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Abstract—Distributed Denial-of-Service (DDoS) attacks remain
challenging to mitigate in the existing systems, including in-home
networks that comprise different Internet of Things (IoT) devices.
In this article, we present a DDoS traffic detection model that
uses a boosting method of logistic model trees for different IoT
device classes. Specifically, a different version of the model will be
generated and applied for each device class since the characteris-
tics of the network traffic from each device class may have subtle
variation(s). As a case study, we explain how devices in a typical
smart home environment can be categorized into four different
classes (and in our context, Class 1—very high level of traffic
predictability, Class 2—high level of traffic predictability, Class
3—medium level of traffic predictability, and Class 4—low level
of traffic predictability). Findings from our evaluations show that
the accuracy of our proposed approach is between 99.92% and
99.99% for these four device classes. In other words, we demon-
strate that we can use device classes to help us more effectively
detect DDoS traffic.

Index Terms—Artificial intelligence, cybersecurity, Distributed
Denial of Service (DDoS), ensemble machine learning, IDS,
Internet of Things (IoT), supervised learning.

I. INTRODUCTION

NTERNET OF THINGS (IoT) devices and systems are

becoming commonplace and, hence, they are increasingly
targeted by attackers, for example, by identifying and
exploiting vulnerabilities in IoT software and hardware, or
their implementation, to facilitate unauthorized and mali-
cious activities. Such devices have also been exploited to
create a botnet network to generate Distributed Denial-of-
Service (DDoS) traffic. DDoS represents a critical network-
oriented cyberthreat, whose trend has been steadily rising over
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the last decade [1], [2]. For example, the DDoS attacks target-
ing Amazon AWS in Q1 of 2020 reportedly had a peak volume
of 2.3 Tbps [3].

IoT devices and systems are found not only in an organiza-
tional or government setting but also in our homes (e.g., smart
homes). Smart homes are one of the fastest-growing IoT appli-
cations, and the deployed devices are extremely heterogeneous.
Such devices are often shipped with minimal or nonexistent
security mechanisms, and in an effort to make these devices
user friendly, the security requirements are often reduced [4].
In addition, most of the devices in a smart home are inex-
pensive and do not have significant computational capabilities
and, consequently, they can be easily compromised to facili-
tate a broad range of nefarious activities, including generating
DDosS traffic [5]. In a typical smart home ecosystem, there are
several stakeholder groups, such as end users (homeowners
or tenants within a home), Internet/telecommunication service
providers, device manufacturers, and service providers (e.g.,
third-party service providers such as a monitored security ser-
vice). These stakeholders generally have a vested interest not to
be involved in malicious cyber activities, or for their devices,
systems, platforms, and/or infrastructure to be exploited to
facilitate nefarious activities. For example, it is in the interest
of Internet/telecommunication service providers to promptly
detect any unauthorized behavior/activities within a smart home
environment, to protect their own network infrastructure and
prevent the compromised devices/systems to be used as a launch
pad against other devices and systems (with associated legal
and financial implications).

A challenge is how to design an effective DDoS detec-
tion system that can be deployed in an increasingly diverse
and dynamic smart home environment. For example, based on
the generated network traffic characteristics, one might iden-
tify the types of devices commonly found in a smart home
environment [5]. Along a similar line, a model for classify-
ing IoT devices into previously defined classes was presented
in our previous research [6], where we defined the classes of
IoT devices-based purely on their traffic behavior and behav-
ioral predictability (i.e., the coefficient of variation of the ratio
of received and sent data). Building on this prior research,
we present the following two hypotheses. First, it is possi-
ble to define profiles of legitimate (normal) traffic for classes
of IoT devices, based on traffic flow characteristics. The sec-
ond hypothesis is that, based on the individual class of IoT
devices’ legitimate traffic profiles, we can develop a super-
vised machine learning model that can effectively detect DDoS
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traffic as network anomalies generated from individual IoT
devices. Hence, we develop a DDoS detection model for
dynamic and heterogeneous IoT systems, which can be imple-
mented in a smart home environment. We also remark that the
DDoS detection model presented in this article uses a boost-
ing method of logistic model trees (LMT), where a different
version of the model is applied for each device class.

The contributions of our research can be summarized as
follows.

1) The data set of legitimate IoT and anomalous DDoS
traffic generated in this research will be made publicly
available to the broad scientific community (and there
is a lack of such data sets in [7]—see also the second
section).

2) Our defined process of forming normal traffic profiles
for classes of IoT devices.

3) Our proposed DDoS detection model, which uses device
classes to detect DDoS traffic. We posit that such an
approach is more effective, as we will also demonstrate
later in this article.

The remainder of this article is organized as follows.
Section II briefly reviews the related DDoS literature.
Section III describes our data collection methodology, data
set preprocessing, and DDoS detection model development
based on the logistic model tree method from a supervised
machine learning pool. Section IV shows the analysis of the
findings, which show that the model accuracy is high for all
classes of devices (i.e., accuracy rate between 99.92% and
99.99%). We will also discuss the implications of our work.
In Section V, we will conclude this article and discuss future
research possibilities.

II. RELATED RESEARCH

There have been many applications of machine learning
techniques to detect DDoS traffic, which can be categorized
into those based on supervised techniques (using existing
knowledge to classify future unknown instances) and those
based on unsupervised techniques (trying to determine the
corresponding instance class without prior knowledge). For
example, Doshi et al. [8] developed a model of binary clas-
sification of traffic on legitimate and DDoS traffic using five
different machine learning methods. Specific features of Smart
Home IoT (SHIoT) traffic were observed through changes
in traffic characteristics, such as packet size, packet interim
times, protocols used, and changes in the number of des-
tination Internet protocol (IP) addresses with which these
devices communicate at different time intervals. The research
presented in [9] also proposed detecting DDoS traffic gener-
ated by IoT devices in a corporate environment, using the Deep
Autoencoders method based on artificial neural networks.
Ozgelik et al. [10] suggested that DDoS traffic detection’s effi-
ciency is higher if it is performed at the edge of the observed
IoT environment. Cviti¢ et al. [11] proposed a conceptual
DDoS detection model that takes classes of IoT devices in
consideration.

Despite the high accuracy of detection and the advantages in
many of these existing approaches, several shortcomings and
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challenges remain. A key challenge is the lack of relevant data
sets that can be used to train machine learning-based detection
models [12], [13]. While there are a number of data sets con-
taining DDoS and normal traffic, these are often obsolete and
consequently reduce detection accuracy, because they do not
reflect current traffic characteristics as newer devices, network
concepts (e.g., software-defined networks), and services are
been deployed [14], [15]. For example, Doshi et al. [8] used
three devices with traffic collected over 10-m period, while
the research in [9] used nine devices, of which five are web-
cams or security cameras. However, the data set from [9] is
not publicly available in its original form. It is only available
as a .csv file containing already extracted traffic features. This
is limiting for other researchers because it does not possess
the generated traffic in its original form stored in a format
that would allow researchers to extract and calculate fea-
tures that differ from those extracted by Meidan er al. [9].
Saharkhizan et al. [16] used data sets obtained by simulation
in their proposed approach based on the long short-term-
memory (LSTM) method to detect attacks in the IoT network.
In [17], a two-level model was used to analyze network traf-
fic flows. The traffic flow feature was selected empirically, and
existing public data sets were used to evaluate the detection
model. Salman et al. [18] presented a model for identifying
IoT devices and the detection of attacks on IoT devices using
several machine learning methods (i.e., decision tree, random
forest, and deep learning methods). The study used a data
set of traffic collected using seven IoT devices. The maxi-
mum detection accuracy of the developed model is 94.47%.
Other DDoS detection approaches include those presented
in [19]-[21]. Another observation from these works is that
the data sets are generally very small and nonrepresentative
of a real-world system.

Creating a robust testbed to generate realistic data sets is
challenging, time consuming, and expensive partly due to the
different possible configuration combinations. Existing data
sets also differ in the way they are generated, which can be
synthetic, simulated, or real [22]. Synthetic data sets are gen-
erated to meet the specific requirements and conditions that
real data sets also meet. Existing data sets used in the lit-
erature are also generally dated (e.g., created between 1998
and 2012) and, hence, may not be representative of today’s
communication networks. Even newer data sets rarely have
any IoT traffic included—see also Table I. Examples of the
existing data sets include the one from the University of
New South Wales in Australia [23], which comprises a num-
ber of SHIoT devices. For the development of an anomaly
detection system, it is essential to have data sets contain-
ing normal/legitimate traffic generated by IoT devices. From
such a data set, it is possible to define normal traffic behav-
ior profiles for an individual device or a whole class of IoT
devices.

III. PROPOSED APPROACH
A. Testbed Setup

The setup of our smart home laboratory environment is
shown in Fig. 1, and also presented in [24]. Our environment
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TABLE I

SNAPSHOTS OF EXISTING NON-IOT AND IOT DATA SETS

2111

Dataset Devices (number, types, etc.) :ie;tll:l;l)a(tse);nlthen'c,‘ d, or real) Collected traffic ::eez:e d Types of traffic acquired
Attack traffic (38 types of attacks)
Non-IoT, conventional devices | Simulated (small network) — Collectine time: 2 weeks DosS (11 types), R2L (unauthorized
DARPA'98 [41] | (PC, servers) simulated Air Force Base s : 1998 access from remote machine, 14 types)
No. of devices: N/A network U2R (unauthorized access to local root, 7
types), probe (6 types)
Non-IoT, convencional . . - Attack instances -
1[1[2)]13 cup99 devices(PC, servers) Ségttla:rﬁ;a(fsfiﬁ a ':‘lemt\;lc‘:sg' 3,925,650 1999 DoS (SYN flood), R2L, U2R, probe
No. of devices: N/A Benign instances - 972,781
Non-IoT, conventional devices Collecting time: 1 hour
CAIDA [43] (PC, servers) Real : 2007 DDosS traffic
No. of devices: N/A
Non-IoT, conventional devices Nur'nber of instances (train
NSL-KDD [44] (PC, servers) Emulated (small network) set): 4’898".‘31 2009 Attack traffic, normal/legitimate traffic
No. of devices: N/A Number of instances (test
set): 311,027
Non-loT, conventional devices Collecting time: 4 week
> (5.3 GB) 2011/ Attack traffic (16 attack types)
TUIDS [45] (PC, servers) Emulated
No. of devices: N/A No. of packets — 432875 2012 Normal traffic
No. of flows - 400131
CICIDS2017 Non-loT, conventional devices Collecting time: 24 hours Attack traffic (High-volume and low-
[46] (PC, servers) Real (4.6 GB) 2017 volume application-level DDoS)
25 users behviour profiles i
Non-IoT. conventional devices Attack traffic (seven scenarios: Brute-
CSE-CIC- (PC ser\;ers) Real N/A 2018 force, Heartbleed, Botnet, DoS, DDoS,
1IDS2018 [47] > S . Web attacks, and infiltration of the
No. of devices: 50 machines o
network from inside)
IoT devices infected with Number of instances: Attack traffic (spam, UDP flood, TCP
N-BaloT Mirai and Bashlite Real 7062606 . 2018 flood, Scan, ACK flood)
No. of devices: 9 Normal/legitimate traffic
loT devices Simulated (Ostinato and Node- Collecting time: 4 week Normal IoT, Attack IoT (Information
Bot-IoT [48] No. of devices: 5 simulated d tool No. of packets — 432875 2019 theri D’ S. Kevl
10T devices red tool) No. of flows - 400131 gathering, DoS, Keylogger)
No. of instances for attack Attack traffic (PortMap, NetBIOS,
CICDDo0S2019 Non-IoT, conventional devices Simulated — 73360900 2019 LDAP, MSSQL, UDP, UDP-Lag, SYN,
[49] (PC, servers) No. of instances for benign NTP, DNS, SNMP, SSDP, WebDDoS,
- 9543 TFTP
University of ToT devices Collecting time: 26 weeks
New South No. of devices: 28 real IoT Real Daily average traffic — 365 2019 Normal/legitimate traffic
Wales [31] devices MB
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consists of 41 diverse SHIoT devices, and the underpinning
communication infrastructure and software-hardware platform
are also setup to enable traffic collection that can be used to
train DDoS detection models.

In addition to the primary data collected in this research,
we also used secondary data from [23], including a larger
number of various SHIoT devices (i.e., greater device het-
erogeneity). The Fortinet AP 221C wireless access point, the
Cisco 2960 Catalyst 48 Power over Ethernet (PoE) switch,
the HP Pavillion dm1, and Microsoft HP 10 10.0.17134 build

17134 workstations have been set up to capture traffic
using port mirroring, x64 processor architecture, AMD E-350,
1600-MHz two cores, 4-GB RAM) with Wireshark software
tool version 2.6.3 installed. The switch’s physical communi-
cation ports (FAO/1 and FAO0/3) to which the wireless access
point and IoT hub for the Phillips Hue device are connected
are configured for port mirroring. These ports are set up as
sources, which ensures that all traffic to and from them are
mirrored (mapped) to the destination contact port (FAO0/2).
A traffic collection workstation is connected to this port. With
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TABLE II
ORIGINAL LEGITIMATE AND DDOS TRAFFIC DATA SETS’
CHARACTERISTICS
The amount .
Number Number of of data Collect%on
collected period
of files packets collected (hours)
(GB)
Primary 103 456,174,601 344.59 2,472.01
(sum)
Secondary 41 99,334,088 38.16 986.45
(sum)
DDoS-
UDP 245 269,806,374 19.95 10.75
DDoS-
TCP 73 85,373,401 5.88 17.12
DDosS-
ICMP 195 217,593,439 16.1 8.75

a legitimate traffic profile of a SHIoT device, it is crucial to
have a data set that includes DDoS traffic. These two sets
form the basis for developing an effective model for detecting
network traffic anomalies such as DDoS traffic generated by
SHIoT devices.

Given that legitimate traffic comes from the primary and
secondary sources, where the author does not have access to
the secondary source devices, a key challenge is the manipula-
tion of SHIoT devices to generate DDoS traffic. Therefore, in
this research, for generating DDoS traffic BoNeSi (the open-
source software tool) was used [25]. The virtual workstation
was used to generate DDoS traffic and create a data set of
illegitimate traffic. The virtual workstation’s configuration is
as follows: Linux Ubuntu 19.04 operating system with dedi-
cated 4 GB of RAM, an Intel Core i7-5500U processor (4x2.40
GHz). In Fig. 1, the virtual machine and BoNeSi tool denote
the SHIOT device in the local smart home network generat-
ing DDoS traffic. For practical reasons, the BoNeSi tool was
used to simulate illegitimate traffic generated by the SHIoT
device in order to minimize the risk of compromising the real
device. BoNeSi is not just a network traffic generator (as the
tool’s documentation suggests), it is also a powerful and effi-
cient DoS and DDoS generator and simulator tool. Hence, our
choice for using it to simulate traffic similar to those gener-
ated by an individual SHIoT device as part of a botnet. In
addition, the illegitimate traffic was generated in an isolated
environment to avoid breaking the laws of the Republic of
Croatia, the European Union, and the United States. For this
research, the attack destination is less important than the attack
source. Three types of DDoS traffic at the infrastructure level
were generated and collected (UDP, TCP, and ICMP) as they
are more frequent then attacks on the application layer.

In terms of the number of collected files containing 24-h
cycles of generated traffic, the number of collected packets,
the sum of collected data, and the overall time of data col-
lection, the characteristics of the initially collected legitimate
and DDoS traffic data are shown in Table II.

B. Defining Legitimate Traffic Profiles for Classes of SHIoT
Device

As discussed earlier, SHIoT is a dynamic and ubiquitous
environment, where new consumer IoT devices with different
functionalities are constantly introduced to the market.
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Therefore, new, unknown SHIoT devices may have func-
tionalities different from those of the currently available
SHIoT devices.

This presents a challenge in identifying such devices and
knowing their legitimate behavior, which forms the basis
for detecting behavioral anomalies such as generating DDoS
traffic.

In order to develop a DDoS traffic detection model based on
the previously defined SHIoT device classes, it is necessary
to define a legitimate traffic profile of each device class. In
the development of any anomaly detection model based on
supervised machine learning methods, it is necessary to have
a set of data that will represent legitimate traffic and a set of
data that will represent illegitimate traffic.

The defined classes of SHIoT devices [5] enable the estab-
lishment of a legitimate traffic profile of a particular class
of devices, which is important in the later development of
anomaly detection models. In doing so, the values of the traf-
fic characteristics of the SHIoT device become part of the
legitimate profile of the observed device class. The profile
of legitimate traffic of a particular class of SHIoT devices
is defined by the values of the characteristics of those traf-
fic flows that are assigned by the classification model to
a particular class of SHIoT devices, as shown in Fig. 2.

Let the SHIoT device be represented by Uy, and the traffic
flow generated by such a device by U,PT,. Each device Uy is
represented as a set of traffic flows U,PT), i.e., each device
contains a set of traffic flows, Uy = {UyPT1, ..., UPT,}.
Then, the legitimate traffic profile of each class C is defined
as a set of traffic flows that are identified by the classifica-
tion model as part of class C, ie Cy, = {U1PT1, ..., UyPTy};
m € {1,2,3,4}. When each traffic flow is represented by
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TABLE III
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NETWORK TRAFFIC FLOW FEATURE DESCRIPTION

Feature name D Feature description Feature name D Feature description

flowID z1 Traffic flow ID max_flowpktl 742 Maximum length of a flow

srcIP z2 Source IP address mean_flowpktl 743 Mean length of a flow

src_port z3 Source communication port std_flowpktl 744 Standard deviation length of a flow

dstIP z4 Destination IP address min_flowiat z45 Minimum inter-arrival time of packet

dst_port z5 Destination communication port max_flowiat 746 Maximum inter-arrival time of packet

proto z6 Used communication protocols in traffic flow mean_flowiat z47 Mean inter-arrival time of packet

timestamp z7 Date ad time of traffic flow start std_flowiat 748 Standard deviation inter-arrival time of packet

Feduration z8 Duration of the flow in Microsecond flow_fin 749 Number of packets with FIN

total_fpackets 79 Total packets in the forward direction flow_syn z50 Number of packets with SYN

total _bpackets z10 Total packets in the backward direction flow rst z51 Number of packets with RST

total_fpktl z11 Total size of packet in forward direction flow_psh 752 Number of packets with PUSH

total bpktl z12 Total size of packet in backward direction flow_ack z53 Number of packets with ACK

min_fpktl z13 Minimum size of packet in forward direction flow_urg z54 Number of packets with URG

min_bpktl z14 Minimum size of packet in backward direction flow_cwr 255 Number of packets with CWE

max_fpktl z15 Maximum size of packet in forward direction flow_ece 256 Number of packets with ECE

max_bpktl z16 Maximum size of packet in backward direction downUpRatio z57 Download and upload ratio

mean_fpktl z17 Mean size of packet in forward direction avgPacketSize 758 Average size of packet

mean_bpktl z18 Mean size of packet in backward direction fAvgSegmentSize 759 Average size observed in the forward direction

std_fpktl z19 Standard deviation size of packet in forward direction fAvgBytesPerBulk 760 Average number of bytes bulk rate in the forward direction

std_bpktl 720 Standard deviation size of packet in backward direction fAvgPacketsPerBulk 761 Average number of packets bulk rate in the forward direction

total_fiat 221 Total time between two packets sent in the forward direction fAvgBulkRate 262 Average number of bulk rate in the forward direction

total_biat 722 Total time between two packets sent in the backward direction bAvgSegmentSize 763 Average size observed in the backward direction

min_fiat 7223 Minimum time between two packets sent in the forward bAvgBytesPerBulk 264 Average number of bytes bulk rate in the backward direction
direction

min_biat 224 Minimum time between two packets sent in the backward bAvgPacketsPerBulk 265 Average number of packets bulk rate in the backward direction
direction

max_fiat 225 Maximum time between two packets sent in the forward bAvgBulkRate 266 Average number of bulk rate in the backward direction
direction

max_biat 726 Maximum time between two packets sent in the backward sflow_fpacket 767 The average number of packets in a sub flow in the forward
direction direction

mean_fiat z27 Mean time between two packets sent in the forward direction sflow_fbytes 768 The average number of bytes in a sub flow in the forward direction

mean_biat 728 Mean time between two packets sent in the backward direction sflow_bpacket 769 The average number of packets in a sub flow in the backward

direction

std_fiat 229 Standard deviation time between two packets sent in the sflow_bbytes z70 The average number of bytes in a sub flow in the backward direction
forward direction

std_biat 230 Standard deviation time between two packets sent in the min_active z71 Minimum time a flow was active before becoming idle
backward direction

fpsh_cnt 731 Number of times the PSH flag was set in packets travelling in mean_active z72 Mean time a flow was active before becoming idle
the forward direction (0 for UDP)

bpsh_cnt 732 Number of times the PSH flag was set in packets travelling in max_active z73 Maximum time a flow was active before becoming idle
the backward direction (0 for UDP)

furg_cnt 733 Number of times the URG flag was set in packets travelling in std_active 774 Standard deviation time a flow was active before becoming idle
the forward direction (0 for UDP)

burg_cnt 734 Number of times the URG flag was set in packets travelling in min_idle z75 Minimum time a flow was idle before becoming active
the backward direction (0 for UDP)

total_fhlen 235 Total bytes used for headers in the forward direction mean_idle 276 Mean time a flow was idle before becoming active

total_bhlen 736 Total bytes used for headers in the forward direction max_idle z77 Maximum time a flow was idle before becoming active

fPktsPerSecond 237 Number of forward packets per second std_idle z78 Standard deviation time a flow was idle before becoming active

bPktsPerSecon 738 Number of backward packets per second Init_Win_bytes_forward z79 The total number of bytes sent in initial window in the forward

d direction

flowPktsPerSec 739 Number of flow packets per second Init_Win_bytes_backwa 780 The total number of bytes sent in initial window in the backward

ond rd direction

flowBytesPerSe 740 Number of flow bytes per second Act_data_pkt_forward z81 Count of packets with at least 1 byte of TCP data payload in the

cond forward direction

min_flowpktl 741 Minimum length of a flow min_seg_size_forward 782 Minimum segment size observed in the forward direction

its characteristics z, it can be observed as a set of values
of features that represent the observed traffic flow, U,PT, =
{z(UsPTy)y, ..., 2(UPTy), }.

In addition to the fact that it is possible to define classes of
SHIoT devices (see [5]), it is also possible to classify devices,
i.e., traffic flows generated by such devices using a developed
classification model and traffic flow features with high clas-
sification accuracy (99.7956%). Such results enable creating
a legitimate traffic profile of a particular class of SHIoT
devices [6].

C. Formation of Data Sets for the Development of DDoS
Traffic Detection Models

The SHIoT device classes defined by the research enable
the identification of the class affiliation of the device based on
the traffic flow generated by the device. This also enables the
creation of a legitimate traffic profile because each traffic flow

assigned to one of the four defined classes by the classifica-
tion model becomes part of a set that represents a legitimate
traffic profile of the same class. In order to develop a model
for detecting (illegitimate) DDoS network traffic, the LMT
method was used. For the implementation of the method and
data processing, we used the WEKA software tool, as well
as data sets that represent profiles of normal traffic resulting
from the SHIoT device classification model and data sets of
illegitimate DDoS traffic.

Four data sets (i.e., C1DDoS, C2DDoS, C3DDoS, and
C4DDoS) containing the combined vectors of the legitimate
traffic profile characteristics of each class of SHIoT devices
and DDoS traffic were built. Initially, all four sets contain
the values of all independent traffic flow features (83 in
total) listed in Table III. For feature extraction, we used
the CICFlowMeter tool [26]. The number and distribution of
legitimate and DDoS traffic flows in the data sets were bal-
anced and based on legitimate traffic profiles derived from the
classification model of SHIoT devices shown in [5].
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TABLE IV
PARTIAL PRESENTATION OF DATA SETS USED IN THE DEVELOPMENT OF A DDOS DETECTION MODEL

Feature

vector z8 z9 z10 z11 z12 723 z36 z83 Class
C1DDoS

1 110,176,901 5 4 372 648 13,800,000 113,851 54,900,000 Cl

2 114,974,487 13 1 0 0 8,844,190,000,000 . 0 5,402,915 DDoS
C2DDoS

1 32,421,069 12 12 2,973 6,626 1,409,612 76 0 Cc2

2 119,994,320 8 5 724 913 9,999,527 214,652 29,800,000 Cc2
C3DDoS

1 91,127,887 3 3 33 95 18,225,577 120,725 90,875,582 C3

2 47,780 5 5 84 474 5,309 2 0 C3
C4DDoS

1 119,436,915 16 18 5,158 527 3,619,300 136 6,167,447 C4

2 119,436,449 16 18 5,158 527 3,619,286 136 6,138,410 C4

As with any machine learning model development, the goal
is to use those independent features, whose change has the
greatest impact on changing the dependent feature. It is also
important to reduce those features that can lead to model bias.
Therefore, as with the development of the SHIoT device clas-
sification model, independent features z1-z7 represent traffic
flow identifiers and contain information on the source and
destination IP addresses, protocols used, and traffic flow gen-
eration time removed from the initial data sets. As a result,
76 independent features were obtained, which will be observed
for further development of the model, and whose partial
presentation is shown in Table IV. The table partially shows
the data set used to develop the DDoS detection model. Each
set consists of each traffic flow’s values’ independent features
and the associated corresponding dependent feature that rep-
resents the class. In this case, the class is binary, i.e., it can
take two values (0, 1), which indicates the traffic flow as legit-
imate for the observed class or illegitimate, i.e., the traffic flow
created as a result of generating DDoS traffic.

This approach is necessary for further development of
the model with the application of the method of supervised
machine learning. We then leverage the LMT method in the
development of our DDoS detection model. The LMT method,
developed in 2003 [27], is a boosting method of supervised
machine learning that is a fusion of two commonly used classi-
fication methods: 1) logistic regression and 2) decision trees, to
upgrade them. The method’s basic working principle consists
of creating decision trees and forming a logistic regression
model at the tree nodes. Logistic regression models build
on each other into a single model. In this way, the logistic
regression method estimates the probability of belonging of
an individual feature vector to a defined class. For numeri-
cal features (such as those found in the presented data sets),
the feature representing the node in which the division is the
“purest” is selected. This implies that the maximum number
of feature vectors belongs to one class when the selected fea-
ture’s value is below the defined value threshold and to another
class if the selected feature is observed above the defined value
threshold. The LMT model consists of a decision tree structure

containing internal nodes N and a set of terminal node 7. S
representing an entire data set with all features [28]. The deci-
sion tree then divides the set S into disjoint subsets (regions) of
S;. Each region is represented by a terminal node of the tree
as shown by the following:

S=JS.8 NSy =0 fort#1 (1)
teT
where

S set of all feature vectors;

S;  disjoint subset of feature vectors;

t terminal node from a set of terminal nodes 7.

Unlike the classical decision tree, the LMT method asso-
ciates logistic regression functions, f; instead of the class
designation, with terminal nodes ¢ € 7. The logistic regres-
sion considers the subset Z; C Z of all independent features
in the data set and models the probability of belonging to the
class according to

Fi

Pr(G=jX=x)= ———— 2

1(G = jIX = x) FNGE 2
. m .

Fix)y=a)+ > o -z 3

k=1
where

o coefficient of independent feature z;
Zk  independent feature from a set of independent features

Z= {Zlv yZm}
The final LMT model takes the form given by
1 ifxesS;
fO) =Y fi0) - Ix € S, Ix € S»{ 0 bles, @

teT

According to Landwehr et al. [28], the goal of the method
is to adapt the data so that the logistic decision tree is gener-
alized (pruned) to the level of one logistic regression model,
i.e., to the root node of the decision tree if possible, given the
data set over by which the method is applied.

Selecting the relevant independent features from the set of
all features when using the LMT method does not need to be
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undertaken separately as this method adjusts (fitting) regres-
sion function to each independent feature using the least square
error. According to this criterion, the final model includes
those features that result in the smallest square error, as
shown in Table V. Using the WEKA software environment,
the described LMT method was implemented on all our four
data sets (i.e., C1DDoS, C2DDoS, C3DDoS, and C4DDoS)
to develop LMT models for each class of SHIoT devices.

1) LMT Model for CI Class of SHIoT Devices: By imple-
menting the LMT method using the WEKA programming
environment, independent features with the greatest influ-
ence on the dependent feature were selected, and a logistic
regression model was developed since the decision tree is gen-
eralized to the root node. Therefore, at the decision tree’s root
node, the corresponding LMT model is defined

efFar®
PI'(G =Cl1 |X = x) = eFCl(X) I eFDDoS(x) (5)
eFDDoS (€9]
Pr(G = DDoS|X =x) = (6)

efc1(®) 4 eFppos () ©

Both F¢; and Fppos functions were used to determine the
probability of belonging to a class by modeling independent
features’ influence on the dependent feature. For class C1, the
logistic regression model takes the form shown by

Fei(x) = —1.3740.02 - z14 + 0.01 - z18 4 3.29 - z38
+ 0.01 - z46 + (=3, 72) - z50 + (—1.08) - z51
+ (—=0.2) - z54 4+ 0.88 - z58 + 0.57 - 274 @)
Fppos(x) = —Fc1(x) = 1.37 + (—0.02) - z14 + (—0.01)
- z18 + (—3.29) - 238 4+ (—0.01) - z46 + 3.72
-z50 4+ 1.08 - z51 + 0.2 - z54 4+ (—0.88) - z58
+ (—0.57) - z74. (8)

The model includes independent features for which the
method of least square deviation determined the greatest influ-
ence on the change of the dependent feature. The effect of the
independent on the dependent feature is defined by sufficient
coefficients for each feature. The assigned coefficient indicates
that one unit of the independent feature’s increase will change
the dependent feature by the logarithm of the logistic regres-
sion coefficients’ layout, while the other independent variables
will remain unchanged. For example, the coefficient assigned
to the independent feature z14 is —0.02 and represents an esti-
mate of the change (increase or decrease; as determined by the
sign), in this case, a decrease in the amount of logarithm of the
dependent feature if the independent feature z14 increases by
one unit and the others the independent features in the model
remain unchanged.

2) LMT Model for C2 Class of SHIoT Devices: The LMT
model of DDoS detection for class C2 SHIoT devices was
developed in the same way as the previously described model
for class C1. Since different SHIoT devices belong to different
classes, it is intuitively clear that the traffic flows generated
by SHIOT devices of class C2 differ in terms of feature values
from the traffic flows of SHIoT devices of class C1. Therefore,
the model developed for this class of devices, although based
on the same method, has certain differences. This primarily
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Fig. 3. Example of application of the LMT method in the classification of
feature vectors.

refers to the decision tree’s appearance and the independent
features included in the model, and the coefficients added to
these features. This means that the independent features that
affect the dependent feature change differ from class to SHIoT
devices class.

On the other hand, different classes may share the same
relevant independent features, but they also have different
coefficients with different degrees of influence. For class C2,
the decision tree differs from that for class C1 because it is
impossible to define logistic regression models at the root node
that would provide satisfactory LMT model performance. In
this case, the decision tree is generalized to three nodes (one
root node and two terminal nodes), as shown earlier in Fig. 3.
Therefore, two logistics models are defined at the terminal
nodes. LM1, according to expressions (9) and (10) and LM2,
according to expressions (11) and (12), which are applied
depending on the condition that is satisfied when branching
the decision tree

Fer(x) = —16.07 +3.42 - 210 + 4.35 - 238 + 0.01 - z41
+ 0.01 - z46 + (—2.06) - z50 4+ (—0.39) - z51
+2.28 - 254 + 0.97 - z58 4+ 14.58 - z74 9)
Fppos(x) = —Fca(x) = 16.07 + (—3.42) - z10 4 (—4.35)
- 238 + (—0.01) - z41 + (—0.01) - z46 + 2.06
-z50 + 0.39 - z51 + (—2.28) - z54 + (—0.97)
- 258 + (—14.58) - z74 (10)
Fca(x) = —20.68 +2.32 - 238 4- 0.01 - z46 + (—2.06) - z50
4+ (—0.39) - z51 + 2.28 - z54 + 0.84 - 258 an
Fppos(x) = —Fca(x) = 20.68 + (—2.32) - z38 + (—0.01)
- 746 + 2.06 - 250 + 0.39 - z51 + (—2.28) - z54
+ (—0.84) - z58. (12)
It is noted that the LMT model for detection of network
traffic anomalies for SHIoT devices belonging to class C2 con-
sists of a decision tree on whose terminal nodes there are two
logistics models, and their use depends on which condition
satisfies the observed feature vector concerning the value of
independent feature z24. It also depends on this condition in
which independent features will be included in the logistics
model and the coefficients associated with these features.
3) LMT Model for C3 Class of SHIoT Devices: For the
class C3 SHIoT devices to detect network traffic anomalies,
an LMT model was developed on principle applied to classes

C1 and C2. As for class Cl1, the decision tree is generalized
to the root node to which one logistic model is associated.
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TABLE V
DISPLAY OF INDEPENDENT FEATURES INCLUDED IN THE LMT
LMT model
LMT-C1 | LMT-C2 | LMT-C3 | LMT-C4
Logistics models
LM1 LM1 LM2 LM1 LM1 LM2 LM3 LM4 LMS5 LM6
z14 z10 z38 z14 z10 z10 z10 z10 z10 z10
z18 z38 746 z38 z16 z16 z16 z16 z16 z38
z38 741 z50 z45 720 220 220 720 238 z50
746 746 z51 746 z36 236 236 z38 741 z51
z50 z50 z54 z50 z38 738 z38 741 742 z54
z51 z51 z58 z51 741 741 741 742 z45 z58
z58 z54 z54 742 z42 z42 z45 z50 z74
z74 z58 z58 745 z43 z44 z50 z51
z74 z74 z50 744 745 z51 z54
z51 z45 746 z54 z58
z54 746 250 z58 z74
z58 z50 z51 z74 |
z74 z51 z58
754 z73
z58 z74

The final form of the LMT model, with the most significant
independent features and coefficients for class C3, is
shown by

Fe3(x) = —1.01 +0.03 - 214 4+ 2.91 - 238 + 0.01 - z45
+ 0.02 - 246 + (=2) - 250 + (—1.82) - 751
+ 1.12 - 254 + 0.87 - 258 + 0.04 - 274 (13)
Fppos(¥) = —Fc3(x) = 1.01 + (—=0.03) - z14 + (—2.91) - z38
+ (—0.01) - z45 + (—0.02) - 46 + 2 - 250
1 1.82-251 + (—1.12) - 254 + (—0.87) - 258
+ (=0.04) - Z74. (14)

The model included a total of nine independent (z14, z38,
z45, 746, 250, z51, z54, 258, z74) features that were deter-
mined by the method of least squares to have the greatest
impact on the change of the dependent feature.

4) LMT Model for C4 Class of SHIoT Devices: Class
C4 devices, due to the higher C, index, generate traffic
and traffic flows whose characteristics are more difficult to
distinguish from network traffic anomalies such as DDoS
traffic.

The lower level of traffic predictability is caused by the
device’s mode of operation, such as a high level of user
interaction, playback of audio/video content, and the like. This
results in a more complex LMT model that cannot be general-
ized to the root node, but it consists of 11 nodes or six terminal
nodes. A logistic regression model is defined on each branch
of the decision tree ending in the terminal node.

In the present case, this means that the LMT model consists
of a total of five branching points and six logistic regres-
sion models. An LMT model containing a decision tree and
associated logistic regression models with selected relevant
independent features and associated coefficients, as shown in
Fig. 4.

D. Working Principle of the Developed Model for Detection
of lllegitimate DDoS Network Traffic

The work of the developed model of illegitimate DDoS
traffic detection takes place in two phases. The first phase is

| 4]

a prerequisite for later detection of DDoS traffic in the second
phase and involves the classification of SHIoT devices based
on generated traffic flow. The multiclass classification model
results show that the SHIoT device can be classified into one
of the four predefined classes concerning the traffic flows it
generates with an accuracy of 99.79%.

After the device is successfully classified, the newly gen-
erated traffic flows are checked based on the LMT model for
detecting illegitimate DDoS traffic, which determines whether
these traffic flows belong to a recognized class or represent an
anomaly of network traffic.

The basis for the development of the DDoS traffic detection
model for a particular class is the profile of legitimate traffic
of a particular class, resulting from the work of a multiclass
classification model in the first phase.

In doing so, the values of traffic flow classified into certain
predefined classes also become part of the profile of legitimate
traffic of these classes. Depending on the corresponding class
of SHIoT devices, an individual LMT model can detect devia-
tions or anomalies from the existing normal traffic profile with
high accuracy (LMT-C1 = 99.99%, LMT-C2 = 99.92%, LMT-
C3 =99, 97%, and LMT-C4 = 99.95%) and using different
sets of independent traffic flow characteristics.

IV. RESULTS ANALYSIS AND DISCUSSION

The development of a DDoS detection model based on traf-
fic characteristics and device class indicates the importance
of recognizing the class to which the SHIoT device belongs
as a fundamental activity of further recognizing anomalies in
network traffic such as DDoS traffic. According to the model
presented in the previous section, it is clear that not all inde-
pendent features are equally important in detecting anomalies
for a particular class. Likewise, certain features in one class
may be relevant while viewed from the aspect of another class
they do not have to.

An example is seer each class differs according to the num-
ber of relevant independent features, and it is also evident that
the same features are not relevant in the detection of anomalies
for each class.
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=<67.565935—— 724

> 67,565,935

=< 1,000,000

1,000,000 Logistic regression

model 6
—_——
LM6 = Fo(x) = —3127 + 001 - 210+ 137 - 238 + (~271) - 250 + (~0.69) - 251 + 1.35 - 254
+153 - 258 + 002 - 274
LM6' = Fopas(x) = —Feu(x)
725 > 198,695400 Logistic regression 3127 +(-001) - 210 + (~137) - 238 + 271 2504 069 - 251 + (~135) - 254

= model 5 +(~153) - 258 +(-0.02) - 274
LMS = Fy(x) = 2167 + 19 - 210+ 0.17 - 216 + 221 - z38 + (~0.02) - z41 + (~003) - 242

+ (=0.01) - 245 + (-271) - 250 + (-0.69) - 251 + 151 - 254 + 1.06 - 258

+ 644 - 274

Logistic reression | [ jare: = g0 ) = —Fes(e)
= 2167 +(-1.9) - 210 +(-0.17) - 216 + (-2.21)- 238 + 0.02 - z41 + 0.03 - z42
+ 0.01- 245 + 271 - 250 + 069 - 251 + (—151) - 254 +(—1.06) - 258 + (—6.44)
274

—_——

LM4 = Foy(x) = ~2826 + 19 - 2104017 - 216 + 053 - 220 + 282 - 238 + (~0.03) - z41
+ (~0.04) - z42 + (-0,01)- 245 + (-2.71) - 250 + (~0.69) - 251 + 151 - 254
+ 106 - 258 + 1253 - 274

=< 198,695,400

LM4' = Fppos(x) = —Feu(x)
2826+ (~19) - 210 4 (~017) - 216 + (~0.53) - 220 +(~2.82) - 238 + 0,03 - z41
+ 004 - 242 4 001 245 + 271 250 + 0.69 - 251 + (~151) - 254 + (~1.06) - 258
+(-1253) - 274

=<

Logistic regression >0
—_——
LM1 = Foy(x) = 2792+ 19 - 210+ 0.22 - z16 + 091 - 220 + 9 - 236 + 2.95 - z38 + (-0.03)
- 241 +(~0.04) - 242+ (~0.01)- 245 + (~2.71) 250 + (~0.69) - 251 + 151
« 254 4 1.06 - 258 + 159 - 274
LMY’ = Fppos(x) = —Fey(x)
= 2792+ (-19) 210 + (~0.22) - 216 + (~0.91)- 220 + (~9) - 236 + (~2.95)- 238
+ 0.03 - 241 +0.04 - 242 + 0.01 - 245 4 271 - 250 + 069 - 251 + (~151)- 254
+(-1.06) - 258 + (-159) - 274
998,093 226
|
> 998,093
Logistic regression Logistic regression
—_—— —_——
LM2 = F(x) = <046+ 193 - 210 4+ 031 - 216 + 093 - 220 + 9 - 236 + 2.95 - 238 + (~003) LM3 = Fey(x) 2146 4193 - 710 4031 - 216 + 093 - 220 + 9 - 236 + 295 - 238 + (~0.18)

41+ (-0.04) - 242 + (~0.01)- 243 + 034~ 244 +(-001)- 245+ 001 - 246
4 (~281)- 250 + (~0.69) - 251+ 171 - 254+ 1.06 - 258 + 159 - 274

z41 + (~004) - 242 + 113 - z44 + (~0.01) - 245 + 001 - z46 + (~281)
250 + (~0,69) - 251 + 251 - 254 + 106 - 258 + 001 ' 273 4 159 - 274

LM2' = Fppes(x) = —Feu(x)
046 + (~193) 210+ (~031) - 216 + (~0.93)

LM3' = Eppos(x) = —Fes(x)

= 2146 + (~1.93) - 210 + (~031) - 216 +(~093) - 220 +(~9) - 236 + (-2.95)- 238
+ 018 - 241 + 0.04 - 242 +(~113) - 244 +001- 245 +(-001) - 246 + 281 250
+0.69 - 251 +(~251) - 254 + (~1.06) - 258 + (~001) 273 + (~159) - 274

220 +(-9) - 236 + (~295) - 238
+ 003 - 241 + 0.04 - 242 + 0.01 - 243 +(~034) - 244 + 0.01 - 245 + (~0.01) - 246
+ 281 - 250 + 069 - 251 4 (~171) 254 +(~1.06) - 258 + (~159) - 274

Fig. 4. LMT model of the DDoS detection model for class C4.

TABLE VI

Furthermore, an individual independent feature’s thresh- ACCURACY OF DEVELOPED MODELS AND KAPPA COEFFICIENT

old value that determines the decision tree’s branching dif-

fers for individual classes. As shown in Figs. 3 and 4, Model LMT-C1 LMT-C2
branching in the decision tree occurs basc?d on the thresh- Alccur?te;y 1 56,092 99.921% 59.660 | 99.996%
old value of the feature z24, representing the standard lfq?‘sscsl;;‘;,ree’;“mp €s
L. i ifi
deviation of the examples 44 0.0784% 2 0.0034%
The interarrival packet times in the observed traffic flow Kappa coefficient (x) 0.9984 0.9999
expressed in microseconds (Aus). In doing so, the algo- Total 56.136 59662
r1thm C4.5 is used, which selects the threshold. Ya}ue of Model pp—— LMT-Ca
the independent feature that allows the purest division of Accurately
the feature vector in the set [29]. Thus, for example, the classified examples 58,646 | 99.974% | 59,879 | 99.958%
threshold value of the z24 feature in the LMT model for Misclassified examples 15 0.0256% 25 0.0417%
class C2 differs from the threshold value of the same feature Kappa coefficient () 0.9995 0.9992
for class C4. _ ) Total 58,661 59,904
To evaluate the behavior of the model over data not included

in the learning process, each version of the LMT model

was validated using the k-fold cross-validation approach with
k = 10. Cross-validation is a mathematical technique for
evaluating the success of machine learning models on new,
unknown data. This approach is used to test the model’s
output on data that was not used during the learning pro-
cess. The model is iteratively extended k times over the
data set in this way. The data set is split into k sections in

each iteration. The remaining k — 1 portions of the set are
grouped into a subset for model learning, while one part of
the set is used to test the model [30]. Validation metrics (accu-
racy, kappa statistics, true-positive rate (TPR), false-positive
rate (FPR), precision, F-measure, ROC-Receiver Operating
Characteristics, and PRC-Precision-Recall Curve) are often
used to test machine learning classification models.
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Fig. 5. Error visualization of LMT classification models for the corresponding
classes.

A. Accuracy of Developed LMT Classification Models

True-positive (TP) examples, true-negative (TN) examples,
false-positive (FP) examples, and false-negative (FN) examples
reflect the share of correctly classified examples in the set of
all examples

TP + TN

Acc = (15)

TP + TN + FP + FN

where
Acc proportion of accurately classified examples in the
set of all examples;
TP number of true positive examples;
TN  number of true negative examples;

FP  number of false positive examples;

FN  number of false negative examples.

According to the classification’s accuracy, all four mod-
els show high performance, which means that based on the
observed flow, they can determine with high accuracy whether
the traffic flow is the result of legitimate communication of
the device, or the device generates DDoS traffic. According
to Table VI, the high accuracy of all four versions of the
LMT model developed for each class of SHIoT devices can
be observed. Errors in the classification of all four versions of
the LMT model were visualized and shown in Fig. 5.

Fig. 5 shows that the detection model is most accurate for
class C2 and the lowest performance is observed in the LMT-
C1 model. From the given figure, it is observed that errors
for all four models are prevalent for classifying DDoS traffic
instances, indicating the need for better modeling of this class
in future research.

To more clearly show the accuracy of the classification,
a confusion matrix was used for all developed versions of
the model. The confusion matrix is a performance metric
for machine learning classification models with two or more
classes as output, and it serves as the foundation for other
metrics. Thus, the LMT model for device class C1 shows an
accuracy of 99.9216%, or 56 092 accurately classified traffic
flows, as a DDoS or traffic flow that legitimately belongs to
a SHIoT device from class C1. A total of 44 traffic flows were
misclassified, i.e., 0.0784% in the total set of 56 136. Out of
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TABLE VII
CONFUSION MATRIX OF LMT MODELS FOR CLASSES C1 AND C2
Predicted class affiliation
Class C1 DDoS
28,065 3 Class C1
41 28,027 DDoS )
Predicted class affiliation ACLIZ;?
Class C2 DDoS affiliation
29,830 1 Class C2 -
1 29,830 DDoS
TABLE VIII

CONFUSION MATRIX OF LMT MODELS FOR CLASSES C3 AND C4

Predicted class affiliation
Class C3 DDoS
29,329 1 Class C3
14 29,317 DDoS i
Predicted class affiliation /iLlZ:zl
Class C4 DDoS u ﬁiliz;;ion
29,947 5 Class C4
20 29,932 DDoS

44 incorrectly classified traffic flows, 41 were predicted to
belong to the legitimate traffic flow of class C1, while three
traffic flows were classified as DDoS traffic, as shown by the
confusion matrix in Table VIL.

In addition to high accuracy, the LMT model for device
class C1 also shows a kappa coefficient (x = 0.9984), which
indicates high model performance.

The LMT model version developed for class C2 shows
high accuracy (99.9966%), shown in Table VI. This implies
59 660 accurately classified traffic flows in a set of 59 662 traf-
fic flows. The classification error is 0.0034%, i.e., two traffic
flows, with one incorrectly assigned to class C2 and the
other to DDoS traffic, which is evident from the confusion
matrix shown in Table VII. The amount of kappa coefficient
is 0.9999, which indicates a high success of this version of
the LMT model.

The LMT classification model developed for class C3 pro-
vides an accuracy of 99.9744%, as shown in Table VL
Therefore, out of 58661 traffic flows, 15 are misclassified,
or 0.0256%, while 58 646 are accurately classified. According
to the confusion matrix shown in Table VIII, one traffic flow
was misclassified as DDoS traffic, while 14 traffic flows were
misclassified as part of a legitimate class C3 traffic.

The amount of kappa coefficient of 0.9995, as with previous
versions of the LMT model, indicates its high performance.
The latest version of the LMT model, developed for class C4,
shows an accuracy of 99.9583% which implies 59 879 cor-
rectly classified traffic flows. Therefore, 25 traffic flows were
misclassified, five as DDoS traffic and 20 as legitimate class
C4 traffic, as shown by the confusion matrix in Table VIIIL
The success of the model measured by the kappa coefficient
is 0.9992, seen in Table VI.

B. Performance Analysis Based on Positive and Negative
Model Results

Further analysis and performance evaluation of the
developed LMT models was conducted using metrics based
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TABLE IX
OVERVIEW OF LMT MODEL VALIDATION MEASURES (TPR AND FPR)
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TABLE XI
OVERVIEW OF LMT MODEL VALIDATION MEASURES (ROC AND PRC)

Class True positive rate (TPR) a ROC
LMT-C1_| LMT-C2 | LMT-C3 | LMT-C4 ass LMT-C1 | LMT-C2 | LMT-C3 | LMT-C4
C1/C2/C3/C4 1 1 1 1 C1/C2/C3/C4 0.999 1 1 1
DDoS 0.999 1 1 0.999 DDoS 0.999 1 1 1
Class False positive rate (FPR) Class PRC
LMT-C1 LMT-C2 LMT-C3 LMT-C4 LMT-C1 LMT-C2 LMT-C3 LMT-C4
C1/C2/C3/C4 0.001 0 0 0.001 C1/C2/C3/C4 0.998 1 1 1
DDoS 0 0 0 0 DDoS 0.999 1 1 1
TABLE X
OVERVIEW OF LMT MODEL VALIDATION MEASURES (PRECISION AND In the above equation, PPV is the positive prediction value
F-MEASURE)
2(PPV - TPR) (19)
Class Precision PPV +TPR
T, Ll(‘)’lng‘gl LMT‘CZ LMT'C3 Ll(\)/l9T;9C4 According to the values shown in Table X, both measures
BDoS 5 1 1 7 indicate high performance of all versions of the LMT model.
Class F-measure (F1 score) A minimal drop in performance is observed for LMT-CI1 and
LMT-C1 | LMT-C2 | LMT-C3 | LMT-C4 LMT-C4 (0.999) for classes C1 and C4 for the precision mea-
Cl/C2/C3/C4 0.999 1 1 1 sure and for LMT-C1 for class C1 and DDoS for F1 rating
DDoS 0.999 1 1 1

on positive and negative results. Given that each measure has
advantages and disadvantages, the success of a classification
model based on machine learning must be conveyed across
many successive methods.

The first such measure is the rate of TPR. The TPR reflects
correctly categorized examples of a class in the set of all
examples attributed to that class

TP

TPR = ——
TP + FN

(16)
In the above equation, TPR is the true positive rate.

Table IX shows the TPR results for all versions of the LMT
model with TPR for all legitimate traffic classes being 1. The
TPR values for the DDoS class in LMT-C2 and LMT-C3 mod-
els are 1. LMT-C1 and LMT-C4 models notice a minimal
drop in performance with a TPR of 0.999. The next important
performance evaluation measure is the FP example rate (FPR)
shown in the same table.

The FP rate represents the ratio of misclassified class exam-
ples in the set of all examples assigned to that class to (17).
According to this measure, all models show good results for
the legitimate traffic classes and the DDoS class

FP

FPR = ——
FP + TN

a7
In the above equation, FPR is the false positive rate.
According to (18), the precision calculation is used to
express the number of correctly categorized examples in rela-
tion to the total number of examples belonging to that class.
According to (19), the F-measure or FI score represents
the harmonic mean of the precision and the TPR [30]. The
harmonic mean is more intuitive than the classical arithmetic
mean for calculating the ratio’s mean, according to [31]

TP

PPV = ———
TP + FP

(18)

(0.999).

All four versions of the LMT model’s high performance are
visible from the implemented ROC and PRC measures whose
results are visible in Table XI. As one of the most important
and most frequently used measures showing the classification
model’s quality, the ROC measure results indicate high quality
of all versions of the developed LMT model. Proof of this is
the TPR and TNR rate ratio value, which is 1 for the models
LMT-C2, LTM-C3, and LMT-C4, and 0.999 for the model
LMT-CI.

Since the data sets are stratified, the PRC measure, as an
alternative to the ROC measure, which can better assess the
impact of a large number of negative examples on model
performance, gives almost equal values for all observed LMT
models.

The presented results of the developed model confirm the
second hypothesis of this research. Based on the defined pro-
file of legitimate traffic of a particular class of IoT devices
in a smart home environment, detecting illegitimate traffic
generated by such devices is possible.

A comparative summary is shown in Table XII, and one
can observe that our approach achieves the highest accuracy,
precision, recall, and F-measure. It is also observed that we
consider the highest number of SHIoT devices, and a key ben-
efit of our approach is its ability to detect anomalous traffic
generated by previously unseen IoT devices.

In summary, to evaluate the effectiveness of the LMT
method applied in this study, we applied several frequently
used machine learning methods over the same data set.
Specifically, we compared the performance of our pro-
posal with those of multilayer perceptron (MLP), k-Nearest
Neighbors (kNN), Random Tree (RT), Bagging, AdaBoostM1,
stochastic gradient descent (SGD), dense layer, Recurrent
Neural Network (RNN), and GravesLSTM, in terms of accu-
racy, TPR, Precision, Recall, F-measure, and ROC. For imple-
menting mentioned methods, we used WekaDeeplearning4;
package for WEKA platform [32]. From the comparison
results presented in Fig. 6, one can see that our approach
generally outperforms the other applied methods.
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TABLE XII
COMPARISON WITH OTHER COMPETING APPROACHES
Research Used method Dataset Acuracy | Precision | Recall F1- Regqires profiling each individual
Measure | device to detect anomaly
[16] LST™M Modbus network 0.9962 0.9935 0.9941 0.993 n/a
traffic data
[18] RNN, ResNet, 7 real IoT devices 0.852 - 0.6248 - 0.6740 - 0.6208 - no
ConvNet 0.9997 0.9997 0.9997 0.9997
[19] J48 8 real IoT devices n/a 0.9 0.899 0.888 yes
[42] Convolutional CICDDoS2019 n/a 0.87 0.86 0.86 n/a
neural networks
(CNN)
[43] shingling-based | 28 real IoT devices n/a 0.98 0.92 0.92 yes
graph sketching
[8] KN, LSVM, 3 real IoT devices 0.991- 0.983 - 0.870 - 0.927- yes
DT, RF, NN 0.999 0.999 0.999 0.999
[44] LGBM, DNN, 8 real IoT devices /5 n/a n/a 0.370 - 1 n/a yes
SVM Non IoT devices
Our Bosting based 41 real IoT devices 0.9921 - 0.999-1 | 0999-1 0.999 -1 | no (works with previously unseen
approach LMT (555,508,689 packets, 0,9996 devices)
393.33 GB of traffic,
3,458.47 hours)
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Ou}i}ﬁ;(;a(:h MLP kNN Radom tree Bagging  AdaBoostM1 Dense layer RNN SGD GravesLSTM
Deep learning
Accuracy 99.99% 87.47% 96.26% 98.64% 97.63% 97.41% 91.10% 50.46% 90.50% 99.06%
TPR 0.999 0.875 0.963 0.986 0.976 0.974 0911 0.505 0.905 0.991
Precission 0.999 0.902 0.963 0.987 0.977 0.974 0911 0.584 0.906 0.991
Recall 0.999 0.875 0.963 0.986 0.976 0.974 0911 0.505 0.905 0.991
— @ — F-Measure 0.999 0.874 0.963 0.986 0.976 0.974 0911 0.352 0.905 0.991
--4---ROC 1 0.895 0.998 0.979 1 0.974 0.979 0.507 0.978 0.992

Fig. 6. Comparison of our approach with other competing machine learning and deep learning methods.

V. CONCLUSION AND FUTURE WORK

The DDoS detection model presented in this article deviates
from the typical network traffic anomaly detection approaches.
For example, prior approaches are largely based on generat-
ing a legitimate traffic profile that is assumed to apply to all
terminal devices. Such an approach is logical in environments
comprising conventional devices, whose traffic generates char-
acteristics that are reflective of the operation of the installed
applications on the devices and the way the users use such
devices.

However, inexpensive [oT devices are somewhat limited
in terms of their functionality, which is reflected in the
characteristics of the traffic they generate. There are also IoT

devices which are more computationally capable. Hence, exist-
ing non-IoT approaches may not be suitable, partly due to
the diversity of IoT devices (and consequently, behavior). In
other words, some devices will always generate similar traf-
fic, while other devices that are capable of supporting greater
interactions with the user may generate traffic that is irregular.
Compounding this challenge is the significant growth in the
number of devices in an IoT environment.

In other words, DDoS detection approaches based on indi-
vidual device characteristics require relearning or even rede-
velopment of the underlying model for each new device that
appears on the market. Such an approach is extremely com-
plex and insufficiently generic in an increasingly complex and
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dynamic IoT environment. This is limitation we attempted to
address in this article.

Our approach assumes that there is no one overarching legit-
imate traffic profile for IoT devices, and instead of focusing
on specific devices we focus on the device classes (depend-
ing on the traffic characteristics they generate). In this way,
a legitimate traffic profile is formed for each class of devices
based on which DDoS detection models are developed. This
approach has the potential to classify future devices based
on the traffic flow characteristics they generate, which can
be used to determine whether such a device behaves within
legitimate limits or is generating DDoS traffic. Specifically, in
our approach the DDoS traffic detection model is based on the
logistic decision tree method from the set of machine learn-
ing methods. The problem of detecting DDoS traffic based
on device classes has been reduced to binary classification,
where different versions of the same model are developed
for each class of SHIOT devices. This is why each class of
SHIoT devices’ traffic has different characteristics, which is
evident from the presented versions of the model, each dif-
fering in the number of independent features used, the size
of the decision tree and the threshold values of its branch-
ing. Our performance evaluation showed that the approach
achieves high performance, in terms of accuracy, TPR, FPR,
F1 rating, precision, ROC and PRC. For example, the accu-
racy of the model for respective classes is C1 = 99.9216%,
C2 = 99.9966%, C3 = 99.9744%, and C4 = 99.9583%.

Our approach can benefit different stakeholders in the IoT
ecosystem. For example, users typically want their devices to
function as intended in the smart home environment. Generating
DDoS traffic can impact on the device’s functionality or make
it completely inaccessible. Therefore, it is in the user’s interest
to promptly detect the device’s abnormal behavior. Given that
telecom operators are often also smart home service providers,
it is also in their interest to detect unauthorized device behavior
in a timely manner to protect their own network infrastruc-
ture. Finally, manufacturers of such devices must ensure the
correct operation of the devices in order to increase customer
satisfaction and strengthen their market presence.

While our research has demonstrated the potential of detect-
ing illegitimate traffic with high accuracy based on the
classification of devices into predefined classes and creating
a legitimate traffic profile for each class using the boosting
method of machine learning, there are a number of poten-
tial future extensions to this work. For example, we intend
to evaluate our proposed approach in other settings, such
as healthcare, transportation or Industry 4.0, as devices in
these application domains may generate different behaviors
and hence resulting in additional device classes. We also intend
to study the potential of extending our approach to cover other
attack types, for example to create device classes based on
their generated traffic in the presence of other types of attacks.
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