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Abstract—This paper introduces a novel frequency-shift chirp
spread spectrum (FSCSS) system with index modulation (IM).
By using combinations of orthogonal chirp signals for message
representation, the proposed FSCSS-IM system is very flexible
to design and can achieve much higher data rates than the
conventional FSCSS system under the same bandwidth. The
paper presents optimal detection algorithms, both coherently
and non-coherently, for the proposed FSCSS-IM system. Fur-
thermore, a low-complexity non-coherent detection algorithm is
also developed to reduce the computational complexity of the
receiver, which is shown to achieve near-optimal performance.
Results are presented to demonstrate that the proposed system,
while enabling much higher data rates, enjoys similar bit-error
performance as that of the conventional FSCSS system.

Index Terms—Chirp-spread spectrum modulation, LoRa mod-
ulation, index modulation, permutation modulation, non-coherent
detection.

I. INTRODUCTION

THE modulation scheme in a chirp spread spectrum (CSS)
communication system uses linear frequency-modulated

chirps to represent message symbols. Due to its robustness
against narrow-band interference, constant envelope and re-
sistance against multi-path fading and Doppler effect, CSS
modulation has been adopted in various low-power wide-area
(i.e., long-range) wireless applications [1]–[5]. For example,
the IEEE 801.15.4a standard [1] has provisions for CSS
modulation along with the burst-position modulation scheme.
More recently, LoRa technology has been introduced for
Internet-of-Things (IoT) applications, which is also based on
frequency-shift chirp modulation and more commonly referred
to as LoRa modulation [2]–[5].

Historically, linear chirps have been used in continuous-
wave frequency-modulated radars due to their good autocorre-
lation properties [6]. In digital communications, CSS was first
introduced in a simple form of binary modulation, in which
two linear-frequency modulated chirps with opposite sweep
directions, i.e., up chirp and down chirp, are used to represent
an information bit. Such a scheme is also known as slope-shift
keying [7], [8]. Although the up and down chirps are nearly
orthogonal to each other, they are not completely orthogonal.
As a consequence, the lack of complete orthogonality affects
the bit-error-rate (BER) performance of slope-shift keying.

For non-binary transmission, only one linear chirp is used
in [9], but its initial phase is modified using differential
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quadrature phase-shift keying (DQPSK) to encode the infor-
mation bits. Similarly, the authors in [10] employ quadrature
amplitude modulation (QAM) instead of DQPSK for encoding
the information bits in both the initial phase and amplitude of
a linear chirp. However, these techniques come at the expense
of increased receiver complexity and signalling overhead since
the phase and/or amplitude of the received chirp needs to be
estimated.

One approach to reduce the receiver complexity is to embed
the information in the initial frequency of the linear chirp
instead of its initial phase [2], [4], [5]. Such a modulation
scheme is aptly named as frequency-shift chirp modulation
(FSCSS modulation) [5] and is also known simply as CSS
when used in the context of LoRa [2], [4], [11].

FSCSS modulation enjoys low-complexity demodulation
thanks to the fast Fourier transform (FFT) [5]. However,
due to a limited number of orthogonal frequency-shift chirps
available in given bandwidth and symbol duration, FSCSS
modulation suffers from a low data rate, especially when
the available bandwidth is limited [12]. As such, different
standards that employ CSS modulation have provisions for
other modulation schemes to attain a higher data rate than
what is achievable with the CSS modulation. For example,
LoRa chips have two modulation schemes implemented in
them: the LoRa (FSCSS) and the frequency-shift keying
(FSK) modulation schemes. The data rate provided with LoRa
modulation depends primarily on two factors, the spreading
factor (SF) and the occupied bandwidth. The highest data rate
is 37.5 kbps when the smallest value of SF, that is SF = 7,
and the maximum bandwidth of 500 kHz are selected1. For
applications that require higher data rates, LoRa chips have an
FSK transceiver, but it can achieve data rates up to 50 kbps
only [4].

Although implementing multiple transceivers in a device
can increase the achievable data rate, it consumes more
hardware and software resources, especially at the reception
side. As such, there have been active research efforts to
increase the data rate of the conventional frequency-shift CSS
communication systems. For example, the authors in [13], [14]
have proposed to increase the data rate by embedding addi-
tional bits in the initial phase of an up chirp. Unfortunately,
carrying additional information in the phase requires channel
estimation at the receiver side, which increases the receiver
complexity, not to mention the sensitivity of these schemes to
synchronization errors [15].

1In general, with LoRa modulation, the higher the data rate is, the lower
the receiver sensitivity, i.e., the shorter the transmission range to achieve a
given level of bit error rate.
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In [12], the authors propose to use interleaved chirps along
with linear up chirps to double the number of chirp signals,
hence increasing the data rate by 1 bit per each symbol
(message). However, similar to binary slope-shift keying, the
BER performance of the interleaved FSCSS modulation is
degraded due to the non-orthogonality between the added
interleaved chirps and the original set of orthogonal up chirps.

Another approach is recently introduced in [15] in which
down chirps are used instead of the interleaved chirps to
double the size of the signal set. It was demonstrated in [15],
via correlation and error-rate analysis, that using down chirps
instead of interleaved chirps reduces the peak correlation
between the added signal set and the original signal set,
hence improving the BER performance. Nevertheless, by only
doubling the original signal set, the data rate improvement
attained by the two schemes in [12], [15] is quite marginal,
namely only one extra bit per modulated symbol. Similar to
[15], both up and down chirps are used for data transmission
in [16]. However, instead of increasing the data rate as in
[15], the authors in [16] leverage the near orthogonality of
the up and down chirps to improve the performance of LoRa
communications under packet collisions.

In this paper, by making use of the concept of permutation
modulation (PM) introduced in [17], we develop a different
approach to increase the data rate of the conventional FSCSS
modulation scheme. Specifically, an important class of per-
mutation modulation that uses binary permutation vectors,
known as index modulation (IM) [18], is applied to the set
of orthogonal up chirps.

It is pointed out that IM has been employed in conventional
frequency-shift keying (FSK) modulation [19], as well as in
orthogonal frequency-division multiplexing (OFDM) systems
[20]–[24]. The technique of IM appears in other names in
other applications, such as parallel-combinatory (PC) spread-
spectrum modulation [25], spatial modulation (SM) for multi-
antenna systems [26]–[29], space-shift keying [30], [31] multi-
tone FSK [32], etc. The interested reader is referred to [33]–
[36] for a comprehensive review of index modulation and its
applications.

To the best of our knowledge, this paper is the first work
on the application of IM in chirp spread spectrum com-
munications2. A somewhat related technique to increase the
data rate is suggested in [10], [38] by transmitting multiple
chirps together. In particular, time-delayed basic up chirps
are added to the basic up chirp, and the information bits
are represented in the phase and/or amplitude of the basic
chirp and its time-delayed versions, while no information
is represented in the initial delay of the added time-shifted
basic chirp. Such a technique is markedly different from
the index modulation technique in which the information is
embedded in the indices of the added signals. As shall be
seen, for the FSCSS modulation, those indices are related to
the initial delays or the initial frequencies of the up chirps.
Other techniques, such as, code index modulation or OFDM-
IM spread spectrum and their variants [39]–[41] apply the

2The main idea and inventions in this paper are protected by a US patent
#10,778,282 [37].

IM principle to select spreading codes to represent a part of
information bits. These techniques are fundamentally different
from the proposed CSS modulation technique, which uses
chirps to represent the information bits instead of spreading
codes.

The rest of the paper is organized as follows. Section II
reviews the conventional FSCSS system. Our proposed FSCSS
with index modulation (FSCSS-IM) scheme is detailed in
Section III. The optimal and suboptimal detection algorithms
for the proposed FSCSS-IM scheme are developed in Section
IV. Performance results and comparison to the conventional
FSCSS system are presented in Section V. Section VI con-
cludes the paper.

II. CONVENTIONAL FSCSS SYSTEM

In a conventional FSCSS system, a set of linearly-
independent up chirps are used for representing information
bits. In particular, a set of M orthogonal chirps are used,
which are all generated from one linear up chirp, also referred
to as the basic chirp in the sequel. The complex baseband-
equivalent form of the basic chirp has the following discrete-
time representation [14], [42]:

x0[n] = exp

{
j
πn2

M

}
, (1)

where n = 0, 1, · · · ,M − 1, and M is the number of
orthogonal chirps used in the conventional FSCSS modulation
scheme. The other orthogonal chirps are related to x0[n] as
[14]

xm[n] = x0[n+m], (2)

where 0 ≤ n,m < M . Observe that

xm[n]= exp

{
j
π(n2 +m2 + 2nm)

M

}

= x0[m]x0[n] exp

(
j

2πm

M
n

)
. (3)

As such, the instantaneous (digital) frequency of the mth chirp
differs from that of the basic chirp by m

M .
In the conventional FSCSS modulation, each chirp is associ-

ated with a message symbol. Specifically, let b0, b1, · · · , bΛ−1

be a group of Λ information bits associated with a message
symbol, and m be the corresponding decimal number, i.e.,
m =

∑Λ−1
i=0 bi2

i. The transmitted signal corresponding to mes-
sage m, denoted by sm[n], is simply given by sm[n] = xm[n].
Note that Λ = log2M , or M = 2Λ. This means that in a
conventional FSCSS modulation, such as in LoRa modulation,
the number of chirps is selected to be a power of 2.

Assuming perfect synchronization, the received signal, de-
noted by y[n], is given as

y[n] = hxm[n] + w[n], (4)

where m is an arbitrary transmitted symbol, h denotes
the channel gain, and w[n] is a zero-mean circularly-
symmetric white Gaussian noise with variance N0. Since



3

∑M−1
n=0 |xm[n]|2 = M , the average signal-to-noise ratio (SNR)

of the received symbol, denoted by Es/N0, is given by

Es/N0 =
ME

[
|h|2
]

N0
= Mγ̄, (5)

where E
[
|h|2
]

is the expected value of the squared absolute

value of the channel gain, and γ̄ =
E[|h|2]
N0

is the average
channel SNR. For an additive white Gaussian noise (AWGN)
channel, the channel gain is h = 1, and the instantaneous and
average channel SNRs are both equal to 1/N0.

Detection of the transmitted symbol m works as follows [5],
[14]. First the received signal in (4) is multiplied with the com-
plex conjugate of the basic chirp to produce r[n] = y[n]x∗0[n].
Then the discrete-Fourier transform (DFT) is applied on r[n]
to obtain R[l] =

∑M−1
n=0 r[n]e−j

2πl
M n, l = 0, 1, · · · ,M − 1.

For coherent detection, i.e., when the channel gain h is
available at the receiver, the ML estimate of the transmitted
symbol can be found by

m̂ = argmax
m

<
{
h∗x∗0[m]R[m]

}
. (6)

For an AWGN channel, (6) further simplifies to

m̂ = argmax
m

<
{
x∗0[m]R[m]

}
. (7)

When h is not available at the receiver, the optimal non-
coherent detection of FSCSS signals amounts to simply iden-
tifying the index of the peak absolute value of the DFT output.
That is,

m̂ = argmax
m

∣∣R[m]
∣∣2. (8)

III. PROPOSED FSCSS WITH INDEX MODULATION

The proposed scheme exploits index modulation to increase
the data rate of the conventional FSCSS system. In particular,
instead of transmitting only one chirp at a time, multiple chirps
are transmitted simultaneously. This results in a significant
expansion of the signal set, which allows embedding more bits
to one transmitted symbol, thus increasing the achievable data
rate. However, increasing the size of the signal set results in
interference among transmitted symbols as the orthogonality
among the transmitted symbols is not preserved in the enlarged
signal space. This, in turn, results in deterioration of the
BER performance of the resultant scheme. Additionally, the
receiver’s complexity generally increases since the receiver
has to estimate the transmitted symbol from a larger signal
set.

Fig. 1 depicts the block diagram of the transmitter and
receiver for the proposed FSCSS-IM system. Among the
depicted blocks, the pulse shaping, interpolation, inphase-
quadrature modulation and digital-to-analog conversion, are
present in the transmitter of a typical communication system.
Likewise, the receiver of a typical communication system
has an analog-to-digital converter, inphase-quadrature demod-
ulator, synchronizer and a matched filter. The rest of the
blocks are specific to the proposed scheme. In this section
we describe how the proposed scheme is implemented in the
transmitter and also analyze the peak-to-average-power ratio

(PAPR) of the resultant transmitted signal. The optimal and
low-complexity detection algorithms for the proposed scheme
are developed in Section IV.

In the proposed scheme, the transmitter assigns a unique
and distinct combination of orthogonal chirps to every value
of m between 0 and 2Λ − 1. Let Im denote the index set of
the chirps corresponding to message m. Then the transmitted
signal corresponding to message m is constructed as

sm[n] =
1√
|Im|

∑

l∈Im
xl[n]. (9)

As a simple example, consider M = 8 and K = 2. This
means that a total of

(
8
2

)
= 28 different messages can be

sent using the following combinations for index sets Im:
{0, 1}, {0, 2}, · · · , {0, 7}, {1, 2}, {1, 3}, · · · , {1, 7}, {2, 3},
{2, 4}, · · · , {2, 7}, {3, 4}, {3, 5}, · · · , {3, 7}, {4, 5}, {4, 6},
{4, 7}, {5, 6}, {5, 7}, {6, 7}. Then the message m = 0
corresponds to I0 = {0, 1} and can be sent using the signal
s0[n] = 1√

2
(x0[n] + x1[n]), whereas massage m = 15

corresponds to I15 = {2, 5} and can be sent using the signal
s15[n] = 1√

2
(x2[n] + x5[n]), and so on.

Since the total number of distinct combinations of M chirps
used for transmission can far exceed M , the data rate of the
proposed scheme can be significantly higher than that of the
conventional FSCSS modulation scheme. To be specific, if all
combinations of K chirps out of M chirps are used, where3

1 ≤ K ≤ M/2, the number of bits that are mapped to (i.e.,
carried by) one symbol is given as Λ =

⌊
log2

(
M
K

)⌋
. As an

example, for M = 128 and K = 2, we have Λ = 12 bits.
In contrast, with the conventional FSCSS modulation (which
corresponds to K = 1), Λ = 7 bits only. This means that
the data rate for {M = 128, K = 2} is almost 1.7 times
higher than what is achieved with the conventional FSCSS
modulation using M = 128 orthogonal chirps.

Table I tabulates the number of bits that a symbol can carry
in the proposed scheme for different values of M when a
fixed number of chirps are selected for transmission. Here, we
have selected values of M that are typically used in LoRa
modulation [43], [44]. Note that, in the conventional FSCSS
modulation scheme, |Im| = 1, and as such, a total of log2M
bits are transmitted per symbol. Table I also tabulates the data
rate improvements by the proposed scheme. For example, with
M = 27 and |Im| = 4, one symbol can convey a total of
23 bits instead of only 7 bits as in the conventional FSCSS
scheme. These numbers translate to 3.29 times higher data
rate achieved by the proposed FSCSS-IM scheme. Observe
that, for LoRa chips, this gain implies that the maximum
achievable data rate can be 123 kbps instead of 37.5 kbps,
which is also significantly higher than 50 kbps achievable by
the FSK transceiver implemented in LoRa chips. The table also
lists the very modest data rate improvements by the schemes
in [12] (abbreviated as ICS-LoRa) and [15] (abbreviated as
SSK-LoRa).

Before closing this section, we provide the worst-case PAPR
analysis of the transmitted signals produced by the proposed

3We keep K ≤ M/2 since
(M
K

)
=

( M
M−K

)
, hence selecting K > M/2

does not result in increased data rate.
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Îm
m̂

Mapper m
Im

Transmitter

Receiver

y[n] Synchronization

Matched Filter
+

I/Q Modulator

D/A
+

I/Q Demodulator

A/D
+

1√
|Im|

D
et

ec
ti
o
n

A
lg

o
ri

th
m

Fig. 1. Block diagram of the proposed FSCSS-IM scheme.

TABLE I
NUMBER OF BITS THAT CAN BE TRANSMITTED IN A SYMBOL OF DIFFERENT MODULATION SCHEMES AND DATA-RATE IMPROVEMENT IN PERCENTAGE.

FSCSS ICS-LoRa [12] Proposed FSCSS-IM
|Im| = 1 SSK-LoRa [15] |Im| = 2 |Im| = 3 |Im| = 4

M = 27 7 8 114% 12 171% 18 257% 23 329%

M = 28 8 9 112% 14 175% 21 263% 27 338%

M = 29 9 10 111% 16 178% 24 267% 31 344%

M = 210 10 11 110% 18 180% 27 270% 35 350%

M = 211 11 12 109% 20 182% 30 273% 39 355%

M = 212 12 13 108% 22 183% 33 275% 43 358%

scheme. As noted, the significant data-rate improvements of
the proposed scheme (as presented in Table I and discussed
earlier) result from adding multiple chirps together. Adding
chirps together, however, does not preserve their constant
envelope, which increases the PAPR.

In the following, we compare the PAPR of the proposed
scheme with that of the conventional FSCSS scheme. To this
end, the PAPR defined for the transmitted signal in complex
baseband-equivalent form is

PAPRm =
maxn |sm[n]|2

∑M−1
n=0 |sm[n]|2/M

= max
n
|sm[n]|2, (10)

where the last equality follows from (15). Moreover, (9)
implies that

max
n
|sm[n]|2 =

1

|Im|
max
n

∑

l∈Im

∑

p∈Im
xl[n]xp[n]∗. (11)

Using |∑i ai| ≤
∑
i |ai|, we arrive at

max
n
|sm[n]|2 ≤ 1

|Im|
max
n

∑

l∈Im

∑

p∈Im
|xl[n]xp[n]∗| = |Im|. (12)

Consequently, the PAPR of the transmitted signal in the
proposed scheme can be upper bounded as

PAPRm ≤ |Im|. (13)

Note that, for the conventional FSCSS systems, |Im| = 1. In
that case, the PAPR is exactly equal to its upper bound, i.e.,
PAPRm = 1. On the other hand, using a higher value of |Im|
achieves a larger data-rate improvement, but at the expense of
a higher PAPR of the transmitted signal. However, the PAPR
as defined in (10) never exceeds |Im|, while |Im| is typically
a small number in the proposed scheme. For example, in LTE
systems, the target PAPR is between 6 dB and 8 dB. This
range translates to |Im| ≤ 6, which can still result in huge
data rate improvements (see Table I).

IV. DETECTION ALGORITHMS FOR THE PROPOSED
FSCSS-IM SCHEME

In this section we develop the detection algorithms for the
proposed FSCSS-IM scheme. We will first present the optimal
detection algorithms (both coherent and non-coherent), then
a suboptimal non-coherent detection algorithm to reduce the
computational complexity of the receiver.
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Similar to the conventional FSCSS system in Section II, the
received signal in the proposed FSCSS-IM system is given as

y[n] = hsm[n] + w[n], (14)

where, as before, m is an arbitrary message symbol, h denotes
the channel gain, and w[n] is a zero-mean circularly-symmetric
white Gaussian noise with variance N0. Since the chirps xl[n]
are orthogonal to one another, we have

M−1∑

n=0

|sm[n]|2 =
1

|Im|
∑

l∈Im

M−1∑

n=0

|xl[n]|2 = M. (15)

Therefore, the average SNR in the proposed system is exactly
the same as that in the conventional FSCSS system.

A. Optimal Coherent Receiver

The maximum likelihood (ML) estimate of the trans-
mitted message aims to maximize the log-likelihood
function. Given the observed signal samples y =[
y[0] y[1] · · · y[M − 1]

]
and channel information h, the

likelihood function of message m is given by the multi-variate
complex Gaussian density function as [45, Eq. (5.24)]

f(m|y, h)=
1

(πN0)M
exp

(
−
∑M−1
n=0 |y[n]− hsm[n]|2

N0

)

= C exp

(
2<{h∗∑M−1

n=0 y[n]s∗m[n]}
N0

)
, (16)

where <{·} denotes the real part of a complex number, and
the constant C is

C =
1

(πN0)M
exp

(
−M |h|

2 +
∑M−1
n=0 |y[n]|2

N0

)
. (17)

Taking logarithm of both sides and using (9), the ML estimate
of the message symbol, denoted by m̂, can be found as

m̂ = argmax
m

<
{

h∗√
|Im|

M−1∑

n=0

y[n]
∑

l∈Im
x∗l [n]

}
. (18)

Finally, using (3), we get

m̂= argmax
m

<
{

h∗√
|Im|

∑

l∈Im
x∗0[l]

M−1∑

n=0

y[n]x∗0[n]e−j
2πl
M n

}

= argmax
m

<
{

h∗√
|Im|

∑

l∈Im
x∗0[l]R[l]

}
, (19)

where R[l], l = 0, 1, · · · ,M − 1, is the discrete-Fourier
transform (DFT) of r[n] = y[n]x∗0[n] evaluated at the lth
index. In other words, the optimal coherent ML receiver first
correlates the received signal with a basic down chirp (x∗0[n]),
then performs the DFT operation on the correlated output and
estimates the transmitted message by maximizing a weighted
sum of the DFT values.

Remark 1. For the conventional FSCSS modulation, Im =
{m}. As such, the ML estimate of the transmitted message
simplifies to (6).

B. Optimal Non-Coherent Receiver

When the receiver does not have the knowledge of h, which
is the case of practical interest, the ML receiver estimates m by
maximizing the likelihood function f(m|y) = E[f(m|y, h)],
where the expectation is carried over the distribution of
h. For a Rayleigh fading environment, h is a circularly-
symmetric Gaussian random variable [45, Section 3.2]. That
is, h = hR + jhI , where both hR and hI are independent and
identically distributed zero-mean Gaussian random variables
with variance γ̄N0

2 . In order to compute f(m|y), we first note
that

1

πσ2

∫ ∞

−∞

∫ ∞

−∞
e−|h|

2+2<{h∗β}− |h|
2

σ2 dhrdhi

=
e

σ2

1+σ2 |β|2

πσ2

∫ ∞

−∞

∫ ∞

−∞
e
−

∣∣∣∣h− σ2

1+σ2 β

∣∣∣∣2
σ2/(1+σ2) dhrdhi =

e
σ2

1+σ2 |β|2

1 + σ2
, (20)

where the last equality follows from the fact that the area under
a probability-density function is unity.

Consequently, it is not hard to verify that f(m|y) is given
by

f(m|y) = C ′ exp

(
γ̄N0

1 + γ̄N0

∣∣∣∣∣
M−1∑

n=0

y[n]s∗m[n]

∣∣∣∣
2
)
, (21)

where the constant C ′ is

C ′ =
exp

(
−
∑M−1
n=0 |y[n]|2

N0

)

(πN0)M (1 + γ̄N0)
. (22)

Using (9), the ML estimate of m can be found as

m̂= argmax
m

∣∣∣∣
M−1∑

n=0

y[n]s∗m[n]

∣∣∣∣
2

= argmax
m

1

|Im|

∣∣∣∣
∑

l∈Im

M−1∑

n=0

y[n]x∗l [n]

∣∣∣∣
2

. (23)

Lastly, using xl[n] = x0[l]x0[n] exp
(
j 2πl
M n

)
, we obtain

m̂= argmax
m

1

|Im|

∣∣∣∣
∑

l∈Im
x∗0[l]

M−1∑

n=0

r[n]e−j2πnl/M
∣∣∣∣
2

= argmax
m

1

|Im|

∣∣∣∣
∑

l∈Im
x∗0[l]R[l]

∣∣∣∣
2

, (24)

where r[n] = y[n]x∗0[n], and R[l], l = 0, 1, · · · ,M − 1, is the
discrete Fourier transform (DFT) of r[n].

Remark 2. When the index sets have the same cardinality for
all messages, the optimal ML estimate of m can be found as

m̂ = argmax
m

∣∣∣∣
∑

l∈Im
x∗0[l]R[l]

∣∣∣∣
2

. (25)

Remark 3. For the conventional FSCSS modulation,
Im = {m}. Since |x∗0[m]| = 1, the detection rule in (24)
becomes (8), as it should be.

In the general case when more than one chirp are combined
and used for signal transmission (hence increasing the data
rate), the above optimal receiver would require a search over
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all the patterns used at the transmitter to find m̂ that maxi-

mizes 1
|Im|

∣∣∣∣
∑
l∈Im x

∗
0[l]R[l]

∣∣∣∣
2

. As such, the optimal receiver

requires large computational effort and memory. In the sequel,
we develop a suboptimal detection scheme that significantly
reduces both the computational complexity and memory.

C. Proposed Suboptimal Non-Coherent Receiver

The proposed low-complexity detection algorithm estimates
Im in a recursive manner. Once the set Im is found, the
message m can be determined from Im by using the com-
binatorial method described in [20, Sect. III], i.e., without the
need to store any lookup tables. In particular, the proposed
algorithm estimates the elements of Im one at a time. In order
to conveniently illustrate the proposed detection algorithm, we
first consider a case when all messages are represented by two
chirps, i.e., |Im| = 2. Let Im = {l1, l2}. Then the proposed
detection algorithm first estimates l1 as

l̂1 = argmax
l
|R[l]|2. (26)

Note that (26) estimates l1 exactly the same way as is done
for the conventional FSCSS modulation (see (8)). Once l1 is
estimated, l2 can be estimated using (24) as

l̂2 = argmax
l

∣∣∣∣x∗0[l̂1]R[l̂1] + x∗0[l]R[l]

∣∣∣∣
2

. (27)

For |Im| > 2, the proposed detection rule is carried out sim-
ilarly. In particular, the elements of Im = {l1, l2, · · · , l|Im|}
are detected recursively as

l̂1 = argmax
l

∣∣x∗0[l]R[l]
∣∣ = argmax

l

∣∣x∗0[l]
∣∣∣∣R[l]

∣∣

= argmax
l

∣∣R[l]
∣∣2, (28)

and

l̂k+1 = argmax
l

∣∣∣∣x∗0[l]R[l] +

k∑

m=1

x∗0[l̂m]R[l̂m]

∣∣∣∣
2

, (29)

for k = 1, 2, · · · , |Im| − 1.
A pseudo code of the proposed detection algorithm is

described in Algorithm 1. The code assumes that all com-
binations of the chirps (that is

(
M
K

)
of them) are used for

transmission. In practice, however, a total of 2Λ codewords
are used, where Λ is the number of bits represented by each
symbol. The most common case is when Λ = b

(
M
K

)
c. This

means that Algorithm 1 can produce catastrophic results when
the estimated Im does not belong to the codebook used at the
transmitter [20]. In order to avoid such catastrophic results, we
introduce Algorithm 2 and explain how it works and differs
from Algorithm 1 in the following.

To elaborate the difference between Algorithm 1 and Algo-
rithm 2, we consider Table II, which lists all 28 combinations
for M = 8 and |Im| = 2. Algorithm 1 assumes that all
combinations are used for message transmission, whereas Al-
gorithm 2 only considers the first 16 codewords, corresponding
to m = 0, 1, · · · , 15, for messages.

Algorithm 1 Proposed Suboptimal Receiver for the Complete
Codebook
Input: |Im|, y[n] for n = 0, 1, · · · ,M − 1
Output: Îm

1: Compute r[n] = y[n]x∗0[n] for n = 0, 1, · · · ,M − 1
2: Compute R = DFT(

[
r[0] r[1] · · · r[M − 1]

]
)

3: Compute Y [l] = x∗0[l]R[l] for l = 0, 1, · · · ,M − 1
4: S ← {0, 1, · · · ,M − 1}
5: l̂1 = argmaxl∈S

∣∣∣∣Y [l]

∣∣∣∣
6: Îm ← {l̂1}
7: S ← S \ {l̂1}
8: for k = 2, · · · , |Im| do

9: l̂k = argmaxl∈S

∣∣∣∣Y [l] +
∑k−1
m=1 Y [l̂m]

∣∣∣∣
10: Îm ← Îm ∪ {l̂k}
11: S ← S \ {l̂k}
12: end for

TABLE II
Im ALONG WITH m AND p CORRESPONDING TO 2 OUT OF 8 SELECTED

INDEXES.

m Im p m Im p m Im p m Im p

0 {0, 1} 1 7 {1, 2} 10 14 {2, 4} 20 21 {3, 7} 31

1 {0, 2} 2 8 {1, 3} 11 15 {2, 5} 21 22 {4, 5} 37

2 {0, 3} 3 9 {1, 4} 12 16 {2, 6} 22 23 {4, 6} 38

3 {0, 4} 4 10 {1, 5} 13 17 {2, 7} 23 24 {4, 7} 39

4 {0, 5} 5 11 {1, 6} 14 18 {3, 4} 28 25 {5, 6} 46

5 {0, 6} 6 12 {1, 7} 15 19 {3, 5} 29 26 {5, 7} 47

6 {0, 7} 7 13 {2, 3} 19 20 {3, 6} 30 27 {6, 7} 55

Table II also tabulates a number p along with the index
set Im corresponding to message m. For a given Im =
{l1, · · · , l|Im|}, where l1 < · · · < l|Im|, p is calculated as

p =

|Im|−1∑

i=0

li+1M
|Im|−i. (30)

Observe that there is a one-to-one relationship between Im
(or equivalently, m) and p, and p increases as m increases and
vice versa. As such, m ≤ m0 is equivalent to p ≤ p0, where
p0 is the number corresponding to Im0

. For example, m ≤ 15
corresponds to p ≤ 21 for the codewords in Table II.

To work with the reduced codebook, Algorithm 1 needs to
incorporate the condition m ≤ 2Λ − 1, which is equivalent to
incorporating the condition p ≤ p0, where p0 is computed
for I2Λ−1. To this end, we add an extra condition while
determining the last index in the estimated Im in the proposed
detection scheme presented in Algorithm 1. The modification
is incorporated in Algorithm 2, where we use a function
FINALINDEX to determine the range of the last index, l̂|Im|.

The function FINALINDEX is given in Algorithm 3. It takes
three inputs: the estimated I, the final index set F , and the
cardinality of F . Elements of both sets are in ascending order.
In the following, we explain the operations carried out by the
function FINALINDEX by considering the codebook of Table
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Algorithm 2 Proposed Suboptimal Receiver for a Reduced
Codebook
Input: |Im|, y[n] for n = 0, 1, · · · ,M − 1, LastCode
Output: Îm

1: Compute r[n] = y[n]x∗0[n] for n = 0, 1, · · · ,M − 1
2: Compute R = DFT(

[
r[0] r[1] · · · r[M − 1]

]
)

3: Compute Y [l] = x∗0[l]R[l] for l = 0, 1, · · · ,M − 1
4: S ← {0, 1, · · · ,M − 1}
5: l̂1 = argmaxl∈S

∣∣∣∣Y [l]

∣∣∣∣
6: Îm ← {l̂1}
7: S ← S \ {l̂1}
8: for k = 2, · · · , |Im| − 1 do

9: l̂k = argmaxl∈S

∣∣∣∣Y [l] +
∑k−1
m=1 Y [l̂m]

∣∣∣∣
10: Îm ← Îm ∪ {l̂k}
11: S ← S \ {l̂k}
12: end for
13: Sort Îm in ascending order
14: z ← FINALINDEX(Îm, LastCode, |Im|)
15: l̂|Im| = argmaxl∈S,l≤z

∣∣∣∣Y [l] +
∑|Im|−1
m=1 Y [l̂m]

∣∣∣∣
16: Îm ← Îm ∪ {l̂|Im|}

II. For convenience, we denote the kth elements of I and F
by I(k) and F(k), respectively.

For the codebook of Table II, F = {2, 5}. We consider four
values of l̂1, i.e., l̂1 = 0, 2, 4, 6. Note that I = {l̂1}. Now, for
I(1) = l̂1 = 0 < F(1), l̂2 can be as large as M − 1 = 7. For
I(1) = l̂1 = 2 = F(1), the maximum value of l̂2 is 5. Finally,
the maximum value of l̂2 is 2 when l̂1 = 4 and is 1 when
l̂1 = 6. Observe that, in the last two case, I(1) > F(1), and
the maximum value of l̂2 can be determined by ensuring that
the number p corresponding to I must not exceed p0 = 21.
This can be done by satisfying l̂2×M+l̂1 ≤ F(1)×M+F(2).
Solving the inequality yields l̂2 ≤ F(1)+F(2)×M−1−I(1)×
M−1.

Algorithm 3 Final Index Range Finder
1: function FINALINDEX(I, F , K)
2: if K = 1 then
3: return F(1)
4: end if
5: if I(1) < F(1) then
6: return M − 1
7: else
8: if I(1) > F(1) then
9: p0 ← F(1) +

∑K−1
i=1 F(i+ 1)M−i

10: p←∑K−1
i=1 I(i)M−i

11: return p0 − p
12: else
13: return FINALINDEX(I(2:K), F(2:K), K-1)
14: end if
15: end if
16: end function

Now, we describe the operations of FINALINDEX(I,F ,K)

for general F and K. Depending on the first (and the min-
imum) elements of both sets, we have three cases: I(1) <
F(1), I(1) > F(1), and I(1) = F(1). When I(1) < F(1),
we return M − 1. On the other hand, when I(1) > F(1),
we return F(1) +

∑K−1
i=1 F(i+ 1)M−i −∑K−1

i=1 I(i)M−i to
ensure that the number p corresponding to I is less than or
equal to p0. Last, when I(1) = F(1), finding the maximum
possible value of the last index becomes equivalent to finding
the maximum possible value of the last index of I(2 : K).
As such, we call FINALINDEX() to determine the maximum
limit of the last index of I in Algorithm 3.

D. Computational Complexity and Memory Requirements

The optimal detection algorithms determines the index set
by searching over the entire codebook. Since the codebook
length is of the order of

(
M
|Im|

)
= O

(
M |Im|

)
, the com-

putational complexity and the memory requirements of the
optimal algorithm are both O

(
M |Im|

)
. On the other hand, the

proposed suboptimal detection algorithm does not require the
codebook to be saved, which results in a huge memory saving.
Furthermore, the proposed suboptimal detection algorithm
determines the index set by finding the maximum of a metric
for a total of |Im| times. Since the complexity of finding the
maximum from a list of size M is O(M), the computational
complexity of the proposed suboptimal detection algorithm
is only O (M |Im|), i.e., linear in both |Im| and M and
much lower than the computational complexity of the optimal
detection algorithm.

V. PERFORMANCE RESULTS AND COMPARISON

In this section, we present simulation results to depict the
BER performance of the proposed FSCSS-IM system under
both optimal and suboptimal detection algorithms. The BER
performance is also compared to that of the conventional
FSCSS system.

Fig. 2 depicts the BER of the proposed FSCSS-IM system
in an AWGN channel when two chirps are selected for repre-
senting a message symbol. Here, the BER performance of the
optimal non-coherent detection rule in (24) and the proposed
low-complexity suboptimal detection algorithm described in
Section IV-C are plotted. A total of 109 Monte-Carlo trials
were used to generate the plots.

A couple of interesting observations can be made from
the plotted curves. First, the proposed suboptimal detection
algorithm enjoys near-optimal performance for the whole
Eb/N0 range, where Eb/N0 = Es/N0

Λ is the signal-to-noise
ratio per bit, and for all values of M . This is despite the
fact that the proposed scheme is highly memory efficient and
significantly less computationally intensive than the optimal
algorithms, as mentioned in Section IV-D.

Second, similar to the conventional FSCSS modulation, the
performance of the proposed FSCSS-IM scheme improves
as the number of orthogonal chirps increases. This improve-
ment in the BER performance comes at the expense of the
achievable data rate. For example, for the same occupied
bandwidth, an FSCSS-IM symbol for M = 256 is two times
longer than a FSCSS-IM symbol corresponding to M = 128.



8

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

B
it
-E
rr
or

R
at
e

Eb/N0 [dB]

Proposed, M = 128
Optimal, M = 128
Proposed, M = 256
Optimal, M = 256
Proposed, M = 512
Optimal, M = 512

Fig. 2. BER comparison of the optimal and proposed suboptimal non-coherent
detection algorithms for the FSCSS-IM system when M = 128, 256, 512,
and |Im| = 2.

Consequently, for |Im| = 2, the maximum achievable data rate
for M = 256 is 1/2 × 14/12 ≈ 0.583 times the maximum
data rate achievable for M = 128. But, on the other hand,
FSCSS-IM with M = 256 shows a performance gain of 0.5
dB over FSCSS-IM with M = 128 at the BER of 10−5.

Fig. 3 shows the BER performance of the conventional
FSCSS system for M = 128 and M = 256 in an AWGN
channel. A total of 109 Monte-Carlo trials were used to
generate the plots. A similar trend is observed in this figure,
i.e., the lower the data rate of a scheme is, the better it
performs in terms of BER. This trend is evident from the slight
degradation in BER performance of FSCSS-IM when |Im|
increases from 1 to 3 for both values of M . Such performance
degradation can be intuitively explained from the fact that in
the conventional FSCSS scheme (|Im| = 1), the index sets
are non-overlapping, whereas they generally overlap in the
proposed FSCSS-IM scheme (|Im| > 1). This overlap results
in slight degradation of the bit-error-rate performance.

Another interesting observation can be made from Fig. 3.
For each M , the bit-error rates for |Im| = 2, 3 are only
slightly worse than that for |Im| = 1, which corresponds
to the conventional FSCSS modulation scheme. On the other
hand, the maximum data rates achieved with |Im| = 2, 3 are
significantly higher than that with the conventional FSCSS
modulation. For instance, the maximum data rate achieved
with |Im| = 2 and |Im| = 3 for M = 128 are Λ/ log2(M) =
12/7 ≈ 1.7143 and Λ/ log2(M) = 18/7 ≈ 2.5714 times
the maximum data rate achieved by the conventional FSCSS
modulation, respectively. So the proposed FSCSS-IM system
can improve the achievable data rate significantly with only
slight degradation in the bit-error rate. The data rate can
further be improved by using more chirps for transmission
and reception, i.e., by using |Im| > 3.

On a difference comparison, Fig. 3 actually shows that
the proposed FSCSS-IM scheme can achieve a higher data
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Fig. 3. BER comparison of the conventional FSCSS and proposed FSCSS-IM
systems for M = 128, 256.

rate than the conventional FSCSS modulation scheme while
slightly improving the BER performance. Specifically, con-
sider the BER performance of the conventional FSCSS mod-
ulation scheme for M = 128 and the proposed FSCSS-IM
scheme for M = 256 and |Im| = 3. The figure depicts
that the proposed FSCSS-IM scheme has slightly better BER
performance than the conventional scheme. Note that the
symbol duration of the conventional FSCSS modulation for
M = 128 is half of the symbol duration of the proposed
FSCSS-IM scheme for M = 256. Also, each transmitted
symbol conveys a total of Λ = 21 bits in the proposed
FSCSS-IM scheme. On the other hand, in the same symbol
duration, the conventional FSCSS scheme can transmit a total
of 2× 7 = 14 bits. That is, the proposed FSCSS-IM scheme,
while performing slightly better than the conventional FSCSS
modulation scheme, can also achieve a data rate of 1.5 times
that of the conventional FSCSS modulation scheme.

In Fig. 4, the symbol-error-rate (SER) performance of both
the conventional FSCSS and proposed FSCSS-IM schemes are
plotted against the channel SNR, γ̄, in an AWGN channel.
Observe that the lower the data rate of a scheme, the better
the scheme is in terms of SER, and vice versa. In the figure,
for example, (M, |Im|) = (256, 1) scheme has the lowest SER
for a given channel SNR, while (M, |Im|) = (128, 2) has the
highest SER. At the same time, the first scheme has the lowest
data rate, whereas the latter has the highest data rate. The
(M, |Im|) = (128, 1) and (M, |Im|) = (256, 2) schemes have
the same data rate and have almost the same SER performance
against the channel SNR. That is, the proposed FSCSS-IM
scheme and conventional FSCSS modulation scheme have
similar reception sensitivity for the same data rate.

Next, Fig. 5 compares performance of the proposed FSCSS-
IM scheme with the SSK-LoRa scheme introduced in [15].
The plots are generated using a total of 109 Monte-Carlo trials
(i.e., 109 FSCSS-IM or SSK-LoRa symbols are simulated for
each SNR value). Fig. 5 depicts that the BER performance
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Fig. 4. SER comparison of the conventional FSCSS modulation and proposed
FSCSS-IM schemes for M = 128, 256 and |Im| = 1, 2.

of SSK-LoRa modulation is better than the BERs of both
the conventional FSCSS and proposed FSCSS-IM schemes.
On the other hand, the proposed FSCSS-IM scheme per-
forms slightly worse than the conventional FSCSS modulation
scheme when the receiver of Algorithm 2 is used. In terms
of data rate, although the SSK-LoRa modulation scheme
also achieves higher data rates than the conventional FSCSS
modulation scheme, the data-rate improvements are marginal.
In particular, for M = 256, the data-rate improvement is only
12.5%. In contrast, the proposed FSCSS-IM scheme achieves
significant improvements in the data rate while performing
only slightly worse than the conventional FSCSS modulation
scheme. The data-rate improvements for the proposed scheme,
as given in Table I, are 75% and 163% for |Im| = 2, and
|Im| = 3, respectively. Finally, the figure also depicts the
performance of the proposed FSCSS-IM scheme when using
a non-coherent detection algorithm similar to that proposed in
[23] for OFDM-IM and [46] for multi-tone FSK modulation
(labeled as “K-Max” in the figure’s legend). In particular, in
the K-max algorithm, the indexes of the largest |Im| values of
|x∗0[l]R[l]| (or equivalently, |R[l]|, since |x∗0[l]| = 1) constitute
the estimated index set. Observe that our proposed detection
scheme results in much better performance than the scheme
of [23].

Finally, Fig. 6 shows the performance of the proposed
scheme over a Rayleigh fading channel. A total of 106 Monte-
Carlo trials were used for each SNR to generate the plot.
The figure displays the performance of the optimal detec-
tion schemes along with the proposed suboptimal detection
scheme. As expected, because the optimal coherent detector
makes use of the channel-state information, it shows the best
performance. The optimal non-coherent detection incurs a
SNR degradation of about 0.8 dB as compared to the coherent
detection, whereas the proposed suboptimal reception shows
almost identical performance as that of the optimal non-
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Fig. 5. BER comparison of the FSCSS-based modulation schemes under
different detection schemes for M = 256.
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Fig. 6. BER performance of the proposed FSCSS-IM with different detection
schemes for M = 128, |Im| = 2 over a Rayleigh fading channel.

coherent reception. Again, this comparison clearly demon-
strates the efficiency and effectiveness of the proposed low-
complexity non-coherent detection for the FSCSS-IM scheme.

VI. CONCLUSION

In this paper, we introduced index modulation into the
conventional FSCSS system to improve the achievable data
rates for different system parameters. We have also developed
optimal coherent and non-coherent detection algorithms for the
proposed FSCSS-IM scheme under fading channels. Moreover,
a suboptimal non-coherent detection algorithm was also pro-
posed that eliminates memory requirement and significantly
reduces the computational complexity of the optimal algo-
rithm, while performing almost equally well. The proposed
FSCSS-IM scheme is very flexible to design and can achieve
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much higher data rates than the conventional FSCSS system
(under the same bandwidth) with only slight degradations in
the bit-error rate performance.

Although the conventional FSCSS system uses orthogonal
chirps, the concept of index modulation can also be applied for
a set of non-orthogonal chirps. As discussed in the paper, using
both up and down chirps, and even together with interleaved
chirps can increase the highest achievable data rate of the
conventional FSCSS modulation scheme. Moreover, applying
the concept of index modulation on top of such an expanded
set of (non-orthogonal) chirps can further improve the data
rate. Developing optimal and low-complexity suboptimal re-
ceivers and performing theoretical analysis of the bit-error
rate performance for such a novel scheme (as well as for the
proposed FSCSS-IM for that matter) is an interesting topic
and is left as a future research topic.
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