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Abstract—With the advances in the Internet of Things tech-
nology, electric vehicles (EVs) have become easier to schedule
in daily life, which is reshaping the electric load curve. It is
important to design efficient charging algorithms to mitigate
the negative impact of EV charging on the power grid. This
paper investigates an EV charging scheduling problem to reduce
the charging cost while shaving the peak charging load, under
unknown future information about EVs, such as arrival time,
departure time, and charging demand. First, we formulate an
EV charging problem to minimize the electricity bill of the EV
fleet and study the EV charging problem in an online setting
without knowing future information. We develop an actor-critic
learning-based smart charging algorithm (SCA) to schedule the
EV charging against the uncertainties in EV charging behaviors.
The SCA learns an optimal EV charging strategy with continuous
charging actions instead of discrete approximation of charging.
We further develop a more computationally efficient customized
actor-critic learning charging algorithm (CALC) by reducing the
state dimension and thus improving the computational efficiency.
Finally, simulation results show that our proposed SCA can
reduce EVs’ expected cost by 24.03%, 21.49%, 13.80%, com-
pared with the Eagerly Charging Algorithm, Online Charging
Algorithm, RL-based Adaptive Energy Management Algorithm,
respectively. CALC is more computationally efficient, and its
performance is close to that of SCA with only a gap of 5.56% in
the cost.

Index Terms—Electric vehicle, load scheduling, demand re-
sponse, online learning, actor-critic method, projection.

I. INTRODUCTION

With the increasing concerns of environmental issues, elec-

tric vehicles (EVs) emerge as a promising solution as they do

not directly consume fossil fuels and are more environmentally

friendly. Meanwhile, the intermittent charging demands caused

by electric vehicles (EVs) impact the operation of the public

power grid [1]. Therefore, it is crucial to design charging

control strategies to alleviate the peak load caused by EVs

and cut down their electricity bills. It will be ideal if the
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future charging demand is known in advance, such that the

EV charging can be scheduled to flatten the total load [2].

However, an EV charging station faces great uncertainties

in EVs’ behaviors, including their travel patterns and charg-

ing demands. Online charge strategies become a promising

paradigm for determining the optimal charging of EVs against

uncertainties. The online EV charging problem is more prac-

tical, as it does not assume any future information but only

relies on the current and past EV profiles, including the arrival

time, the departure time, and the charging demand of EVs. The

advances in the Internet of Thing (IoT) technology and the

intelligent transportation system have paved the way for EVs

[3]. The information shared between EVs can improve real-

time transportation and make smart decisions for individual

EVs [4]. It is easier to predict EVs’ behaviors that make it

possible to schedule a proper quantity of EVs to make charging

decisions. In this paper, we aim to design online algorithms

for EV charging without knowing future information.

In recent years, great efforts have been made to develop

online EV charging algorithms under stochastic EV demands.

Online charging problems do not assume future information

about the profiles of EVs, which captures the realistic scenar-

ios about uncertainties in EV charging behaviors. Yu et al. [5]

proposed a distributed online algorithm by the Lyapunov opti-

mization method and an improved alternating direction method

to investigate an energy scheduling problem for distributed

data centers and EVs. Qi et al. [6] proposed an online energy

management framework of EVs by an evolutionary algorithm.

Kang et al. [7] presented a novel centralized EV charging

strategy based on spot price with the consideration of charging

priority and charging location. Li et al. [8] designed a joint on-

line learning and pricing algorithm to minimize the operational

cost of utility considering time-varying demand responses and

consumers’ responses. A novel multi-objective evolutionary

algorithm was proposed in [9] to minimize the peak-to-valley

difference of the load and the operating cost. Quddus et al.

[10] proposed a two-stage stochastic programming model to

optimize the power flow of commercial buildings and EV

charging stations with some practical constraints. However,

these algorithms [5]-[10] relied on specific models or they

only worked in special scenarios. Instead, we aim to develop

a generic method for the EV charging problem that is less

model-dependent and can work for various practical scenarios.

Therefore, we refer to the model-free reinforcement learning

(RL) to derive the optimal EV charging strategy in our work.

Model-free RL frameworks and policies have been utilized

to handle the energy scheduling problems in the literature. For

example, an improved Q-learning method has been proposed

http://arxiv.org/abs/2106.00854v1
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to minimize the electricity bill and reduce users’ discomfort

for a household [11][12]. A bidirectional long short-term

memory network-based parallel reinforcement learning was

presented in [13] to construct an energy management strategy

for a hybrid tracked vehicle. A control algorithm based on Q-

learning has been designed in [14] to obtain the optimal control

under physical and cyber uncertainties. A batch RL algorithm

has been investigated in [15] to schedule controllable load

such as washing machine. However, these studies [11]-[15]

all used the RL methods, in which the charging actions have

to be discrete values that restrict the model of actions. Using

discrete actions for EV charging is an approximation to the

real-world problem, as the EV charging amount is a continuous

value. When the discrete-charging action is adopted, it is often

difficult to achieve a good trade-off between computational

complexity and performance. Using too few discrete levels

may result in poor learning performance, but using a large

discrete action space will make the training difficult and lead

to high computation overhead [16].

In our work, we aim to develop optimal EV charging strate-

gies with continuous charging amount other than discretize

charging actions. The probability distribution of actions under

different states is a stochastic policy, and deriving an optimal

policy is at the center of RL methods. A new method was

discussed in [17] to approximate the iteration of policy and

improve the policy. Standard tabular Q-learning or deep Q

neural network method can not derive the optimal policy over

continuous action space [18][19]. Therefore, we adopt the

actor-critic method [20] to solve our problem with continuous

states and actions. The actor-critic method can use the deep

neural network (DNN) to estimate the value functions, which

can get a better approximation. There are some studies on the

scheduling problem using the actor-critic method. Some recent

studies in [21]-[22] developed actor-critic learning approaches

for various applications. For example, a concurrent actor-

critic learning framework was proposed in [21] to achieve

a close-to-optimal feedback-Nash equilibrium solution to a

multi-player non-zero-sum differential game in an infinite

horizon. A distributed framework based on policy search was

proposed in [23] to accelerate the learning processes of robot

moving by reducing variance. An actor-critic approach was

proposed in [22] to approximate the performance function

based on adaptive dynamic programming strategy. Lu et al.

[24] proposed a real-time incentive-based algorithm to help

the service provider balance energy fluctuations and improve

the reliability of smart grid systems using deep RL. Wei et al.

[25] proposed a policy-gradient method to study the problem

of user scheduling and resource allocation in heterogeneous

networks with continuous states and actions. However, the

actor-critic algorithm may not have a good convergence if

its policy is on-policy [26]. Hence, we design an online

EV charging strategy using asynchronous actor-critic learning,

and we further develop a customized actor-critic algorithm,

significantly improving the convergence and achieving a close-

to-optimal solution of the charging schedule of EV fleet.

This paper aims to design an online EV charging scheduling

algorithm leveraging the EV charging data. We first formulate

an offline optimization problem, in which the future profiles of

EVs are known. The offline problem captures all the modeling

components, including energy cost, arrival time, departure

time, and the charging demand of EVs, thus serving as a

basic formulation for EV charging. As the offline problem

is unrealistic, we further formulate an online optimization

problem for EV charging without assuming future profiles of

EVs and develop online charging strategies. We model the

EV charging decision as a Markov decision process (MDP),

where the charging station determines the charging schedule

according to the past and current information, including the

arrival time, departure time, and charging demand of EVs. In

the MDP setup, the current charging decision will affect the

next state, the charging decision, and accumulative rewards in

the future. We aim to develop an optimal EV charging strategy

to minimize the expected total energy cost under uncertainties

of EV charging behaviors. We develop an actor-critic learning-

based smart charging algorithm (SCA), which determines

the optimal continuous-charging amount for each EV using

asynchronous actor-critic reinforcement learning. To further

improve the computational efficiency of SCA, we develop a

customized actor-critic learning charging algorithm (CALC)

that reduces the dimension of the state during the learning

phase. Finally, SCA and CALC are compared with three state-

of-the-art algorithms. We summarize the contributions of our

paper as follows.

• We model the online EV charging problem as a Markov

decision process to capture the decision marking un-

der uncertainty of EV charging profiles. We develop a

smart charging algorithm (SCA) to solve the online EV

charging problem, which leverages the advantage of the

asynchronous actor-critic method with good convergence

to derive the optimal charging policy.

• We further develop a more computationally efficient cus-

tomized actor-critic learning charging algorithm (namely

CALC), which consists of two stages. In the first stage,

CALC learns the charging policy for the whole group of

EVs using actor-critic learning and obtains the optimal

aggregate charging amount; in the second stage, CALC

allocates the aggregate charging amount to serve each

EV based on the projection theory. Such a customized

algorithm achieves sub-optimal performance and signif-

icantly reduces the computational overhead, achieving a

good trade-off between performance and computation.

• The developed SCA and CALC algorithms learn EV

charging strategies with continuous charging actions in-

stead of discrete approximation of charging. We com-

pare our developed charging algorithms with Q-network-

based RL algorithm, namely adaptive energy management

(AEM), which makes discrete actions. Our results show

that our developed charging algorithms outperform AEM

with different numbers of discretized actions in achieving

a better trade-off between computation and performance.

The remainder of this paper consists of five sections. Section

II formulates the offline EV scheduling problem. Section III

extends the offline EV charging problem to an online charging

scheduling problem. Then SCA and CALC algorithms are

proposed and analyzed in Section IV. Simulation results are
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presented in Section V. Finally, Section VI concludes the

paper. The summary of notations is shown in Nomenclature.

II. OFFLINE EV CHARGING PROBLEM

In this section, we investigate the optimal offline EV charg-

ing problem, where the future information of EVs is known in

advance. The offline EV charging optimization problem will

help formulate the online charging problem in Section III.

A. System Architecture

We consider a community including an EV charging station

and the inelastic base load. The charging station serves EVs

in a region, and we restrict our discussion for the charging

management at one charging station. We aim to minimize the

total charging cost of EVs from the charging station. We study

the charging scheduling of EV battery in a time horizon T
and the time index t ∈ T = {1, 2, ..., T }. We assume that N
EVs arrive in the order from 1 to N and the index of EV is

i ∈ N = {1, 2, ..., N}. We set the arrival time and departure

time of EV i as tarri and tdepi , respectively. Let Di denote the

charging demand of EV i. In the traditionally offline models,

the charging station knows the EV profiles Di, t
arr
i , and tdepi

in advance, which is unrealistic. This paper will consider an

online model, in which the charging station does not know

any future information about EV profiles, capturing the key

uncertainty in a real-world scenario.

According to the physical constraints of EV battery, EV i
should be charged at a charging amount bi(t) in time slot t
and the charging amount in each time slot has a bound, that

is,

bi(t) ∈ [0, bi,max], (1)

where bi,max is the maximum charging amount in a time slot

of EV i. We set the state of charge (SOC) of EV i in time

slot t as SOCi,t, which is defined as SOCi,t =
Bi(t)
Bi,max

, where

Bi,max is the battery capacity of EV i and the battery level

follows Bi(t+ 1) = Bi(t) + bi(t). We denote H(t) as the set

of EVs that are parked in the charging station in time slot t.
The charging station can control the charging amount bi(t).
We denote the charging load of EV fleet lev(t) in time slot t,
that is,

lev(t) =
∑

i∈H(t)

bi(t). (2)

Except for the EV charging load, we also consider the inelastic

base load of the other electricity demand from the community

lb(t), such as lighting or watching TV. We assume that the

base load lb(t) can be predicted accurately at the beginning of

each time slot t and thus is known to the operator. The total

load in time slot t is L(t) and we have

L(t) = lev(t) + lb(t). (3)

In practice, the total load includes the total EV charging load

and base load and is upper-bounded by Lmax. According to

[27], the unit electricity price p(t) is modeled as a linear

function of the total load,

p(t) = k0 + 2k1(lev(t) + lb(t)), (4)

where k0 and k1 are non-negative coefficients. Essentially,

reducing the electricity cost is to shift the load evenly and

avoid significant peak load. We denote b(t) as a vector form of

(b1(t), b2(t), ..., bi(t)) and calculate the electricity bill c(b(t))
of the charging station as follows,

c(b(t)) =

∫ L(t)

lb(t)

(k0 + 2k1z)dz

= k0
∑

i∈H(t)

bi(t) + k1

(

∑

i∈H(t)

bi(t)
)2

+ 2k1lb(t)
∑

i∈H(t)

bi(t), (5)

where the electricity bill c(b(t)) is the integral of the unit

electricity price p(t) in the load interval from lb(t) to L(t).

B. Problem Formulation

We first formulate the offline optimization problem assum-

ing that we know the EV arrival time, departure time, and

charging demand. We aim to find the optimal charging solution

bi(t) of each EV i to minimize the total EV charging cost

in an operational horizon T , where the profiles of EVs are

known ahead. Then, we can formulate the offline charging

optimization problem as follows,

min
bi(t)

T
∑

t=1

(

k0
∑

i∈N

bi(t) + k1

(

∑

i∈N

bi(t)
)2

+ 2k1lb(t)
∑

i∈N

bi(t)
)

(6a)

s.t.

tdep
i
∑

tarr
i

bi(t) = Di, i ∈ N (6b)

0 ≤ bi(t) ≤ bi,max, i ∈ N , t ∈ T (6c)

0 ≤ L(t) ≤ Lmax, t ∈ T (6d)

where Di is the charging demand of EV i, tarri is the arrival

time of EV i, tdepi is the departure time of EV i. We can

find that problem (6) is a convex optimization problem. If

the profiles tarri , tdepi and Di are known in advance, the

optimal charging solution bi(t) can be attained by solving

the optimization problem (6). Nevertheless, the current EV

charging information, including the arriving time tarri , the

departure time tdepi and Di(t) can only be known when it

arrives at the charging station. In the next section, we will

study an online EV charging problem derived from this offline

problem, and the future information of EVs is unknown in the

online charging problem.

III. ONLINE EV CHARGING PROBLEM

In this section, we reformulate an online charging prob-

lem based on (6). We denote Q(i, ts) as the set of time

indices that EV i will charge in the charging station, and

Q(i, ts) = [ts, t
dep
i ]. The charging amount in time slot t of

EV i is defined as bi(t), where t ∈ Q(i, ts). When an EV

comes to the charging station in time slot ts, we optimize the
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charging scheduling without knowing the demand of EVs in

the future.

In the online charging problem, the profiles of EVs in-

cluding the charging demand, the arrival and departure time,

are not known ahead. The charging station needs to schedule

the EV charging for each current time slot while facing

uncertainties of EV profiles in the future. According to [28],

we define the exogenous information variable ξ(t) that comes

up in time slot t, which is not known ahead when the charging

decision b(t) is made. We have the exogenous information

variables ξ(t),

ξ(t) = (t̂arri , t̂depi , D̂i(t)), (7)

where t̂arri , t̂depi , D̂i(t) are the arrival time, departure time

and the electricity demand of EV i in time slot t. These

exogenous variables could be field observations [28], bringing

uncertainties and challenges to the problem solving. We aim

to find the optimal charging solution b = (b(1), ..., b(T )) to

minimize the total EV charging cost CT in an operational

horizon T ,

CT =

T
∑

t=1

c(b(t)), (8)

where T is ending time of the period T . Therefore, we have

an online charging optimization problem as follows,

min
b(t)

E[CT ] (9a)

s.t.
∑

t∈Q̂(i,ts)

bi(t) = D̂i(ts), i ∈ H(ts) (9b)

0 ≤ bi(t) ≤ bi,max, i ∈ H(ts), t ∈ Q̂(i, ts), (9c)

0 ≤ L(t) ≤ Lmax, t ∈ Q̂(i, ts), (9d)

where Q̂(i, ts) = [ts, t̂
dep
i ], and H(ts) is the set of EVs that

park in the charging station in time slot ts and will remain in

the charging station at time t, t ∈ Q(i, ts). We defineW(t) as

the set of the rolling window from the current time slot t to

t′, where t′ is the maximum departure time of EVs in H(t),
when EVs are parked in the charging station, that is,

W(t) = {t′|t′ ≥ t& t′ ≤ max{ti|i ∈ H(t)}}. (10)

Fig. 1 shows an example to explain the concept of H(t)

0 1 2 3 4 5 6 7 8 9 T time

Ongoing service time

Current time slot

EV1

EV2

EV3

EV4

EV5

W(t) 

H(t),t=4

Fig. 1. Illustration of H(t) and W(t).

and W(t). There are five EVs at the charging station in

this example. In time slot 4, there are four EVs in this

charging station, e.g.,H(4) = {2, 3, 4, 5}. In this time slot, the

maximum service time of EVs parking in this charging station

is from t = 4 to t′ = 9, e.g., W(4) = {4, 5, 6, 7, 8, 9} and EV

5 is the last one leaving the charging station in time slot 9.

For the rolling-based method according to [29], we replace

the interval t ∈ Q̂(i, ts), in which EV i stays in the charging

station as t ∈ W(ts). Heuristic rolling-based online control is

a general method widely used in various problems of smart

grids, such as real-time energy scheduling [30] and ancillary

services [31]. The charging station will implement the optimal

solution opt[bi(t)] to Problem (9) until a new EV comes in.

When a new EV arrives, or EV completes charging, or the load

from the community changes, H(ts), Q̂(i, ts), D̂i(ts) should

be updated and Problem (9) should be solved again.

In practice, the offline problem is not practical because

we do not have future information about EV profiles, and

it is often challenging to obtain reliable prediction of human

behaviors. In the online charging setting, it is difficult to solve

this optimization problem using an intuitive mathematical

programming approach, and the aforementioned rolling-based

algorithm is heuristic and not optimal. We only use the rolling-

based online control algorithm (OA) as a benchmark for our

proposed algorithms in Section IV.

IV. RL-BASED EV CHARGING ALGORITHM

To tackle the challenges brought by the uncertainty of the

EV behaviors, we seek an intelligent EV charging strategy

using reinforcement learning. Considering that EV charging

amount is continuous, we apply the actor-critic algorithm to

solve the online EV charging problem, which combines the

value-based and policy-based method.

A. RL Framework Formulation

We model EV charging decision as a Markov decision

process. The charging station will make the charging schedule

based on the past and current exogenous information, which

includes the arrival time and departure time, and charging

demand of EVs that stay in the charging station at the current

time slot. The state φ(t) consists of electricity price and the

SOC of EV i. We measure SOCi(t) as the percentage of

the battery capacity Bmax of EV i. Then we have the state

φ(t) ∈ Φ as follows,

φ(t) = (SOC1(t), ..., SOCN (t), p(t)), (11)

where SOCi(t) is the SoC of EV i ∈ H(t) and p(t) is the

electricity price. The electricity price is modeled as a linear

function of total load in the community so that base load can

influence the price.

The action consists of all the charging amount bi(t) of EV

i in time slot t, which are continuous variables,

bi(t) ∈ [0, bi,max], i ∈ H(ts), t ∈ Q̂(i, ts), (12)

where bi,max is the maximum charging amount of EV i in

each time slot, and bi(t) should be in the range [0, bi,max].
The charging action needs to satisfy the following constraint,

t̂depi
∑

t=ts

bi(t) = D̂i(t)−
ts−1
∑

t=t̂arr
i

b̃i(t), (13)
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where ts is the current time slot, D̂i(t) is the electricity

demand of EV i with exogenous information in time slot t,
and

∑ts−1

t=t̂arr
i

is the actual charging amount of EV i from the

arrival time t̂arri to the moment before the current time slot

ts− 1. During the training, the environment (φ(t), bi(t), r(t))
is composed by the state including the base load from the

community and the exogenous information (such as the arrival

time t̂arri , departure time t̂depi , the EV charging demand D̂i(t)
of EV i in time slot t), the charging action bi(t), and the reward

r(t). Each decision for charging action b̃i(t) will affect the

state, including residual EV charging demand D̂i(t) for future

time slots in turn.

According to the relationship (4) between the electricity

price and the load, we use the EV charging cost to set the

reward function r(t) as

r(t) = −
∑

i∈H(t)

(k0 + 2k1bi(t) + 2k1lb(t))bi(t), (14)

where bi(t) is the charging amount. To evaluate the expected

accumulated rewards of current state with action bi(t) and

use the policy πθ to choose the charging action according

to the state φ(t), we denote the state-action value function

Qπθ(φ(t), bi(t)) which is the value of taking the charging

action bi(t) in state φ(t) under a policy πθ as follows,

Qπθ (φ(t), bi(t)) = Eπθ
{

T
∑

k=0

[ǫkr(t+ k)]|(φ(t), bi(t), πθ)},

(15)

where ǫ ∈ (0, 1) is the discount factor and the policy πθ is a

function of the parameter θ.

Different from the state value function which is the optimal

reward function according to current state and the stationary

policy, such as Greedy policy, the state-action value function

of actor-critic is the expected rewards according to current

state. It utilizes a parameterized policy to select the charging

action, which can be given by,

Qπ(φ(t), bi(t)) = E{r(t) + γQπ(φ(t+ 1), bi(t+ 1))}, (16)

where E{·} is the expectation function, γ is the discount factor

to evaluate foresighted decisions and π can be approximated

by πθ(φ(t), bi(t)).
We optimize the policy πθ with a Gaussian distribution

πθ ∼ N (µθ, σ
2
θ), where the expectation µθ and logarithmic

standard deviation logσθ are approximated by the multi-layer

perceptron (MLP), which can be expressed as follows,

µθ = α⊤
µ h+ ζµ, (17)

logσθ = α⊤
σ , (18)

where αµ, ασ are the output layer’s weights, ζµ is output

layer’s bias and (·)⊤ is the operation of taking the trans-

pose. The parameter θ is the network weights of MLP and

αµ, ασ, ζµ ∈ θ. The feature h is extracted from the hidden

layers of MLP, which can be expressed as follows,

h = y(α⊤
n vn + ζn), (19)

where vι+1 = y(α⊤
ι vι + ζι), ι = 1, 2, ..., n− 1,

v1 = φ(t),

and α⊤
ι , ζι are the weight and bias in the ιth hidden layer, y(·)

is the rectified linear unit activation function, and φ(t) is the

state, which is the input of MLP. We build the actor process

and critic process according to MLP.

B. Actor Process

We assume that the gradient policy πθ(φ(t), bi(t)) is dif-

ferentiable in parameter θ and the update of θ is given as

follows,

∆θ = βa∇θJ (πθ) = βa
∂J (πθ)

∂πθ

∂πθ

∂θ
, (20)

where βa is the learning rate for the actor and should be

set small enough to avoid the oscillation of the policy [32],

because small updates of the value function will greatly

influence the update of the policy. According to the maximum

entropy principle [33], we can utilize the Gaussian probability

distribution [20] to provide a parameterized policy to select

continuous-charging action, which is represented as

πθ(φ(t), bi(t)) =
1√
2πσ

e−(bi(t)−ϕ(φ(t)))2/2σ2

, (21)

where ϕ(φ(t)) is the average action value of this charg-

ing state, and σ defines the standard deviation of all the

possible charging actions. Then πθ(φ(t), bi(t)) is the prob-

ability of choosing action bi(t) in state φ(t). According to

Qπθ(φ(t), bi(t)), we know the expected reward of the charging

action bi(t) at state φ(t). Then we adjust the policy πθ to make

EV charging decisions.

The objective of the actor-critic method is to find an optimal

policy πθ to maximize the following function,

J (πθ)

= E{Qπθ(φ(t), bi(t))}

=

∫

Φ

Dπθ(φ(t))

∫

bi(t)

πθQ
πθ (φ(t), bi(t))dbi(t)dφ(t), (22)

where Dπθ(φ) is the state distribution function of policy πθ .

We should optimize J (πθ) by improving the parameters of

policy πθ iteratively. We utilize vector θ = (θ1, θ2, ..., θn)
⊤ to

build the policy πθ(φ(t), bi(t)) = Pr(bi(t)|(φ(t), θ)). In our

implementation, the actor network has a fully-connected hid-

den layer with 200 neurons, where state φ(t) is the input and

parameter θ is the output. As mentioned above, πθ(φ(t), bi(t))
is the probability of choosing action bi(t) in state φ(t). The

DNN can be trained to learn the best fitting parameter vector

θ by iteratively minimizing the TD error.

C. Critic Process

The policy πθ generates continuous actions from Gaussian

distribution N (µθ, σ
2
θ). The expectation value µθ is approxi-

mated by MLP. The temporal difference (TD) error is utilized

to show the error between the approximation and the true value

[20]. TD error is defined as

δt = r(t + 1) + ǫQπθ(φ(t+ 1), bi(t+ 1))−Qπθ(φ(t), bi(t)),
(23)
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Fig. 2. The architecture of SCA.

where r(t + 1) is the reward in next time slot t + 1, and

r(t+1)+ ǫQπθ(φ(t+1), bi(t+1)) is actual return following

time t. Similar to the parameters’ update in the actor process,

the parameters θv in critic process are updated as follows,

∆θv = βcδt∇θvQπθv (φ(t), bi(t)), (24)

where βc is the learning rate for the critic and it should be

chosen carefully because it will cause the oscillation if it is

too large or it will take a long time to converge if βc is too

small. In our implementation, the critic network has a fully-

connected hidden layer with 100 neurons, where state φ(t) is

the input, and value function Qπθv (φ(t), bi(t)) is the output.

D. Actor-critic learning-based Smart Charging Algorithm

The complete description of actor-critic learning-based

smart charging algorithm (SCA) is shown in Algorithm 1. The

architecture of SCA is shown in Fig. 2. First, we set the critic

learning rate βc, actor learning rate βa, and the discount factor

ǫ. Then we have constructed the critic process and the actor

process to develop SCA. The critic process evaluates the policy

from the state-action value function Qπθv (φ(t), bi(t)) and the

actor process has the following policy gradient, in which we

use φ and b as a logogram for state φ(t) and charging action

bi(t),

∇θJ (πθ)

≈
∫

Φ

Dπθ (φ)

∫

b

Qπθ(φ, b)∇θπθ(b|(φ, θ))dbdφ (25)

The actor parameter θ and critic parameter θv are updated

simultaneously. To be more specific, the actor parameter θ is

updated in the direction decided by the critic output. When

actor-critic algorithm converges, the two sets of parameters

are optimized. This algorithm has a policy π(bi(t)|(φ(t), θ))
and an approximate value function of state Q(φ(t), θv) and

uses the multi-step returns [20] to update the policy and the

value function. The policy and the value function are updated

after every kmax actions where the charging demands for

EVs coming to the community are satisfied for an episode.

According to Algorithm S3 in the reference [32], the critic

parameters are updated by follows,

dθv ′ = dθv ′ + ∂(R(t)−Q(φ(t); θv))
2
/∂θv, (26)

and the actor parameters are updated by follows,

dθ′ = dθ′ +∇θ log π(bi(t)|(φ(t), θ))(R(t) −Q(φ(t), θv)),
(27)

t

EV i

1 2 3 4 5 N

t

EV i

1

N

2

3

4

5 lev(t)

t

(a) (b) (c)
Fig. 3. The state description of CALC.

where the cumulative reward R(t + 1) = r(t) + ǫR(t) and

the immediate reward r(t) = −∑

i∈H(t)(k0 + 2k1bi(t) +
2k1lb(t))bi(t). There is an agent in each thread, working

in the copied environment. The gradient of one parameter

is generated in each step. The gradients in many threads

accumulate and parameters are shared and updated after the

certain steps. After certain iterations, the reward will tend to

converge, and the optimal charging solution will be achieved.

Algorithm 1 Actor-critic Learning-based Smart Charging Al-

gorithm (SCA)

Input: Critic learning rate βc and actor learning rate βa, dis-

count factor ǫ, Gaussian policy πθ(φ(t), bi(t)), b ∼ N(µθ, σ
2)

Output: Action bi(t)

1: Initialization: Thread step counter t = 1, global shared

counter k = 0. Starting in state φ(0) ∼ dπθ (φ(t)), set

parameter θ = θ0 and I = 1.

2: for each thread do

3: Reset gradients: dθ′ = 0 and dθv ′ = 0.

4: Synchronize thread parameters θ = θ′ and θv = θv ′

5: Set tstart = t, get state φ(t)
6: repeat

7: for each step do

8: Select action bi(t+1) ∼ πθ(φ(t), bi(t)), move to next state

φ(t + 1) ∼ P (φ(t), bi(t), φ(t + 1)), then get immediate

reward r(t+ 1), update k ← k + 1
9: Critic:

10: Update the basis function:

Ψ(φ(t), bi(t)) = ∇θ ln πθ(φ(t), bi(t))
11: Update: I = ǫI

Qπθv (φ(t+1), bi(t+1)) = θv⊤∇θ ln πθv(φ(t+1), bi(t+
1))

12: critic parameters: θvt+1 = θvt+βcδtI , where δt is updated

by (23)

13: Actor:

14: Update the policy parameter: θt+1 = θt + βaδt∇θJ(πθ)
15: Update: φ(t) ← φ(t + 1), bi(t) ← bi(t + 1), z(t) ←

z(t+ 1), Qπθ(φ(t), bi(t))← Qπθ (φ(t+ 1), bi(t+ 1))
16: end for

17: Perform asynchronous update of θ′ using dθ′ and of θv ′

using dθv ′ according to (26), (27).

18: until k > kmax

19: end for

SCA takes the charging amount of each individual EV as

the state and may suffer from high computational overhead.
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In the next section, we further develop a more computation-

ally efficient customized algorithm by combining SCA with

projection theorem, which takes the total charging amount as

the state, and significantly reduce the state dimension.

E. Customized Actor-Critic Learning Charging Algorithm

To be more computationally efficient, we further develop a

customized actor-critic learning charging algorithm (CALC)

with two stages. In the first stage, the aggregate charging

of EVs can be solved by actor-critic learning. In the second

stage, CALC finds a close-to-optimal charging schedule for

each EV by the projection theorem. Different from SCA that

directly solves the charging amount for each EV, CALC takes

the total charging amount of arriving EV fleet as the action

and thus significantly reduces the dimension of the state space

as shown in Fig. 3. We see that the full state in Fig. 3(b)

consists of charging actions for all N EVs in Fig. 3(a), where

the mark ‘
√

’ indicates the available time slots for charging.

The reduced state, as shown in Fig. 3(c), only considers the

aggregate charging action instead of charging actions for each

EV.

In the first stage, we optimize the aggregate charging

schedule lev(t) =
∑

i∈H(t)

bi(t) by solving the following cost

minimization problem:

min
lev(t)

∑

t∈T

(

k0lev(t) + 2k1lev(t)lb(t)
)

+ k1

(

lev(t)
)2

(28a)

s.t. 0 ≤ lev(t) ≤ Ntbmax, (28b)

where Nt is the number of EVs in the charging station in time

slot t, and bmax is the maximum charging amount in time slot

t of EV battery. Then we can get the optimal action l∗ev(t)
by using the actor-critic learning. We have the state φ′(t) as

follows,

φ′(t) = (SOCev(t), lb(t)), (29)

where SOCev(t) =
∑

i∈H(t)

SOCi(t) is the total charging

amount of EVs at the charging station in time slot t. We revise

the reward function r′(t) as follows.

r′(t) = −(k0 + 2k1lev(t) + 2k1lb(t))lev(t), (30)

where the action lev(t) =
∑

i∈H(t)

bi(t). We use actor-critic

learning to get the optimal charging solution lev(t). Then

we allocate the total charging amount bi(t) to each EV

i ∈ H(t) by the CALC with Projection theorem according to

the problem (28). The charging station will adopt the close-

to-optimal solution to Problem (9) until a new EV comes in.

When a new EV arrives, the profiles of lev(t) will be updated.

Note that the optimal aggregate charging amount l∗ev(t) derived

in the first stage does not consider individual EV charging

constraints in Problem (6b) and thus may not be the optimal or

even feasible for the offline problem in Problem (6). Therefore,

in the second stage, we aim to allocate a close-to-optimal

charging schedule for each EV and make sure individual EV

charging constraints are satisfied. Specifically, we solve the

following projection problem,

min
bi(t),b∗i (t)

∑

t∈T

∑

i∈H(t)

||bi(t)− b∗i (t)||2 (31a)

s.t.

t
dep

i
∑

tarri

bi(t) = Di , i = 1 , 2 , ...,N (31b)

∑

i∈H(t)

b
∗
i (t) = l

∗
ev (t) (31c)

0 ≤ bi(t) ≤ bi,max (31d)

0 ≤ b∗i (t) ≤ bi,max (31e)

0 ≤ L(t) ≤ Lmax, (31f)

where b∗i (t) is the temporary variable. We solve individual EV

charging in the second stage, such that the charging allocation

bi(t) is the closest to b∗i (t) of which the summation is the

optimized aggregate charging schedule l∗ev(t) in the first stage.

Therefore, we solve close-to-optimal solution for individual

EV charging schedule that fulfills each EV’s charging con-

straints. Using the reduced state, in stage-1, we optimize the

total charging amount of all EVs l∗ev(t) without considering

individual EV charging constraints. Note that the derived total

charging amount may not be a feasible solution. Therefore,

we construct the stage-2 problem, in which we reallocate

the optimized total charging amount to each EV to fulfill

each EV’s charging constraints and thus obtain a close-to-

optimal solution. Since CALC and SCA share the same core

algorithm, i.e., the actor-critic learning, the convergence of

CALC can be guaranteed when the learning rates βa and βc

satisfy
∑∞

t=0 βa = ∞,
∑∞

t=0 βc = ∞ and
∑∞

t=0 β
2
a < ∞,

∑∞
t=0 β

2
c < ∞, according to [34]. Therefore, we need to set

the learning rate properly for CALC to guarantee its conver-

gence. For the computational complexity, please refer to [35].

We also numerically show the convergence of our developed

algorithms and their computational time in simulation results

in Section V.

V. SIMULATION

In this section, we evaluate the performance of three state-

of-the-art algorithms, SCA and CALC by using practical load

profiles.

A. Parameter-Settings for the Dynamic Simulation

We adopt the base load profile in South California Edsion

for two days from [36], that is, T = 48h. We set one time slot

as 1h. The arrival of EVs can be obtained from the statistical

data in [37]. Fig. 4 shows the distribution of the EV arrival.

The initial SOC of an electric vehicle’s battery affects the

charging time and the load profile of the community. It is

difficult to obtain the field measurement data and we can

estimate the initial SOC value when EV arrives by a typical

drive cycle, such as an urban dynamometer driving schedule

[38]. Based on the measured statistics from [39], Fig. 5 depicts

the probability density function of SOC of EVs’ battery at

their arrival. This period is evenly divided into 48 intervals.
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We assume the same specifications for every EV in a scenario.

We consider two types of EVs in two scenarios respectively

based on two EV models [40]: the first type has a maximal

charging amount per time slot as bmax = 3.2 kW, and the

battery capacity is Bmax = 36 kWh. The other type has a

maximal charging amount per time slot as bmax = 1.4 kW,

and battery capacity is Bmax = 16 kWh. As discussed, our

work models the distribution of the EV arrival, the probability

density function about the SOC of EVs’ battery at their

arrival based on [37]. We generate the exogenous variables

of EVs via Monte Carlo simulations using the distributions

of arrival/departure patterns and charging demand. Note that

if real-world measurements of EVs are available, they can be

directly used in our algorithms as well. We simulate these

algorithms by Python on Win 10 x64.

B. Performance Evaluation

We evaluate the performance of SCA by using practical data

and compare it with three benchmark algorithms as follows,

1) Eagerly Charging Algorithm (EC) [41]: EV i draws the

maximum amount of electricity from the charging station in

each time slot. Thus, the charging amount in each time slot is

bmax. We denote the cost by EC as ΘEC .

2) Rolling online control algorithm (OA): EV i draws the

optimal power b∗i (t) from the charging station, which is the

optimal value of Problem 9. We denote the cost by OA as

ΘOA.

3) RL-based Adaptive Energy Management Algorithm

(AEM) [42]: EV i draws the power b∗i (t) from the charging

station with the discrete-charging actions solved by the AEM

algorithm, which is based on the Q-learning algorithm. AEM

algorithm with discrete-charging actions is a good benchmark

for our proposed algorithm with continuous-charging actions.

We denote the cost by AEM as ΘRL.
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Fig. 6. Comparison of total loads of 40 Type-1 EVs.
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Fig. 7. Comparison of EV charging loads of 40 Type-1 EVs.

Amongst all tested algorithms, SCA achieves the lowest

total load peak. We show the total loads about five algorithms

of 40 Type-1 EVs in Fig. 6 and EV charging loads about

five algorithms of 40 Type-1 EVs in Fig. 7. From numerical

simulations, we see that the peak loads are 86 kW, 76.86 kW,

76.9 kW, 74.3 kW, 58.6 kW for of EC, OA, AEM, SCA,

and CALC, respectively. CALC can reduce the peak load

by 31.86%, 23.76%, 23.8%, 21.13%, compared with EC, OA,

AEM, and SCA. SCA and CALC have a lower load fluctuation

than EC, OA and AEM algorithms and CALC has less load

fluctuation than SCA. For Type-2 EV, the total EV charging

costs of EC, OA, AEM algorithms and SCA are $15.14,

$13.47, $12.67, $11.51 and the EV charging costs of EC,

OA, AEM algorithms are 23.97%, 15.55%, 9.16% higher than

that of SCA, respectively. The EC algorithm is not an optimal

algorithm where EVs are charged in a first-come-first-serve

manner at the maximum rate. The OA algorithm solves the

optimal EV charging over the rolling horizon but is not optimal

in terms of long-term expected cost minimization. Q-learning

method is used in the AEM algorithm with discrete-charging

actions. For Type-1 EV, the total EV charging costs of EC, OA,

AEM algorithms, SCA and CALC are $28.67, $19.45, $18.22,

$16.01, and $16.90. The EV charging costs of EC, OA, and

AEM algorithms are 24.03%, 21.49%, 13.80% higher than

that of SCA. We see that the performance of SCA is better
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than those of CALC and AEM, because CALC optimizes the

aggregate charging schedule for the EV fleet in the first stage

and finds a close-to-optimal charging schedule for each EV in

the second stage.

From Fig. 8, we can see that the discount factor can

influence the convergence of SCA and CALC and it should

be a very low value. The discount factor ǫ is an important

parameter to reduce TD error in critic process. We simulate

SCA under a set of discount factors 0.005, 0.01, 0.05 and we

can see that a low value can achieve a good performance. We

can choose ǫ = 0.01 to balance the reward and convergence,

achieving both reasonably fast convergence and high reward.

Furthermore, the actor learning rate βa is also an important

parameter to actor process. From Fig. 9, we can see that the
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Fig. 11. Comparison of the running time of AEM, SCA, and CALC during
48 time slots with different numbers of EVs.

actor learning rate will influence the convergence of SCA and

the update of policy. Large actor learning rates (e.g., 5×10−4

and 10−3) lead to big overshoots of the rewards and the

steady-state reward depends on the configuration of the actor

learning rates as well. We see that βa = 10−4 achieves the

best convergence performance and the highest reward among

all the simulated rates.

Then we show the results of average costs per EV for all the

tested algorithms in Fig. 10. There are three levels of discrete-

charging actions for AEM, where the charging action space is

discretized into 33, 3300, and 33000 even slices, respectively.

The average costs of all the tested algorithms steadily increase

as the number of EVs increases. SCA achieves the lowest aver-

age cost among all simulated algorithms under all the scenarios

of different numbers of EVs, validating the effectiveness of

SCA. To show the time efficiency of SCA, we compare the

performance of CALC with AEM algorithm and SCA and we

can see that the total EV charging cost of CALC is 5.56%
higher than that of SCA and 7.24% lower than that of AEM-

33 algorithm, where the cost of CALC algorithm is $16.90.

When the charging action space is discretized into more slices,

the charging cost will be lower. The running time of SCA and

CALC are 476s and 90s, of which scenario is 40 EVs and

48 time slots. The running time of SCA and CALC during

48 time slots is shown in Fig. 11 and we can see that CALC

has a significant higher time efficiency. Compared with SCA

and CALC, AEM with more slices of discrete-charging actions

has a larger computational complexity but a lower cost. When

the charging action space is discretized into fewer slices, the

computational complexity of AEM-33 is close to SCA. But

if the charging action space of AEM is discretized into more

slices, the computational complexity will increase rapidly as

the number of EVs increases.

VI. CONCLUSION

In this paper, we investigate an offline EV charging schedul-

ing problem, which minimizes the charging cost of community

EVs without future information. We reformulate an online

optimization problem for EV charging and develop two actor-

critic learning algorithms (namely SCA and CALC) supporting

continuous-charging action. Based on our proposed SCA, we
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further develop a more computationally efficient CALC algo-

rithm by reducing the state dimension and improving the com-

putational efficiency. Simulation results show that SCA can

outperform EC, OA, and AEM algorithms by 24.03%, 21.49%,

13.80% in terms of energy cost, while achieving a good

convergence. The total EV charging cost of CALC is 5.56%
higher than that of SCA but 7.24% lower than that of AEM.

CALC has a significantly higher computational efficiency and

also achieves close-to-optimal performance compared with

SCA. For our future work, we will consider reinforcement

learning for the coordination of multiple charging stations.

We will also consider vehicle-to-grid services as an emerging

scenario for EV-grid interactions.
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and R. Belmans, “Residential demand response of thermostatically
controlled loads using batch reinforcement learning,” IEEE Transactions

on Smart Grid, vol. 8, no. 5, pp. 2149–2159, Sept 2017.
[16] K.-S. Hwang, Y.-J. Chen, W.-C. Jiang, and T.-F. Lin, “Continuous

action generation of q-learning in multi-agent cooperation,” Asian

Journal of Control, vol. 15, no. 4, pp. 1011–1020, 2013. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/asjc.614

[17] D. P. Bertsekas, “Feature-based aggregation and deep reinforcement
learning: a survey and some new implementations,” IEEE/CAA Journal

of Automatica Sinica, vol. 6, no. 1, pp. 1–31, 2019.

[18] X. Jiang, J. Yang, X. Tan, and H. Xi, “Observation-based optimization
for pomdps with continuous state, observation, and action spaces,” IEEE

Transactions on Automatic Control, vol. 64, no. 5, pp. 2045–2052, May
2019.

[19] V. Bui, A. Hussain, and H. Kim, “Double deep q -learning-based
distributed operation of battery energy storage system considering uncer-
tainties,” IEEE Transactions on Smart Grid, vol. 11, no. 1, pp. 457–469,
Jan 2020.

[20] R. S. Sutton and A. G. Barto, “Reinforcement learning: An introduction,”
IEEE Transactions on Neural Networks, vol. 9, no. 5, pp. 1054–1054,
Sept 1998.

[21] R. Kamalapurkar, J. R. Klotz, and W. E. Dixon, “Concurrent learning-
based approximate feedback-nash equilibrium solution of n-player
nonzero-sum differential games,” IEEE/CAA Journal of Automatica

Sinica, vol. 1, no. 3, pp. 239–247, 2014.

[22] X. Wang, D. Ding, H. Dong, and X. M. Zhang, “Neural-network-based
control for discrete-time nonlinear systems with input saturation under
stochastic communication protocol,” IEEE/CAA Journal of Automatica

Sinica, vol. 8, no. 4, pp. 766–778, 2021.

[23] Z. Cao, Q. Xiao, and M. Zhou, “Distributed fusion-based policy search
for fast robot locomotion learning,” IEEE Computational Intelligence

Magazine, vol. 14, no. 3, pp. 19–28, 2019.

[24] R. Lu and S. H. Hong, “Incentive-based demand response for
smart grid with reinforcement learning and deep neural network,”
Applied Energy, vol. 236, pp. 937 – 949, 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0306261918318798

[25] Y. Wei, F. R. Yu, M. Song, and Z. Han, “User scheduling and
resource allocation in hetnets with hybrid energy supply: An actor-
critic reinforcement learning approach,” IEEE Transactions on Wireless

Communications, vol. 17, no. 1, pp. 680–692, Jan 2018.

[26] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic policy gradient algorithms,” 31st International Confer-

ence on Machine Learning, ICML 2014, vol. 1, 06 2014.

[27] Z. Ma, D. S. Callaway, and I. A. Hiskens, “Decentralized charging con-
trol of large populations of plug-in electric vehicles,” IEEE Transactions

on Control Systems Technology, vol. 21, no. 1, pp. 67–78, 2013.

[28] W. B. Powell, “On state variables, bandit problems and pomdps,” 2020.

[29] E. Zivot and J. Wang, Modeling financial time series with S-Plus®.
Springer Science & Business Media, 2007, vol. 191.

[30] C. Gong, X. Wang, W. Xu, and A. Tajer, “Distributed real-time energy
scheduling in smart grid: Stochastic model and fast optimization,” IEEE

Transactions on Smart Grid, vol. 4, no. 3, pp. 1476–1489, 2013.

[31] S. Karagiannopoulos, J. Gallmann, M. G. Vayá, P. Aristidou, and
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