
2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3078543, IEEE Internet of
Things Journal

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

1 

 

Abstract—In this paper, we investigate the problem of 

decentralized federated learning (DFL) in Internet of 

things (IoT) systems, where a number of IoT clients train 

models collectively for a common task without sharing 

their private training data in the absence of a central server. 

Most of the existing DFL schemes are composed of two 

alternating steps, i.e., model updating and model averaging. 

However, averaging model parameters directly to fuse 

different models at the local clients suffers from client-drift 

especially when the training data are heterogeneous across 

different clients. This leads to slow convergence and 

degraded learning performance. As a possible solution, we 

propose the decentralized federated learning via mutual 

knowledge transfer (Def-KT) algorithm where local clients 

fuse models by transferring their learnt knowledge to each 

other. Our experiments on the MNIST, Fashion-MNIST, 

CIFAR-10, and CIFAR-100 datasets reveal that the 

proposed Def-KT algorithm significantly outperforms the 

baseline DFL methods with model averaging, i.e., Combo 

and FullAvg, especially when the training data are not 

independent and identically distributed (non-IID) across 

different clients. 

 
Index Terms—decentralized learning, federated learning, 

Internet of Things (IoT), knowledge transfer. 

 

I. INTRODUCTION 

OWADAYS, an unprecedented amount of data are being 

generated by devices such as smart phones in the booming 

applications of Internet of things (IoT) including smart city and 

smart factory [39]-[42], which has facilitated the emergence of 

data-driven methods such as machine learning (ML) [48], [50]. 

In the traditional ML paradigm, models are trained with large 

datasets collected by a central server. However, in many 

practical applications of IoT, data may be privacy-sensitive and 

it may be costly to aggregate large datasets at a central server. 

In such cases, the training data are often distributed on different 

IoT clients such as sensors [47], phones or other information 

sources [3] where they are generated. To train models using 
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decentralized training data in IoT systems, federated learning 

(FL) is emerging as a new framework for learning tasks while 

not requiring the clients to transmit their raw datasets, thereby 

reducing the communication cost and at the same time 

guaranteeing data privacy [1]-[3], [20]-[23],[49]. 

In a general FL system, a central server coordinates the 

training task based on the data at the clients [4], [26]. As shown 

in Fig. 1, during each round, each participating client 

individually updates the model based on its local dataset and 

then transmits the updated model to the server. Upon receiving 

the models from all the participating clients during the current 

round, the server conducts model averaging and broadcasts the 

updated model to the participating clients of the next round [2]. 

Although the FL systems mentioned above are promising, they 

are confronted with many challenges. While large 

organizations could play the role of a central server in some IoT 

applications, in many FL environments, it is difficult to find a 

central server that is both reliable and powerful [3], [37]. 

Besides, a malfunction in the central server induces a single 

point of failure of the whole network. To overcome the above 

shortcomings of general FL systems that use a central server, 

decentralized FL (DFL) methods which do not need a central 

server are well worth investigating. In DFL, the clients 

exchange their model parameters directly in a peer-to-peer 

manner [4]. Actually, the advantages of DFL lie in not only 

eliminating the single point failure of the central server, but also 

attaining scalability in an inexpensive manner since no 

additional infrastructure is necessary [3].  

Gossip averaging is a well known method in a variety of 

decentralized algorithms [5], [27], [28], where different clients 

in the network exchange information in a peer-to-peer manner 

without the help of a central server. In [6], [8] and [9], gossip 

averaging has been employed with stochastic gradient descent 

(SGD) to train deep learning models in a decentralized way, 

which manifests excellent convergence properties. Built on the 

above prior work, gossip averaging was later applied to DFL 

schemes, where model updating and model averaging are 

implemented in an alternating manner at the local clients 

[7],[10],[11],[36]. While in [7],[10] and [11] the clients send 

and average full sets of model parameters, the Combo 

algorithm in [36] has been proposed by letting the clients 

transmit and average model segments in order to make better 

use of the communication resources without impacting the 

convergence rate. Although the aforementioned DFL 

algorithms do overcome some of the difficulties confronting 

the general FL systems that require a central server, they all 

employ model averaging to fuse models at the local clients, 

which is not always very efficient due to the following reasons. 

During the training process, the models are updated locally 

Decentralized Federated Learning via Mutual 

Knowledge Transfer 

0Chengxi Li, Gang Li, Senior Member, IEEE, Pramod K. Varshney, Life Fellow, IEEE 

N 

Authorized licensed use limited to: Tsinghua University. Downloaded on May 12,2021 at 06:33:01 UTC from IEEE Xplore.  Restrictions apply. 

mailto:gangli@mail.tsinghua.edu.cn


2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3078543, IEEE Internet of
Things Journal

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

2 

towards the local optimum of each client’s loss function, and 

averaging the model parameters from different clients results in 

a model moving towards the averaged result of the 

corresponding local optima. Since different clients own distinct 

sets of training data and those datasets normally have no 

overlap or even have different distributions, which is known as 

data heterogeneity [12], [29]-[31], the optimum of each client’s 

loss function may be quite far from each other, which is also far 

away from the global optimum. Furthermore, with 

heterogeneous training data, the difference between the 

averaged result of the local optima and the global optimum 

naturally arises, which indicates that the averaged model may 

be quite different from the global optimum. This phenomenon 

is known as client-drift [12]. From this perspective, averaging 

two models that have been trained on heterogeneous data 

results in slow and unstable convergence [12] under the DFL 

scheme. This may happen even though all the clients are 

initialized identically. With degraded learning performance in 

the presence of data heterogeneity, model averaging of the DFL 

algorithms in [7],[10],[11],[36] does not make full use of the 

training datasets to enhance the generalization ability of the 

trained networks. In fact, instead of suffering from performance 

degradation when learning from heterogeneous and 

decentralized data, one should be able to exploit data 

heterogeneity to improve the generalization ability of the 

trained networks. However, it remains an open problem to 

overcome the shortcomings of the baseline DFL methods that 

use model averaging [7],[10],[11],[36] and to find new methods 

which could avoid severe degradation of the learning 

performance caused by data heterogeneity. 

In order to prevent the client-drift from impacting the 

convergence rate and the training stability and to take full 

advantage of the heterogeneous data, several FL algorithms 

have been proposed in the literature [12],[16],[17],[53],[54]. 

For example, Li et al. made some modifications to FedAvg [2] 

by incorporating a proximal term in the original objective so as 

to mitigate the adverse impact of data heterogeneity on the 

stability of the convergence behavior [17]. In [53], an FL 

algorithm based on normalized averaging was proposed in 

order to eliminate the inconsistency of the mismatched 

objectives and to maintain a fast convergence rate. In [54], a 

snapshotting scheme was employed under the FL framework, 

where the updating of the model parameters and the updating of 

the mixing parameter are decoupled. However, all of these 

methods have been proposed for general FL scenarios 

assuming the availability of a central server, and they cannot be 

applied to DFL schemes directly. 

For numerous problems, neural networks that attain 

excellent performance have been designed. They, however, 

always contain an exceedingly large number of model 

parameters, which restricts their utilization in platforms with 

limited memory and in applications requiring fast execution. In 

order to develop more compact models that behave as well as 

the large ones, distillation-based methods have been proposed 

by letting the small-sized models imitate the soft outputs of the 

larger ones [13],[18],[19],[43]-[46]. Among the distillation 

methods, deep mutual learning (DML) [13] adopts two student 

networks that learn on a common dataset collaboratively and 

simultaneously by teaching each other during the process of 

training. It is shown that, each student model attains better 

learning performance compared with that achieved when each 

model is trained separately as done in the conventional way. 

The success of DML is achieved because the two student 

networks are initialized differently, which enables them to learn 

distinct knowledge from the common data samples and to 

transfer their knowledge to each other during the training 

process. However, to the best of our knowledge, the advantages 

of the mutual knowledge transfer (MKT) strategy adopted by 

DML have not been exploited to enhance the learning 

performance of DFL tasks.  

In this paper, to perform DFL tasks in IoT systems in the 

presence of data heterogeneity, we propose a new algorithm 

called decentralized federated learning via mutual knowledge 

transfer (Def-KT), which effectively incorporates the 

advantages of MKT into the DFL framework to avoid the 

negative impact of client-drift. In each round of the proposed 

Def-KT algorithm, two steps are implemented sequentially, i.e., 

model updating and model fusion. In the first step, we 

randomly choose1 a fixed number of clients, each of which 

updates the local model by performing a number of training 

passes over its private dataset via stochastic gradient descent 

(SGD) and then sends the fine-tuned model to another 

randomly picked client. In the second step, inspired by DML 

[13], each client that has received a model in the current round 

fuses its local model and the received one using MKT rather 

than averaging them as done in [7],[10],[11] and [36]. The 

motivation of doing this is explained as follows. In the DFL 

methods with model averaging, the original incentive of 

averaging local models that have been trained on different 

training datasets is to obtain a model that performs well on data 

samples drawn from all of the datasets. In other words, the 

averaged model is supposed to acquire knowledge on different 

datasets. However, it is quite difficult to achieve the above goal 

with heterogeneous training data, negatively impacted by 

client-drift. In contrast, MKT enables two models with 

different knowledge to learn from each other and the resulting 

models obtain knowledge indirectly from both models. Based 

on the above analysis, it is intuitive that MKT can be adopted as 

a better alternative for model fusion under the DFL scheme. By 

doing this, the knowledge previously learnt by the two models 

at two different clients can be retained in the resulting model of 

MKT, with both heterogeneous training data and homogeneous 

data, which guarantees a better generalization ability on new 

data samples. To demonstrate the superiority of the proposed 

Def-KT algorithm, we run experiments on the MNIST [14], 

Fashion-MNIST [25], CIFAR-10 [15], and CIFAR-100 [51] 

datasets for image classification tasks, where Def-KT is 

compared with the baseline DFL methods that use model 

averaging, including FullAvg which performs averaging over 

full sets of model parameters [7],[10],[11] and Combo which 

performs averaging over model segments [36]. The 

experimental results show that the proposed method 

significantly outperforms FullAvg and Combo in various 

settings, observing that the former converges faster and attains 

more stable learning performance than the latter. The main 

 
1 The clients participating in the first step are randomly chosen by us to 

simulate the practical case where clients do not always volunteer to participate 
in the training process unless they are plugged-in or charged, as elaborated in 

[2]. 
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contributions of our paper are listed as follows: 

1) To avoid performance degradation induced by client-drift, 

we innovatively incorporate the advantages of MKT into 

the DFL schemes in the presence of data heterogeneity. 

Although MKT adopted by the proposed Def-KT 

algorithm is inspired by DML [13], its application to DFL 

problems is not old wine in a new bottle, since the 

rationale behind DML and MKT in Def-KT are very 

different from each other. To be more specific, the student 

models in DML are initialized differently, which enables 

them to learn different knowledge on the same data 

samples. In contrast, in the model fusion stage of Def-KT, 

the two models, although initialized to be the same, are 

trained on non-overlapping datasets and thus have distinct 

“expertise”. This enables the two models to transfer their 

knowledge to each other so that a model with better 

generalization ability can be obtained.  

2) We run experiments on four popular datasets for image 

classification tasks using the proposed Def-FL algorithm 

as well as the baseline methods with model averaging, 

namely FullAvg and Combo. Our experimental results 

demonstrate the superiority of Def-KT over the baseline 

methods. 

The rest of this paper is organized as follows. The considered 

problem is formulated in Section II. The proposed Def-KT 

algorithm and its rationale are presented in Section III. In 

Section IV, we provide experimental results to demonstrate the 

superiority of the proposed algorithm over the baseline 

methods and discuss the results. Finally, the conclusion of this 

paper is given in Section V. 

 
Fig. 1.  A general federated learning framework with a central server in IoT 
systems. 

II. PROBLEM FORMULATION 

The considered DFL problem is formulated as follows. 

Suppose there are K IoT clients in the network. Each client 

possesses a labeled image dataset   
1

: , ,
kN

k k

k i i
i

x y


  

1,...,k K , where k

ix  is the i-th data sample of the k-th client, 

 1,2,...,k

iy C  is the corresponding label among C classes, 

and 
kN  denotes the number of training samples owned by the 

k-th client. The datasets of different clients may be drawn from 

different distributions 
kP , 1,...,k K , mainly due to the fact 

that those training data have been generated and collected by 

different clients in a non-identical manner. The goal is to train 

models for the image classification task with peer-to-peer 

communications among the clients in the absence of a central 

server. To deal with the privacy concerns, it is the model 

parameters that are communicated in the network instead of 

raw datasets which are deemed privacy-sensitive. Before 

training starts, each client is initialized with a model of the 

same architecture as well as the same parameters. 

In the DFL problem considered in this paper, the following 

assumptions are made, which comply with the 

resource-constrained learning environments. 1) Only a small 

subset of clients participate in each round of the training stage, 

which are referred to as the participating clients. 2) In each 

round, only a fraction of the participating clients train their 

local models on private datasets and those clients transmit the 

fine-tuned models to another set of clients. The reason of 

making the above assumptions is three-fold. First, each client 

only volunteers to take part in the training under certain 

circumstances such as when the device is plugged-in [2], [29]. 

Second, the computational resources among the participating 

clients may not be balanced and it may be impractical to let 

them perform the same computational tasks during each round 

[38]. Third, the communication cost is one of the dominating 

factors and it is unrealistic to allow all the clients to transmit 

their models to each other simultaneously in a single round [2]. 

III. DECENTRALIZED FEDERATED LEARNING VIA MUTUAL 

KNOWLEDGE TRANSFER (DEF-KT) 

A. The Proposed Method 

In this paper, a new algorithm named Def-KT is proposed to 

tackle the problem formulated in Section II. It is presented as 

Algorithm 1. The glossary of important notations 

corresponding to different variables used in the proposed 

method is provided in Table I. At the beginning of the t-th 

round, Q clients  2Q K  are randomly selected, whose 

indices are denoted by  1 2, ,...,A Q

t t t tk k k . Then, each of the 

Q clients makes M training passes over its private dataset j
tk

 

to update its local model2 
j

t

t

k
w  in parallel via stochastic 

gradient descent (SGD) with local minibatch size 
1B  and 

learning rate 
0 , which is shown as follows 

  
1 ,SGD , =1,..., .,

j j
t t

j
t

B

k

t

k

kt M j Q w w                 (1) 

After that, another Q clients are randomly selected to 

communicate with the clients in set A

t  in a peer-to-peer 

manner, whose indices are denoted by 

 1 2 2, ,...,B Q Q Q

t t t tk k k  . In this paper, it is assumed that set 

A

t  and set B

t  have no overlap. In other words, a participating 

client in a round would either update and send its model or 

 
2 In this paper, we assume that the models at different clients share the same 

architecture. For a concise representation, a model is unambiguously 
represented by a vector containing all the parameters. For example, “its local 

model 
j

t

t

k
w ” means “its local model with parameters contained in a vector 

j
t

t

k
w ”. 

Central Server

Network 1Dataset 1

Network 2Dataset 2

Network 3Dataset 3

Network 5Dataset 5

Network 4Dataset 4

① Update the local model

② Upload model

④ Download model
③ Model averaging
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receive a model from the other clients. It does not do both3. To 

be more specific, the j

tk -th client transmits its updated model 
j

t

t

k
w  to the j Q

tk  -th client, 1,...,j Q . In this case, 2Q clients 

participate in each round and only half of them train their local 

models on their private datasets. The overall communication 

overhead in each round comes from the transmission of Q sets 

of model parameters in the network. By assuming Q to be a 

small number, only a small subset of clients undertake heavy 

computational tasks and the communication overhead is 

affordable for a system under resource constraints. This ensures 

that the proposed algorithm can be easily implemented under 

practical scenarios. It is also worth pointing out that, although 

discussed under the above setting, the proposed algorithm 

could be generalized to other cases where the number of clients 

that can afford to perform local training tasks and the 

communication overhead in the network are different from 

those in this paper. The analysis and experiments under more 

generalized settings are not included in this paper due to page 

limitations. 

 

Upon receiving the model from the j

tk -th client, the j Q

tk  -th 

client mixes the knowledge of the received model 
j

t

t

k
w  and its 

local model 
j Q

t

t

k 

w  by letting the two models transfer 

knowledge to each other, which is motivated by DML. Next, 

the MKT strategy in the proposed Def-KT algorithm will be 

elaborated in more detail. First, j Q
tk   is split into L 

mini-batches of size 
2B  denoted by  , 1,...l l L  to be fed in 

models 
j

t

t

k
w  and 

j Q
t

t

k 

w . It is worth noting that, distinct 

“expertise” of the two models results in different outputs of 

their softmax layer, a.k.a. soft predictions, on the same 

mini-batch of data samples. Based on that, to transfer their 

knowledge to each other, model 
j

t

t

k
w  and model 

j Q
t

t

k 

w  try to 

 
3 Actually, the proposed method can be easily extended to other cases where 

a participating client both transmits and receives models in a round. The 
extended models are not analyzed in this paper since the network topology is 

not the main focus in this paper. 

imitate the output of the other one by minimizing the loss 

functions given as 

      1 2, 1, 2, 1,Loss , , , ,
j

tk

t l C l l ll KL lL D w         (2) 

and 

      2 1, 2, 1, 2,Loss , , , ,
j Q

t

t l C l l

k

Ll l K lL D


 w      (3) 

respectively, where   2

1

B
l

l z z
y


  denotes the set of true labels 

of the data samples in 
l
with  1,2,...,l

zy C  being the true 

label of the z-th sample in 
l
. In (2) and (3), 1,l  and 2,l  are 

the soft predictions produced as 

 
   

   

2

2

1, 1, , 1

2, 2, , 1

model , , ,

model , , ,

=

=

j
t

j Q
t

B

l l z t

t

k

l

k

z

B

l l z lz

l

l






 

 

p w

p w

                (4) 

where 1 2

1, , 1, , 1, , 1, ,, ,..., C

l z l z l z l zp p p   p  and 1 2

2, , 2, , 2, , 2, ,, ,..., C

l z l z l z l zp p p   p  

are two vectors of length C denoting the soft predictions of the 

z-th data sample in the mini-batch 
l
.  CL  in (2) and (3) 

denotes the cross entropy error between the true labels and the 

soft predictions, which is given by 

   

   

2

2

1, 1, ,

1

2, 2, ,

1

, log ,

, log ,

B
T l

C l l z l z

z

B
T l

C l l z l z

z

L y

L y





 

 





h p

h p

                       (5) 

where  yh  is the 1C  one-hot vector and all the elements in 

 yh  are zero except that the y-th element is one. The second 

term in (2) and (3) is the Kullback Leibler (KL) Divergence that 

quantifies the match of the soft predictions of the two networks, 

which is given as 

 

 

 

2

2

2, ,

2, 1, 2, ,

1 1 1, ,

1, ,

1, 2, 1, ,

1 1 2, ,

log ,

log ,

cB C
l zc

KL l l l z c
z c l z

cB C
l zc

KL l l l z c
z c l z

p
D p

p

p
D p

p

 

 









                 (6) 

After updating 
j

t

t

k
w  and 

j Q
t

t

k 

w  by minimizing the loss 

functions in (2) and (3) through E passes over all the 

mini-batches of dataset j Q
tk   as shown in (7) and (8) in 

Algorithm 1, the j Q

tk  -th client stores the resulting model 
j

t

t

k
w  

as its local model, which incorporates the knowledge of both 

models participating in the MKT process. To make it clear, Fig. 

2 presents the schematic of a round of the proposed Def-KT 

algorithm. 

B. The Rationale Behind the Proposed Method 

Different from the model averaging strategy adopted by the 

prior DFL methods [7],[10],[11],[36], the proposed method 

utilizes MKT to fuse models at the local clients, which 

effectively avoids the negative impact of client-drift in the local 

updates. Next, we explicitly explain the motivation of using 

MKT under the DFL framework. For brevity, the subsequent 

notations follow those in Section III.A. 

 

TABLE I 

GLOSSARY OF NOTATIONS IN DEF-KT 

Symbol Descriptions 

K The number of IoT clients in the network. 

k  The private dataset of the k-th client, 1,...,k K . 

Q The number of transmitting clients in each round. 

T The total number of rounds. 

0w  
The vector containing all the initial parameters of the 

model. 

1B  The local minibatch size of local updating. 

M The number of training passes of local updating. 

0  The learning rate of local updating. 

2B  The local minibatch size of MKT. 

E The number of training passes of MKT. 

 1 2,   The learning rates of MKT. 
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It is obvious that the received model 
j

t

t

k
w  and the local 

model 
j Q

t

t

k 

w  have been trained on different and possibly 

heterogeneous datasets, which indicates that they have distinct 

“expertise” on the training data. To be more specific, the 

received model 
j

t

t

k
w  has been trained on j

tk
 at the beginning 

of the t-th round so it performs well on j
tk

. In contrast, the 

local model 
j Q

t

t

k 

w  has gained much information from j Q
tk   in 

some previous rounds, which makes it perform well on j Q
tk  . 

Since j
tk

 and j Q
tk   have no overlap and they are even drawn 

from distinct distributions, the knowledge of model 
j

t

t

k
w  and 

model 
j Q

t

t

k 

w is different from each other. To obtain a new 

model that mixes the knowledge of both the received model 
j

t

t

k
w  and the local model 

j Q
t

t

k 

w , MKT is implemented in the 

proposed Def-KT algorithm. To gain more insights into the 

effectiveness of the proposed algorithm, the rationale behind it 

is discussed in more detail as follows: 

1) Learning from unseen data samples indirectly. Before 

starting MKT in the t-th round, clearly model 
j

t

t

k
w  and 

model 
j Q

t

t

k 

w  possess distinct knowledge gained from two 

different training datasets, which are owned by client j

tk  

and client j Q

tk  , respectively. Then, in the process of 

MKT at client j Q

tk  , by imitating the output of model 
j

t

t

k
w , model 

j Q
t

t

k 

w  could understand and gain the 

knowledge possessed by model 
j

t

t

k
w  with respect to the 

private dataset j
tk

 of client j

tk  indirectly, even though 

the raw dataset j
tk

 is not available to client j Q

tk  . This 

ensures that the knowledge about dataset j
tk

 is preserved 

in both models participating in the MKT process despite 

the inaccessibility of dataset j
tk

. 

2) Enhancing the generalization ability by synthesizing 

the knowledge from models with distinct expertise. It is 

obvious that model 
j

t

t

k
w  and model 

j Q
t

t

k 

w  are trained on 

different datasets before MKT, which implies that the two 

models have developed distinct knowledge about the data. 

Based on that, when inputting the same data samples, the 

two models learn quite different representations and soft 

predictions. By imitating the output of the other network, 

the posterior entropy of the output of each network is 

increased, which naturally contributes to better 

generalization to new test data for each of the two 

networks.  

3) Overcoming catastrophic forgetting. Catastrophic 

forgetting is a term used in continual learning, which 

refers to the phenomenon that a neural network loses the 

knowledge regarding the previously learnt tasks when it 

incorporates some new knowledge about the current task 

[32]-[34]. A specific scenario where catastrophic 

forgetting occurs is training a network on multiple tasks 

sequentially with data from different tasks presented 

sequentially as well. Similar to this case, during the t-th 

round, model 
j

t

t

k
w  is first trained on dataset j

tk
 .After 

that, model 
j

t

t

k
w  is sent to the j Q

tk  -th client where dataset 

j
tk

 is no longer accessible, 1,...,j Q . During the 

subsequent MKT process, by letting the model 
j Q

t

t

k 

w  

Algorithm 1: Def-KT (The proposed method) 

Input: initial parameters 
0w  

Initialization: All clients are initialized with the same 

model with parameters 
0w . 

For 0,...,t T  do 

Randomly select a set  1 2, ,...,A Q

t t t tk k k  of clients. 

Randomly select another set  1 2 2, ,...,B Q Q Q

t t t tk k k   

of clients. 

For  1,...,j Q  in parallel do 

  
1 ,SGD , .

j j
t t

j
t

k k

t kt B Mw w  

The j

tk -th client stores 
j

t

t

k
w  as its local model and 

transmits 
j

t

t

k
w  to the j Q

tk  -th client. 

end 

For  1,...,j Q  in parallel do 

The j Q

tk  -th client does: 

  2into minibatches of , 1,... spl t size i  j Q
t

l k
l L B   

For 1,...,e E  do 

For  1,...,l L  do 

Compute soft predictions  1, model ,
j

t

tll

k
 w . 

Compute soft predictions  2, model , .
j Q

tk

ll t



 w  

Update 
j

t

t

k
w :  

 
 1 2,

1

Loss , ,
.

j
t

j j
t t

j
t

k

lt l

t t

t

k k

k



 



w
w w

w
 (7) 

Update 
j Q

t

t

k 

w : 

 2 1,

2

Loss , ,
.

j Q
t

j Q j Q
t t

j Q
t

k

l
k k

k

t l

t t

t





 




 



w
w w

w
 (8) 

end 

end 

Store 
j

t

t

k
w  as the local model at the j Q

tk  -th client. 

end 

end 

Until: convergence 
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teach and learn from model 
j

t

t

k
w  simultaneously, 

j
t

t

k
w  

obtains new capabilities based on the “new” dataset j Q
tk   

and in the meantime maintains its performance on dataset 

j
tk

 since the knowledge of model 
j

t

t

k
w  is not overwritten 

but transferred to the model 
j Q

t

t

k 

w . This effectively 

prevents the resulting model from forgetting the 

information contained in dataset j
tk

 that is no longer 

available. 

4) Avoiding homogenization of different models. It has 

been pointed out that an obstacle for collaborative learning 

including DML is the tendency of homogenization of the 

student networks, which results from the fact that all 

students learn from the same entire dataset all along. The 

phenomenon of homogenization leads to degraded 

generalization ability and impacts the performance gain 

brought by collaboration of multiple networks [35]. In 

contrast, MKT in Def-KT is not affected by model 

homogenization. This is because the local training process 

at the beginning of each round at the j

tk -th client, 

 1 2, ,...,j Q

t t t tk k k k , enhances the diversity of different 

local models and thus prevents model homogenization. In 

other words, the two models participating in the MKT 

process have been trained on totally different datasets 

owned by two clients and they tend to learn different 

feature representations on a common data sample in spite 

of the same initialization. From that point of view, data 

heterogeneity across different clients benefits the training 

task in the proposed Def-KT algorithm since it alleviates 

model homogenization and enhances the generalization 

ability of local models. 

In the proposed Def-KT algorithm, the strength of MKT is 

incorporated into the DFL framework to fuse local models and 

produce models with better generalization ability. It is worth 

emphasizing that, although MKT in Def-KT is motivated by 

DML [13], the rationale behind them are very different from 

each other, as shown in Fig. 3. As introduced in Section I, the 

performance gain of DML is a consequence of different 

initializations of the student networks. In contrast, under the 

DFL schemes, the models of different clients are all initialized 

to share the same architecture and the same set of parameters. 

Due to the data heterogeneity across different clients, models at 

different clients are able to gain different knowledge on the 

training datasets. Based on that, transferring knowledge 

between different clients improves the generalization ability of 

the resulting models and thus contributes to faster convergence 

and better training stability.  

IV. EXPERIMENTS 

In this section, a series of experiments are performed to 

evaluate the performance of the proposed algorithm on image 

classification tasks under the DFL schemes. Comparison with 

the baseline methods with model averaging is conducted to 

demonstrate the superiority of our method. 

 

 

 
(a) 

 
(b) 

 
(c) 

 
Fig. 2.  Schematic of a single round of the proposed Def-KT method (Q = 1), 

where three steps are implemented sequentially. (a) Step 1: client 1 is randomly 

chosen to train and update its local model based on its own dataset. (b) Step 2: 
Client 1 transmits the updated model to another randomly chosen client 4. (c) 

Client 4 performs model fusion by means of mutual knowledge transfer and 

stores the resulting model thereof to replace its local model. 

A. Datasets 

Four public datasets are used, which are MNIST [14], 

Fashion-MNIST [25], CIFAR-10 [15], and CIFAR-100 [51].  

MNIST consists of 70k 28 28  images of handwritten digits 

of number 0 to 9, which are divided into a training set of 60k 

examples and a test set of 10k examples. 

Fashion-MNIST consists of 70k 28 28  images of fashion 

items from 10 classes. On the whole, there are 60k images in 

the training set and 10k images in the test set. 

CIFAR-10 contains 32 32  RGB images of objects from 10 

classes and it is originally split into a training set of 50k 

examples and a test set of 10k examples.  

Network 1Dataset 1
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Network 4Dataset 4
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mutual 
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CIFAR-100 contains 32 32  RGB images of objects from 

100 classes, which is originally split into a training set of 50k 

examples and a test set of 10k examples.  
 

 
(a) 

 
(b) 

Fig. 3.  (a) Schematic of DML [13]. Each network is initialized differently. (b) 

Schematic of MKT of the proposed Def-KT algorithm. All the networks are 
initialized similarly but trained on heterogeneous datasets before transferring 

knowledge in each round. 

 

Algorithm 2: FullAvg (Baseline) 

Input: initial parameters 
0w  

Initialization: All clients are initialized with the same 

model with parameters 
0w  

For 0,...,t T  do 

Randomly select a set  1 2, ,...,A Q

t t t tk k k  of clients. 

Randomly select another set  1 2 2, ,...,B Q Q Q

t t t tk k k   

of clients. 

For  1,...,j Q  in parallel do 

  
1 ,SGD , .

j j
t t

j
t

k k

t kt B Mw w  

The j

tk -th client stores 
j

t

t

k
w  as its local model and 

transmits it to the j Q

tk  -th client. 

end 

For  1,...,j Q  in parallel do 

The j Q

tk  -th client does: 

.
j j Qj Q j j Q

t tt t t

j j Q j j Q
t t t t

k kk k k

k k

t

k

t

k

t

N N

N N N N

 

 

 
 

w w w  

Store 
j Q

t

t

k 

w  as the local model at the j Q

tk  -th client. 

end 

end 

Until: convergence 

 

Algorithm 3: Combo (Baseline) 

Input: initial parameters 
0w  

Initialization: All clients are initialized with the same 

model with parameters 
0w  

For 0,...,t T  do 

Randomly select a set  1 2, ,...,A Q

t t t tk k k  of clients. 

Randomly select another set  1 2 2, ,...,B Q Q Q

t t t tk k k   

of clients. 

For  1,...,j Q  in parallel do 

  
1 ,SGD , .

j j
t t

j
t

k k

t kt B Mw w  

The -thj

tk  client partitions 
j

t

t

k
w  into two segments 

 ,1 ,2,
j j

t t

t

k

t

k
w w  and transmits 

,2

j
t

t

k
w  to the j Q

tk  -th client. 

end 

For  1,...,j Q  in parallel do 

The j Q

tk  -th client partitions 
j Q

t

t

k 

w  into two segments 

 ,1 ,2,
j Q j Q

t tk

t t

k  

w w  and transmits ,1

j Q
tk

t



w  to the -thj

tk  client. 

The j Q

tk  -th client does: 

,2 ,2 ,2 .
j j Qj Q j j Q

t tt t t

j j Q j j Q
t t t t

k kk k

k

t t t

k

k k k

N N

N N N N

 

 

 
 

w w w  

Store  ,1 ,2,
j Q j Q

t tk

t t

k  

w w  as the local model at the j Q

tk  -th 

client. 

The -thj

tk  client does: 

,1 ,1 ,1 .
j j Qj j j Q

t tt t t

j j Q j j Q
t t t t

t t

k

t

k kk k k

k k k

N N

N N N N

 

 

 
 

w w w  

Store  ,1 ,2,
j j

t t

t

k

t

k
w w  as the local model at the -thj

tk  

client. 

end 

end 

Until: convergence 

B. Baseline Methods 

Two popular baseline DFL methods based on model 

averaging are adopted for comparison. To make the baseline 

methods and the proposed method comparable, all the methods 

are implemented under the same assumptions as described in 

Section II, and the communication overhead per round of the 

three methods is set to be the same. The first baseline method is 

FullAvg given as Algorithm 2. In FullAvg, model fusion is 

implemented by averaging full sets of model parameters, as 

done in [7], [10] and [11], and the weights are determined by 

the sizes of the training datasets of different clients [2]. Note 

that in Algorithm 2 j
tk

N  and j Q
tk

N   denote the number of data 

samples owned by the j

tk -th client and the j Q

tk  -th client, 

respectively. In the baseline algorithm Combo given as 

Algorithm 3, the models are fused by averaging model 

segments [36]. It can be seen that the overall transmission 

Network A

Network B

Initialization A

Initialization B

… … Knowledge transfer

Network A

Network B

Initialization … … Knowledge transfer

Dataset A

Dataset B
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overhead between the j

tk -th client and the j Q

tk  -th client in the 

t-th round of algorithm Combo is a complete set of the model 

parameters, which is the same as that of FullAvg and Def-KT. 

When the training data across different clients are drawn 

from the same statistical distribution and each client only 

performs a small number of SGD iterations to update its local 

model, model averaging in FullAvg and Combo performs well 

since the local updates of different clients are closely related to 

each other and model averaging does not suffer much from 

client-drift. However, practical FL systems rarely satisfy the 

above conditions due to the following reasons. First, datasets of 

different clients are generated in distinct manners and their 

training data follow different distributions [29]-[31]. Second, 

resulting from limited communication resources, the system 

designer is more inclined to perform multiple steps of SGD in 

each round to reduce the total number of rounds [2]. 

C. Implementation Details 

In our experiments, two types of neural networks are adopted, 

namely multi-layer perceptron (MLP) [2] and convolution 

neural network (CNN). The MLP has two hidden layers with 

200 units, each of which uses ReLu activation. The MLP model 

contains 199,210 parameters. The CNN trained on the 

Fashion-MNIST dataset contains two convolution layers, a 

fully connected layer and a softmax layer, which has 29034 

parameters. The CNN trained on the CIFAR-10 dataset 

contains three convolution layers, two fully connected layers 

and a softmax layer, which has 122570 parameters. The CNN 

trained on the CIFAR-100 dataset has three convolution layers, 

two fully connected layers and a softmax layer with 128420 

parameters.  

For all the experiments, with a total number of K clients, the 

training set is divided into K equal parts for all clients. Two 

settings are considered for the experiments, i.e., the 

homogeneous setting where the training data are independent 

and identically distributed (IID) across different clients and the 

heterogeneous setting where the training data are distributed 

across the clients in a non-IID manner. For the IID setting4, the 

data samples in the training dataset are shuffled and randomly 

distributed to each of the K clients. For the non-IID setting, 

most of the clients own data of only   classes, and the value of 

  will be specified in Section IV.D for each experiment. This 

non-IID setting is generated by arranging the training data by 

their labels, dividing them into K  segments of equal size, and 

then assigning   segments randomly to each client. It can be 

seen that a smaller value of   indicate a higher degree of data 

heterogeneity across different clients. This data partitioning 

enables us to explore the robustness of our method to the data 

with highly heterogeneous distributions. 

For each client, 80% of the local data are used as the private 

training data, and the remaining data is used as a local 

validation set which is used to test the local classification 

accuracy of the model on data samples drawn from its local 

distribution. Besides, the test set is used to test the global 

classification accuracy on data drawn from a joint distribution 

of all clients in the network. It is worth noting that, with 

 
4 In the rest of the paper, we use “IID” and “homogeneous” interchangeably. 

Likewise, we use “non-IID” and “heterogeneous” interchangeably.  

non-IID training data, the global classification accuracy and the 

local classification accuracy are not necessarily the same. For 

example, with MNIST dataset and 10 clients in the network, 

each client obtains 4800 training samples and a local validation 

set of 1200 samples. And a global test set of 10k samples is 

used to test the global performance of the models of all the 

clients. In all experiments, the models at different clients are 

initialized with the same architecture and the same set of model 

parameters. For all the experiments, the participation rate is 

fixed at 20%, which means 20%  of the clients participate in 

each round. This experimental setting complies with the 

common practice of partial participation used in FL problems in 

many practical scenarios [2]. During the MKT process in the 

proposed Def-KT algorithm, E=1 number of passes is made 

over the local dataset at the participating client who receives the 

model from another participating client in the current round. 

And when Def-KT is implemented, the learning rates 
0 , 

1 , 

and 
2  are set to the same value, which will be specified in 

Section IV.D under each setting.  

D. Experimental Results and Discussions 

To compare the performances of the proposed method and 

the baseline methods with model averaging, we run four sets of 

experiments, whose results are shown as follows.  

1) The MLP model is tested on the MNIST dataset in the IID 

setting and the non-IID setting ( 8   and 4  ) with 

varying numbers of clients. In each round, the number of 

training passes in local updating is fixed at 1M  . An 

SGD optimizer with momentum = 0.5, learning rate = 0.01, 

and batchsize = 200 is applied. In Fig. 4(a)-(c), Fig. 

4(e)-(g), and Fig. 4(i)-(k), for Def-KT, FullAvg and 

Combo, we depict the averaged global classification 

accuracy of the models of all the clients versus the number 

of rounds in the training stage with different numbers of 

clients. In Fig. 4(d), Fig. 4(h) and Fig. 4(l), the averaged 

local classification accuracy across all the clients for the 

three methods is reported when a certain number of rounds 

have been accomplished under the non-IID setting with 

varying numbers of clients. To prevent redundancy, the 

local classification accuracy under the IID setting is not 

presented in Fig. 4(d), Fig. 4(h) and Fig. 4(l), considering 

that the global classification accuracy and the local 

classification accuracy are equal to each other under the 

IID setting. 

2) The CNN model is tested on the Fashion-MNIST dataset 

in the IID setting and the non-IID setting ( 8   and 

4  ), where the number of clients is fixed at K = 10. In 

each round, the number of training passes in the local 

updating is set as 10M  . An SGD optimizer with 

momentum = 0.5, learning rate = 0.001, and batchsize = 

200 is applied for the IID setting and the non-IID setting 

( 8  ). An SGD optimizer with momentum = 0.5, 

learning rate = 0.005, and batchsize = 200 is applied for 

the non-IID setting ( 4  ). In Fig. 5(a)-(c), for Def-KT, 

FullAvg and Combo, we plot the averaged global 

classification accuracy of the models at all clients versus 

the number of rounds. The values of the averaged local 

classification accuracy of all the methods are shown in Fig. 
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5(d) under the two non-IID setting upon completing a 

certain number of rounds.  

3) The CNN model is tested on the CIFAR-10 dataset in the 

IID setting and the non-IID setting ( 8  ), where the 

number of clients is fixed at K = 10. In each round, the 

number of training passes in the local updating is fixed at 

1M   and an SGD optimizer with momentum = 0.5, 

learning rate = 0.01, and batchsize = 200 is applied. In Fig. 

6(a) and Fig. 6(b), for Def-KT, FullAvg and Combo, we 

depict the averaged global classification accuracy of the 

models at all clients versus the number of rounds in the 

training process. In Fig. 6(c), we present the averaged 

local classification accuracy across all the clients for the 

three methods under the non-IID setting after 

implementing a certain number of rounds.  

4) The CNN model is tested on the CIFAR-100 dataset in the 

 
(a)                                                       (b)                                                      (c)                                                       (d) 

 
(e)                                                          (f)                                                        (g)                                                     (h) 

 
(i)                                                          (j)                                                          (k)                                                      (l) 

Fig. 4.  Classification accuracy on the MNIST dataset using MLP, where different algorithms are performed. (a), (e) and (i) present the global 

classification accuracy versus the number of rounds under the IID case. (b),(f) and (j) present the global classification accuracy versus the number of 

rounds under the non-IID case where 8  . (c), (g) and (k) present the global classification accuracy versus the number of rounds under the non-IID 

case where 4  . (d), (h), and (l) present the local classification accuracy after 2500 rounds under two non-IID cases, where 8   and 4  . In 

(a)-(d), the number of clients is fixed at K = 10. In (e)-(h), the number of clients is fixed at K = 50. In (i)-(l), the number of clients is fixed at K = 100. 

 

 
(a)                                                          (b)                                                      (c)                                                        (d) 

Fig. 5.  Classification accuracy on the Fashion-MNIST dataset using CNN, where different algorithms are performed. (a) Global classification 

accuracy versus the number of rounds under the IID case. (b) Global classification accuracy versus the number of rounds under the non-IID case, where 

8  . (c) Global classification accuracy versus the number of rounds under the non-IID case, where 4  . (d) Local classification accuracy after 

1000 rounds under two non-IID cases, where 8   and 4  . 
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IID setting and the non-IID setting ( 50  ), where the 

number of clients is fixed at K = 10. In each round, we fix 

the number of training passes in the local updating at 

1M   and an SGD optimizer with momentum = 0.5, 

learning rate = 0.01, and batchsize = 200 is used. In Fig. 

7(a) and Fig. 7(b), for Def-KT, FullAvg and Combo, we 

plot the averaged global classification accuracy of the 

models at all clients versus the number of rounds in the 

training process. In Fig. 7(c), the averaged local 

classification accuracy of the three methods, which is 

attained after a certain number of rounds under the 

non-IID setting, is reported.  

From Fig. 4-Fig. 7, it is obvious that the proposed Def-KT 

method outperforms the baseline methods based on the 

following facts.  

1) From Fig. 4(a)-(c), Fig. 4(e)-(g), Fig. 4(i)-(k), Fig. 5(a)-(c), 

Fig. 6(a)-(b), and Fig. 7(a)-(b), the proposed Def-KT 

converges faster and attains a higher global classification 

accuracy after a fixed number of rounds in most cases 

compared with the baseline methods. This is because 

under data heterogeneity, model averaging induces 

client-drift which degrades the learning performance. By 

employing the proposed Def-KT method, the resulting 

model of MKT preserves the information from both 

models participating in the model fusion process. 

Moreover, it can be seen that the superiority of the 

proposed method is even more significant under the 

non-IID setting than that under the IID setting, which 

verifies the fact that Def-KT could make better use of data 

heterogeneity to enhance the generalization ability of the 

trained model while the baseline methods are not able to. 

2) From Fig. 4(b)-(c), Fig. 4(f)-(g), Fig. 4(j)-(k), Fig. 5(b)-(c), 

Fig. 6(b) and Fig. 7(b), it can be seen that the global 

classification accuracy of the baseline methods oscillates 

more severely under the non-IID setting while that of the 

proposed method is more stable. Based on this observation, 

it is verified that, with heterogeneous data, transferring 

knowledge to fuse different models as done in Def-KT 

ensures the resulting model to gain improved 

generalization ability while averaging models directly 

induces much uncertainty into the performance of the 

resulting model. From this point of view, the proposed 

method is more reliable. 

3) From Fig. 4(d), Fig. 4(h), Fig. 4(l), Fig. 5(d), Fig. 6(c) and 

Fig. 7(c), it can be observed that the local classification 

accuracy of the proposed method is significantly higher 

than that of the baseline methods. This is because during 

the MKT process of Def-KT, the resulting model 

 
(a)                                                                      (b)                                                                     (c) 

 
Fig. 6.  Classification accuracy on the CIFAR-10 dataset using CNN, where different algorithms are performed. (a) Global classification accuracy versus the 

number of rounds under the IID case. (b) Global classification accuracy versus the number of rounds under the non-IID case where 8  . (c) Local 

classification accuracy after 5000 rounds and 7000 rounds under the non-IID case where 8  . 

 
(a)                                                                     (b)                                                                        (c) 

Fig. 7.  Classification accuracy on the CIFAR-100 dataset using CNN, where different algorithms are performed. (a) Global classification accuracy versus the 

number of rounds under the IID case. (b) Global classification accuracy versus the number of rounds under the non-IID case where 50  . (c) Local 

classification accuracy after 8000 rounds and 12000 rounds under the non-IID case where 50  . 
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successfully incorporates the knowledge of both models 

regarding their local datasets. On the contrary, model 

averaging at a local client leads to catastrophic forgetting 

of the previously learnt knowledge, since some of the 

weights in the network that are vital for the classification 

on its local dataset are incorrectly modified. Besides, the 

performance gap between the proposed method and the 

baseline methods is enlarged with increasing data 

heterogeneity, i.e., decreasing  , which demonstrates that 

the proposed method is more robust to highly 

heterogeneous data.  

4) The experimental results in Fig. 4 demonstrate that the 

proposed Def-KT algorithm outperforms the baseline 

methods with both large and small number of clients in the 

network. From this perspective, Def-KT can be widely 

applied in many scenarios including horizontally FL to 

business (H2B) where there are only a handful of clients 

and horizontally FL to consumers (H2C) where more 

clients are involved in the learning process [52].  

5) It can be seen from Fig. 5(b) that the proposed Def-KT 

algorithm attains almost the same performance as Combo. 

The reason can be explained as follows. On one hand, in 

each round of Combo, all the participating clients receive 

model segments from other clients. Based on that, model 

segments are fused at all the participating clients, all of 

which could indirectly gain some extra knowledge about 

the private datasets of other clients. In contrast, in Def-KT, 

only half of the participating clients transmit models and 

only the other half of the participating clients could gain 

knowledge from other clients by MKT. From this 

perspective, in each round, more clients could gain 

knowledge from other clients in Combo compared with 

Def-KT, which contributes to better learning performance 

of Combo. On the other hand, Combo averages model 

segments for model fusion, which induces client-drift and 

degrades its learning performance. In contrast, Def-KT 

adopts MKT to fuse different models, which avoids the 

negative impacts of client-drift. In Fig. 5(b), compared 

with Def-KT, the advantages and the disadvantages of 

Combo cancel out. Hence, Def-KT and Combo attain 

almost the same learning performance under that case. 

However, it is worth noting that all the other experimental 

results in this paper show that Def-KT significantly 

outperforms the two baseline methods, which 

demonstrates its superiority.  

V. CONCLUSION 

In this paper, we considered the DFL problem in IoT systems, 

where a number of IoT clients train models for image 

classification tasks without the assistance of a central server. To 

avoid the degradation of the learning performance induced by 

client-drift under data heterogeneity, we proposed a novel 

Def-KT algorithm which incorporates the advantages of MKT 

into DFL schemes. We ran experiments on the MNIST, 

Fashion-MNIST, CIFAR-10 and CIFAR-100 datasets, which 

demonstrate the superiority of the proposed Def-KT algorithm 

over the baseline DFL methods based on model averaging, as 

the former attains higher classification accuracy and more 

stable learning performance. In the future, we plan to study 

more communication-efficient extensions of Def-KT and to 

conduct theoretical analysis for Def-KT.  
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