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Hybrid Emotion-aware Monitoring System based on
Brainwaves for Internet of Medical Things

Weizhi Meng, Senior Member, IEEE, Yong Cai, Laurence T. Yang Fellow Member, IEEE, and Wei-Yang Chiu

Abstract—Driven by an increasing number of connected medi-
cal devices, Internet of Medical Things (IoMT), as an application
of Internet of Things (IoT) in healthcare, is developed to help
collect, analyze and transmit medical data. During the outbreak
of pandemic like COVID-19, IoMT can be useful to monitor the
status of patients and detect main symptoms remotely, by using
various smart sensors. However, due to the lack of emotional care
in current IoMT, it is still a challenge to reach an efficient medical
process. Especially under COVID-19, there is a need to monitor
emotion status among particular people like elderly. In this work,
we propose an emotion-aware healthcare monitoring system in
IoMT, based on brainwaves. With the fast development of EEG
(electroencephalography) sensors in current headsets and some
devices, brainwave-based emotion detection becomes feasible. The
IoMT devices are used to capture the brainwaves of a patient in
a scenario of smart home. Also, our system involves the analysis
of touch behavior as the second layer to enhance the brainwave-
based emotion recognition. In the user study with 60 participants,
the results indicate the viability and effectiveness of our approach
in detecting emotion like comfortable and uncomfortable, which
can complement existing emotion-aware healthcare applications
and mechanisms.

Index Terms—Brainwave, Emotion-aware applications, Touch
behavior, EEG signal, Heathcare and IoMT.

I. INTRODUCTION

INTERNET of Things (IoT) currently maintains a growing
trend, which enables thousands of devices connected with

each other and exchange information via Internet [45]. The
Gartner study [20] estimated that the market of enterprise and
automotive IoT will reach 5.8 billion endpoints by the end of
2020. In addition, the Deloitte report echoed that more than
310 billion dollar had been invested by industry in order to
develop IoT technology in various disciplines [11].

The Internet of Medical Things (IoMT) is an application of
IoT technology in the heathcare domain. It is a consolidation
of medical devices and software that can connect with heath-
care systems and people and facilitate the exchange of medical
information using wireless communication technologies [3].
In other words, IoMT provides an infrastructure of healthcare
applications, systems, services and medical devices. According
to a study from Deloitte, the market of IoMT was estimated
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to be worth around $158 billion by the end of 2022 [12]. The
major advantage of IoMT is to allow monitoring patients’ sta-
tus remotely and providing more accurate diagnoses. Further,
IoMT is expected to save around $300 billion annually in the
healthcare industry [21].

For instance, smartphones are considered as one main IoT
device to assist medical professionals for their medical tasks.
Due to the portable intelligence, smartphones can help main-
tain the communication in real-time and exchange required
medical data. With the increasing importance and popularity,
a set of smartphones can form a special IoMT environment
- Medical Smartphone Network (MSN) [30], which can im-
prove the efficiency and effectiveness of performing medical
operations. The smartphone can act as a gateway to collect
data and perform the desired processing tasks like filtration
and feature extraction [35].

Currently, the outbreak and spread of COVID-19 may accel-
erate the requirement for IoMT devices to quick monitor and
examine patient symptoms. Under the global pandemic, there
is a need to develop personal emergency response systems for
people, especially for children, elderly, and mental disorder
people, who may need emergency assistance [21]. The IoMT
devices like smart diagnostic devices and tracking wearables
can significantly reduce the need of face-to-face diagnosis and
increase the quality of patient care.

Motivation. In the literature, many smart IoMT approaches
and mechanisms have been proposed, which can make deci-
sions intelligently and take actions automatically [3]. While
emotion-aware abilities are often not integrated with current
IoMT solutions. Recent research [36] has highlighted that
people may suffer negative emotions under COVID-19 such
as anxiety, depression and schizophrenia. Hence there is need
to integrate emotion-aware abilities into IoMT applications,
with the aim of providing patients with personalized therapy
recommendations. For example, Hossain and Muhammad [22]
introduced an emotion-aware healthcare framework based on
5G and big data analysis. They built an emotion recognition
system by considering the features extracted from speech and
image signals. A decision could be made by fusing the scores
from both signals.

Contributions. With the rapid advancement in bio-sensor
technologies, brainwave recognition based on EEG (electro-
encephalography) signals becomes feasible and popular in
recent years. Brainwave as a kind of complicated signal of the
active brain can represent the action and intent from people.
To the best of our knowledge, emotion recognition based
on branwaves has not been widely studied in the healthcare
domain. With more wearable healthcare devices like headsets
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being available in the market, we believe that brainwaves
can complement existing emotion recognition and offer a
more efficient medical process. Motivated by this trend, we
propose an emotion-aware healthcare monitoring system in
IoMT, with a brainwave-enabled structure. Our contributions
can be summarized as follows:
• We propose a brainwave-based emotion-aware health-

care monitoring system that can complement existing
emotion-aware IoMT applications and mechanisms. In
our system, we consider a two-layer structure, where the
first layer can recognize emotions based on brainwaves to
identify comfortable and uncomfortable effects, and the
second layer can confirm the emergency scenario via the
analysis of behavior patterns like touch behavior.

• To analyze brainwave and classify emotions, we introduce
a hybrid classifier of Feed-Forward Neural Network with
First-Order Stochastic Optimization algorithm, named
ADAM. The ADAM algorithm is used to update the
weight matrices and minimize the loss function of Feed-
Forward Neural Network.

• In the evaluation, we setup an environment for collecting
data and perform a user study with a total of 60 partici-
pants. Our experimental results demonstrate the viability
and effectiveness of our proposed system in recognizing
people’s emotion and can be extended as a personal
emergency monitor system.

The remaining parts of this work are organized as follows.
In Section II, we introduce the background on brainwaves, and
present related work on brainwave-based authentication and
emotion recognition. Section III details our proposed emotion-
aware monitoring system and the hybrid classifier. Section IV
describes our user study and analyzes the results. Section V
discusses the limitations and open challenges, and Section VI
concludes our work.

II. BACKGROUND AND RELATED WORK

This section first introduces brainwave signals and then
review relevant studies on brainwave-based authentication and
emotion recognition.

A. Brainwave and Collection

The brain is believed to be a complicated system, which
consists of roughly 100 billion nerve cells known as neurons.
The mental states can spark from the interactions between
functional and physical layers. The neurons in the brain are
responsible for collecting and transmitting electrochemical sig-
nals, simply brainwaves [14]. In practical usage, how to collect
brainwave signals through EEG sensors is the fundamental
issue of all brainwave-based authentication schemes. Based
on the method on how to capture the brainwave signals, we
can have two categories as below:
• The invasive brainwaves: such brainwave signals are

captured by external devices like camera. It can provide
the best quality signals, but may suffer from scar-tissue
and weak signal problems.

• The non-invasive brainwaves: such brainwave signals are
captured by the surface of the skull, i.e., changes in EEG

state. Its quality is not the best, but is the safest and the
most convenient way to record EEG.

The invasive brainwaves usually require installing brain-
wave sensors under skins, which attempt to provide a better
reading as compared with non-invasive brainwaves. Howev-
er, the inconvenience of mounting and unmounting makes
the invasive brainwave sensors comparatively impractical for
common authentication. In current market, most commercial
brainwave sensors are non-invasive, which are easy to mount
and operate. Most of them are headset-like devices that users
can easily use and mount like brainwave-sensing headset -
Neurosky [33] and meditation made headband - Muse [34].
Since brainwaves can display one’s intents and feels, there
is an increasing growth of brain-computer interface (BCI)
applications by utilizing various sensors like headsets.

B. Advantages of using Brainwaves

As compared with other popular commercial biometric
authentication schemes like face recognition and fingerprint,
brainwave as an authentication token can provide the com-
plexity and the uniqueness among individuals, as well as
easy usage and flexibility of change. It is also believed that
brainwaves are difficult to copy and replay [4]. For example,
it is known that both face and fingerprint cannot be revoked
or cancelled, but brainwaves can be revoked and changed
according to the custom tasks, i.e., various custom tasks can
trigger different reactions [40]. Also, using brainwave signals
(EEG) can benefit building smart environments like smart city,
where a user is feasible to control home appliances without
physical touches.

In addition, a system using brainwaves as authentication
token does not require any physical interaction between the
human and the computer. This is an important characteristic
and advantage of brainwave-based authentication. For tradi-
tional password-based system, a user performing any explicit
operations to the system (such as inputting a password) can
give a chance for attackers to intercept or intimidate these
credentials. By contrast, using brainwave-based authentication
does not require the user to do any explicit interactions with
the system, which can greatly increase the hacking difficulty
for attackers. Further, brainwaves can provide more combi-
nation possibilities and larger password space. For a typical
US keyboard, there are 95 printable characters, and for a k-
word long password, the combination is H95

k . While for a
brainwave-based system, the possible combinations are Hr

e ,
where r means all the possible reactions of brainwave (much
greater than 95), and e is the number of custom tasks for
authentication.

Similar to behavioral biometrics such as keystroke dynam-
ics [32] and touch dynamics [31], brainwaves can also be
used for continuous authentication. For example, brainwave
sensors can be embedded into wearable devices and verify
the brainwave signals in a continuous way. If a significant
deviation is identified, the system can react according to the
pre-defined security policies. By contrast, traditional textual
passwords & tokens and most physiological bimetrics (e.g.,
face, fingerprint) can mainly provide a one-time verification
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to decide whether a user can access the system, but cannot
protect the system after a successful login.

C. Brainwave-based Authentication

The same as other biometric authentication schemes (e.g.,
face, touch dynamics), machine learning is also the most
widely used tool in brainwave-based authentication. Table I
depicts some relevant studies on brainwave-based authentica-
tion. Many learning classifiers have been investigated.

TABLE I
RESEARCH OF BRAINWAVE USAGE ON AUTHENTICATION AND

IDENTIFICATION

Work Attribute
Auth. By Classifier Accu.

[18] Reactions towards visuals FRNN 90.17%
[19] Reactions towards environmental

sound and visual recognition
FRNN with
refinements

96.40%

[27] Reactions towards imagination
movements and words consider-
ation

GMM/MAP 92.90%

[38] Reactions towards the motor im-
agery of hand, foot, and tongue

SVM 96.10%

[9] Reactions towards visuals SVM 100%
[40] Reactions towards visuals SVM 90.04%

Linear classifiers, such as LDA, QDA and SVM, can use
the value of linear combination of the data characteristics to
achieve the goal of statistical classification. However, the more
dimensions a set of data has, the more complex the calculation
may become. Table I shows that SVM is one of most popular
classifiers for brainwave-based authentication [38], [9], [40].

Nearest Neighbor classifiers like kNN and FRNN adopt
the idea that the same class of data should be closer in the
feature space to achieve data classification. Taking kNN as an
example, by given a query point, it determines the class of
the query point of calculating the distance among the k data
points that are closest to the query point, where k is a constant
determined by the user [39]. The simplicity makes it a popular
baseline algorithm [18], [19].

Neural Network classifiers like Probabilistic Neural Net-
work [7] present a collection of artificial neurons arranged in
multiple layers with multiple connections between nodes. Each
node can receive and process the signals from their previous
node, and then should decide and output the result to the
selected node in the next layer. The main advantage of neural
network is the ability to help solve any non-linear decision
problems.

Table I shows that FRNN and SVM are widely adopted for
brainwave-based authentication, whereas Lotte et al. [23] fig-
ured out that many classifiers like FRNN, SVM, Probabilistic
Neural Network could be used for measuring stimulation and
reaction, while are not suitable for classifying all brainwave
signals. That is, the classifier performance is fluctuant based
on the specific data. To mitigate this issue, a hybrid classifier
could be a solution. In this work, we propose a hybrid classifier
(FFNN+ADAM) by combining Feed-Forward Neural Network
with First-Order Stochastic Optimization algorithm (ADAM).
The use of ADAM can maintain the performance of FFNN.

Liew et al. [25] introduced an Incremental FuzzyNearest
Neighbour (IncFRNN) technique for EEG authentication us-
ing feature extracted visual evoked, which could reduce the
required training data during model initialisation. As compared
with the incremental K-Nearest Neighbour (KNN) technique,
IncFRNN was found to be statistically better. Moctezuma
and Molinas [28] focused on EEG identity authentication and
used 56 channels from event-related potentials (ERPs) for
subject identification. The ERPs are extracted from positive or
negative feedback-related responses of a P300-speller system.
The evaluation with SVM classifier showed that an accuracy of
0.93 could be achieved with a male-only population. Zhang et
al. [44] introduced DeepKey, a multimodal biometric authenti-
cation system, which combines EEG and gait signals to defend
against intruders. The system is mainly composed of an Invalid
ID Filter Model and an identification model. The former aims
to reduce unauthorized access requests while the latter aims
to identify both EEG and gait signals using Recurrent Neural
Network (RNN). Some more related research studies can refer
to a recent survey [6].

D. Emotion Recognition

Emotion recognition has been widely studied in the research
community, with the aim of identifying human emotion via
the analysis of speech, image, or video. Chen et al. [8]
presented a method of emotion recognition based on speech
by using a two-layer fuzzy multiple random forest (TLFMRF).
To consider the difference in people, they fused the features
from both personalized and non-personalized data. TLFMRF
could achieve an accuracy rate of 85.80% of happy and
98.60% of sad. Zhang et al. [42] applied deep learning for
emotion recognition based on image content. By integrating
the style and content presentation, their deep convolutional
neural networks could reach 71.77% accuracy on the image
emotion dataset, which was better than most other similar
approaches.

Zhang et al. [41] introduced an approach of identifying
emotions by extracting some physical elements of a video like
sound and color. The multilayer perceptron (MLP) classifier
could provide an accuracy rate of 95% under their experi-
mental settings. More related work can refer to several survey
studies [1], [13], [43].

In recent years, research also considers brainwaves in e-
motion recognition. Kim and Kang [17] utilized brainwaves
to examine users’ emotion like joy, fear and sadness, when
using smartphones. Beck et al. [5] studied the emotion recog-
nition based on high quality EEG recordings, by extracting 7
different features. With the recording from 40 participants, the
classifier of artificial neural network could provide an accuracy
range from 70% to 75%. Some survey work on EEG-based
emotion recognition can refer to [2], [37].

To the best of our knowledge, brainwave-based emotion
recognition has not been widely studied in healthcare, this
motivates our work to develop an emotion-aware monitoring
system to provide better personalized therapy recommenda-
tions by considering the effects of brainwaves.
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Fig. 1. The architecture of our emotion-aware healthcare monitoring system.

III. OUR SYSTEM

In this section, we introduce our emotion-aware healthcare
monitoring system and the devised hybrid classifier of Feed-
Forward Neural Network with ADAM.

A. System Architecture

During the global pandemic of COVID-19, there is a need
to consider people’s emotion for an efficient medical process.
Emotion recognition is helpful to judge whether people are
facing emergent scenarios, especially for children, elderly
and mental disorders. Fig. 1 depicts the architecture of our
proposed emotion-aware healthcare monitoring system, which
adopts a two-layer structure by collecting brainwave signals
and behavior patterns.

Modality data. The first layer in our system is to collect
brainwave (or EEG) signals. Intuitively, when users face some
pains or emergent scenarios, they will have negative feelings
like unpleasant, arduous or painful. The generated brainwave
signals would be different from the normal conditions, which
can help healthcare professionals to detect some anomalies
timely. Our system can also integrate other modality data
like speech and image, which can collaborate with exist-
ing emotion-aware solutions like 5G-enabled emotion-aware
healthcare big data framework [22].

Behavior data. The second layer in our system aims to
collect behavior patterns. When people are painful, there
could be a great deviation in their behavior and actions. As
touchscreen-enabled smartphones are a major IoMT device
(e.g., [24], [31]), our system considers touch behavior in
confirming the patient’s situation. This layer can complement
the output from the first layer, as brainwave-based emotion
recognition is not stable and could be easily affected [2], [37].
Hence the two-layer structure can help reduce the false alarms
proposed by our system.

The two-layer monitoring system can provide some advan-
tages when deployed in a practical environment.
• Flexibility. With many wearable sensors available in the

market, e.g., a smart home environment, various modality
and behavior data can be collected. Our system can be

configured according to the concrete requirements from
a patient and a healthcare organization.

• Extensibility. Thanks to the layer-based architecture, our
system is easy to be extended by involving other sensors.
In addition, more layers can be implemented without the
modification of other layers.

• Computation. Similar to existing emotion-aware applica-
tions and mechanisms, our system can utilize a cloud
and edge computing environment, with the purpose of
reducing the computational burden locally. For example,
the data can be collected and analyzed by a privacy cloud
controlled by the healthcare organization.

The main purpose of our system is to complement existing
emotion-aware IoMT solutions, where our system can easily
collaborate with current systems and mechanisms to provide
a multimodal recognition of human emotion.

B. FFNN with ADAM

To recognize emotions based on brainwaves, we devise a
hybrid classifier of Feed-Forward Neural Network with First-
Order Stochastic Optimization algorithm called ADAM.

A Feed-Forward Neural Network (FFNN) usually consists
of an input layer, k hidden layers, and an output layer can be
seen as a (k + 2)-partite graph. Let the input layer be given
by an input vector x = (x1, x2, ..., xn−1, 1) with dimension
(1, n), where each element xi for i ∈ {1, ..., n − 1} in the
vector corresponds to a sample feature. The constant 1 is
added to include a bias term.

Let W (l) denote a weight matrix of dimension (m × n)
corresponding to the transformation between layer (l − 1)
and l. It can be seen as a mapping M (l) : Rn → Rm

in which n is the number of entries in the input vector
x, and m is the number of entries in the output vector y.
Let the specific mapping be given by M (l)(x) = W (l)·xT = y.

A Feed-Forward Neural Network consists of stacking
multiple layers together. Introducing the concept of an
activation function will allow the network to mimic highly
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non-linear functions. Let a non-linear activation function be
denoted by φ and let z = φ(y) where φ is applied to each
entry of the vector y.

Combining the concepts introduced so far leads to the
following definitions of each entry:

y
(l)
i = (M (l)(x))i = (W (l)·xT )i =

n∑
j=1

xj · wli,j

z
(l)
i = φ(M (l)(x))i = φ(W (l)·xT )i = φ(

n∑
j=1

xj · wli,j)

To demonstrate let a Feed-Forward Neural Network consist
of an input layer, two hidden layers, and an output layer. In
the output layer l = 3, which corresponds to the vector z(3).

z(3) = φ(M (3)(φ(M (2)(φ(M (1)(x))))))

The composite function is named the hypothesis, and it is
usually denoted by hΘ(x). Here Θ refers to all the weight
matrices W (l).

In order to train the weight of FFNN, there is a need to
quantify the error made in the classification. This can be
achieved by using a cost function, which is essentially an
average of the losses associated with each prediction. With
such a function, our goal is to minimise the below.

ΘJ(Θ) =
1

m

m∑
i=1

Li(hΘ(x)i, yi)

The loss function L is of high importance to the quality of
trained classifier. The loss function is critical to handle non-
convexity of the space, which in turn ensures non-ambiguity
with regards to the optimal local minimum. Also, the function
decides how fast convergence towards optimum. This work
employs one of the most commonly used loss functions - log
loss [15].

L(hΘ(x)i, yi) = −
∑
j

[yj log p(oj)]

In the above yj refers to the j’th element of true class labels
encoded using one-hot-encoding. For the predicted labels oj
refers to the j′th element.

To update the weight matrices and minimize the loss func-
tion of Feed-Forward Neural Network, we can use gradient
a number of training examples to approximate the gradient
is known as the batch size. Let Θ denote a vector of weight
matrices W (l). We use ADAM [16], an algorithm for first-
order gradient-based optimization to achieve this, as described
in Algorithm 1.

Algorithm 1: ADAM
Require: α: Stepsize
Require: ε: Small number to avoid division by zero
Require: β1, β2 ∈ [0, 1): Exponential decay rates for the
moment estimates
Require: f(Θ): Stochastic objective function with weight
matrices Θ
Require: Θ0: Initial weight matrices.
m0 ← 0 (Initialise first moment vector)
v0 ← 0 (Initialise second moment vector)
t← 0 (Initialise timestep)
while Θt not converged do
t← t+ 1
gt ← ∇Θft(Θt−1)
mt ← β1 ·mt−1 + (1− β1) · gt
vt ← β2 · vt−1 + (1− β2) · g2

t

m̂t ← mt/(1− βt1)
v̂t ← vt/(1− βt2)
Θt ← Θt−1 − α · m̂t/(

√
v̂t + ε)

end while
return Θt

The parameter t denotes the iteration number, indicating
how many times the while-loop has been executed. The
gradient ∇Θft(Θt−1) is the matrix of partial derivatives
corresponding to the weight matrix Θ. The first moment vector
mt is the expected value of the gradient at iteration t, and
the second moment vector vt is the expected value of the
gradient element-wise squared. It can be shown by expanding
the recursive formula [16]. After the expansion we can have
the following:

mt = E[gt] · (1− βt1) + ψ
vt = E[g2

t ] · (1− βt2) + ψ

We then have the following by inserting the new expression
into m̂t and v̂t respectively.

m̂t = E[gt]·(1−βt
1)+ψ

(1−βt
1)

≈ E[gt]

v̂t = E[g2t ]·(1−βt
2)+ψ

(1−βt
2)

≈ E[g2
t ]

Based on the above terms, we can know how to interpret
the updates as below.

Θt ← Θt−1−α·m̂t/(
√
v̂t+ε) ≈ Θt−1−α·E[gt]/(

√
E[g2

t ]+ε)

When the ratio between the uncentered variance E[g2
t ] and

the mean E[gt] becomes large, we can have a better confidence
in the update direction. Based on the work [16], we adopted
the default settings ε = 10−8, β1 = 0.9, β2 = 0.999, and
α = 0.001.

IV. EVALUATION

This section introduces our user study with experimental
settings, and analyzes the collected data.

A. User Study

As most current datasets do not fit our scenario, in order
to investigate the viability and performance of our system,

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on May 19,2021 at 13:57:12 UTC from IEEE Xplore.  Restrictions apply. 



2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3079461, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS, VOL. ?, NO. ?, JANUARY ?? 6

we conduct an approved user study with 60 participants, who
were recruited via Emails and colleague recommendation. We
also collaborated with a healthcare organization to provide
advice on our procedure. Table II summarizes the information
of participants including age and occupation.

TABLE II
PARTICIPANTS INFORMATION IN THE STUDY.

Age Male Female Occupation Male Female
Age 20-30 24 25 Students 20 23
Age 31-45 5 6 Researcher&Staff 9 8

TABLE III
ENVIRONMENT CONFIGURATION

Hardware Attributes
Software Specification Description
Notebook Thinkpad T495 Displaying videos to the participants
Desktop ThinkPad T14s

Gen 1
Collect and analyze data

Brainwave
Headset

Muse 2 [34] A multi-sensor meditation device that
provides real-time feedback on brain
activities

Program
Platform

Oracle Java 11 The platform is responsible for dis-
playing videos and sending data for
analysis

Brainwave
Collector

Muse 2 APK The program extracts the Brainwave
headset’s signal and the data from the
custom program

To better simulate the emotions of participants with either
comfortable or uncomfortable, we performed a pre-interview
with each participant and collected some movie clips (around
30 seconds each) based on their feedback. During the study,
participants have to wear the Muse headset, which can capture
their brainwave signals, when they watch the video clips. We
also provided an Android phone (Samsung Galaxy Note) to
require them inputting the given unlock patterns and collect
their touch behavior. Table III depicts the environmental setup
including the laptop and the headset.

In order to capture good-quality EEG signals without being
affected by video playing, we use the following steps to show
clips, based on the previous studies [40].
• A 15-second blank screen to attract participants and make

them calm down.
• After playing a clip, each participant requires to input

three unlock patterns on the provided Android phones.
Return to the above step.

To avoid the possible influence caused by the screen display,
we collected the brainwave signals by playing the video in the
fullscreen mode. Also, we provided the same guideline to each
participant.

B. Study Result

To compare the performance, we involve some typical and
popular supervised classifiers such as J48, NBayes, SVM and
BPNN. These classifiers were extracted from WEKA platform
(https://www.cs.waikato.ac.nz/ml/weka/), which is a collection
of algorithms. We used 70% of the collected data for training
and the rest for testing. Algorithm 2 shows the K-fold cross

validation and this work used ten-fold cross validation (where
K = 10).

Algorithm 2: K-fold Cross Validation
Let X be the training data consisting of n samples
Let xi where i ∈ {1, .., k} be n

k samples from X such that
xi ∩ xj = for i 6= j.
Let s = 0
for j = 1 to k do

Train the model on xi for i ∈ {1, .., k}/j.
Compute performance metric PMj on unseen xj .
s = s+ PMj

end for
Return s

k

For evaluation metrics, we have true positive (TP), true
negative (TN), false positive (FP) and false negative (FN).
Hence we can derive the accuracy and hit rate as below:

Accuracy = TP+TN
TP+TN+FP+FN

Hit rate = TP
TP+FN

Fig. 2 shows the classification accuracy and hit rate regard-
ing different classifiers. It is found that our devised hybrid
classifier could achieve better accuracy rate and hit rate (85.7%
and 88.4%) than other classifiers (SVM: 81.4% and 84.4%;
J48: 75.5% and 76.7%; NBayes: 74.2% and 78.4%; BPNN:
79.4% and 82.9%). Also, it showed that the hybrid classifier
could outperform FFNN, this is because the hybrid classifier
can use the ADAM algorithm to help update the weight and
minimize the loss function.

To further explore the performance of FFNN-ADAM, Fig. 3
shows the achieved accuracy for each participant. It is visible
that the accuracy varied with each participant. For example,
the accuracy could be close to 90% for some participants with
number 6, 14, 18, 22, 26, 30, 36, 49, 56 and 58. While the
accuracy was low to around 67% for participants with number
16, 31, 50 and 59. The main reason is that the EEG signals may
be not the same (and stable) for each participant, even though
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Fig. 2. Brainwave accuracy and hit rate among different classifiers.
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Fig. 3. Brainwave accuracy on different participants using FFNN+ADAM.
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Fig. 4. Touch behavior accuracy and hit rate among different classifiers.

they face a similar scenario. This confirms the observations in
previous studies [2], [37].

Touch behavior. The second layer of our system can verify
touch behavior of users, we adopted the TMGuard scheme [29]
to identify the behavioral deviations. TMGuard is a mechanism
that can validate users’ touch movement during pattern input.
Intuitively, we consider the behavior patterns would be differ-
ent under comfortable and uncomfortable conditions. Fig. 4
depicts the accuracy and hit rate regarding touch behavior.
It is found that the accuracy and hit rate of each classifier
could perform better than those in Fig. 2, indicating that
the deviation in touch behavior is more easily to distinguish
as compared with brainwave signals. Similarly, the hybrid
classifier of FFNN+ADAM could reach a better rate with
accuracy of 93.4% and hit rate of 95.6%, than other classifiers.

Fig. 5 shows the accuracy regarding each participant by
considering both brainwave signals and touch behavior. It is
visible that the accuracy could be improved by 7-9% for most
participants. This validates the effectiveness of our two-layer
structure, in which the use of touch behavior can help enhance

2 0 4 0 6 0
0

1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

Ac
cu

rac
y

P a r t i c i p a n t  #

Fig. 5. The improved accuracy on different participants using FFNN+ADAM,
based on both brainwaves and touch behavior.

the detection of user emotion.

V. DISCUSSION

The results indicate the viability and effectiveness of our
system, but there are still some challenges regarding emotion-
aware IoMT applications and mechanisms.
• Under COVID-19, the data volumes transmitted in IoMT

would become huge, and most data can be very sensitive
(e.g., patient’s home address, medical record, and bio-
metric data). This requires deploying additional security
mechanisms and privacy preserving techniques against
cyber-attacks.

• Cost is an important factor for patients as well as health-
care professionals. As compared with speech, image and
video recorder, brainwave headset is more expensive in
practice. This is still an open challenge for IoMT applica-
tions, but with the increasing capability of smartphones,
some integrated IoMT devices could be a solution.

To our best knowledge, brainwave-based emotion recogni-
tion has not been widely studied in healthcare. There are many
potential improvements can be considered in our future work.
• Algorithms. In this work, we mainly devise a hybrid clas-

sifier and consider several supervised learning algorithms.
In the literature, various algorithms have been studies like
deep learning. In our future work, we plan to investigate
how deep learning can contribute to our settings.

• Touch behavior. Different from touch-based authentica-
tion, this work mainly distinguishes the behavior devi-
ation under comfortable and uncomfortable conditions.
Our results indicate that the behavior deviation could be
clearly visible between these two conditions. To further
enhance the deviation detection, we plan to consider other
touch behavior schemes and make a comparison.

• Participants. In this user study, we had 60 participants
while more people with diverse background are expected
to validate the results. It is still an open challenge to
collect data in healthcare. Thus we plan to involve the
people with other occupations in our future study.
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• Modality data. A modality can be considered as the
classification of a single independent channel of either
input or output between a computer and a human. More
modality data relating to speech, image and video can
be used to build a multi-modality data profile, with the
purpose of enhancing the authentication performance.
Fusion techniques are the promising solution to achieve
this goal [22].

• Fog computing. Our system architecture reduces the com-
putational burden using a cloud and edge computing
environment. In practice, fog devices can also be used
for the same purpose. Generally, fog computing and edge
computing are the same thing. A small difference is that
edge devices are closer to the sensor while the fog devices
may be physically more distant from the sensor [26].

• Evaluation metrics. In this work, we mainly consider
evaluating our system in terms of authentication accuracy,
as it is very important for brainwave authentication. For
real-world implementation, some other metrics could also
be important such as latency, energy consumption and
scalability, which can affect the system usability. How
to make a balance between security (authentication) and
usability is a challenge in this area. In our future work,
we plan to investigate the scalability and usability issues
by collaborating with a healthcare organization.

• Attacks and threat. Though EEG-based authentication
can benefit people’s daily lives, it may also pose some
security issues especially under attacks. Chiu et al. [10]
showcased a brainwave-based computer-screen unlock
mechanism, and figured out a type of reaction spoofing
attack where an attacker can imitate the mental reaction
(either familiar or unfamiliar) of a legitimate user. To test
the robustness of our system under attacks is one of our
future work.

• Multimodal system. This work demonstrates an emotion-
aware monitoring system that combines brainwave and
touch behavior, while some other factors can be integrated
for emotion recognition like speech and video [22]. In
addition, other behavioral features can be considered, like
walking patterns that are helpful to identify emergency
conditions when users fall down. A multimodal system
is desirable to provide better detection accuracy.

VI. CONCLUSION

With a number of connected medical devices, IoMT can
sense, collect, transmit and analyze medical data, which can
provide remote healthcare monitoring and timely symptom
detection. Under the outbreak of pandemic like COVID-19,
there is an increasing need to monitor and recognize human
emotion, especially children, sensitive people and elderly for
better emergency assistance.

In this work, we develop an emotion-aware healthcare mon-
itoring system with the aim to complement existing emotion-
aware IoMT applications and software. Our system adopts a
two-layer structure, where the first layer can recognize emo-
tions based on brainwaves (EEG) signals and the second layer
can confirm the emergency scenario by analyzing user’s touch

behavior. We also devise a hybrid classifier of Feed-Forward
Neural Network with First-Order Stochastic Optimization al-
gorithm (ADAM). In our study with 60 participants, the results
demonstrate the viability and the effectiveness of our system in
distinguishing user’ emotion under either comfortable or un-
comfortable conditions. The emotion recognition of combining
brainwaves and touch behavior can improve the accuracy by
7-9% on average than solely analyzing brainwaves.

The future work could include investigating the combination
of other modality data, and comparing the performance of
our hybrid algorithm with other similar algorithms. In our
future work, we also consider exploring the latency and energy
consumption caused by our approach.
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