(t) ← s(t+1).
7: end for
8: Output: State s and action a vectors.

The QL algorithm is guaranteed to converge when all
actions are repeatedly sampled and the rewards are bounded
[25,66]. More importantly, the QL algorithm has two serious
issues: (1) the amount of memory need to store and update the
Q(s, a) matrix grows exponentially as the number of states and
actions increases, and (2) some states may rarely be visited,
which excessively increases the time needed to explore all
state-action combinations to obtain a good estimate of Q(s, a),
which is impractical. The complexity for the QL algorithm
can be discussed from three perspectives: the regret, and time
and space complexity. By definition, the regret of exploration
for the RL algorithm is the difference between the T -step
cumulative reward obtained by an optimal policy and that
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by the RL algorithm [67]. For the QL algorithm, the upper
confidence bound (UCB) regret is O

(√
SATH3

)
, where

T , S, A, and H are the total number of steps, number of
states, number of actions, and number of steps per episode,
respectively [68]. Moreover, the time complexity are given
by O(T ), while the space complexity is O(SAH). In our
work, H = 1 (i.e. one step per episode), and thus the space
complexity is O (SA). In turn, our QL algorithm has linear
time-complexity and polynomial space-complexity.

B. Deep Q-Learning (DQL)

As for DQL, and as mentioned earlier, a DNN called DQN
is utilized to estimate the Q-function instead of the Q(s, a)
matrix in the QL algorithm. In this work, a multi-layer deep
forward neural network is utilized to replace the classical state-
action matrix and find the optimal policy. This is achieved by
exploiting correlations in the space of the input raw data and
identifying the important features that distinguish such input
[69]. Moreover, an experience buffer mechanism is used to
store the reciprocal experience and randomly pick a group
of samples from the stored experience to train the DQL
instead of the direct successive samples of the QL algorithm.
Furthermore, a second neural network is added to provide the
target Q-values. These values will be used to calculate the loss
value for each action at DQL training round [28].

Now, let the DQN be denoted Q (s,a;θθθ), where θθθ is
a real-valued vector completely characterizing the function
Q (s,a;θθθ), such that Q (s,a;θθθ) ≈ Qφ∗ (s,a). In turn, the
search for the best Q-function translates to finding the best
θθθ of finite dimensions via training. In particular, the DQL
agent gathers experiences and forms a data set D in the form
of
(
s(t),a(t), r(t+1), s(t+1)

)
by collecting experiences until-

step t. To this end, two DQNs are defined, namely the target
DQN with θθθ

(t)
target, and the train DQN with θθθ

(t)
train. Moreover,

θθθ
(t)
target is updated to become equivalent to θθθ(t)train over a specific

number of time-steps [63]. In each time-step t, the DQN is
trained by minimizing a least squares loss function (i.e. a
gradient-descent) based a random mini-batch from D, which
is expressed as [70]

L
(
θθθ
(t)
train

)
= E

[
y(t) −Q

(
s(t),a(t);θθθ

(t)
train

)]2
, (20)

where y(t) is the target value function, given by

y(t) = r
(
s(t),a(t)

)
+ δmax

a
Q
(

s(t+1), a;θθθ
(t)
target

)
. (21)

Due to the possible instability (or divergence) of the DQL,
the aperiodic store experience is used to improve the learning
stability of the DQL [71]. In addition, ε is updated using the
decay rate υ as ε = ε(1 − υ), while slowly smoothing the
target parameters in every training round with ξ, as

θθθ
(t)
train = ξθθθ

(t−1)
train + (1− ξ)θθθ(t)train

θθθ
(t)
target = ξθθθ

(t−1)
target + (1− ξ)θθθ(t)target,

(22)

ultimately reducing the correlations between the target and
estimated Q-values, and thus stabilizing the DQL algorithm.

For DQL, the reward function r(s, a) takes one of the
predefined values and v1 > v2, as

r(s, a) =

{
v1, (EE ≥ ζmin) ∩ (Ri ≥ Rmin) ∩ (Pi ≤ Pmax),

v2, otherwise,
(23)

which maintains the minimum capacity and maximum transmit
power for each GUE/UAV, while maximizing the EE. The
DQL algorithm is summarized in Algorithm 2, which is a
model-free, online, off-policy reinforcement learning method
that is guaranteed to converge efficiently [63,72]5. The training
procedure in Algorithm 2 can be described with the help of
Fig. 2. For RL, neural networks in most optimization algo-
rithms assume that the samples are independent and identically
distributed. However, this is no longer acceptable for samples
that have been produced sequentially. Add to this, for efficient
use of the existing hardware, it is essential to exploit sampled
mini-batches from the stored experience buffer, rather than
online experiences. As this experience buffer is a finite-sized
cache, the oldest samples will be dropped when the buffer is
full, and replaced by new ones that take into consideration
the dynamic changes in the wireless environment. At each
time-step, the train DQN and target DQN are updated by
uniformly sampling a mini-batch from the buffer. Due to the
off-policy nature of Algorithm 2, the experience buffer can
be large, if learning across a set of uncorrelated transitions is
required in some scenarios. Note that (20) may cause unstable
performance in many environments, since the updated train
DQN network is used in updating the target DQN in (21),
which may result in Q-values divergence. A solution to this is
proposed in [73], where the weights of the target network are
updated by having them smoothed gradually with the learned
train DQN network, as in (22). This ensures the slow change in
the target DQN values, which improves the learning stability.

Since a multi-layer deep neural network is utilized in this
work, Fig. 3 illustrates the operation of the proposed power
control scheme using DQL. The state and action vectors each
have 1 × (N × I) elements to describe each possible state
and action, where N is the number of the reused RBs in each
frequency band, and I is the total number of UEs in the UHF
or mmWave band. Both s and a represent inputs to the DNN,
while the output is the estimate of expected long-term reward
based on a given status s of the DQL. The input layers for
both s and a are followed by multiple deep layers; starting
with fully connected layer, described by y1 = ws · s + bs,
where the input vector s is weighted by vector ws and bs

is the bias vector. The next layer is the Rectified Linear
Unit (ReLU) used to suppress any negative output value of
the previous fully connected layers to zero, and the output
is y2 = max(y1, 0), then another fully connected layer is
applied. In order to update s by adding the actions a, the

5Online learning algorithms work with data as it is made available. Strictly
online algorithms improve incrementally from each piece of new data as it
arrives, then discard that data and not use it again. Also, off-policy algorithms
work with two policies which are: (a) a policy being learned, called the target
policy, and (b) a policy being followed, called the behaviour policy. Via an
online, off-policy RL algorithm, the learning agent sets the task of behaving
optimally in an environment. It may behave and gain observations from the
behaviour policy, but learns a separate optimal target policy [24].
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Algorithm 2 Deep Q-Learning
1: Initialization: Experience memory D, δ, υ, ξ, ε, and εmin with
ε > εmin. Also, initialize training parameters θθθtrain, and target
parameters as θθθtarget = θθθtrain.

2: for each time-step t do
3: For the current state s(t), pick the action vector a(t) using the

ε-greedy policy, as

a(t)←

argmax
a

Q
(

s(t+1), a;θθθ(t)target

)
, with prob. 1−ε+ ε

|A(s(t))| ,

a random action vector, with prob. ε+ ε

|A(s(t))| .

4: Perform action a(t), obtain reward r(t+1) = r
(
s(t),a(t)

)
and observe the new state s(t+1).

5: Store
(
s(t),a(t), r(t+1), s(t+1)

)
in experiences memory D.

6: Pick a random mini-batch of from D.
7: Determine the target value function y(t) as

y(t) = r
(
s(t),a(t)

)
+ δmax

a
Q
(
s(t+1),a;θθθ

(t)
target

)
.

8: Update parameters θθθ(t)train by minimizing the loss function

L
(
θθθ
(t)
train

)
= E

[
y(t) −Q

(
s(t),a(t);θθθ

(t)
train

)]2
.

9: Update the target parameters θθθ(t)train and θθθ(t)target using ξ as

θθθ
(t)
train = ξθθθ

(t−1)
train + (1− ξ)θθθ(t)train

θθθ
(t)
target = ξθθθ

(t−1)
target + (1− ξ)θθθ(t)target.

10: Set t← t+ 1 and current state s(t) ← s(t+1).
11: if ε > εmin then
12: Update ε = ε(1− υ).
13: end if
14: end for
15: Output: State s and action a vectors.

Add layer has been used to obtain the output. To remove any
negative power, a ReLU layer has been used. Lastly, a fully
connected layer with a single output is used to provide the
state-action function Q(s, a), as illustrated in Fig. 4, which
presents a block diagram for proposed solution.

Fig. 2. Training block diagram of the DQN

Fig. 3. Proposed power control scheme using DQL

VI. IMPLEMENTATION OF QL AND DQL FOR OPTIMIZING
DUDE ACCESS ENERGY-EFFICIENCY

This section discusses the implementation of the QL and
DQL algorithms. It should be noted that since the UHF and
mmWave UEs do not interfere with each other, the QL/DQL
algorithm is executed for both the GUEs and UAVs over each
band separately to obtain the transmit power values for GUEs
and UAVs EE maximization.

Now, the state vector s contains the power value of the
user RBs, say GUE/UAV i, starting with a low power value
(e.g. Pi,n = 2× 10−6 W) up to the maximum transmit power
value Pmax = 0.2 W. For the QL algorithm, each action
in the action vector a involves multiplying the RB power
by one of three values in {0.1, 1, 10} (as per the ε-greedy
policy), which facilitates the exploration and exploitation to
maximize the Q-function. For example, consider the case of
two GUEs (or UAVs), each with two RBs; then, at the BS two
independent QL agents will be created. Each of these GUEs
(or UAVs) independently learns its own policy, and considers
the other agent as a component in the wireless environment
[74]. On the other hand, the DQL algorithm action vector a
is a combination of adding or subtracting a step value c for
each RB of each GUE/UAV. For instance, if c = 5 × 10−6

W, then for each element of the states vector s, the new
observation is manipulated by adding or subtracting the c
step randomly. As before, consider the case of two GUEs
(or UAVs), each with two RBs. A possible action vector is
a = [−1 × c; 1 × c;−1 × c; 1 × c]. Upon applying an action
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Fig. 4. Block diagram for proposed DQL solution

vector, the states vector is updated to values in the range[
10−6, 0.2

]
W, which designates the transmit power values of

either UHF or mmWave UEs. The input, as shown in Fig. 3,
has the transmit power of each RB as a feature, while the BS
has the information about the RB association scheme, received
signal strength and interference. Then, the DQN learns the
relative location of GUEs/UAVs, data rates, and EE. Also, the
actions—as part of the inputs—are changing the power states
to find the best possible state that achieves the near-optimal
EE solution.

In this work, the final or exit state is not known apriori,
since the optimal value for the EE is not known before
executing the QL (or DQL) algorithm. However, convergence
to a certain Q value or reaching the maximum number of
iterations terminates the search process, and the final obtained
Q value resembles the best EE value. In turn, the learning rate
η, discount factor δ, and maximum number of iterations Tmax

govern the convergence speed and accuracy of the obtained
EE solution. Particularly, a higher learning rate η allows better
solution exploration, and a value of δ → 1 puts more emphasis
on long-term higher rewards. Also, the higher Tmax is, the
better the exploration and exploitation, which guarantees the
optimal states for GUE/UAV transmit powers. Hence, the
values of η, δ and Tmax pose a trade-off between accuracy of
the obtained solution and speed of convergence. To highlight
this, Table III summarizes the parameters for two scenarios,

which will be considered in the performance evaluation in
Section VII.

In a similar manner to the QL algorithm, DQL is evaluated
based on two scenarios, as shown in Table IV.

TABLE III
QL PARAMETERS

Parameters Scenario 1 Scenario 2
No. of States No. of RBs = 3

Possible States s ∈
[
2× 10−6, 0.2

]
W

No. of Actions 3
Possible Actions a ∈ {0.1, 1, 10} W

v1 = 10
v2 = 1
v3 = −10

Reward Function Values ζGmin = ζAmin = 4 MBits/J
RG

min = 0.4 MBits/s
RA

min = 4 MBits/s
PG
max = PA

max = 0.2 W
Discount Factor δ 0.1
ε-Greedy Parameter 0.1

Learning Rate η 0.1 0.01
Tmax 30,000 50,000

TABLE IV
DQL PARAMETERS

Parameters Scenario 1 Scenario 2
States Input Size: 5 Users × 3 RBs = 15 Neurons

Input Layer Output: 24 Neurons—Normalization: None
Actions Input Size: 15 Neurons—Output: 50 Neurons

Input Layer Normalization: None
States Critic(a) Fully Input Size: 50 Neurons—Output: 50 Neurons

Connected Layer Normalization: None
States Critic(b) Fully Input Size: 50 Neurons—Output: 50 Neurons

Connected Layer Normalization: None
Action Critic Fully Input Size: 50 Neurons—Output: 50 Neurons
Connected Layer Normalization: None
ReLU Layers for

f(x) = max(0, x)Critic & Action Paths

Add layer Adding neurons element wise

Fully Connected Input Size: 50 Neurons—Output: 1 Neuron
Output Q(s,a) Normalization: None
Possible States s ∈

[
10−6, 0.2

]
W

No. of Actions 3
Possible Actions a ∈ {+10−6,−10−6} W

v1 = 10
v2 = −10

Reward Function ζGmin = ζAmin = 4 MBits/J
Values RG

min = 0.4 MBits/s
RA

min = 4 MBits/s
PG
max = PA

max = 0.2 W
ε-Greedy Parameter 0.1

Decay Rate υ 0.005
εmin 0.01

Smoothing Factor ξ 0.001
Discount Factor δ 0.1
Learning Rate η 0.1 0.01

Tmax 30,000 50,000

VII. PERFORMANCE EVALUATION

In this section, the performance of the coupled UHF and
coupled mmWave with FPC are compared to the DUDe
access scheme in terms of sum-rate, energy-efficiency, and
data rate per GUE/UAV. Specifically, the performance of
the QL and DQL power control schemes based on DUDe
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TABLE V
SIMULATION PARAMETERS

Parameters GUE UAV MBS SBS
Maximum Transmit Power 23 dBm 23 dBm 46 dBm 30 dBm

DL/UL Bias N/A N/A 0/0 dB 3/0 dB
Spatial Density 30 per km2 30 per km2 5 per km2 20 per km2

Operating Frequency 2 GHz & 28 GHz 28 GHz 2 GHz & 28 GHz 2 GHz & 28 GHz
Spatial Distribution Uniform Distribution
Altitude of UAVs 50-200 m [11,50]

S-curve Parameters a = 9.6, b = 0.28 [43,46]
Blockage Ball Model Parameters µ = 200 m, ω = 0.2 [40]

Bandwidth UHF: 1.2 MHz; mmWave: 4.8 MHz
Subcarrier Spacing UHF: 15 kHz; mmWave: 60 kHz [75]

Power Control FPC with P0 = −85 dBm, and α = 0.8 [11]
Noise Spectral Density -174 dBm/Hz

Path-Loss Exponent UHF: GUE-UAV 2, GUE-BS 3, d0 = 1 m [49]; mmWave: LOS 2.55, NLOS 5.76, d0 = 5 m [56,76]
Lognormal Shadowing UHF: µ = 0, σ = 4 dB [49]; mmWave: LOS µ = 0, σ = 8.66 dB, NLOS µ = 0, σ = 9.02 dB [56]

Nakagami-m Parameters mL = 3, mN = 2 [46,48]

Fig. 5. 10th, 30th, 50th, 70th, and 90th percentile data rate per user in the UL: (a) mmWave band and (b) UHF band - SBS to MBS ratio = 4

access are evaluated and compared with the optimal and FPC
schemes, namely Decoupled-Optimal and Decoupled-FPC,
respectively6. Since the UAV CNPC links require low data
rate, and will not interfere with other links, they are not
considered in the simulations, for simplicity. The frequency
allocation and BS association parameters are as given in
Table II, while Table V summarizes the simulated transmission
parameters.

Fig. 5 illustrates the 10th, 30th, 50th, 70th, and 90th

percentile data rate per GUE and UAV in the UL, where the
ratio of SBS to the MBS is 4. In Fig. 5a, the UAV data
rates shows that due to EE optimization the 70th and 90th

percentile data rates in Decoupled-Optimal, QL and DQL are
lower than the decoupled FPC. Although the minimum rates
are respectively 4×106 and 4×105 bps for the UHF GUEs and

6The optimal EE-maximizing power control schemes are based on the
solutions of problems GUEs-EE-MAX and UAVs-EE-MAX, as discussed
in subsections IV-A, and IV-B, respectively.

mmWave UAVs, some of the mmWave UAVs under the QL
and DQL schemes are below the thresholds. This is because
the EE thresholds (i.e. ζGmin and ζAmin) appear as soft thresholds
(as per (19) and (23)), which leads to a tradeoff between the
data rate and EE. Additionally, Fig. 5a and Fig. 5b show that
both QL and DQL algorithms improve their learning policies
and assign power to GUEs/UAVs to increase their data rates
when the number of training iterations is increased and their
learning rates are decreased. This can be verified by comparing
Scenarios 1 and 2 for the Decoupled-QL and Decoupled-
DQL schemes, and this is due to the fact that more states
are visited in search for the best state. More importantly, this
implies that improving the learning increases the rate of the
UAVs/GUEs for EE-maximization in both the mmWave and
UHF bands.

In Fig. 6, it can be seen that the GUEs sum-rate of the
decoupled schemes are at least 60% higher than the Coupled-
UHF scheme. This is because the decoupled schemes have
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Fig. 6. UL GUE sum-rate vs. SBS to MBS ratio.

wider bandwidth for GUE UL communications (as shown in
Table II), shorten the distances between the GUEs and BSs,
and eliminate the interference between UAVs and GUEs. The
sum-rate of the Coupled-mmW scheme is the highest, since it
utilizes the mmWave band for GUE UL communication, while
the other schemes utilize the UHF band, and the mmWave
bandwidth is wider than the UHF bandwidth. The sum-rate of
the Decoupled-Optimal scheme remains relatively constant
with the increase in the SBS to MBS ratio, since it mainly aims
to achieve the optimal energy-efficiency, as will shown in Figs.
8 and 9. In comparison to the Decoupled-Optimal scheme,
both the Decoupled-QL and Decoupled-DQL schemes yield
higher data rates at the expense of higher transmit power,
which will translate to lower EE values. To see this, for both
schemes, Scenario 2 yields lower sum-rate than Scenario 1, as
increasing the training iterations and reducing the learning rate
lower the sum-rate to improve the EE by carefully selecting
the transmit power.

Fig. 7. UL UAV sum-rate vs. SBS to MBS ratio.

Similarly, in Fig. 7, the UAV sum-rates of the Coupled-
UHF and Coupled-mmW schemes are much lower than
the decoupled schemes, since the UAVs under those two
schemes are allocated narrower bandwidth and suffer from
higher path-loss. Besides, the UAVs under the Coupled-UHF
scheme also suffer from ICI, while the UAVs under the other
schemes are allocated the mmWave band, and thus, their ICI

is minimal. In comparison to the Decoupled-Optimal scheme,
both Decoupled-DQL and Decoupled-QL tend to explore if
increasing the sum-rates achieves better EE for the UAV UL
transmissions and this appears as a small increase in the sum-
rate when the SBS to MBS ratio increases. Adding to this,
Scenario 2 improves the sum-rates for both the Decoupled-
DQL and Decoupled-QL in comparison to Scenario 1.

Fig. 8. UL mmWave UEs normalized EE vs. SBS to MBS ratio.
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Fig. 10. Network UL sum-rate vs. SBS to MBS ratio.

As for EE, as shown in Fig. 8 and Fig. 9, the decoupled
schemes can achieve up to several times higher EE than the
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coupled schemes, as they prevent the interference between
UAVs and GUEs, reduce the interference among GUEs, and
shorten the GUE/UAV-BS distances. Also, Figs. 8 and 9
demonstrate that the EE improvement for the Decoupled-
Optimal, Decoupled-QL and Decoupled-DQL schemes as
the SBS to MBS ratio increases. This is attributed to the de-
crease in the number of GUEs/UAVs associated with the same
SBS or MBS, and the decrease in GUE/UAV-BS distances. In
addition, the Decoupled-QL and Decoupled-DQL schemes
yield an improvement in the EE as the training iterations
increase and the learning rate decreases, which can be verified
by comparing Scenario 1 and Scenario 2 for both schemes.

Fig. 10 illustrates the total UL sum-rate, where one can
see that the sum-rate of the Decoupled-QL and Decoupled-
DQL schemes improves as the ratio of SBS to MBS in-
creases. Also, the sum-rate for the Decoupled-QL (Scenario
2) and Decoupled-DQL (Scenario 2) schemes have a mi-
nor improvement over the Decoupled-QL (Scenario 1) and
Decoupled-DQL (Scenario 1) schemes, respectively. Lastly
the QL and DQL algorithms are limited by the maximum
number of iterations in search for the best trade-off between
sum rate, minimum user rate, and the EE, which also control
how long it takes to run the optimization process.
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Fig. 11. Different (ε, Tmax) combinations for EE mmW vs. SBS to MBS
ratio.
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Fig. 12. Different (ε, Tmax) combinations for EE UHF vs. SBS to MBS
ratio.

Fig. 11 and 12 illustrate that by decreasing the value of ε and
increasing the value of Tmax, the obtained EE approaches that
of the optimal scheme. More importantly, the DQL algorithm
outperforms its QL counterpart algorithm, as the DQL searches
more states using actions with smaller transmit power steps.
Also increasing Tmax has higher impact on improving the
solution than reducing the ε. However, this costs more time
(i.e. more iterations) to approach the optimal EE value.

Figs. 13a and b reveal that the DQL and QL solutions
converge as the iterations number increases. Although the
DQL algorithm converges slower than the QL, it has better
results than the QL when both are compared with the optimal
values. Also, when the SBS to MBS ratio increases, the EE
increases, as the distance between the BSs and GUEs/UAVs
decreases, which requires lower transmit power. However, this
adds more complexity (hence more iterations) to find the
optimal solution.

VIII. CONCLUSION

In this paper, the merits of adopting DUDe in cellular-
enabled UAV networks have been investigated. Specifically,
the UAV data links and CNPC links, as well as GUE ULs
and DLs have been decoupled in terms of serving BSs and
operating frequencies. Moreover, two power control schemes
based on QL and DQL have been proposed to improve the
network EE. The proposed decoupled schemes with QL and
DQL have been compared with the FPC scheme, and the
optimal EE-maximizing benchmark power allocation scheme.
The results revealed that the proposed DUDe access schemes
can achieve several times higher sum-rates and EE than their
coupled counterparts. Moreover, it is shown that although the
RL methods can achieve optimal results, in practical scenarios
with predominantly dynamic environments, and limited time
to execute the optimization process, QL and DQL, with limited
number of iterations, may only achieve a near-optimal EE per-
formance. Nonetheless, the proposed QL (DQL) algorithm has
been shown to achieve better EE performance than the baseline
FPC scheme by around 80% (100%) for UHF band, and by
around 160% (170%) for the mmWave band, in comparison to
conventional FPC scheme. Also, the proposed DQL achieves
better performance than the proposed QL for both Scenario
1 and Scenario 2. This is because DQL has higher number
of states and considers all GUEs/UAVs jointly as one agent,
while the QL considers each GUE/UAV independently. Lastly,
by decreasing the value of ε and increasing the value of Tmax,
the obtained EE approaches that of the optimal scheme, and
the DQL algorithm has been shown to outperform the QL
algorithm.
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