
2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3078543, IEEE Internet of
Things Journal

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1



Abstract—In this paper, we investigate the problem of

decentralized federated learning (DFL) in Internet of

things (IoT) systems, where a number of IoT clients train

models collectively for a common task without sharing

their private training data in the absence of a central server.

Most of the existing DFL schemes are composed of two

alternating steps, i.e., model updating and model averaging.

However, averaging model parameters directly to fuse

different models at the local clients suffers from client-drift

especially when the training data are heterogeneous across

different clients. This leads to slow convergence and

degraded learning performance. As a possible solution, we

propose the decentralized federated learning via mutual

knowledge transfer (Def-KT) algorithm where local clients

fuse models by transferring their learnt knowledge to each

other. Our experiments on the MNIST, Fashion-MNIST,

CIFAR-10, and CIFAR-100 datasets reveal that the

proposed Def-KT algorithm significantly outperforms the

baseline DFL methods with model averaging, i.e., Combo

and FullAvg, especially when the training data are not

independent and identically distributed (non-IID) across

different clients.

Index Terms—decentralized learning, federated learning,

Internet of Things (IoT), knowledge transfer.

I. INTRODUCTION

OWADAYS, an unprecedented amount of data are being

generated by devices such as smart phones in the booming

applications of Internet of things (IoT) including smart city and

smart factory [39]-[42], which has facilitated the emergence of

data-driven methods such as machine learning (ML) [48], [50].

In the traditional ML paradigm, models are trained with large

datasets collected by a central server. However, in many

practical applications of IoT, data may be privacy-sensitive and

it may be costly to aggregate large datasets at a central server.

In such cases, the training data are often distributed on different

IoT clients such as sensors [47], phones or other information

sources [3] where they are generated. To train models using

This work was supported in part by National Natural Science Foundation of

China under Grants 61790551 and 61925106. Corresponding author: Gang Li.

Email: gangli@mail.tsinghua.edu.cn.

C. Li and G. Li are with the Department of Electronic Engineering, Tsinghua

University, Beijing, 100084, China.

P. K. Varshney is with the Department of Electrical Engineering and

Computer Science, Syracuse University, Syracuse, NY 13244, USA.

decentralized training data in IoT systems, federated learning

(FL) is emerging as a new framework for learning tasks while

not requiring the clients to transmit their raw datasets, thereby

reducing the communication cost and at the same time

guaranteeing data privacy [1]-[3], [20]-[23],[49].

In a general FL system, a central server coordinates the

training task based on the data at the clients [4], [26]. As shown

in Fig. 1, during each round, each participating client

individually updates the model based on its local dataset and

then transmits the updated model to the server. Upon receiving

the models from all the participating clients during the current

round, the server conducts model averaging and broadcasts the

updated model to the participating clients of the next round [2].

Although the FL systems mentioned above are promising, they

are confronted with many challenges. While large

organizations could play the role of a central server in some IoT

applications, in many FL environments, it is difficult to find a

central server that is both reliable and powerful [3], [37].

Besides, a malfunction in the central server induces a single

point of failure of the whole network. To overcome the above

shortcomings of general FL systems that use a central server,

decentralized FL (DFL) methods which do not need a central

server are well worth investigating. In DFL, the clients

exchange their model parameters directly in a peer-to-peer

manner [4]. Actually, the advantages of DFL lie in not only

eliminating the single point failure of the central server, but also

attaining scalability in an inexpensive manner since no

additional infrastructure is necessary [3].

Gossip averaging is a well known method in a variety of

decentralized algorithms [5], [27], [28], where different clients

in the network exchange information in a peer-to-peer manner

without the help of a central server. In [6], [8] and [9], gossip

averaging has been employed with stochastic gradient descent

(SGD) to train deep learning models in a decentralized way,

which manifests excellent convergence properties. Built on the

above prior work, gossip averaging was later applied to DFL

schemes, where model updating and model averaging are

implemented in an alternating manner at the local clients

[7],[10],[11],[36]. While in [7],[10] and [11] the clients send

and average full sets of model parameters, the Combo

algorithm in [36] has been proposed by letting the clients

transmit and average model segments in order to make better

use of the communication resources without impacting the

convergence rate. Although the aforementioned DFL

algorithms do overcome some of the difficulties confronting

the general FL systems that require a central server, they all

employ model averaging to fuse models at the local clients,

which is not always very efficient due to the following reasons.

During the training process, the models are updated locally

Decentralized Federated Learning via Mutual

Knowledge Transfer

0Chengxi Li, Gang Li, Senior Member, IEEE, Pramod K. Varshney, Life Fellow, IEEE

N

Authorized licensed use limited to: Tsinghua University. Downloaded on May 12,2021 at 06:33:01 UTC from IEEE Xplore. Restrictions apply.

mailto:gangli@mail.tsinghua.edu.cn

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3078543, IEEE Internet of
Things Journal

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

towards the local optimum of each client’s loss function, and

averaging the model parameters from different clients results in

a model moving towards the averaged result of the

corresponding local optima. Since different clients own distinct

sets of training data and those datasets normally have no

overlap or even have different distributions, which is known as

data heterogeneity [12], [29]-[31], the optimum of each client’s

loss function may be quite far from each other, which is also far

away from the global optimum. Furthermore, with

heterogeneous training data, the difference between the

averaged result of the local optima and the global optimum

naturally arises, which indicates that the averaged model may

be quite different from the global optimum. This phenomenon

is known as client-drift [12]. From this perspective, averaging

two models that have been trained on heterogeneous data

results in slow and unstable convergence [12] under the DFL

scheme. This may happen even though all the clients are

initialized identically. With degraded learning performance in

the presence of data heterogeneity, model averaging of the DFL

algorithms in [7],[10],[11],[36] does not make full use of the

training datasets to enhance the generalization ability of the

trained networks. In fact, instead of suffering from performance

degradation when learning from heterogeneous and

decentralized data, one should be able to exploit data

heterogeneity to improve the generalization ability of the

trained networks. However, it remains an open problem to

overcome the shortcomings of the baseline DFL methods that

use model averaging [7],[10],[11],[36] and to find new methods

which could avoid severe degradation of the learning

performance caused by data heterogeneity.

In order to prevent the client-drift from impacting the

convergence rate and the training stability and to take full

advantage of the heterogeneous data, several FL algorithms

have been proposed in the literature [12],[16],[17],[53],[54].

For example, Li et al. made some modifications to FedAvg [2]

by incorporating a proximal term in the original objective so as

to mitigate the adverse impact of data heterogeneity on the

stability of the convergence behavior [17]. In [53], an FL

algorithm based on normalized averaging was proposed in

order to eliminate the inconsistency of the mismatched

objectives and to maintain a fast convergence rate. In [54], a

snapshotting scheme was employed under the FL framework,

where the updating of the model parameters and the updating of

the mixing parameter are decoupled. However, all of these

methods have been proposed for general FL scenarios

assuming the availability of a central server, and they cannot be

applied to DFL schemes directly.

For numerous problems, neural networks that attain

excellent performance have been designed. They, however,

always contain an exceedingly large number of model

parameters, which restricts their utilization in platforms with

limited memory and in applications requiring fast execution. In

order to develop more compact models that behave as well as

the large ones, distillation-based methods have been proposed

by letting the small-sized models imitate the soft outputs of the

larger ones [13],[18],[19],[43]-[46]. Among the distillation

methods, deep mutual learning (DML) [13] adopts two student

networks that learn on a common dataset collaboratively and

simultaneously by teaching each other during the process of

training. It is shown that, each student model attains better

learning performance compared with that achieved when each

model is trained separately as done in the conventional way.

The success of DML is achieved because the two student

networks are initialized differently, which enables them to learn

distinct knowledge from the common data samples and to

transfer their knowledge to each other during the training

process. However, to the best of our knowledge, the advantages

of the mutual knowledge transfer (MKT) strategy adopted by

DML have not been exploited to enhance the learning

performance of DFL tasks.

In this paper, to perform DFL tasks in IoT systems in the

presence of data heterogeneity, we propose a new algorithm

called decentralized federated learning via mutual knowledge

transfer (Def-KT), which effectively incorporates the

advantages of MKT into the DFL framework to avoid the

negative impact of client-drift. In each round of the proposed

Def-KT algorithm, two steps are implemented sequentially, i.e.,

model updating and model fusion. In the first step, we

randomly choose1 a fixed number of clients, each of which

updates the local model by performing a number of training

passes over its private dataset via stochastic gradient descent

(SGD) and then sends the fine-tuned model to another

randomly picked client. In the second step, inspired by DML

[13], each client that has received a model in the current round

fuses its local model and the received one using MKT rather

than averaging them as done in [7],[10],[11] and [36]. The

motivation of doing this is explained as follows. In the DFL

methods with model averaging, the original incentive of

averaging local models that have been trained on different

training datasets is to obtain a model that performs well on data

samples drawn from all of the datasets. In other words, the

averaged model is supposed to acquire knowledge on different

datasets. However, it is quite difficult to achieve the above goal

with heterogeneous training data, negatively impacted by

client-drift. In contrast, MKT enables two models with

different knowledge to learn from each other and the resulting

models obtain knowledge indirectly from both models. Based

on the above analysis, it is intuitive that MKT can be adopted as

a better alternative for model fusion under the DFL scheme. By

doing this, the knowledge previously learnt by the two models

at two different clients can be retained in the resulting model of

MKT, with both heterogeneous training data and homogeneous

data, which guarantees a better generalization ability on new

data samples. To demonstrate the superiority of the proposed

Def-KT algorithm, we run experiments on the MNIST [14],

Fashion-MNIST [25], CIFAR-10 [15], and CIFAR-100 [51]

datasets for image classification tasks, where Def-KT is

compared with the baseline DFL methods that use model

averaging, including FullAvg which performs averaging over

full sets of model parameters [7],[10],[11] and Combo which

performs averaging over model segments [36]. The

experimental results show that the proposed method

significantly outperforms FullAvg and Combo in various

settings, observing that the former converges faster and attains

more stable learning performance than the latter. The main

1 The clients participating in the first step are randomly chosen by us to

simulate the practical case where clients do not always volunteer to participate
in the training process unless they are plugged-in or charged, as elaborated in

[2].

Authorized licensed use limited to: Tsinghua University. Downloaded on May 12,2021 at 06:33:01 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3078543, IEEE Internet of
Things Journal

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

contributions of our paper are listed as follows:

1) To avoid performance degradation induced by client-drift,

we innovatively incorporate the advantages of MKT into

the DFL schemes in the presence of data heterogeneity.

Although MKT adopted by the proposed Def-KT

algorithm is inspired by DML [13], its application to DFL

problems is not old wine in a new bottle, since the

rationale behind DML and MKT in Def-KT are very

different from each other. To be more specific, the student

models in DML are initialized differently, which enables

them to learn different knowledge on the same data

samples. In contrast, in the model fusion stage of Def-KT,

the two models, although initialized to be the same, are

trained on non-overlapping datasets and thus have distinct

“expertise”. This enables the two models to transfer their

knowledge to each other so that a model with better

generalization ability can be obtained.

2) We run experiments on four popular datasets for image

classification tasks using the proposed Def-FL algorithm

as well as the baseline methods with model averaging,

namely FullAvg and Combo. Our experimental results

demonstrate the superiority of Def-KT over the baseline

methods.

The rest of this paper is organized as follows. The considered

problem is formulated in Section II. The proposed Def-KT

algorithm and its rationale are presented in Section III. In

Section IV, we provide experimental results to demonstrate the

superiority of the proposed algorithm over the baseline

methods and discuss the results. Finally, the conclusion of this

paper is given in Section V.

Fig. 1. A general federated learning framework with a central server in IoT
systems.

II. PROBLEM FORMULATION

The considered DFL problem is formulated as follows.

Suppose there are K IoT clients in the network. Each client

possesses a labeled image dataset   
1

: , ,
kN

k k

k i i
i

x y




1,...,k K , where k

ix is the i-th data sample of the k-th client,

 1,2,...,k

iy C is the corresponding label among C classes,

and
kN denotes the number of training samples owned by the

k-th client. The datasets of different clients may be drawn from

different distributions
kP , 1,...,k K , mainly due to the fact

that those training data have been generated and collected by

different clients in a non-identical manner. The goal is to train

models for the image classification task with peer-to-peer

communications among the clients in the absence of a central

server. To deal with the privacy concerns, it is the model

parameters that are communicated in the network instead of

raw datasets which are deemed privacy-sensitive. Before

training starts, each client is initialized with a model of the

same architecture as well as the same parameters.

In the DFL problem considered in this paper, the following

assumptions are made, which comply with the

resource-constrained learning environments. 1) Only a small

subset of clients participate in each round of the training stage,

which are referred to as the participating clients. 2) In each

round, only a fraction of the participating clients train their

local models on private datasets and those clients transmit the

fine-tuned models to another set of clients. The reason of

making the above assumptions is three-fold. First, each client

only volunteers to take part in the training under certain

circumstances such as when the device is plugged-in [2], [29].

Second, the computational resources among the participating

clients may not be balanced and it may be impractical to let

them perform the same computational tasks during each round

[38]. Third, the communication cost is one of the dominating

factors and it is unrealistic to allow all the clients to transmit

their models to each other simultaneously in a single round [2].

III. DECENTRALIZED FEDERATED LEARNING VIA MUTUAL

KNOWLEDGE TRANSFER (DEF-KT)

A. The Proposed Method

In this paper, a new algorithm named Def-KT is proposed to

tackle the problem formulated in Section II. It is presented as

Algorithm 1. The glossary of important notations

corresponding to different variables used in the proposed

method is provided in Table I. At the beginning of the t-th

round, Q clients  2Q K are randomly selected, whose

indices are denoted by  1 2, ,...,A Q

t t t tk k k . Then, each of the

Q clients makes M training passes over its private dataset j
tk

to update its local model2
j

t

t

k
w in parallel via stochastic

gradient descent (SGD) with local minibatch size
1B and

learning rate
0 , which is shown as follows

  
1 ,SGD , =1,..., .,

j j
t t

j
t

B

k

t

k

kt M j Q w w (1)

After that, another Q clients are randomly selected to

communicate with the clients in set A

t in a peer-to-peer

manner, whose indices are denoted by

 1 2 2, ,...,B Q Q Q

t t t tk k k  . In this paper, it is assumed that set

A

t and set B

t have no overlap. In other words, a participating

client in a round would either update and send its model or

2 In this paper, we assume that the models at different clients share the same

architecture. For a concise representation, a model is unambiguously
represented by a vector containing all the parameters. For example, “its local

model
j

t

t

k
w ” means “its local model with parameters contained in a vector

j
t

t

k
w ”.

Central Server

Network 1Dataset 1

Network 2Dataset 2

Network 3Dataset 3

Network 5Dataset 5

Network 4Dataset 4

① Update the local model

② Upload model

④ Download model
③ Model averaging

Authorized licensed use limited to: Tsinghua University. Downloaded on May 12,2021 at 06:33:01 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3078543, IEEE Internet of
Things Journal

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

receive a model from the other clients. It does not do both3. To

be more specific, the j

tk -th client transmits its updated model
j

t

t

k
w to the j Q

tk  -th client, 1,...,j Q . In this case, 2Q clients

participate in each round and only half of them train their local

models on their private datasets. The overall communication

overhead in each round comes from the transmission of Q sets

of model parameters in the network. By assuming Q to be a

small number, only a small subset of clients undertake heavy

computational tasks and the communication overhead is

affordable for a system under resource constraints. This ensures

that the proposed algorithm can be easily implemented under

practical scenarios. It is also worth pointing out that, although

discussed under the above setting, the proposed algorithm

could be generalized to other cases where the number of clients

that can afford to perform local training tasks and the

communication overhead in the network are different from

those in this paper. The analysis and experiments under more

generalized settings are not included in this paper due to page

limitations.

Upon receiving the model from the j

tk -th client, the j Q

tk  -th

client mixes the knowledge of the received model
j

t

t

k
w and its

local model
j Q

t

t

k 

w by letting the two models transfer

knowledge to each other, which is motivated by DML. Next,

the MKT strategy in the proposed Def-KT algorithm will be

elaborated in more detail. First, j Q
tk  is split into L

mini-batches of size
2B denoted by  , 1,...l l L to be fed in

models
j

t

t

k
w and

j Q
t

t

k 

w . It is worth noting that, distinct

“expertise” of the two models results in different outputs of

their softmax layer, a.k.a. soft predictions, on the same

mini-batch of data samples. Based on that, to transfer their

knowledge to each other, model
j

t

t

k
w and model

j Q
t

t

k 

w try to

3 Actually, the proposed method can be easily extended to other cases where

a participating client both transmits and receives models in a round. The
extended models are not analyzed in this paper since the network topology is

not the main focus in this paper.

imitate the output of the other one by minimizing the loss

functions given as

      1 2, 1, 2, 1,Loss , , , ,
j

tk

t l C l l ll KL lL D w (2)

and

      2 1, 2, 1, 2,Loss , , , ,
j Q

t

t l C l l

k

Ll l K lL D


 w (3)

respectively, where   2

1

B
l

l z z
y


 denotes the set of true labels

of the data samples in
l
with  1,2,...,l

zy C being the true

label of the z-th sample in
l
. In (2) and (3), 1,l and 2,l are

the soft predictions produced as

   

   

2

2

1, 1, , 1

2, 2, , 1

model , , ,

model , , ,

=

=

j
t

j Q
t

B

l l z t

t

k

l

k

z

B

l l z lz

l

l






 

 

p w

p w

 (4)

where 1 2

1, , 1, , 1, , 1, ,, ,..., C

l z l z l z l zp p p   p and 1 2

2, , 2, , 2, , 2, ,, ,..., C

l z l z l z l zp p p   p

are two vectors of length C denoting the soft predictions of the

z-th data sample in the mini-batch
l
.  CL in (2) and (3)

denotes the cross entropy error between the true labels and the

soft predictions, which is given by

   

   

2

2

1, 1, ,

1

2, 2, ,

1

, log ,

, log ,

B
T l

C l l z l z

z

B
T l

C l l z l z

z

L y

L y





 

 





h p

h p

 (5)

where  yh is the 1C one-hot vector and all the elements in

 yh are zero except that the y-th element is one. The second

term in (2) and (3) is the Kullback Leibler (KL) Divergence that

quantifies the match of the soft predictions of the two networks,

which is given as

 

 

2

2

2, ,

2, 1, 2, ,

1 1 1, ,

1, ,

1, 2, 1, ,

1 1 2, ,

log ,

log ,

cB C
l zc

KL l l l z c
z c l z

cB C
l zc

KL l l l z c
z c l z

p
D p

p

p
D p

p

 

 









 (6)

After updating
j

t

t

k
w and

j Q
t

t

k 

w by minimizing the loss

functions in (2) and (3) through E passes over all the

mini-batches of dataset j Q
tk  as shown in (7) and (8) in

Algorithm 1, the j Q

tk  -th client stores the resulting model
j

t

t

k
w

as its local model, which incorporates the knowledge of both

models participating in the MKT process. To make it clear, Fig.

2 presents the schematic of a round of the proposed Def-KT

algorithm.

B. The Rationale Behind the Proposed Method

Different from the model averaging strategy adopted by the

prior DFL methods [7],[10],[11],[36], the proposed method

utilizes MKT to fuse models at the local clients, which

effectively avoids the negative impact of client-drift in the local

updates. Next, we explicitly explain the motivation of using

MKT under the DFL framework. For brevity, the subsequent

notations follow those in Section III.A.

TABLE I

GLOSSARY OF NOTATIONS IN DEF-KT

Symbol Descriptions

K The number of IoT clients in the network.

k The private dataset of the k-th client, 1,...,k K .

Q The number of transmitting clients in each round.

T The total number of rounds.

0w
The vector containing all the initial parameters of the

model.

1B The local minibatch size of local updating.

M The number of training passes of local updating.

0 The learning rate of local updating.

2B The local minibatch size of MKT.

E The number of training passes of MKT.

 1 2,  The learning rates of MKT.

Authorized licensed use limited to: Tsinghua University. Downloaded on May 12,2021 at 06:33:01 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3078543, IEEE Internet of
Things Journal

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

It is obvious that the received model
j

t

t

k
w and the local

model
j Q

t

t

k 

w have been trained on different and possibly

heterogeneous datasets, which indicates that they have distinct

“expertise” on the training data. To be more specific, the

received model
j

t

t

k
w has been trained on j

tk
 at the beginning

of the t-th round so it performs well on j
tk

. In contrast, the

local model
j Q

t

t

k 

w has gained much information from j Q
tk  in

some previous rounds, which makes it perform well on j Q
tk  .

Since j
tk

 and j Q
tk  have no overlap and they are even drawn

from distinct distributions, the knowledge of model
j

t

t

k
w and

model
j Q

t

t

k 

w is different from each other. To obtain a new

model that mixes the knowledge of both the received model
j

t

t

k
w and the local model

j Q
t

t

k 

w , MKT is implemented in the

proposed Def-KT algorithm. To gain more insights into the

effectiveness of the proposed algorithm, the rationale behind it

is discussed in more detail as follows:

1) Learning from unseen data samples indirectly. Before

starting MKT in the t-th round, clearly model
j

t

t

k
w and

model
j Q

t

t

k 

w possess distinct knowledge gained from two

different training datasets, which are owned by client j

tk

and client j Q

tk  , respectively. Then, in the process of

MKT at client j Q

tk  , by imitating the output of model
j

t

t

k
w , model

j Q
t

t

k 

w could understand and gain the

knowledge possessed by model
j

t

t

k
w with respect to the

private dataset j
tk

 of client j

tk indirectly, even though

the raw dataset j
tk

 is not available to client j Q

tk  . This

ensures that the knowledge about dataset j
tk

 is preserved

in both models participating in the MKT process despite

the inaccessibility of dataset j
tk

.

2) Enhancing the generalization ability by synthesizing

the knowledge from models with distinct expertise. It is

obvious that model
j

t

t

k
w and model

j Q
t

t

k 

w are trained on

different datasets before MKT, which implies that the two

models have developed distinct knowledge about the data.

Based on that, when inputting the same data samples, the

two models learn quite different representations and soft

predictions. By imitating the output of the other network,

the posterior entropy of the output of each network is

increased, which naturally contributes to better

generalization to new test data for each of the two

networks.

3) Overcoming catastrophic forgetting. Catastrophic

forgetting is a term used in continual learning, which

refers to the phenomenon that a neural network loses the

knowledge regarding the previously learnt tasks when it

incorporates some new knowledge about the current task

[32]-[34]. A specific scenario where catastrophic

forgetting occurs is training a network on multiple tasks

sequentially with data from different tasks presented

sequentially as well. Similar to this case, during the t-th

round, model
j

t

t

k
w is first trained on dataset j

tk
 .After

that, model
j

t

t

k
w is sent to the j Q

tk  -th client where dataset

j
tk

 is no longer accessible, 1,...,j Q . During the

subsequent MKT process, by letting the model
j Q

t

t

k 

w

Algorithm 1: Def-KT (The proposed method)

Input: initial parameters
0w

Initialization: All clients are initialized with the same

model with parameters
0w .

For 0,...,t T do

Randomly select a set  1 2, ,...,A Q

t t t tk k k of clients.

Randomly select another set  1 2 2, ,...,B Q Q Q

t t t tk k k 

of clients.

For  1,...,j Q in parallel do

  
1 ,SGD , .

j j
t t

j
t

k k

t kt B Mw w

The j

tk -th client stores
j

t

t

k
w as its local model and

transmits
j

t

t

k
w to the j Q

tk  -th client.

end

For  1,...,j Q in parallel do

The j Q

tk  -th client does:

  2into minibatches of , 1,... spl t size i j Q
t

l k
l L B 

For 1,...,e E do

For  1,...,l L do

Compute soft predictions  1, model ,
j

t

tll

k
 w .

Compute soft predictions  2, model , .
j Q

tk

ll t



 w

Update
j

t

t

k
w :

 1 2,

1

Loss , ,
.

j
t

j j
t t

j
t

k

lt l

t t

t

k k

k



 



w
w w

w
 (7)

Update
j Q

t

t

k 

w :

 2 1,

2

Loss , ,
.

j Q
t

j Q j Q
t t

j Q
t

k

l
k k

k

t l

t t

t





 




 



w
w w

w
 (8)

end

end

Store
j

t

t

k
w as the local model at the j Q

tk  -th client.

end

end

Until: convergence

Authorized licensed use limited to: Tsinghua University. Downloaded on May 12,2021 at 06:33:01 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3078543, IEEE Internet of
Things Journal

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

teach and learn from model
j

t

t

k
w simultaneously,

j
t

t

k
w

obtains new capabilities based on the “new” dataset j Q
tk 

and in the meantime maintains its performance on dataset

j
tk

 since the knowledge of model
j

t

t

k
w is not overwritten

but transferred to the model
j Q

t

t

k 

w . This effectively

prevents the resulting model from forgetting the

information contained in dataset j
tk

 that is no longer

available.

4) Avoiding homogenization of different models. It has

been pointed out that an obstacle for collaborative learning

including DML is the tendency of homogenization of the

student networks, which results from the fact that all

students learn from the same entire dataset all along. The

phenomenon of homogenization leads to degraded

generalization ability and impacts the performance gain

brought by collaboration of multiple networks [35]. In

contrast, MKT in Def-KT is not affected by model

homogenization. This is because the local training process

at the beginning of each round at the j

tk -th client,

 1 2, ,...,j Q

t t t tk k k k , enhances the diversity of different

local models and thus prevents model homogenization. In

other words, the two models participating in the MKT

process have been trained on totally different datasets

owned by two clients and they tend to learn different

feature representations on a common data sample in spite

of the same initialization. From that point of view, data

heterogeneity across different clients benefits the training

task in the proposed Def-KT algorithm since it alleviates

model homogenization and enhances the generalization

ability of local models.

In the proposed Def-KT algorithm, the strength of MKT is

incorporated into the DFL framework to fuse local models and

produce models with better generalization ability. It is worth

emphasizing that, although MKT in Def-KT is motivated by

DML [13], the rationale behind them are very different from

each other, as shown in Fig. 3. As introduced in Section I, the

performance gain of DML is a consequence of different

initializations of the student networks. In contrast, under the

DFL schemes, the models of different clients are all initialized

to share the same architecture and the same set of parameters.

Due to the data heterogeneity across different clients, models at

different clients are able to gain different knowledge on the

training datasets. Based on that, transferring knowledge

between different clients improves the generalization ability of

the resulting models and thus contributes to faster convergence

and better training stability.

IV. EXPERIMENTS

In this section, a series of experiments are performed to

evaluate the performance of the proposed algorithm on image

classification tasks under the DFL schemes. Comparison with

the baseline methods with model averaging is conducted to

demonstrate the superiority of our method.

(a)

(b)

(c)

Fig. 2. Schematic of a single round of the proposed Def-KT method (Q = 1),

where three steps are implemented sequentially. (a) Step 1: client 1 is randomly

chosen to train and update its local model based on its own dataset. (b) Step 2:
Client 1 transmits the updated model to another randomly chosen client 4. (c)

Client 4 performs model fusion by means of mutual knowledge transfer and

stores the resulting model thereof to replace its local model.

A. Datasets

Four public datasets are used, which are MNIST [14],

Fashion-MNIST [25], CIFAR-10 [15], and CIFAR-100 [51].

MNIST consists of 70k 28 28 images of handwritten digits

of number 0 to 9, which are divided into a training set of 60k

examples and a test set of 10k examples.

Fashion-MNIST consists of 70k 28 28 images of fashion

items from 10 classes. On the whole, there are 60k images in

the training set and 10k images in the test set.

CIFAR-10 contains 32 32 RGB images of objects from 10

classes and it is originally split into a training set of 50k

examples and a test set of 10k examples.

Network 1Dataset 1

Network 2Dataset 2

Network 3Dataset 3

Network 5Dataset 5

Network 4Dataset 4

Dormant Dormant

DormantDormant

Participating

Local update

Network 1Dataset 1

Network 2Dataset 2

Network 3Dataset 3

Network 5Dataset 5

Network 4Dataset 4

Dormant Dormant

DormantParticipating

Participating

Transmit model

parameters

Network 1Dataset 1

Network 2Dataset 2

Network 3Dataset 3

Network 5Dataset 5

Network 1

Dataset 4

Dormant Dormant

Dormant

Participating

Dormant

Network 4

Model

fusion by

mutual

knowledge

transfer

Authorized licensed use limited to: Tsinghua University. Downloaded on May 12,2021 at 06:33:01 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3078543, IEEE Internet of
Things Journal

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

CIFAR-100 contains 32 32 RGB images of objects from

100 classes, which is originally split into a training set of 50k

examples and a test set of 10k examples.

(a)

(b)

Fig. 3. (a) Schematic of DML [13]. Each network is initialized differently. (b)

Schematic of MKT of the proposed Def-KT algorithm. All the networks are
initialized similarly but trained on heterogeneous datasets before transferring

knowledge in each round.

Algorithm 2: FullAvg (Baseline)

Input: initial parameters
0w

Initialization: All clients are initialized with the same

model with parameters
0w

For 0,...,t T do

Randomly select a set  1 2, ,...,A Q

t t t tk k k of clients.

Randomly select another set  1 2 2, ,...,B Q Q Q

t t t tk k k 

of clients.

For  1,...,j Q in parallel do

  
1 ,SGD , .

j j
t t

j
t

k k

t kt B Mw w

The j

tk -th client stores
j

t

t

k
w as its local model and

transmits it to the j Q

tk  -th client.

end

For  1,...,j Q in parallel do

The j Q

tk  -th client does:

.
j j Qj Q j j Q

t tt t t

j j Q j j Q
t t t t

k kk k k

k k

t

k

t

k

t

N N

N N N N

 

 

 
 

w w w

Store
j Q

t

t

k 

w as the local model at the j Q

tk  -th client.

end

end

Until: convergence

Algorithm 3: Combo (Baseline)

Input: initial parameters
0w

Initialization: All clients are initialized with the same

model with parameters
0w

For 0,...,t T do

Randomly select a set  1 2, ,...,A Q

t t t tk k k of clients.

Randomly select another set  1 2 2, ,...,B Q Q Q

t t t tk k k 

of clients.

For  1,...,j Q in parallel do

  
1 ,SGD , .

j j
t t

j
t

k k

t kt B Mw w

The -thj

tk client partitions
j

t

t

k
w into two segments

 ,1 ,2,
j j

t t

t

k

t

k
w w and transmits

,2

j
t

t

k
w to the j Q

tk  -th client.

end

For  1,...,j Q in parallel do

The j Q

tk  -th client partitions
j Q

t

t

k 

w into two segments

 ,1 ,2,
j Q j Q

t tk

t t

k  

w w and transmits ,1

j Q
tk

t



w to the -thj

tk client.

The j Q

tk  -th client does:

,2 ,2 ,2 .
j j Qj Q j j Q

t tt t t

j j Q j j Q
t t t t

k kk k

k

t t t

k

k k k

N N

N N N N

 

 

 
 

w w w

Store  ,1 ,2,
j Q j Q

t tk

t t

k  

w w as the local model at the j Q

tk  -th

client.

The -thj

tk client does:

,1 ,1 ,1 .
j j Qj j j Q

t tt t t

j j Q j j Q
t t t t

t t

k

t

k kk k k

k k k

N N

N N N N

 

 

 
 

w w w

Store  ,1 ,2,
j j

t t

t

k

t

k
w w as the local model at the -thj

tk

client.

end

end

Until: convergence

B. Baseline Methods

Two popular baseline DFL methods based on model

averaging are adopted for comparison. To make the baseline

methods and the proposed method comparable, all the methods

are implemented under the same assumptions as described in

Section II, and the communication overhead per round of the

three methods is set to be the same. The first baseline method is

FullAvg given as Algorithm 2. In FullAvg, model fusion is

implemented by averaging full sets of model parameters, as

done in [7], [10] and [11], and the weights are determined by

the sizes of the training datasets of different clients [2]. Note

that in Algorithm 2 j
tk

N and j Q
tk

N  denote the number of data

samples owned by the j

tk -th client and the j Q

tk  -th client,

respectively. In the baseline algorithm Combo given as

Algorithm 3, the models are fused by averaging model

segments [36]. It can be seen that the overall transmission

Network A

Network B

Initialization A

Initialization B

… … Knowledge transfer

Network A

Network B

Initialization … … Knowledge transfer

Dataset A

Dataset B

Authorized licensed use limited to: Tsinghua University. Downloaded on May 12,2021 at 06:33:01 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3078543, IEEE Internet of
Things Journal

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

overhead between the j

tk -th client and the j Q

tk  -th client in the

t-th round of algorithm Combo is a complete set of the model

parameters, which is the same as that of FullAvg and Def-KT.

When the training data across different clients are drawn

from the same statistical distribution and each client only

performs a small number of SGD iterations to update its local

model, model averaging in FullAvg and Combo performs well

since the local updates of different clients are closely related to

each other and model averaging does not suffer much from

client-drift. However, practical FL systems rarely satisfy the

above conditions due to the following reasons. First, datasets of

different clients are generated in distinct manners and their

training data follow different distributions [29]-[31]. Second,

resulting from limited communication resources, the system

designer is more inclined to perform multiple steps of SGD in

each round to reduce the total number of rounds [2].

C. Implementation Details

In our experiments, two types of neural networks are adopted,

namely multi-layer perceptron (MLP) [2] and convolution

neural network (CNN). The MLP has two hidden layers with

200 units, each of which uses ReLu activation. The MLP model

contains 199,210 parameters. The CNN trained on the

Fashion-MNIST dataset contains two convolution layers, a

fully connected layer and a softmax layer, which has 29034

parameters. The CNN trained on the CIFAR-10 dataset

contains three convolution layers, two fully connected layers

and a softmax layer, which has 122570 parameters. The CNN

trained on the CIFAR-100 dataset has three convolution layers,

two fully connected layers and a softmax layer with 128420

parameters.

For all the experiments, with a total number of K clients, the

training set is divided into K equal parts for all clients. Two

settings are considered for the experiments, i.e., the

homogeneous setting where the training data are independent

and identically distributed (IID) across different clients and the

heterogeneous setting where the training data are distributed

across the clients in a non-IID manner. For the IID setting4, the

data samples in the training dataset are shuffled and randomly

distributed to each of the K clients. For the non-IID setting,

most of the clients own data of only  classes, and the value of

 will be specified in Section IV.D for each experiment. This

non-IID setting is generated by arranging the training data by

their labels, dividing them into K segments of equal size, and

then assigning  segments randomly to each client. It can be

seen that a smaller value of  indicate a higher degree of data

heterogeneity across different clients. This data partitioning

enables us to explore the robustness of our method to the data

with highly heterogeneous distributions.

For each client, 80% of the local data are used as the private

training data, and the remaining data is used as a local

validation set which is used to test the local classification

accuracy of the model on data samples drawn from its local

distribution. Besides, the test set is used to test the global

classification accuracy on data drawn from a joint distribution

of all clients in the network. It is worth noting that, with

4 In the rest of the paper, we use “IID” and “homogeneous” interchangeably.

Likewise, we use “non-IID” and “heterogeneous” interchangeably.

non-IID training data, the global classification accuracy and the

local classification accuracy are not necessarily the same. For

example, with MNIST dataset and 10 clients in the network,

each client obtains 4800 training samples and a local validation

set of 1200 samples. And a global test set of 10k samples is

used to test the global performance of the models of all the

clients. In all experiments, the models at different clients are

initialized with the same architecture and the same set of model

parameters. For all the experiments, the participation rate is

fixed at 20%, which means 20% of the clients participate in

each round. This experimental setting complies with the

common practice of partial participation used in FL problems in

many practical scenarios [2]. During the MKT process in the

proposed Def-KT algorithm, E=1 number of passes is made

over the local dataset at the participating client who receives the

model from another participating client in the current round.

And when Def-KT is implemented, the learning rates
0 ,

1 ,

and
2 are set to the same value, which will be specified in

Section IV.D under each setting.

D. Experimental Results and Discussions

To compare the performances of the proposed method and

the baseline methods with model averaging, we run four sets of

experiments, whose results are shown as follows.

1) The MLP model is tested on the MNIST dataset in the IID

setting and the non-IID setting (8  and 4 ) with

varying numbers of clients. In each round, the number of

training passes in local updating is fixed at 1M  . An

SGD optimizer with momentum = 0.5, learning rate = 0.01,

and batchsize = 200 is applied. In Fig. 4(a)-(c), Fig.

4(e)-(g), and Fig. 4(i)-(k), for Def-KT, FullAvg and

Combo, we depict the averaged global classification

accuracy of the models of all the clients versus the number

of rounds in the training stage with different numbers of

clients. In Fig. 4(d), Fig. 4(h) and Fig. 4(l), the averaged

local classification accuracy across all the clients for the

three methods is reported when a certain number of rounds

have been accomplished under the non-IID setting with

varying numbers of clients. To prevent redundancy, the

local classification accuracy under the IID setting is not

presented in Fig. 4(d), Fig. 4(h) and Fig. 4(l), considering

that the global classification accuracy and the local

classification accuracy are equal to each other under the

IID setting.

2) The CNN model is tested on the Fashion-MNIST dataset

in the IID setting and the non-IID setting (8  and

4 ), where the number of clients is fixed at K = 10. In

each round, the number of training passes in the local

updating is set as 10M  . An SGD optimizer with

momentum = 0.5, learning rate = 0.001, and batchsize =

200 is applied for the IID setting and the non-IID setting

(8 ). An SGD optimizer with momentum = 0.5,

learning rate = 0.005, and batchsize = 200 is applied for

the non-IID setting (4 ). In Fig. 5(a)-(c), for Def-KT,

FullAvg and Combo, we plot the averaged global

classification accuracy of the models at all clients versus

the number of rounds. The values of the averaged local

classification accuracy of all the methods are shown in Fig.

Authorized licensed use limited to: Tsinghua University. Downloaded on May 12,2021 at 06:33:01 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3078543, IEEE Internet of
Things Journal

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

5(d) under the two non-IID setting upon completing a

certain number of rounds.

3) The CNN model is tested on the CIFAR-10 dataset in the

IID setting and the non-IID setting (8 ), where the

number of clients is fixed at K = 10. In each round, the

number of training passes in the local updating is fixed at

1M  and an SGD optimizer with momentum = 0.5,

learning rate = 0.01, and batchsize = 200 is applied. In Fig.

6(a) and Fig. 6(b), for Def-KT, FullAvg and Combo, we

depict the averaged global classification accuracy of the

models at all clients versus the number of rounds in the

training process. In Fig. 6(c), we present the averaged

local classification accuracy across all the clients for the

three methods under the non-IID setting after

implementing a certain number of rounds.

4) The CNN model is tested on the CIFAR-100 dataset in the

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 4. Classification accuracy on the MNIST dataset using MLP, where different algorithms are performed. (a), (e) and (i) present the global

classification accuracy versus the number of rounds under the IID case. (b),(f) and (j) present the global classification accuracy versus the number of

rounds under the non-IID case where 8  . (c), (g) and (k) present the global classification accuracy versus the number of rounds under the non-IID

case where 4  . (d), (h), and (l) present the local classification accuracy after 2500 rounds under two non-IID cases, where 8  and 4  . In

(a)-(d), the number of clients is fixed at K = 10. In (e)-(h), the number of clients is fixed at K = 50. In (i)-(l), the number of clients is fixed at K = 100.

(a) (b) (c) (d)

Fig. 5. Classification accuracy on the Fashion-MNIST dataset using CNN, where different algorithms are performed. (a) Global classification

accuracy versus the number of rounds under the IID case. (b) Global classification accuracy versus the number of rounds under the non-IID case, where

8  . (c) Global classification accuracy versus the number of rounds under the non-IID case, where 4  . (d) Local classification accuracy after

1000 rounds under two non-IID cases, where 8  and 4  .

Authorized licensed use limited to: Tsinghua University. Downloaded on May 12,2021 at 06:33:01 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3078543, IEEE Internet of
Things Journal

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

IID setting and the non-IID setting (50 ), where the

number of clients is fixed at K = 10. In each round, we fix

the number of training passes in the local updating at

1M  and an SGD optimizer with momentum = 0.5,

learning rate = 0.01, and batchsize = 200 is used. In Fig.

7(a) and Fig. 7(b), for Def-KT, FullAvg and Combo, we

plot the averaged global classification accuracy of the

models at all clients versus the number of rounds in the

training process. In Fig. 7(c), the averaged local

classification accuracy of the three methods, which is

attained after a certain number of rounds under the

non-IID setting, is reported.

From Fig. 4-Fig. 7, it is obvious that the proposed Def-KT

method outperforms the baseline methods based on the

following facts.

1) From Fig. 4(a)-(c), Fig. 4(e)-(g), Fig. 4(i)-(k), Fig. 5(a)-(c),

Fig. 6(a)-(b), and Fig. 7(a)-(b), the proposed Def-KT

converges faster and attains a higher global classification

accuracy after a fixed number of rounds in most cases

compared with the baseline methods. This is because

under data heterogeneity, model averaging induces

client-drift which degrades the learning performance. By

employing the proposed Def-KT method, the resulting

model of MKT preserves the information from both

models participating in the model fusion process.

Moreover, it can be seen that the superiority of the

proposed method is even more significant under the

non-IID setting than that under the IID setting, which

verifies the fact that Def-KT could make better use of data

heterogeneity to enhance the generalization ability of the

trained model while the baseline methods are not able to.

2) From Fig. 4(b)-(c), Fig. 4(f)-(g), Fig. 4(j)-(k), Fig. 5(b)-(c),

Fig. 6(b) and Fig. 7(b), it can be seen that the global

classification accuracy of the baseline methods oscillates

more severely under the non-IID setting while that of the

proposed method is more stable. Based on this observation,

it is verified that, with heterogeneous data, transferring

knowledge to fuse different models as done in Def-KT

ensures the resulting model to gain improved

generalization ability while averaging models directly

induces much uncertainty into the performance of the

resulting model. From this point of view, the proposed

method is more reliable.

3) From Fig. 4(d), Fig. 4(h), Fig. 4(l), Fig. 5(d), Fig. 6(c) and

Fig. 7(c), it can be observed that the local classification

accuracy of the proposed method is significantly higher

than that of the baseline methods. This is because during

the MKT process of Def-KT, the resulting model

(a) (b) (c)

Fig. 6. Classification accuracy on the CIFAR-10 dataset using CNN, where different algorithms are performed. (a) Global classification accuracy versus the

number of rounds under the IID case. (b) Global classification accuracy versus the number of rounds under the non-IID case where 8  . (c) Local

classification accuracy after 5000 rounds and 7000 rounds under the non-IID case where 8  .

(a) (b) (c)

Fig. 7. Classification accuracy on the CIFAR-100 dataset using CNN, where different algorithms are performed. (a) Global classification accuracy versus the

number of rounds under the IID case. (b) Global classification accuracy versus the number of rounds under the non-IID case where 50  . (c) Local

classification accuracy after 8000 rounds and 12000 rounds under the non-IID case where 50  .

Authorized licensed use limited to: Tsinghua University. Downloaded on May 12,2021 at 06:33:01 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3078543, IEEE Internet of
Things Journal

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

successfully incorporates the knowledge of both models

regarding their local datasets. On the contrary, model

averaging at a local client leads to catastrophic forgetting

of the previously learnt knowledge, since some of the

weights in the network that are vital for the classification

on its local dataset are incorrectly modified. Besides, the

performance gap between the proposed method and the

baseline methods is enlarged with increasing data

heterogeneity, i.e., decreasing  , which demonstrates that

the proposed method is more robust to highly

heterogeneous data.

4) The experimental results in Fig. 4 demonstrate that the

proposed Def-KT algorithm outperforms the baseline

methods with both large and small number of clients in the

network. From this perspective, Def-KT can be widely

applied in many scenarios including horizontally FL to

business (H2B) where there are only a handful of clients

and horizontally FL to consumers (H2C) where more

clients are involved in the learning process [52].

5) It can be seen from Fig. 5(b) that the proposed Def-KT

algorithm attains almost the same performance as Combo.

The reason can be explained as follows. On one hand, in

each round of Combo, all the participating clients receive

model segments from other clients. Based on that, model

segments are fused at all the participating clients, all of

which could indirectly gain some extra knowledge about

the private datasets of other clients. In contrast, in Def-KT,

only half of the participating clients transmit models and

only the other half of the participating clients could gain

knowledge from other clients by MKT. From this

perspective, in each round, more clients could gain

knowledge from other clients in Combo compared with

Def-KT, which contributes to better learning performance

of Combo. On the other hand, Combo averages model

segments for model fusion, which induces client-drift and

degrades its learning performance. In contrast, Def-KT

adopts MKT to fuse different models, which avoids the

negative impacts of client-drift. In Fig. 5(b), compared

with Def-KT, the advantages and the disadvantages of

Combo cancel out. Hence, Def-KT and Combo attain

almost the same learning performance under that case.

However, it is worth noting that all the other experimental

results in this paper show that Def-KT significantly

outperforms the two baseline methods, which

demonstrates its superiority.

V. CONCLUSION

In this paper, we considered the DFL problem in IoT systems,

where a number of IoT clients train models for image

classification tasks without the assistance of a central server. To

avoid the degradation of the learning performance induced by

client-drift under data heterogeneity, we proposed a novel

Def-KT algorithm which incorporates the advantages of MKT

into DFL schemes. We ran experiments on the MNIST,

Fashion-MNIST, CIFAR-10 and CIFAR-100 datasets, which

demonstrate the superiority of the proposed Def-KT algorithm

over the baseline DFL methods based on model averaging, as

the former attains higher classification accuracy and more

stable learning performance. In the future, we plan to study

more communication-efficient extensions of Def-KT and to

conduct theoretical analysis for Def-KT.

REFERENCES

[1] J. Konecný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D.

Bacon, “Federated learning: Strategies for improving communication

efficiency,” 2016. [Online]. Available: http://arxiv.org/abs/1610.05492.
[2] H. B. McMahan, D. Ramage, S. Hampson, and B. Aguera y Arcas,

“Communication-efficient learning of deep networks from decentralized

data,” in Proc. 20th Int. Conf. Artificial Intelligence and Statistics, 2017,
pp. 1273–1282.

[3] P. Kairouz et al, “Advances and open problems in federated learning,”

2019. [Online]. Available: https://arxiv.org/abs/1912.04977.
[4] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:

Challenges, methods, and future directions,” IEEE Signal Process. Mag.,

vol. 37, no. 3, pp. 50–60, May 2020.
[5] S. Boyd, A. Ghosh, B. Prabhakar and D. Shah, “Randomized gossip

algorithms,” IEEE Trans. Inf. Theory, vol. 52, no. 6, pp. 2508-2530, Jun.

2006.
[6] M. Blot, D. Picard, M. Cord, and N. Thome, “Gossip training for deep

learning,” 2016. [Online]. Available: https://arxiv.org/abs/1611.09726.

[7] I. Hegedus, G. Danner, and M. Jelasity, “Gossip learning as a
decentralized alternative to federated learning,” in Proc. Int. Conf.

Distributed Applications and Interoperable Systems, pages 74-90, 2019.

[8] A. Koloskova, S. U. Stich, and M. Jaggi, “Decentralized stochastic
optimization and gossip algorithms with compressed communication,”

in Proc. Int. Conf. Mach. Learn., 2019, pp. 3478–3487.

[9] A. Koloskova, N. Loizou, S. Boreiri, M. Jaggi, and S. U. Stich, “A
unified theory of decentralized sgd with changing topology and local

updates,” 2020. [Online]. Available: https://arxiv.org/abs/2003.10422.

[10] A. G. Roy, S. Siddiqui, S. Polsterl, N. Navab, and C. Wachinger,
“Braintorrent: a peer-to-peer environment for decentralized federated

learning,” 2019. [Online]. Available: https://arxiv.org/abs/1905.06731.

[11] S. Savazzi, M. Nicoli, V. Rampa, and S. Kianoush, “Federated learning
with mutually cooperating devices: A consensus approach towards

server-less model optimization,” in Proc. Int. Conf. Acoustics, Speech,

and Signal Processing, pages 3937-3941, 2020.
[12] S. Praneeth Karimireddy, S. Kale, M. Mohri, S. J. Reddi, S. U. Stich, and

A. Theertha Suresh, “SCAFFOLD: Stochastic controlled averaging for

federated learning,” in Proc. Int. Conf. Mach. Learn., 2020.
[13] Y. Zhang, T. Xiang, T. Hospedales, and H. Lu, “Deep mutual learning,”

in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp.

4320–4328.
[14] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based

learning applied to document recognition,” Proc. IEEE, vol. 86, no. 11,

pp. 2278–2324, Nov. 1998.
[15] A. Krizhevsky, V. Nair, and G. Hinton. (2014). The CIFAR-10 Dataset.

[Online]. Available: http://www.cs.toronto.edu/kriz/cifar.html.
[16] M. Xie, G. Long, T. Shen, T. Zhou, X. Wang, and J. Jiang, “Multi-Center

Federated Learning,” 2020. [Online]. Available:

https://arxiv.org/abs/2005.01026.

[17] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” in Proc. Conf.

Machine Learning and Systems, 2020.

[18] A. Romero, N. Ballas et al, “Fitnets: Hints for thin deep nets,” in Proc.
Int. Conf. Learning Representations, 2015.

[19] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural

network,” 2015. [Online]. Available: https://arxiv.org/abs/1503.02531.

[20] S. A. Rahman, H. Tout, H. Ould-Slimane, A. Mourad, C. Talhi and M.

Guizani, “A Survey on Federated Learning: The Journey from

Centralized to Distributed On-Site Learning and Beyond,” IEEE Internet
Things J., early access, 2020.

[21] J. Pang, Y. Huang, Z. Xie, Q. Han and Z. Cai, “Realizing the

Heterogeneity: A Self-Organized Federated Learning Framework for
IoT,” IEEE Internet Things J., early access, 2020.

[22] I. Mohammed et al., “Budgeted Online Selection of Candidate IoT

Clients to Participate in Federated Learning,” IEEE Internet Things J.,
early access, 2020.

[23] R. Saha, S. Misra and P. K. Deb, “FogFL: Fog Assisted Federated

Learning for Resource-Constrained IoT Devices,” IEEE Internet Things
J., early access, 2020.

[24] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated

learning with non-IID data,” 2018. [Online]. Available:

Authorized licensed use limited to: Tsinghua University. Downloaded on May 12,2021 at 06:33:01 UTC from IEEE Xplore. Restrictions apply.

https://arxiv.org/search/cs?searchtype=author&query=Shen%2C+T
https://arxiv.org/search/cs?searchtype=author&query=Zhou%2C+T
https://arxiv.org/search/cs?searchtype=author&query=Wang%2C+X
https://arxiv.org/search/cs?searchtype=author&query=Jiang%2C+J

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3078543, IEEE Internet of
Things Journal

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

12

https://arxiv.org/abs/1806.00582.
[25] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: a Novel Image

Dataset for Benchmarking Machine Learning Algorithms,” 2017.

[Online]. Available: https://arxiv.org/abs/1708.07747.
[26] K. Bonawitz et al, “Towards federated learning at scale: System design,”

in Proc. 2nd SysML Conference, 2019.

[27] A. D. G. Dimakis, A. D. Sarwate and M. J. Wainwright, “Geographic
Gossip: Efficient Averaging for Sensor Networks,” IEEE Trans. Signal

Process., vol. 56, no. 3, pp. 1205-1216, Mar. 2008.

[28] A. Khosravi and Y. S. Kavian, “Broadcast Gossip Ratio Consensus:
Asynchronous Distributed Averaging in Strongly Connected Networks,”

IEEE Trans. Signal Process., vol. 65, no. 1, pp. 119-129, Jan. 2017.

[29] F. Sattler, S. Wiedemann, K. -R. Müller and W. Samek, “Robust and
Communication-Efficient Federated Learning From Non-i.i.d. Data,”

IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no.9, pp. 3400-3413,

2020.
[30] D. Li and J. Wang, “FedMD: Heterogenous federated learning via model

distillation,” in Proc. 33rd Conf. Neural Information Processing Systems

(NeurIPS), 2019.
[31] N. Shoham et al, “Overcoming forgetting in federated learning on

non-iid data,” in NeurIPS Workshop on Federated Learning for Data

Privacy and Confidentiality, 2019.

[32] R. French, “Catastrophic forgetting in connectionist networks,” Trends

in cognitive sciences, vol. 3, pp. 128–135, 1999.

[33] Z. Li and D. Hoiem, “Learning without forgetting,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 40, no. 12, pp. 2935–2947, Dec. 2018.

[34] J. Kirkpatrick et al, “Overcoming catastrophic forgetting in neural
networks,” Proceedings of the National Academy of Sciences of the

United States of America (PNAS), vol. 114, no. 13, pp. 3521–3526, 2017.

[35] S. Feng et al, “Collaborative Group Learning,” 2020. [Online]. Available:
https://arxiv.org/abs/2009.07712.

[36] C. Hu, J. Jiang and Z. Wang, “Decentralized Federated Learning: A

Segmented Gossip Approach,” International Workshop on Federated
Learning for User Privacy and Data Confidentiality in Conjunction with

IJCAI, 2019.

[37] P. Vanhaesebrouck, A. Bellet, and M. Tommasi, “Decentralized
collaborative learning of personalized models over networks,” in Proc.

Int. Conf. Artificial Intelligence and Statistics (AISTATS), 2017.

[38] T. Nishio and R. Yonetani, “Client Selection for Federated Learning
with Heterogeneous Resources in Mobile Edge,” in Proc. IEEE Int. Conf.

Communications (ICC), Shanghai, China, 2019, pp. 1-7.

[39] L. Lou, Q. Li, Z. Zhang, R. Yang and W. He, “An IoT-Driven Vehicle
Detection Method Based on Multisource Data Fusion Technology for

Smart Parking Management System,” IEEE Internet Things J., vol. 7, no.

11, pp. 11020-11029, Nov. 2020.
[40] Ş. Kolozali et al., “Observing the Pulse of a City: A Smart City

Framework for Real-Time Discovery, Federation, and Aggregation of

Data Streams,” IEEE Internet Things J., vol. 6, no. 2, pp. 2651-2668, Apr.
2019.

[41] M. Mohammadi, A. Al-Fuqaha, M. Guizani and J. Oh, “Semisupervised

Deep Reinforcement Learning in Support of IoT and Smart City
Services,” IEEE Internet Things J., vol. 5, no. 2, pp. 624-635, Apr. 2018.

[42] W. Xu et al., “The Design, Implementation, and Deployment of a Smart

Lighting System for Smart Buildings,” IEEE Internet Things J., vol. 6,
no. 4, pp. 7266-7281, Aug. 2019.

[43] T. He, C. Shen, Z. Tian, D. Gong, C. Sun, and Y. Yan, “Knowledge

adaptation for efficient semantic segmentation,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., pp. 578-587, 2019.

[44] Y. Liu, K. Chen, C. Liu, Z. Qin, Z. Luo, and J. Wang, “Structured

knowledge distillation for semantic segmentation,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., pp. 2599-2608, 2019.

[45] T. Wang, L. Yuan, X. Zhang, and J. Feng, “Distilling object detectors

with fine-grained feature imitation,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., pp. 4928-4937, 2019.

[46] F. Zhang, X. Zhu, and M. Ye, “Fast human pose estimation,” in Proc.

IEEE Conf. Comput. Vis. Pattern Recognit., pp. 3512-3521, 2019.
[47] Y. Liao, X. Shen and H. Rao, “Analytic Sensor Rules for Optimal

Distributed Decision Given K-Out-of-L Fusion Rule Under Monte Carlo

Approximation,” IEEE Trans. Autom. Control, vol. 65, no. 12, pp.
5488-5495, Dec. 2020

[48] J. Xie, J. Fang, C. Liu and L. Yang, “Unsupervised Deep Spectrum

Sensing: A Variational Auto-Encoder Based Approach,” IEEE Trans.
Veh. Technol., vol. 69, no. 5, pp. 5307-5319, May 2020.

[49] J. Mills, J. Hu and G. Min, “Communication-Efficient Federated

Learning for Wireless Edge Intelligence in IoT,” IEEE Internet of Things

J., vol. 7, no. 7, pp. 5986-5994, Jul. 2020.
[50] F. Samie, L. Bauer and J. Henkel, “From Cloud Down to Things: An

Overview of Machine Learning in Internet of Things,” IEEE Internet of

Things J., vol. 6, no. 3, pp. 4921-4934, Jun. 2019.
[51] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from

tiny images,” Technical report, University of Toronto, 2009.

[52] L. Lyu, H. Yu, and Q. Yang, “Threats to federated learning: A survey,”
2020, arXiv:2003.02133. [Online]. Available: http://arxiv.

org/abs/2003.02133.
[53] J. Wang et al, “Tackling the Objective Inconsistency Problem in

Heterogeneous Federated Optimization,” in Proc. 34th Conf. Neural

Information Processing Systems (NeurIPS), 2020.

[54] Y. Deng et al, “Distributionally Robust Federated Averaging,” in Proc.
34th Conf. Neural Information Processing Systems (NeurIPS), 2020.

Authorized licensed use limited to: Tsinghua University. Downloaded on May 12,2021 at 06:33:01 UTC from IEEE Xplore. Restrictions apply.

http://arxiv/

