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Abstract—Network virtualization (NV) is a technology with
broad application prospects. Virtual network embedding (VNE)
is the core orientation of VN, which aims to provide more flexible
underlying physical resource allocation for user function requests.
The classical VNE problem is usually solved by heuristic method,
but this method often limits the flexibility of the algorithm
and ignores the time limit. In addition, the partition autonomy
of physical domain and the dynamic characteristics of virtual
network request (VNR) also increase the difficulty of VNE. This
paper proposed a new type of VNE algorithm, which applied
reinforcement learning (RL) and graph neural network (GNN)
theory to the algorithm, especially the combination of graph
convolutional neural network (GCNN) and RL algorithm. Based
on a self-defined fitness matrix and fitness value, we set up the
objective function of the algorithm implementation, realized an
efficient dynamic VNE algorithm, and effectively reduced the
degree of resource fragmentation. Finally, we used comparison
algorithms to evaluate the proposed method. Simulation exper-
iments verified that the dynamic VNE algorithm based on RL
and GCNN has good basic VNE characteristics. By changing the
resource attributes of physical network and virtual network, it
can be proved that the algorithm has good flexibility.

Index Terms—Virtual Network Embedding, Reinforcement
Learning, Graph Convolution Neural Network, Fitness Matrix

I. INTRODUCTION

The fact that the traditional Internet architecture is becom-
ing rigid has promoted the development of future network
technologies [1]. Network virtualization (NV) will realize the
effective management of the next generation Internet and be-
come an important part of the future network architecture [2],
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[3]. NV mainly realizes the decoupling of network services,
functions and specific underlying hardware, which greatly
improves the flexibility and scalability of the underlying net-
work architecture. NV involves two main roles: infrastructure
provider (InP) and service provider (SP) [4]. The process
that the two cooperate to allocate physical network resources
for virtual network requests (VNRs) is called virtual network
embedding (VNE). The ideal result of VNE is to reasonably
schedule the underlying network resources to receive as many
VNRs as possible, improve the acceptance rate of virtual net-
work, realize load balancing, maximize resource consumption
revenue and reduce costs [5], [6]. Radio network resource
management faces severe challenges, including storage, spec-
trum, computing resource allocation, and joint allocation of
multiple resources [7], [8]. With the rapid development of
communication networks, the integrated space-ground network
has also become a key research object [9].

VNE is a typical NP-hard problem, which determines that
the VNE problem can only obtain an approximate optimal
solution instead of an optimal solution [10], [11]. Usually,
heuristic method is used to solve the VNE process, or VNE
is modeled as a combinatorial optimization problem, and then
(integer) linear programming is used to solve it. The above
methods are traditional solutions to VNE problem, which play
a positive role in a certain social application and technical
background. The analysis shows that there are several common
disadvantages in traditional VNE solutions.

(1) The constraints and optimization objectives of VNE are
made manually. Unnatural conditional control will damage the
robustness and flexibility of VNE algorithm.

(2) VNE algorithm with differentiated quality of service
(QoS) may have high real-time requirement, so it is time
sensitive. Existing algorithms usually ignore this problem.

(3) Ignore the dynamic characteristics of VNE, i.e., during
the VNR cycle, the resource configuration of virtual nodes
and links, the virtual topological structure, and the number of
physical network resources are all in dynamic changes.

The application of machine learning (ML) algorithms in
VNE has achieved great success [12], [13]. Through the
efficient interaction between learning agent and environment,
RL has excellent decision-making capabilities. At each time
step t, the intelligent agent interacts with the environment
to obtain the environment state st. After that, the agent
will apply an action at to the environment to transfer the
state of the environment to st+1, and at the same time, the
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environment will feed back to the agent a reward rt. The goal
of RL is to help the agent maximize the reward signal. The
detailed application of RL will be introduced below. The VNE
algorithm based on RL has been well experimented, so RL can
be applied to our work.

Problems such as node ordering and pattern matching can all
be simplified by graph-related theories and techniques. Graph
neural network (GNN) is a new type of ML model architec-
ture that can aggregate graph features (degrees, distance to
specific nodes, node connectivity, etc.) on nodes [14]. The
model can be used to cluster nodes and links according to
the physical nodes and physical links attribute characteristics
(CPU, storage, bandwidth, delay, etc.) and search for the best
VNE strategy by intelligent agent training. Graph convolution
neural network (GCNN) is a natural generalization form of
GNN, which is highly suitable for graph structures of any
topological form [15]. Therefore, the organic combination of
VNE and GCNN has a good prerequisite. To this end, The
main work of this paper is as follows:

(1) A VNE algorithm based on RL and GCNN is proposed.
In particular, GCNN is used to automatically extract the
features of underlying network, which optimizes the selection
of VNE decision.

(2) We notice the dynamic characteristics of VNE process,
and adopt a dynamic VNE method based on fitness value to
deal with the changing virtual network topology and resource
attributes.

(3) We conducted a large number of simulation experiments
and compared the typical indicators of VNE with other algo-
rithms to verify the effectiveness of the algorithm. In addition,
the flexibility of the algorithm is verified by changing the
attribute parameter distribution of physical network and VNRs.

The rest of this paper is arranged as follows. Section II
introduces the related work of VNE. Section III gives the
necessary network model to solve VNE problem and describes
the related technical problems. Section IV formulates the
related problems of VNE. Section V introduces the design
and implementation details of the algorithm. Section VI ver-
ifies and analyzes the performance of the algorithm through
simulation experiments. In the last section, we summarize the
whole paper.

II. RELATED WORK

Heuristic method is the traditional method for solving VNE
process, including meta heuristic algorithm, mathematical op-
timization and so on. VNE solutions based on ML often use
algorithms or models such as deep learning (DL), RL or graph
theory, which has gradually become the mainstream method
to solve NP-hard problems such as VNE [16].

A. VNE Solution based on Heuristic

The more classic is the node-link two-stage coordinated and
embedded ViNEYard algorithm proposed by Chowdhury et al.
[17]. This algorithm modeled VNE as a mixed-integer linear
programming problem, and then implemented D-ViNE and R-
ViNE using deterministic and random methods respectively.

The results showed that these algorithms can effectively im-
prove the revenue of VNE. Increasing the VNE revenue or
reducing the embedding cost is an important goal of VNE al-
gorithm. Based on Markov random walk model theory, Cheng
et al. [18] sorted the importance of network nodes according to
network topology attributes, and proposed two representative
VNE algorithms based on node sorting. According to whether
the virtual link was divided into paths, it was decided to
use the multi-commodity flow algorithm or the breadth-first
search algorithm to perform the virtual link mapping process.
These two algorithms had effectively improved the long-term
average revenue, and the method based on node sorting has
also become a typical and popular method in VNE. Zhang et
al. [19] first considered VNE algorithm with multi-dimensional
resource constraints of computing, network and storage, and
proposed two heuristic algorithms NRM-VNE and RCR-VNE
as baseline algorithms.

Since VNE can be modeled as a search problem in a larger
three-dimensional space, meta heuristic method can be used as
an important means to solve VNE. Meta heuristic algorithm
is an improvement of heuristic algorithm, which adds local
search on the basis of heuristic algorithm [20]. Particle swarm
algorithm (PSO) is a meta heuristic algorithm commonly used
to solve VNE [21]–[23]. Different VNE strategies can be used
as particles to perform a global optimal search based on the
objective function set in advance.

As we mentioned earlier, the heuristic method of manually
formulating constraints and features for VNE algorithm greatly
limits the flexibility of VNE algorithm. Moreover, with the
rapid expansion of physical network and user scale, the global
search strategy efficiency of heuristic algorithm gradually
decreases, and there is a big gap between the time performance
and the latest VNE algorithm.

B. VNE Solution based on ML

With the successful practice of ML algorithms in real life,
scholars began to explore and tried to apply ML algorithms in
VNE, among which RL algorithm was the most representative
[24]. Haeri et al. [25] modeled VNE as a Markov decision
process, and then used Monte Carlo search tree (MCST)
algorithm to implement the node mapping process. In the stage
of virtual link embedding, the authors used multi-commodity
flow algorithm to implement the MaVEn-M algorithm, and
the shortest path algorithm to implement the MaVEn-S algo-
rithm. The profitability and profitability of InP illustrated the
effectiveness of the algorithm. It cannot be ignored that MCST
algorithm should perform a complete VNE process every time
the virtual nodes are embedded, which makes the algorithm’s
time cost higher. Q-learning is another commonly used RL
model. Yuan et al. [26] implemented the VNE algorithm based
on this model to find the optimal VNE strategy for RL agent,
in which the Q-matrix and the Q-table played an important
role. One problem with this algorithm is that the extraction of
virtual network features is done manually. The efficiency of
the algorithm will decrease when the VNR scale is large or
the structure is complex. Yao et al. [27] implemented a VNE
algorithm based on single layer policy network. According
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TABLE I: Notation of Network Model

Notation Description

GP physical network

NP physical node

LP physical link

AN physical node resource attributes

AL physical link resource attributes

GV
i the i-th virtual network request

NV virtual node

LV virtual link

RV virtual node resource requirements

RL virtual link resource requirements

to the historical embedded data of virtual network, RL agent
used strategy gradient descent to find the optimal embedding
strategy.

The authors of [28] and [29] also combined DL and RL, and
their deep reinforcement learning (DRL) based VNE algorithm
also provided new ideas for solving this problem.

In the field of ML, VNE algorithm based on graph the-
ory has gradually come into people’s view. Habibi et al.
[30] creatively combined GNN and VNE, and then proposed
GraphViNE algorithm based on graph automatic encoder.
The biggest feature of this algorithm is that servers with
similar resources are clustered, which ultimately effectively
reduces the running time of the algorithm. Yan et al. [31]
paid attention to the time constraint of VNE and applied
GNN, especially GCNN, to VNE. It was worth noting that
the authors proposed a parallel framework and multi-objective
reward function based on DRL, which took into account VNE
revenue, acceptance rate and load balance. Reference [32] and
[33] respectively proposed VNE algorithm based on graph
feature space alignment and VNE algorithm based on subgraph
matching. The former mainly associated physical nodes with
virtual nodes, while the latter utilized a hierarchical physical
management architecture. Both of them are good applications
of graph theory in VNE problem.

The above research does not support the embedding of
dynamic virtual networks well, which will greatly affect
the utilization of resources. Dehury et al. [34] focused on
the dynamic characteristics of virtual network topology, and
proposed a dynamic VNE algorithm based on fitness value.
The function of fitness value was to mark the utilization degree
of physical resources. At the same time, the authors used the
method of studying part of physical servers to replace the
method of studying all physical servers, which effectively im-
proved the efficiency of the algorithm. In addition, references
[35] and [36] are also excellent representatives of dynamic
VNE algorithm. But the analysis finds that they do not fully
apply ML methods.

III. NETWORK MODEL AND PROBLEM DESCRIPTION

For easy viewing, we summarize the commonly used net-
work representation symbols in TABLE I.

A. Physical Network and VNR Modeling

Physical network can be regarded as a weighted undirected
graph GP = {NP , LP , AN , AL}. NP represents the node set
composed of all underlying physical nodes, and LP repre-
sents the link set composed of all physical links. AN and
AL represent physical node attribute set and physical link
attribute set respectively. We mainly regard CPU resources
as physical node attributes and bandwidth resources as phys-
ical link attributes, namely AN = {cnp

1
, cnp

2
, ..., cnp

|NP |
} and

AL = {blp1 , blp2 , ..., blp|LP |
}, where |NP | and |LP | represent the

total number of physical nodes and physical links, respectively.
Similarly, virtual network is regarded as a weighted undi-

rected graph GVi = {NV , LV , RN , RL}, and GVi indicates
that this is the i − th virtual network. NV represents the
set of all virtual nodes, and LV represents the set of all
virtual links. RN and RL respectively represent the resource
requirement attribute set of virtual node and virtual link, where
NV = {cnv

1
, cnv

2
, ..., cnv

|NV |
} represents the CPU resource

requirement of virtual node, and LV = {bbv1 , bbv2 , ..., bbv|LV |
}

represents the bandwidth resource requirement of virtual link.
|NV | and |LV | respectively represent the number of virtual
nodes and virtual links in the virtual network.

B. VNE Model and Description

Based on physical network and virtual network model, the
VNR can be expressed as V NRi = (GVi , ta, te), where ta rep-
resents the time when the VNR arrives, and te represents the
time when the VNR leaves. The VNE process can be modeled
as GVi (NV , LV ) ↑ GP

′
(NP ′

, LP
′
), where GP

′
(NP ′

, LP
′
)

represents a partial subgraph of physical network. Thus, a
complete VNE process includes two stages: node mapping
and link mapping. Fig. 1 gives a visual representation of
the network topology, and shows the result of two VNRs
embedded in the physical network. We mark the CPU resource
demand and bandwidth resource demand respectively next to
network node and link. The target node and link should have
sufficient resources to carry them.

C. Dynamic VNE

Changes in the number of network users or fluctuations in
workload will cause the structural change of virtual network.
The most intuitive impact of changes in the number of users
is the changes in virtual nodes and links, i.e., changes in
structural configuration. Workload fluctuations usually change
the number of resource requirements of virtual nodes or links,
i.e., the resource configuration changes. The above changes
are real in the process of VNE. The virtual network whose
structure configuration or resource configuration changes with
time interval is called dynamic virtual network, and the process
of mapping dynamic virtual network to physical network is
called dynamic VNE.

Fig. 2 shows the change process of virtual network structure
configuration and resource configuration in different time
intervals. t = 0 to t = 5 is a continuous VNE process.
When t = 0, the virtual network structure is the initial form,
and the resource requirements of virtual nodes and links are
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Fig. 1: Schematic diagram of physical network and virtual network. (a) VNRs before embedding. (b) A possible result of
VNRs embedding.

shown in the figure. When t = 1, the configuration of virtual
network is changed, and virtual node d and its related virtual
links lv(a, d), lv(b, d), lv(c, d) are deleted. When t = 2,
the structural configuration change process of virtual network
ends, and a new virtual network topology with three virtual
nodes and two virtual links is formed. When t = 3, the
configuration of virtual network changes again, and a new
virtual node e and a virtual link lv(c, e) are added. When
t = 4, the resource configuration of virtual network has
changed. The number of CPU resource requirements for node
a increases from 10 units to 15 units, and the number of CPU
resource requirements for node b decreases from 15 units to
10 units. When t = 5, the number of bandwidth resources of
virtual link lv(a, b) also changes, from the original 5 units to
20 units.
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Fig. 2: Dynamic virtual network example.

IV. PROBLEM FORMULATION

A. Restrictions

We use the binary variable εn
p

nv
k

to measure whether the
physical node np is embedded by the virtual node nvk, where
k is the virtual node label, k = 1, 2, ..., |NV

i |. |NV
i | represents

the number of virtual nodes in virtual network GVi . Then εn
p

nv
k

can be expressed as follows,

εn
p

nv
k

=

{
1, if nvk ↑ np,
0, others.

(1)

Another binary variable δl
p

lvk
is used to measure whether the

virtual link lvk is mapped to the physical link lp, where k is
the virtual link label, k = 1, 2, ..., |LVi |. |LVi | indicates the
number of virtual links in virtual network GVi . Then δl

p

lvk
can

be expressed as follows,

δl
p

lvk
=

{
1, if lvk ↑ lp,
0, others.

(2)

VNE needs to follow resource, location and access control
constraints. Here we mainly set the resource constraints of
VNE. The specific constraint content is shown in the following
formula.

|NV
i |∑

k=1

εn
p

nv
k

= 1, nvk ∈ GVi , (3)

|LV
i |∑

k=1

δl
p

lvk
≥ 1, lvk ∈ GVi , (4)

A cpn = cnp −
∑
k=1

εn
p

nv
k
· cnv

k
, cnv

k
from different GV , (5)

A bpl = blp −
∑
k=1

δl
p

lvk
· blvk , blvk ∈ G

V
i , i = 1, 2, ..., |V NR|,

(6)
cnv

k
≤ A cpn, if ε

np

nv
k

= 1, (7)
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blvk ≤ A bpl , if δ
lp

lvk
= 1. (8)

Formula (3) shows that virtual nodes nvk from the same
virtual network GVi can only be mapped to different physical
nodes. Formula (4) shows that a virtual link lvk may be mapped
to multiple physical links. Formulas (5) and (6) represent the
current available resource capacities of physical nodes np and
links lp, respectively. Formula (7) and formula (8) indicate
that when virtual node nvk and virtual link lvk are embedded
on physical node np and physical link lp, respectively, the
resource capacity of np and lp is sufficient.

B. Evaluation Index

The classical evaluation indexes of VNE algorithm include
long-term average revenue, resource consumption cost, re-
source utilization rate, virtual network acceptance rate and
revenue-cost ratio. Among them, the revenue of VNE are mea-
sured by the consumption of CPU resources and bandwidth
resources,

R(GVi ) =
∑

nv∈NV

cnv +
∑
lv∈LV

blv , N
V , LV ∈ GVi , (9)

where cnv represents the CPU resource requirement of virtual
node nv and blv represents the bandwidth resource requirement
of virtual link lv .

The resource consumption cost of VNE is expressed as
follows,

C(GVi ) =
∑

nv∈NV

cnv +
∑
lv∈LV

∑
lp∈LP

bl
p

lv ,

NV , LV ∈ GVi , LP ∈ GP .
(10)

The main difference between the two is reflected in the
consumption of bandwidth resources. Since a virtual link may
be mapped to multiple physical links due to path segmentation,
the cost of bandwidth consumption will increase, and the
revenue of bandwidth consumption only depends on its own
bandwidth resource demand. Based on both, the long-term
average revenue of VNE is defined as follows,

R = lim
T→∞

T∑
t=0

|V NR|∑
i=1

R(GVi , t)

T
,

(11)

where
T∑
t=0

|V NR|∑
i=1

R(GVi , t) refers to the total revenue of VNR

embedding in the time range T .
The VNE revenue-cost ratio is defined as follows,

R/C = lim
T→∞

T∑
t=0

|V NR|∑
i=1

R(GVi , t)

T∑
t=0

|V NR|∑
i=1

C(GVi , t)

, (12)

where
T∑
t=0

|V NR|∑
i=1

C(GVi , t) refers to the resource cost con-

sumed by the VNR embedding in the time range T .

The VNR acceptance rate is defined as follows,

AR = lim
T→∞

T∑
t=0
|V NR|acc

T∑
t=0
|V NR|arr

, (13)

where |V NR|acc is the number of VNRs successfully mapped
to the physical network in the VNE process. |V NR|arr is the
total number of VNRs that come in the VNE process.

C. Fitness Matrix and Value

There needs to be a standard to record the degree of
utilization of CPU resources, and the fitness matrix can play a
role. The value in the matrix is the remaining CPU capacity,
and the calculation method is shown in formula (5). We use
fij(t) = A cnp to mark every element in the fitness matrix,
where i represents the physical node in each row, and j
represents the virtual node in each column. Therefore, the
dimension of fitness matrix depends on the number of virtual
nodes embedded at time t. The sign F (t) = fij(t) is used
to refer to the fitness matrix. We specify that the elements of
fitness matrix are recorded as follows,

fij(t) =

{
∞, fij ≤ 0,
A cpn, others.

(14)

We define the concept of fitness value as the availability of
physical nodes to characteristic virtual nodes. The calculation
method is as follows,

αj(t) =

|NP |∑
i=1

ε
np
i
njv ·

fij(t)

cnp

. (15)

We use an adjoint matrix of a fitness matrix to mark whether
there is a link between any two physical nodes. The rows
and columns of the adjoint matrix represent the physical node
numbers, and the value of each element in the matrix is defined
as follows,

Adij(t) =

{
blp , lp between npi and n

p
j ,

∞, no link between npi and n
p
j .

(16)

Considering CPU resources and bandwidth resources, the
overall fitness value of the algorithm is calculated as follows,

β(t) =

num nv∑
j=1

αj(t) +

|LP |∑
i=1

num lv∑
j=1

δ
lpi
lvj
· A blp

blp
, (17)

where num nv and num lv respectively represent the total
number of virtual nodes and virtual links successfully mapped
in the entire VNR process.

The ultimate goal of the algorithm is,

Minimize

num nv∑
j=1

min
1≤i≤|LP |

(ε
np
i
nv
j
· A cnp

cnp

+ δ
lpi
lvj
· A blp

blp
)

= Minimize

num nv∑
j=1

min
1≤i≤|LP |

(ε
np
i
nv
j
· fij(t)
cnp

+ δ
lpi
lvj
· A blp

blp
)

= Minimize β(t),
(18)
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where εn
p
i
nv
j

is used to measure whether the virtual node nvj is

mapped to the physical node npi , and δ
lpi
lvj

is used to measure
whether the virtual link lvj is mapped to the physical link lpi .

V. ALGORITHM DESIGN AND IMPLEMENTATION

RL mainly includes four entities: intelligent agent, state
st, action at and reward rt. When RL is applied to VNE
problem, we use a self defined GCNN model as RL agent,
which can extract network features for training, and then get
the VNE strategy. The specific content of GCNN model will
be introduced in the following. st refers to the information that
agent can obtain from virtual network environment. We define
st to include the available CPU resources of each physical
node, the available bandwidth resources of each physical
link, the resource requirements of each virtual node and each
virtual link, the virtual nodes and virtual links that have been
successfully mapped to physical network in the current VNR,
and the virtual nodes and virtual links that have not been
mapped in the current VNR. at refers to a VNE strategy
adopted by agent, which includes node mapping strategy and
link mapping strategy. rt is a reward function that agent gets
by adopting some embedding strategy to the environment. It
should be noted that RL agent has no strict objective function
or label. It accumulates reward signals through continuous
training. We define the calculation method of rt obtained by
at as follows,

r(at) = R(GVi ) ·R/C. (19)

Convolutional neural network (CNN) can automatically
extract the advanced features of images. It has been shown that
CNN can provide a great help in dealing with VNE related
problems [24], [27]. But the original intention of CNN design
is to solve the Euclidean graph with elements arranged in
order, and the efficiency will be much lower when dealing with
any graph structure such as network topology. Reference [37]
proposed a method of convolution operation on random graph
topology under the background of spectrograph theory, i.e.,
GCNN method. The essence of GCNN is Fourier transform.
The key to the problem is to find a Laplacian in the graph and
use an orthogonal factor to characterize the network topology.
The following Fourier transform form can be used,

F (λv) = f̂(λv) =

N∑
i=1

f(i)µ∗v(i), (20)

where f represents the vector, N represents the dimension
of the vector, f(i) corresponds to the network node, and
µ∗v(i) represents the i-th component of the v-th feature vector.
The Fourier change of f is the inner product operation of
the feature vector µ∗v(i) corresponding to the feature value.
Namely,

f̂ = UT f. (21)

Perform the inverse Fourier transform to get,

f = UT f̂ . (22)

According to convolution theorem, the Fourier transform
of function convolution is the product of function Fourier

transform, then the Fourier transform of f and convolution
kernel g on the network topology diagram is defined as
follows,

f ∗ g = Γ−1(f̂(ω).ĝ(ω)) =
1

2π

∫
f̂(ω).ĝ(ω)e−iwtdω, (23)

where g =
∑K
k=0 αkΛk, αk is the training parameter and Λ

is the diagonal matrix with eigenvalue λv . Therefore, the final
output of GCNN is as follows,

g o =

K∑
k=0

αkλvf. (24)

We organize the topological features extracted by GCNN
into a column vector, and make it output a probability distribu-
tion equal to the number of physical network nodes through the
softmax operation. Then we use the asynchronous advantage
actor-critic algorithm to optimize the parameters of neural
network. The algorithm includes an actor network and a critic
network. The former is used to generate a set of parameterized
strategies πθ, and the latter is used to generate a set of
parameterized estimated values vπθ(st, θv). Considering the
important processes of feature extraction, strategy generation
and model training, the GCNN model based on RL is shown
in Fig. 3.

The execution of dynamic VNE requires a predetermined
duration D of the entire VNE. The process of dynamic VNE
is shown in Algorithm 1.

Algorithm 1 Dynamic VNE algorithm

Input: GP (NP , LP ), GV (NV , LV ), D;
1: Calculate fitness value by formulas (15) and (16);
2: flag = FALSE;
3: while flag = FALSE do
4: flag = TRUE;
5: for each nvi ∈ NV &npj ∈ NP do
6: nvi ↑ n

p
j ;

7: if another nvk ↑ n
p
j then

8: nv = nvi + nvk;
9: Calculate new fitness value of nv;

10: else
11: Calculate new fitness value of nvk;
12: end if
13: if β(t) ≥ β(t)′ then
14: flag = TRUE;
15: end if
16: end for
17: end while
18: while D ≥ 0 do
19: D− = 1;
20: Perform a virtual network embedding process;
21: end while

The asynchronous advantage actor-critic algorithm is the
key process of realizing RL agent training. This algorithm
uses a model parallel training method, which can effectively
improve the execution efficiency and convergence of the
algorithm. The training process of the asynchronous advantage
actor-critic algorithm is shown in Algorithm 2.
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Fig. 3: Graph convolution neural network model based on Reinforcement Learning.

Algorithm 2 Training process

1: Initialize paprameters of actor − critic network;
2: while TRUE do
3: Update parameters of actor − critic network;
4: Learning new strategies from environment;
5: Update st, at, rt, st+1;
6: end while
7: for i ∈ n do
8: Initialize agent a[i];
9: end for

10: while TRUE do
11: for i ∈ n do
12: Training in environment;
13: end for
14: Update parameters of actor − critic network;
15: for i ∈ n do
16: Update parameters of a[i];
17: end for
18: end while

VI. PERFORMANCE EVALUATION AND ANALYSIS

A. Parameter Setting

Our simulation experiment is carried out in Anaconda3
+ PyCharm3.6. We programmatically generate a physical
network and 1,000 virtual networks, and save them in .txt
document. The physical network consists of 100 nodes and
about 600 links. The CPU resource capacity and bandwidth
resource capacity are randomly and evenly distributed between
50 units and 100 units. 1,000 virtual networks simulate Poisson
process to reach the physical network, forming a continuous
VNR process. Each virtual network randomly contains 2 to

TABLE II: Parameter Setting

Parameter Value

Physical nodes 100

Physical links 600

CPU capacity U[50,100]

Bandwidth capacity U[50,100]

Virtual networks 1,000

Virtual nodes U[2,12]

CPU requirements U[1,50]

Bandwidth requirements U[1,50]

12 virtual nodes, and each node has a 50% probability to
connect with each other. CPU resource demand and bandwidth
resource demand of virtual nodes and virtual links are dis-
tributed randomly and evenly among 1 to 50 units. Specifically,
the virtual network can reach 5 times in 100 time units, and
the life cycle of each VNR is exponential distribution. The
main parameters used in simulation experiment are shown in
TABLE II.

B. Comparison Algorithms and Evaluation Indexes

We select a heuristic VNE algorithm NodeRank [18], a RL
based VNE algorithm MCST-VNE [25] and a GCNN based
VNE algorithm GCN-VNE [31] as comparison algorithms.
Then the performance of the algorithms is compared from two
aspects: long-term average revenue of VNE and acceptance
rate of VNR. The four algorithms, including our algorithm,
are described and summarized in TABLE III.

In addition, we try to explore the impact of changing the re-
source capacity of physical network and the resource demand



IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, XX 2021 8

TABLE III: Algorithm Idea Description

Algorithm Description

Our algorithm The paper combines GCNN with RL algorithm, establishes a customized fitness matrix and fitness value, which
aims to improve resource utilization, and improves the efficiency of the algorithm by model parallel training.

NodeRank [18] Sort physical nodes according to the importance of the nodes, and use the breadth-first search strategy for virtual
link mapping.

MCST-VNE [25] The virtual node mapping is modeled as a Markov decision process, and MCST algorithm is used to specify the
node mapping strategy.

GCN-VNE [31] A VNE algorithm based on DRL and GCNN, which trains the model through a designed multi-objective reward
function.

of VNRs on the flexibility of the algorithm. Specifically, we
verify the revenue of the algorithm, the revenue cost ratio and
the virtual network acceptance rate.

C. Simulation Results and Performance Analysis

We first compare the long-term average revenue of the four
algorithms, and the result is shown in Fig. 4. In the early stage
of VNR, our algorithm performance is slightly worse than
the other three algorithms. However, in the middle and late
stages, our algorithm has a higher average revenue, indicating
that our algorithm allocates physical network resources more
reasonably, so that more resource consumption revenue can
be obtained. From the experimental results, in the later stage
of VNE, the long-term average revenue of our algorithm is
38.8%, 22.5% and 24% higher than the other three algorithms,
respectively. With the increase of time, the number of VNRs
arriving at the physical network is increasing. The revenue
calculation of VNE is shown in formula (9), which is deter-
mined by the consumption of physical resources. It should be
noted that we calculate the long-term average revenue of VNE
at time t rather than the cumulative revenue. Therefore, when
the number of VNRs is increasing, the number of physical
network resources consumed is increasing, and the remaining
available resources of underlying network are decreasing. At
this time, the scale of VNRs it can carry becomes smaller, and
the revenue of resource consumption will be correspondingly
reduced. It can be seen from Fig. 4 that the trend of the curve
is decreasing with time, so it is in line with the actual situation.

We also compare the differences between the four algo-
rithms in terms of virtual network acceptance rate, as shown
in Fig. 5. The change curve of VNR acceptance rate is similar
to the revenue of VNE, but overall, the performance of our
algorithm is better than the other three algorithms. After
calculation, the acceptance rate of our algorithm is 15.2%,
14.5% and 2.7% higher than the other three algorithms. An
important reason is that we are concerned that VNE is a
dynamic process. When selecting physical nodes for virtual
nodes, we select those physical nodes with larger available
resource capacity, so that the remaining physical resource
capacity can also be used to carry other virtual nodes. On
the one hand, it avoids resource fragmentation, and on the
other hand, it improves the acceptance rate of VNRs. The
acceptance rate of VNRs will continue to decrease over time.
This is because physical network resources are continuously
consumed, and its remaining resources can only carry a
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Fig. 4: Comparison with the long-term average revenue of
other algorithms.

small portion of VNRs, so the acceptance rate of VNRs will
decrease. Therefore, the changing trend of VNR acceptance
rate is explainable and reasonable.
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Fig. 5: Comparison with the VNR acceptance rate of other
algorithms.

Generally speaking, our algorithm has better stability, and
the performance of the other three algorithms has changed
a lot. On the one hand, they give priority to physical nodes
and physical links with large resource capacity for embedding,
and ignore the reasonable degree of resource allocation. In
addition, NodeRank is a VNE algorithm based on the ranking
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of node importance, which only considers the local importance
of node attributes, and the flexibility of the algorithm will be
limited by the manual physical node selection rules. It shows
that the performance of VNE based on ML is better than VNE
based on heuristics. MCST-VNE algorithm and GCN-VNE
algorithm are based on ML algorithm, but they both ignore
the feature that VNE is dynamic, which may cause waste in
allocating physical resources for VNRs, which is the main
reason that their performance is not optimal.

We try to verify the flexibility of the algorithm by changing
the resource attributes of physical network or VNRs. Since
the cost and revenue of VNE are closely related to nodes
resources and links resources, in the parameter setting part, we
set the same capacity range for CPU resources and bandwidth
resources. So we use the method of changing the CPU resource
requirement of virtual node and the fixed bandwidth resource
requirement to explore the impact of the change of virtual
network resource requirement attribute on the algorithm. The
experimental results of algorithm flexibility verification are
shown in Fig. 6 to Fig. 8.
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Fig. 6: Revenue test under different CPU resource require-
ments.

Fig. 6 shows the impact of changes in CPU resource re-
quirements on long-term average revenue. Overall, the average
revenue of the algorithm shows a downward trend under four
different CPU resource requirements, which is caused by the
decrease of available resources. A noticeable turning point is
that when the CPU resource demand is less than or equal to 40
units, the long-term average revenue is the lowest. When the
demand for CPU resources decreases, the long-term average
revenue begins to rise again. It can be analyzed that when the
CPU resource demand of the virtual node is less than or equal
to 50 units, although the resource consumption of the virtual
node is large, it can also bring higher revenue to the physical
network. When the CPU resource requirement of virtual nodes
is less than or equal to 30 or 20 units, although each VNR
embedded in the physical network has low revenue, they can
make up for the loss of revenue by increasing the number of
VNE.

Fig. 7 and Fig. 8 show the results of the change of
VNR acceptance rate and revenue cost ratio with the change
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Fig. 7: Acceptance rate test under different CPU resource
requirements.
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Fig. 8: Revenue cost ratio test under different CPU resource
requirements.

of virtual network resource demand, respectively. A similar
turning point occurs when the CPU resource requirement of
virtual nodes is less than or equal to 40 units. The change
curve of the revenue cost ratio is different from the other two.
This is because the revenue cost ratio is not directly related to
the size of the physical network resource capacity. It reflects
the degree of resource utilization of the physical network
and the profitability of the InPs. It can be inferred from
the above experiments that changes in virtual link resource
requirements can also produce similar effects. This shows that
it is effective and realistic to explore the performance changes
of the algorithm by changing the resource attributes of physical
network or virtual network. Therefore, our algorithm has good
flexibility.

VII. CONCLUSION

The VNE algorithm still faces several problems, including
unreasonable constraints and goal setting, ignoring the time
feasibility of the algorithm and not paying attention to the
dynamic of the VNE process, which lead to the disadvantage
of low flexibility of the existing VNE algorithm. This paper



IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, XX 2021 10

proposes a dynamic VNE algorithm based on RL and GCNN,
taking into account the dynamics of VNE and the basic
performance of the algorithm. We combine GCNN with RL
algorithm, based on a self-defined fitness matrix and fitness
value, to achieve an efficient dynamic VNE algorithm. This
algorithm effectively reduces the degree of resource fragmen-
tation by remapping VNRs. In RL, we use asynchronous
advantage actor-critic algorithm for parallel training of the
agent, which mainly includes key steps such as feature extrac-
tion, strategy generation and model training. In experimental
phase, we first compare the proposed algorithm with other
three representative algorithms. Afterwards, by changing the
resource attributes of physical network and virtual network, it
is more comprehensively demonstrate that the algorithm not
only has satisfactory basic VNE performance, but also has
good flexibility.
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