
Automatic Distributed Deep Learning Using
Resource-constrained Edge Devices

Alberto Gutierrez-Torre, Kiyana Bahadori, Shuja-ur-Rehman Baig, Waheed Iqbal,
Tullio Vardanega, Member, IEEE, Josep Lluís Berral, Member, IEEE, David Carrera, Member, IEEE

Abstract—Processing data generated at high volume and speed
from the Internet of Things, smart cities, domotic, intelligent
surveillance, and e-healthcare systems require efficient data
processing and analytics services at the Edge to reduce the latency
and response time of the applications. The Fog Computing Edge
infrastructure consists of devices with limited computing, mem-
ory, and bandwidth resources, which challenge the construction
of predictive analytics solutions that require resource-intensive
tasks for training machine learning models. In this work, we
focus on the development of predictive analytics for urban traffic.
Our solution is based on deep learning techniques localized in the
Edge, where computing devices have very limited computational
resources. We present an innovative method for efficiently train-
ing of Gated Recurrent-Units (GRUs) across available resource-
constrained CPU and GPU Edge devices. Our solution employs
distributed GRU model learning and dynamically stops the train-
ing process to utilize the low-power and resource-constrained
Edge devices while ensuring good estimation accuracy effectively.
The proposed solution was extensively evaluated using low-
powered ARM-based devices, including Raspberry Pi v3 and
the low-powered GPU-enabled device NVIDIA Jetson Nano, and
also compared them with Single-CPU Intel Xeon machines. For
the evaluation experiments, we used real-world Floating Car
Data. The experiments show that the proposed solution delivers
excellent prediction accuracy and computational performance on
the Edge when compared with the baseline methods.

Index Terms—Internet of Things (IoT), Edge Computing,
Resource Management, Big Data, Analytics, Cloud Computing,
Fog Computing

I. INTRODUCTION

THE Internet of Things (IoT) is attracting significant
interest from both academia and industry. The potential

benefit of applying IoT paradigms to Smart Cities and Health
Care service scenarios suggest to design new architectures for
infrastructure, platforms and services. The issue with more
traditional approaches rises from the inherent limitations in
connectivity and computing power of Edge devices and dy-
namic networks. Those IoT architectures are usually composed
of real-time sensor-based monitoring systems and actuators
running in different locations, connected to data aggregation

Alberto Gutierrez-Torre, Josep Lluís Berral and David Carrera are with the
Barcelona Supercomputing Center and Polytechnic University of Catalonia.
e-mail: {alberto.gutierrez, josep.berral, david.carrera}@bsc.es

Kiyana bahadori and Tullio Vardanega are with the University of Padova.
e-mail: bahadorikiana@gmail.com, tullio.vardanega@unipd.it

Shuja-ur-Rehman Baig and Waheed Iqbal are with the University of Punjab.
e-mail: {shuja, waheed.iqbal}@pucit.edu.pk

Copyright © 2021 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

Fig. 1. Edge-Cloud Aggregation Schema, with environment actors (Sensors,
Actuators and Users).

applications or data-warehouses through dynamic networks
(such as 5G, Wi-Fi or wired Internet).

The main feature of the Cloud is to provide extremely scal-
able resources to service applications from a remote datacenter.
In contrast, emerging scenarios like the IoT, smart cities, do-
motic, intelligent surveillance, and e-healthcare usually require
proximity and quick reaction time while generating massive
amounts of data transmitted to the analytics applications.
Fog computing is more attractive for such demand [1]. Fog
computing takes the computation to the Edge, moving data
processing close to the sources, and reducing data to synthe-
sized volumes to be transmitted north-bound to the Cloud,
as shown in Figure 1. Additionally, when the Edge services
depend only on local data, the service can be provided without
using Cloud services. Several fields can benefit from this
kind of architecture, specifically Oil & Gas [2], power grid
systems [3], smart cities, smart industries, and IoT applica-
tions [4]. In these environments, local analytics are required
as they need a low latency QoS [5]. Moreover, back-haul con-
nectivity might fail [6] as the network might not be as reliable
as wanted due to extreme conditions. Given the importance
of exploiting the data at the Edge level, considerable research
effort was devoted to establish a common framework to cope
systematically and effectively with the restrictions proposed
by this kind of environment [7].

The compute-intensive nature of the training of Machine
Learning (ML) models has so far caused that all the processing
is done in Cloud data centers. This typical strategy, to push
the data to the cloud and then training the ML models,
has the advantage of using powerful computing machines.

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including 
reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or 
reuse of any copyrighted component of this work in other works. DOI 10.1109/JIOT.2021.3098973



IEEE INTERNET OF THINGS 2

However, this strategy has several drawbacks: it adds a cost of
additional network dependency, increases latency, and moves
the processing away from the data producers. In contrast, using
limited computing power available at Fog nodes is interesting
for training ML models efficiently. Recent work shows the
importance of training an ML model on Edge infrastructure.
For example, Plastiras et al. [5] show the importance of
doing the computation for training Deep Learning models on
Fog nodes for Computer Vision tasks like object detection.
The authors remark the importance of privacy, performance,
latency, and power efficiency on this kind of application, which
can be a perfect fit for Edge and Fog Computing.

In this work, we investigate the use of Fog devices to
train deep learning models by distributing the training on
available devices at the Fog environment intelligently. Our
proposed solution takes benefit of already active devices
aggregating or collecting data instead of employing additional
Cloud resources. This also reduces network communication
and protects services from network disruptions by keeping
them autonomous on the edge. This concept extends the work
by Perez et al. [6], where local models in the Edge level can
be independent of global ones. This way the architecture is
resilient against back-haul network interruptions. The model
synchronization can be delayed to the moment when network
is available.

We present a system to automatically distribute the time-
consuming task of training deep learning models on a Fog
computing network consisting of low-powered and resource-
constrained computing devices. The proposed approach is
based on Federated Learning (FL), which leverages the work
of McMahan et al. [8] and Bonawitz et al. [9]. The proposed
solution automates part of the Deep Learning process for
selecting appropriate parameters for the model to reduce
the training time while maintaining the model accuracy for
validation data set. We extensively evaluate the proposed
system using a road traffic analytics scenario designed for
city-wide traffic modeling and prediction running on the Fog
computing paradigm. The proposed methodology can make
use of any kind of Neural Network (NN) by distributing the
training on Fog devices. In particular, we use Gated Recurrent
Unit (GRU) neural networks to model the traffic behavior to
produce short/medium-term traffic predictions following the
FL principles. Our evaluation investigates different data aggre-
gation levels, different levels of data processing parallelism,
time requirements for achieving suitable accuracy levels for
models, and suitability for real-time applications in the Edge.
Our evaluation is based on real traffic logs from one week of
Floating Car Data (FCD) in Barcelona. The data was provided
by one of the largest road-assistance companies in Spain and
comprises thousands of vehicles. This approach is tested in a
Smart City setting, however the same approach can be used
for other fields like Oil & Gas, where distributed learning
is required or desirable. Moreover, one appealing domain to
apply our proposed solution is the healthcare industry where
patient data is collected through IoT devices and required to
process locally without sending remote locations for privacy
and security concerns.

The experimental results show that predictive analytics re-

quiring complex ML mechanisms like GRUs can be performed
cost-effectively on the Fog nodes without using expensive
Cloud resources. Additionally, compared to prediction meth-
ods previously used in other studies, we show that GRUs
achieve good accuracy results with constrained training time
in comparison using state-of-the-art methods (i.e., Conditional
Restricted Boltzmann Machines (CRBMs)). Even though the
modeling process is split to reduce training time, the dis-
tributed model shows a stable behavior when modifying train-
ing hyper-parameters. The research contributions of this paper
are as follows:

• A system for distributed modeling for city-wide applica-
tions using the Fog computing paradigm for predictive
analytics using low-powered and resource-constrained
devices.

• A mechanism to automate run-time decisions for stopping
training processes when accuracy levels are reliable for
deep neural networks.

• Evaluation and comparison of time required to model the
deep neural network using the proposed solution on Fog
(low-power and resource-constrained) vs. Cloud (high-
performance) environments.

• A comparative analysis of resource usage vs. accuracy
on training models for real FCD compared with existing
baseline methods.

This paper is organized as follows: Section II reviews the
background and motivation. Section III illustrates the proposed
architecture. Section IV describes our approach methodology.
Section V shows the evaluation, and Section VI provides
concluding remarks and future challenges.

II. STATE OF THE ART

A. Background and Motivation

The Cloud has been widely used to address the emerging
challenges of big data analysis in many smart city ecosystems
such as smart houses, smart lighting, and video surveil-
lance [10], [11], [12]. However, IoT scenarios usually re-
quire low latency between sensors/actuators and usually there
are scarce computing resources. These restrictions avoiding
unnecessary north-south bound communication of data that
can be processed on the Edge or intermediate nodes [6].
Location awareness is also a must in several Smart Cities IoT
architectures providing immediate in-place services. As IoT
services in Smart Cities are being increasingly used, Cloud
services alone can hardly satisfy the mentioned requirements
of this ecosystem.

Fog computing, the paradigm combining the Edge and
Cloud capabilities, can handle the significant data treat-
ment, including acquisition, aggregation, analytics and pre-
processing, while reducing transportation and storage, even
balancing computation power among intermediate nodes [13].

In addition, transforming this data into actionable knowl-
edge and adapting to changing dynamics of modern cities,
requires intelligent modeling techniques not only accurate but
adaptive. ML techniques enable smartness in Smart Cities by
modeling, predicting and extracting useful information from



IEEE INTERNET OF THINGS 3

collected data, through advanced statistics and artificial intel-
ligence algorithms. Deep Learning, a ML subfield based on
multi-layer neuronal networks, is becoming an important tool
to city-modeling challenges across many areas such as fore-
casting [14], self-driving research [15], image processing [16],
[17], or object recognition [18], useful to manage public
services, detect hazardous scenarios or to guide emergency
services among others.

However, the increasing amount of data to be processed,
along with the computational demands of sufficiently-accurate
neural network algorithms, have led to bigger computational
and memory resource requirements. Accelerating neural net-
works training to competitive accuracy within a sufficiently
short time is a major challenge that may lead to increase
computational demands. Seeking solutions that assure scal-
able and efficient learning has given rise to the notion of
“distributed ML”. Federated Learning (FL) [8] is a promising
solution when both data and resources are scattered along
in the architecture, with the added challenge of the near
impossibility of having all data in the same place, and the
cost of constantly offloading computation to the Cloud.

FL aims at distributing the data or, as in the case of Edge
computing, keeping the data near where it is produced [8],
[9]. This solution can be understood as allowing the Edge
devices, the clients, to produce a predictive model with their
own local data, and then coordinate with a central node, the
server, for model merging. In particular this is interesting in
the contexts where data privacy is an issue as in the work of
McMahan et al. [8], as the only data exchanged between the
data producers and the central server are the weights, i.e. the
configuration, of the neural network. On the other hand, there
have been efforts like in the work of Hu et al. [19] that focus
on having a model that works properly on both sides, client
and server. Moreover, it has been proved Stochastic Gradient
Descent (SGD) converges in this scenario [20], proving the
suitability of Neural Networks for this particular task. This
approach brings about properties that are desirable for Edge
Computing architectures, like the ability to keep on working
without network connectivity when the system fails [6].

Even though the methodology per se is already available,
there still is a knowledge gap regarding the actual applicability
of FL on a Fog architecture using low-powered devices.
This work aims to fill this gap applying the methodologies
described in the following sections.

B. Related Work
The exponential growth of the IoT, caused by the oppor-

tunity of leveraging smart devices in generalized enterprise
settings, motivates the quest for novel approaches to develop
deep learning system that can scale to very large models
and large data set. However, training to competitive accuracy
within a sufficiently short time span, for large and complex
networks together with huge data sets is especially challenging
in Edge/Fog nodes at the present state of the art.

A significant amount of effort and research has been devoted
to tackling the challenge of training huge data sets through
building large models with more parameters and paralleliza-
tion or distribution methods based on the Cloud computing

infrastructure. For example, Google implemented a distributed
framework for training neural networks over Central Pro-
cessing Unit (CPU) based on the DistBelief framework [21],
[22] which makes use of both model parallelism, and data
parallelism. This model has also proved useful for computer
vision problems, achieving state-of-the-art performance on a
computer vision benchmark with 14 millions of images.

To scale up the training phase of learning, researchers utilize
accelerators such as a single or cluster of Graphics Processing
Units (GPUs) [23], [24]. Recently, Facebook [25] announced
achieving 90% scaling efficiency in training visual recognition
model, using data parallelism combined with the use of GPUs.

K. Hong et al. [26] proposed a fog-based opportunistic
spatio-temporal event processing system to meet the latency
requirement. Their system predicts future query regions for
moving consumers, and starts the event processing early to
make timely information available when consumers reaches
the future locations. Yu et al. [27] proposed a Deep Reinforce-
ment Learning based system that is able to share execution of
tasks in Edge nodes taking into account the battery, quality of
service and other details.

Works such as Marchisio et al. [28] study how to per-
form ML inference in ultra-low powered devices, and review
the usage of NNs with this kind of device. This approach
minimizes both power usage and hardware costs. Sudharsan
et al. [29] proposed a methodology to train a kind of Con-
volutional Neural Network (CNN) and then adapt it to run
in different MicroController Units (MCUs) to do prediction.
Their approach reduces the size of the trained network to
the 10% of the original. In the same direction, TinyML [30]
enables training a NN with TensorFlow and then convert it to it
can be run using TensorFlow Lite on ultra-low power MCUs.
Neither of these approaches handle training on the device, but
other approaches like Neuro.ZERO [31] enable training on
the device by means of hardware acceleration. However, FL
has yet to be covered on this kind of setup with MCUs, so
that it enables to train different models and average the model
configuration among nodes.

To the best of our knowledge, there currently is no eval-
uation of this kind of problem with FL using Recurrent
Neural Networks (RNNs) with server-class hardware and low-
powered devices. Moreover, mechanisms are needed to stop
training as soon as a reliable-enough model is obtained. We
believe that FL distributed learning can be highly beneficial
for data analytics over scenarios like smart cities.

III. ARCHITECTURE: FLOATING CAR DATA PROCESSING
OVER EDGE

This section presents our proposed architecture for process-
ing Floating Car Data (FCD) using Edge computing infras-
tructure. We explain the Edge computing network, FCD, and
data processing pipeline in the following subsections.

A. Edge Computing Networks

Edge computing networks are based on architectures where
sensors collect data from nearby cars, users, and equipment
and send them to the computing nodes within proximity.



IEEE INTERNET OF THINGS 4

Such nodes are low-powered with limited resources to per-
form complex analytics; therefore, the data is pushed to the
remote Cloud for processing using sophisticated and powerful
hardware. The “Fog” is that part of the architecture embracing
Edge nodes receiving data from sensors, Intermediate nodes
performing intermediate data aggregation, and Cloud APIs
receiving data to be processed and stored, extending the Cloud
paradigm [32]. Figure 2 shows a Fog infrastructure, with near-
data nodes on the Edge, intermediate nodes with medium
power to pre-process aggregate or localized data, and the
Cloud.

Fig. 2. Schema of the Fog Infrastructure, from Edge to Cloud.

Current devices on the Edge are specially designed to
consume low power, produce low throughput, and offer low
capabilities, such as Raspberry Pi and NVIDIA Jetson. These
devices with Edge computing have been recently considered a
good solution for smart city image processing challenges [33],
showing that industry and public administration are interested
in adopting the approach of using low-powered and resource-
constrained devices for real scenarios. NVIDIA Jetson [34]
is a low-power and small form factor computer similar to
Raspberry Pi (ARM processor). It is a Linux-enabled machine
that is equipped with an embedded NVIDIA low-power GPU
and the CUDA framework, which can be used to train Deep
Learning calculations. However, a single Jetson device is not
sufficient to perform the deep learning training independently
for a large data set.

In this paper, we propose using the low-power and resource-
constrained devices to train the deep learning model at the
Edge, close to the users and data, by distributing the training
on multiple devices and enabling the Edge efficient analytics.
In our system, sensors collect data and transmit to the Edge
nodes, and analytics are performed on the Edge nodes instead
of offloading the complex analytics tasks to the Cloud.

B. Floating Car Data

FCD represents geo-localized timestamped data of moving
vehicles, collected and analyzed for various applications, in-
cluding smart cities, traffic engineering, and traffic manage-
ment. Typically, FCD is received through antennas deployed
in the town representing a large urban zone, a localized
neighborhood, a street, or a street segment, depending on
which granularity is required for the specific application. That

data is provided to the Edge analytics indicating the received
timestamp for each vehicle transmission and its speed. Data
like vehicle position, e.g. Global Positioning System (GPS), is
not provided for privacy and security reasons; only the Edge
node position is provided.

The FCD arrives asynchronously to our Edge nodes and is
aggregated periodically into summaries of traffic information,
i.e., the average speed of vehicles surrounding the node
(in Km/hour) and vehicles’ count, considering that vehicles
will be reported once for each aggregation window time.
Considering the aggregation of a 1-minute interval as lower
bound, we aggregate the incoming data into data entries
containing latitude, longitude, number of cars, speed average
and timestamp. Before performing the analytics, the Edge
nodes independently collect and aggregate the FCD into a
specific time interval.

The 1-minute aggregation data is only a base for larger
aggregations, as traffic time-series can be aggregated from
minutes to hours to days because of its periodic pattern in
time. While large aggregations can be easily predicted due to
this periodicity, smaller aggregations can be more challenging.
For the validation experiments, in Section V, we test different
levels of time aggregation varying from 5 minutes to 1-hour
intervals for training analytic models.

In this work, we used a week-worth of real FCD from the
city of Barcelona, Spain, provided by one of the largest road-
assistance companies in the country.

C. Data Analytics Pipelines

Whenever FCD is detected through antenna sensors, it is
transmitted to the nearest Edge node. The data aggregation us-
ing a specific time interval is performed at the Edge node. For
each aggregation, the timestamp is added to the FCD record for
building a time-series data set. The FCD time-series data set is
used to model the traffic behavior for forecasting and analytics
purposes. Figure 3 shows the FCD collection, modeling, and
forecasting pipeline. In our system, we performed distributed
model training, explained in Section IV-C, using low-powered
Edge nodes.

Fig. 3. Pipeline of Time-Window Aggregation, Learning and Prediction.

For a global-scale prediction, the aggregated data and cre-
ated models on the Edge can be pushed to the Cloud for
storage and further analysis. Moreover, the aggregated data
from individual Edge nodes can be passed to intermediate
nodes for training a generalized model, as depicted in Figure 2.
However, in previous works [6], we observed that local models
fit local scenarios better than general models in the Cloud,
avoiding intense communication interruption problems.



IEEE INTERNET OF THINGS 5

IV. METHODOLOGY

This section presents our proposed methodology for FCD
time-series forecasting, automation for the training process,
and distributed model learning on the Edge.

A. Traffic Forecasting

We can see the FCD time-series data set as a matrix of size
number of time window elements times input features. The
forecasting problem targets the prediction of two variables:
the number of cars and the average speed of the following
time step (𝑡 + 1) using the previous 𝑑 elements from the time
window, where 𝑑 is our delay or memory window. As the time
window is a whole aggregation period, the goal is to predict the
next period of traffic information. We used GRU networks [35]
to train the forecasting model. Given the capabilities of the
GRUs, it is possible to forecast far from 𝑡 + 1, as GRUs are
shown to be capable of medium-term forecasting in many
scenarios. GRUs are generative, and can generate predictions
by using their last prediction and status as input/memory for
the next prediction. In our problem, we are predicting from
𝑡 + 1 up to 𝑡 + 𝑁 , where 𝑁 is the size of testing data set
in the experiments (approximately 1 day in the following
experiments).

B. Training Process Automation

ML model training with good accuracy is controlled by a
“Training vs. Validation” process. In NNs, this process is used
to decide when to stop the iterative process. Training data
is divided into two batches: “training” and “validation” data
sets. The longer NNs trains with the whole training data set
(each period is called an epoch), the more fitted the model
is expected to be, but only to the training data, which can
lead to over-fit. To mitigate this risk, the validation data set
is predicted at each epoch, allowing to check how the model
behaves with “non-training” data. While the error in training
data decreases at each epoch, error in validation data decreases
until the point of over-fitting and increases from there, as
Figure 5 illustrates. That point is considered the “bouncing
point”, and data-scientists would manually stop iterating at that
point. But for non-stable data, as we face with FCD, validation
can differ enough from training data on certain occasions, and
those expected behaviors may not be encountered in during
training. Hence, the time at which the process should stop
stop iterating must be decided automatically.

To detect the bouncing point to stop the deep networks’
training process for minimizing the training time while achiev-
ing good accuracy, we propose Algorithm 1. The algorithm
shows the technique for fixing 𝑝 (point of bounce) dy-
namically, using the error on training and validation, previ-
ously smoothing both sequences to facilitate treating wavy
sequences, using a Locally Estimated Scatterplot Smoothing
(LOESS) curve fitting method [36]. Among other algorithms
with the same objective, LOESS was selected for its simplicity
and speed. It is well fitted for low-powered devices and, for
our use case, it achieved good results for low computational
cost.

Algorithm 1 Detecting GRU training cutting-point (epoch) 𝑝

from training and validation error
Result: 𝑝 point of bounce/intersect/convergence/minimum,

prioritizing error on validation over error on training
smooth_tr, smooth_val ← loess_smooth(error_tr, error_val)
if exists_bounce(smooth_val) then

return bounce_p(smooth_val)
else

if exists_intersect(smooth_tr, smooth_val) then
return intersect_p(smooth_tr, smooth_val)

else
if exists_bounce(smooth_tr) then

return bounce_p(smooth_tr)
else

if converges(smooth_tr, min_threshold) then
p ← converging_p(smooth_tr, min_threshold)

return min(p, minimum_p)
else

return minimum_p
end

end
end

end

The process of finding 𝑝 implies running for a given amount
of epochs, to find the trend and detect the bouncing, inter-
section or convergence point. This process can be substituted
by more sophisticated methods that can be applied online,
although the set of rules we have devised can be used to
determine 𝑝 once for a given amount of data, while retaining
𝑝 for future models.

C. Distributed Model Training

Computing devices at the Edge are low-powered and very
limited in terms of the number of cores and storage. The
available processing power is mostly used to receive and
transmit data from sensors to Cloud; remaining computational
resources can perform aggregation and modeling processes.

In our proposed distributed model training solution, we
assume the availability of single CPU/GPU processors on each
available Edge device. To distribute training across workers
(available Edge devices), we partition the training-validation
data set and send it over to the available workers. Each worker
creates a model from its subset and validates it. At that
point, all sub-models are joined in the initiator Edge node
and merged following the FL principles [8]. The resulting
aggregated model can either work better for the dilution of
noise among sub-models or do worse due to over-fitting each
sub-model to its sub-set. For this reason and good practice,
the aggregation model is evaluated on the test data set in the
initiator Edge node. Figure 4 shows the process of distributed
training, merging and evaluation. This process is done in a off-
line fashion using the whole data set, but it also could be done
receiving a stream of continuous data, retraining the networks
for new batches and synchronizing after each epoch.

In our test case, we have split the data evenly between nodes
using the data coordinates to split regions. Then inside each



IEEE INTERNET OF THINGS 6

Fig. 4. Distributed modeling technique for training and testing phases. Data
split among 𝑁 workers, creating 𝑁 models to be merged, creating the final
model to be evaluated.

node, the split of training vs. validation is done following a
80% − 20% ratio between training vs. validation, for every
subset. Each worker splits its data to train and validate its
model. The test set (a 20% of the total data) is kept for the
aggregated model for evaluating the final model.

V. EXPERIMENTAL EVALUATION

The proposed approach was evaluated with several experi-
ments designed to test the model learning and accuracy on the
previously mentioned real FCD set with one week worth of
data. We compare two approaches: a single learning model
that learns from all the data versus multiple local models
that are synchronized in a FL framework. We compare the
effectiveness of the different learning model configurations
in low-powered and resource-constrained Edge devices. Im-
plementation and evaluation of the proposed solution were
performed using TensorFlow and Keras frameworks over R.
Notice that R can run on any Linux-enabled device and that
the core of the code is built on top of TensorFlow, which is
efficiently implemented in C++. The infrastructure to run and
measure training times corresponded to a server-class single
thread Xeon processor for comparison experiments among
different training configurations and two low-powered devices:
a Raspberry Pi 3 (ARM processor), and an NVIDIA Jetson
Nano (ARM processor + NVIDIA GPU) to cover both CPU
and GPU settings.

Our experiments addressed the following evaluation aspects:
1) The effects of training the GRU with a different number

of Hidden Units and a different number of epochs,
and check the usefulness of determining a stop-point
𝑝 dynamically using the presented set of rules versus
fixing a large enough 𝑝 a-priori.

2) The comparison and trade-off between training epochs
vs. hidden units vs. resulting error vs. level of time
aggregation.

3) The effects of distributing the training process among
𝑁 different processors, considering a low range for 𝑁

matching the dimensions of common low-power devices.
4) The capability of running the presented methods on

low-powered devices, i.e. Raspberry Pi v3 and NVIDIA
Jetson Nano.

A. Hyper-parameter Identification

We evaluated the capability of the Deep Neural Network
(DNN) to learn the target time-series of Volume (Cars) and

Training Validation

0 50 100 150
Number of epochs

0.33

0.34

0.35

0.36

0.37

0.38

0.39

M
A

E
 (

S
m

o
o
th

e
d
)

Fig. 5. Zoomed representation of the smoothed Mean Absolute Error (MAE)
as used in Algorithm 1. Observe that at 94 epochs the validation data bounced
back, selecting it as a training stop-point.

Average Speed (Speed) of traffic data using the proposed
Algorithm 1 for identifying appropriate epochs. We also ran a
grid search-like strategy for determining the number of hidden
units and time aggregation levels, i.e., periods in which data
is aggregated into a single value for the proposed solution.

In this experiment, we trained a single model using the
entire training data set and our proposed Algorithm 1 to auto-
matically identify the number of epochs with higher accuracy.
We evaluated various settings for hidden units and aggregation
levels. In the case of 2 hidden units and 20-minute aggregation,
our algorithm identified 94 epochs as a bouncing point, as
shown in Figure 5. To compare the proposed solution for
identifying epochs, we have performed additional experiments
and manually tuned the epochs from 10 to 200. Notice that
the stop decision is made with the validation data, as doing
so with training data could lead to overfitted models.

Figure 6 shows the error distribution for different training
epochs over the Test data set and the dynamic stop-training
point using Algorithm 1. For the volume of cars, learning
seems easy as we observed MAE between 1 − 1.3. Predict-
ing the speed of cars becomes more complex as we yield
volatile error between 3 − 5.5 in Km/h (the variability of
the traffic speed on those data sets is already known from
previous works [6]). While most of the training is done on
the first few epochs of the different tested NN configurations,
identifying automatic stop-training point becomes conservative
with respect to the best option, but performing almost as good
as the optimal.

The experimental results reported in Figure 6 show the
difficulty of establishing a set of rules that match every
single training-validation scenario. Selecting the best number
of epochs is still an open problem whose solution can be
automated with more complex mechanisms. However, for the
current scenario, where quick decisions must be made, the
presented algorithm becomes an adequate solution. Therefore,
from now on, the results shown are the ones using the 𝑑 value
for epochs.

Figure 7 shows the Root Mean Square Error (RMSE) for
estimating the number of cars on test data for 2, 4, 8, 16
and 32 hidden units with 5, 10, 15, 20, 30 and 60 minutes
aggregation levels. We observed the aggregation yields stable



IEEE INTERNET OF THINGS 7

10 20 50 100 200 d

1.00

1.25

1.50

1.75

2.00

2.25

2.50
M

A
E
 (

N
o
 o

f 
C

a
rs

)

10 20 50 100 200 d
Number of Epochs

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

M
A

E
 (

S
p
e
e
d
)

Fig. 6. Comparison of MAE for various static number of epochs with a
dynamic number of epochs for estimating the number of cars and average
speed. Here 𝑑 represents a dynamic number of epochs.

behavior until 30 minutes aggregations as the RMSE remains
under 2. However, at 60 minutes aggregation level, we ob-
served a significant increase in the estimation error. This is
because, with a higher level of data aggregation, the underlying
fine-grained details are hidden, and the model cannot learn
from data accurately. We observed the effect of changing the
number of hidden units does not have any significant effect
on accuracy. The average RMSE of estimating the number of
cars remains between 1 to 2 except at the aggregation level of
60 minutes.

Figure 7 shows the RMSE for estimating the speed of cars
on test data for 2, 4, 8, 16 and 32 hidden units with 5, 10,
15, 20, 30 and 60 minutes aggregation level. We observed
the high error for aggregation levels 5 and 60; however, it
remains similar for other aggregation levels. We do not observe
any noticeable accuracy gain for using a different number of
hidden units. The average RMSE of estimating cars’ speed
remains between 4.5 to 5.5 except aggregation level of 5 and
60 minutes.

This set of experiments allowed us to determine the appro-
priate level of aggregation and the hidden units to determine to
be used in the final model. We computed the average RMSE
of speed and number of cars on test data for (2, 4, 8, 16, 32)
hidden units with (5, 10, 15, 20, 30, 60) minutes aggregation
levels. Figure 8 shows the average RMSE for estimating the
speed and number of cars. Each aggregation level has its
optimal number of hidden units, meaning that there is no
optimal configuration able to deal with all levels of aggre-
gation, a desirable state allowing us to decide the precision of

5

1
0

1
5

2
0

3
0

6
0

0

1

2

3

R
M

S
E
 (

N
o
 o

f 
C

a
rs

)

hidden units
2 4 8 16 32

5

1
0

1
5

2
0

3
0

6
0

Aggregation Level (Minutes)

0

2

4

6

R
M

S
E
 (

S
p

e
e
d

)

Fig. 7. Error vs. hidden units vs. time aggregation for number of cars and
speed estimation with dynamic epoch value 𝑑.

the time interval. Determining a time interval where we can
trust predictions the most, we observed that the 2 hidden units
with 20 minutes aggregation level yield the minimum error
compared to the other configurations. Therefore, in the rest of
the experiments, we used 2 hidden units and 20 minutes of
aggregation level.

5 10 15 20 30 60

Aggregation Level (Minutes)

0

5

10

15

20

RM
SE

 (A
ve

ra
ge

)

4.2 3.22 3.16 3.04 3.14 3.62

4.15
3.24 3.24 3.2 3.31 4.2

3.98
3.2 3.46 3.47 3.18

5.16

3.96
3.3 3.52 3.19 3.26

4.22
4.0

3.41 3.33 3.16 3.32

4.34

hidden units
2 4 8 16 32

Fig. 8. Comparison of Average RMSE using different number of hidden units
with various aggregation levels (𝑑 epochs).

B. Comparison of Single and Distributed Models

This experiment evaluated the proposed distributed model
learning effectiveness and compared it with a single standalone
learning model (𝑁1). We focused on two different scenarios,
where the processes can work in multiple CPUs in the same
place (e.g., Tensorflow working with multiple CPUs in the
same machine), or a scenario where CPUs are disaggregated
and become independent of each other (e.g., different Edge
nodes cooperating). The best hyper-parameter configurations



IEEE INTERNET OF THINGS 8

TABLE I
COMPARISON OF ERROR AND TRAINING TIME WITH FIXED NUMBER OF
EPOCHS (FIXED EP) AND PROPOSED NUMBER OF EPOCHS (PROP EP).

Model RMSE (Cars) RMSE (Speed) Time (Sec)
Fixed Ep Prop. Ep Fixed Ep Prop. Ep Fixed Ep Prop. Ep

N1 1.40 1.40 4.62 4.62 233.71 233.71
N2 3.25 2.05 7.84 5.45 237.79 118.32
N3 6.25 3.29 6.83 4.64 229.53 84.69

from the previous experiment were used in this experiment,
with the addition that when distributing the data to be modeled,
we are applying the 1/𝑁 factor to the number of training
epochs as the “proposed epochs”.

Table I shows the comparison of RMSE for the number of
cars and speed with the fixed and proposed number of epochs
for a single model (N1) and distributed models N2 and N3.
For training distributed models N2 and N3, we used 2 and
3 Edge nodes, respectively. Whereas for N1, we used only
one Edge node. We observed that for N2 and N3, using a
fixed number of epochs increases RMSE due to over-fitting
the model. We also observed that training time did not change
even when we distribute the input data to be processed by more
than one model. This occurred because the number of epochs
stays the same for each configuration. However, we observed
a significant decrease in training time when the number of
epochs is obtained by dividing the optimal number of epochs
for 𝑁1, by the number of parallel models. We observed that
RMSE is slightly increased in estimating the number of cars,
while it remains almost stable for estimating cars’ speed.

N1 N2 N3
Parallel Models

0

1

2

3

4

5

R
M

S
E

cars rmse speed rmse

(a) RMSE comparison

N1 N2 N3
Parallel Models

0

50

100

150

200

T
ra

in
in

g
 T

im
e
 (

S
e
co

n
d
s)

(b) Time comparison

Fig. 9. Comparison of RMSE vs. training time for different parallel mod-
els(Nx) with number of epochs divide by x where x=1,2,3.

Figure 9 shows the accuracy for estimating the number
of cars and speed for using N1, N2, and N3. Figure 9a
shows that the accuracy in the estimate of the number of
cars slightly decreases with the increase in the number of
distributed models used to train the input data. This occurs
because models are trained on fewer data and are more specific
to a particular input set. This was why we observed this
behavior when we combined them in the final prediction
model. However, this does not affect the accuracy of predicting
the speed of cars, and it somehow remains stable regardless
of the number of models used to train the input data set. We
also observed losing some accuracy on average, but we are

TABLE II
COMPARISON OF CHANGE FACTOR IN ERROR AND TRAINING TIME FOR N2

AND N3 WITH N1.

Model +RMSE (Cars) +RMSE (Speed) +Time (s)
N2 0.65 0.83 -115.39
N3 1.89 0.02 -149.02

saving more than 50% of training time when we used parallel
models, as shown in Figure 9b.

With respect to the speed-up comparison for parallel models
(N2, N3) with N1, Table II shows the improvement factor for
error and time. We observed that when we distribute the input
data set to be processed by 2 models. There is a decrease of
115.39 seconds in training time with an increase of 0.65 and
0.83 of RMSE for the number of cars and speed. Similarly,
we observed a reduction of training time when using three
parallel models and an increase of 1.89 and 0.02 of RMSE
for the number of cars and speed estimations.

C. Evaluation on Low-power Architectures

In this experiment, we compared the proposed solution’s
effectiveness on low-power and resource constraint devices
designed for the Edge, like the Raspberry Pi model 3B and
the NVIDIA Jetson model Nano. Such devices are built for
consuming less than 12W and embed low CPU and GPU
computing resources. Raspberry Pi is used for general pur-
poses while the Jetson integrates a GPU towards AI and neural
network computing on the Edge and smart devices.

Testing the grid configurations for Time Aggregation vs.
Hidden Units on the Raspberry Pi and the Jetson Nano, we
observed a noticeable increase in execution time in comparison
with the single-CPU Xeon. Still, the training plus validation
time is below 30 minutes for nearly a week worth of data.
We tested 4, 32 as 512 Batch Sizes (BS), i.e., the number
of samples used for each training step in the neural network
to check the Jetson GPU’s possible advantages due to data
bandwidth. The bigger the batch size, the more we profit from
the GPU’s parallelism up to a certain point. The number of
epochs is fixed at 94, to compare the performance of identical
training processes, and the steps (iterations) per epoch are
proportional to the batch size (200 steps/epoch for BS =
4, 25 steps/epoch for BS = 32, 1 step/epoch for BS=512).
The objective was to test the method’s performance on low-
powered devices with different properties while maintaining
the error (that may vary when modifying the batch-size).
As a comparison metric, we show the milliseconds per step
and the seconds per epoch. When computing the average
milliseconds/step, the first epoch was excluded as it carries the
overhead on warm-up around ×4 the average epoch. Figure 10
shows the performance in times per step for the different
configurations of the GRU in the different used technologies,
for the training time with a common and proper configuration
found for the GRU on the single-CPU Xeon, the Raspberry
Pi ARM-based CPU, and the ARM-based and GPU enhanced
Jetson.

From this experiment, we concluded that our method is
fully fit for use on low-power or resource-constrained devices,



IEEE INTERNET OF THINGS 9

Fig. 10. Time comparison for configurations in low-power devices vs. single CPU Xeon ref., for each amount of hidden units.

Fig. 11. Average modeling time on different Edge devices.

as training times take at maximum half an hour for a model
representing around six days. Moreover, we noticed that the
GPU at the Jetson Nano does not provide improvement for
the kind of data until the batch size reaches larger sizes.

Figure 11 shows the absolute training time for the 3 devices,
where the single Xeon outperforms the low-powered ones but
for no more than a factor of 4, and how in scenarios requiring
large memory bandwidth (low data aggregation and large batch
sizes), the GPU starts chasing CPU execution times.

D. Comparison with Baseline Methods

To conclude the evaluations, we provide a comparison
of the proposed method with previous and other simplistic
models used for estimating the traffic data. We compared our

TABLE III
COMPARISON WITH BASELINE MODELS VAR AND CRBMS AS N = 1 (5

MIN AGGREGATION). NOTICE THAT THE RESULTS ARE FOR THE OVERALL
BEST CONFIGURATIONS FOUND.

Method RMSE
Cars Speed

VAR 4.99 7.44
CRBM 2.03 5.68
GRU 1.76 6.17

solution with VAR (Vector Auto-Regression), a classic time-
series analysis method, and CRBMs (Conditional Restricted
Boltzmann Machines) as used in previous works [6].

As we can see in Table III, the proposed solution based on
GRU outperforms VAR and provided comparable performance
with CRBM when the granularity is set to 5 minutes. In
Figure 12 we can observe that GRU is slightly better than
CRBM when granularity is finer, as seen in Figure 7. Both kind
of neural network perform well in our framework. However,
due to our particular interest in finer granularity, GRU is
the chosen method for this work. For other experiments with
different data sets, both methods should be compared in order
to select the final model.

E. Discussion

Computing devices over the Edge are power and resource
constrained as compared to the resource available in data cen-
ters. Building intelligent solutions requiring training compute-
intensive DNN models introduced the challenge of efficiently
utilizing the available Edge devices. In this work, we have
addressed this challenge and proposed a system that distributes
the compute-intensive ML tasks to the available Edge device
while obtaining an accuracy comparable to models trained on
the single machine. Our solution is capable of stopping the
model training to achieve acceptable performance dynamically.



IEEE INTERNET OF THINGS 10

Fig. 12. Error vs. Hidden units vs. Time aggregation for number of cars and
speed estimation on CRBMs.

Our experimental evaluations compared a distributed learning
model with a single-model approach and other baseline solu-
tions for traffic forecasting. The results show the potential of
the proposed solution for Edge and Fog platforms.

We consider splitting the ML modeling process attractive
in scenarios where we must reduce the training time without
losing accuracy and constraint to avoid the task offloading to
the cloud data centers. In such a situation, each device can
take care of their local data and send only the trained model
configuration to coordinate with other devices for building the
model for generalizing the estimations. This solution is very
useful in Edge computing environments in which we have
low-power devices scattered. Our proposed solution will help
many scenarios, including smart cities, traffic management and
planning, the Internet of Things, and intelligent surveillance.

VI. CONCLUSIONS AND FUTURE WORK

The presented work focused on performing predictive an-
alytics on the Edge, using urban traffic prediction as an
essential use case scenario relevant to Smart Cities appli-
cations. Given the amount of data generated on the Edge,
not only in volume but also in time, moving modeling and
analytics near the data may be a good compromise in front of
Cloud models, where data must be massively pushed north-
bound. Of course, it must be understood that Deep Learning
and other analytics processes are usually designed for high-
performance computing environments. In contrast, the Edge
front is commonly composed of low-power devices with scarce
computing resources.

In this paper, we proposed an experimentally-evaluated
method based on FL to move data analytics processing to
Edge. The learning tasks are distributed to multiple Edge
nodes, with limited computing resources, in a manner that
each node processes its own local data. In so doing, we
attempted to balance training time and model accuracy as

a function of data distribution. Experiments showed that the
tested data-sets, provided by a road-service car fleet from
Barcelona, can be learned with acceptable accuracy although
being unstable on different previous tested techniques. Also,
for each configuration of NNs, there exists a multi-dimensional
trade-off between the time spent on training, the distribution of
data and parallelization of the model training process, and the
previous aggregation of collected data to be trained, creating
an interesting problem on how good we can model traffic
against how much available time/resources are on given Edge
scenarios.

The presented solution highlights future research and in-
novation opportunities on Smart City applications, capable of
providing services near-data and near-users without abusing
network hierarchies and Cloud resources. While this work
focused on a specific type of NNs, other statistical and ML
can be applied, more suitable for particular scenarios far from
urban traffic. Also, more complex architectures for distributing
machine learning processes and automation of autonomous
learning can be applied, focusing on better decisions when
having time/resources for smart management of the device and
the data pipeline. Another interesting aspect to cover is the use
of MCUs with FL. With this, ultra-low powered devices would
be able to collaborate in training and provide models with a
wider knowledge on data from their neighboring MCUs.

ACKNOWLEDGMENTS

This work has been partially supported by the Spanish Government
(contract PID2019-107255GB), the Generalitat de Catalunya (con-
tract 2014-SGR-1051), the University of Padova, and Severo Ochoa
CoE (SEV-2015-0493-16-5). The statements made herein are solely
the responsibility of the authors.

REFERENCES

[1] M. Abdullah, W. Iqbal, A. Mahmood, F. Bukhari, and A. Erradi,
“Predictive autoscaling of microservices hosted in fog microdata center,”
IEEE Systems Journal, 2020.

[2] S. Ali, A. Ashraf, S. B. Qaisar, M. Kamran Afridi, H. Saeed, S. Rashid,
E. A. Felemban, and A. A. Sheikh, “Simplimote: A wireless sensor
network monitoring platform for oil and gas pipelines,” IEEE Systems
Journal, vol. 12, no. 1, pp. 778–789, 2018.

[3] M. Ghorbanian, S. H. Dolatabadi, and P. Siano, “Big data issues in smart
grids: A survey,” IEEE Systems Journal, vol. 13, no. 4, pp. 4158–4168,
2019.

[4] G. Premsankar, M. Di Francesco, and T. Taleb, “Edge computing for
the internet of things: A case study,” IEEE Internet of Things Journal,
vol. 5, no. 2, pp. 1275–1284, 2018.

[5] G. Plastiras, M. Terzi, C. Kyrkou, and T. Theocharidcs, “Edge intelli-
gence: Challenges and opportunities of near-sensor machine learning ap-
plications,” in 2018 IEEE 29th International Conference on Application-
specific Systems, Architectures and Processors (ASAP), 2018, pp. 1–7.

[6] J. L. Pérez, A. Gutierrez-Torre, J. L. Berral, and D. Carrera, “A
resilient and distributed near real-time traffic forecasting application for
fog computing environments,” Future Generation Computer Systems,
vol. 87, pp. 198 – 212, 2018.

[7] C. Savaglio and G. Fortino, “A simulation-driven methodology for iot
data mining based on edge computing,” ACM Transactions on Internet
Technology (TOIT), vol. 21, no. 2, pp. 1–22, 2021.

[8] H. B. McMahan, E. Moore, D. Ramage, and B. A. y Arcas, “Fed-
erated learning of deep networks using model averaging,” ArXiv, vol.
abs/1602.05629, 2016.

[9] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
V. Ivanov, C. Kiddon, J. Konecny, S. Mazzocchi, H. B. McMahan et al.,
“Towards federated learning at scale: System design,” arXiv preprint
arXiv:1902.01046, 2019.



IEEE INTERNET OF THINGS 11

[10] S. Dey, A. Chakraborty, S. Naskar, and P. Misra, “Smart city surveil-
lance: Leveraging benefits of cloud data stores,” in 37th Annual IEEE
Conference on Local Computer Networks-Workshops. IEEE, 2012, pp.
868–876.

[11] K. Su, J. Li, and H. Fu, “Smart city and the applications,” in 2011
international conference on electronics, communications and control
(ICECC). IEEE, 2011, pp. 1028–1031.

[12] M. Castro, A. J. Jara, and A. F. Skarmeta, “Smart lighting solutions
for smart cities,” in 2013 27th International Conference on Advanced
Information Networking and Applications Workshops. IEEE, 2013, pp.
1374–1379.

[13] S. Yi, Z. Hao, Q. Zhang, Q. Zhang, W. Shi, and Q. Li, “Lavea: Latency-
aware video analytics on edge computing platform,” in Proceedings of
the Second ACM/IEEE Symposium on Edge Computing. ACM, 2017.

[14] S. Xingjian, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-
c. Woo, “Convolutional lstm network: A machine learning approach for
precipitation nowcasting,” in Advances in neural information processing
systems, 2015, pp. 802–810.

[15] A. Sergeev and M. Del Balso, “Horovod: fast and easy distributed deep
learning in tensorflow,” arXiv preprint arXiv:1802.05799, 2018.

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[17] D. Cireşan, U. Meier, and J. Schmidhuber, “Multi-column deep neural
networks for image classification,” arXiv preprint arXiv:1202.2745,
2012.

[18] A. Coates, A. Ng, and H. Lee, “An analysis of single-layer networks
in unsupervised feature learning,” in Proceedings of the fourteenth
international conference on artificial intelligence and statistics, 2011,
pp. 215–223.

[19] B. Hu, Y. Gao, L. Liu, and H. Ma, “Federated region-learning: An edge
computing based framework for urban environment sensing,” in 2018
IEEE Global Communications Conference (GLOBECOM), Dec 2018,
pp. 1–7.

[20] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and
K. Chan, “Adaptive federated learning in resource constrained edge
computing systems,” 2018.

[21] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior,
P. Tucker, K. Yang, Q. V. Le et al., “Large scale distributed deep
networks,” in Advances in neural information processing systems, 2012,
pp. 1223–1231.

[22] Q. V. Le, M. Ranzato, R. Monga, M. Devin, K. Chen, G. S. Corrado,
J. Dean, and A. Y. Ng, “Building high-level features using large scale
unsupervised learning,” arXiv preprint arXiv:1112.6209, 2011.

[23] N. Strom, “Scalable distributed dnn training using commodity gpu cloud
computing,” in Sixteenth Annual Conference of the International Speech
Communication Association, 2015, pp. 1488–1492.

[24] A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro, and N. Andrew,
“Deep learning with cots hpc systems,” in International conference on
machine learning, 2013, pp. 1337–1345.

[25] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola,
A. Tulloch, Y. Jia, and K. He, “Accurate, large minibatch sgd: Training
imagenet in 1 hour,” arXiv preprint:1706.02677, 2017.

[26] K. Hong, D. Lillethun, U. Ramachandran, B. Ottenwälder, and B. Kold-
ehofe, “Opportunistic spatio-temporal event processing for mobile situa-
tion awareness,” in Proceedings of the 7th ACM international conference
on Distributed event-based systems. ACM, 2013, pp. 195–206.

[27] L. Yu, Z. Li, J. Liu, and R. Zhou, “Resources sharing in 5g networks:
Learning-enabled incentives and coalitional games,” IEEE Systems Jour-
nal, pp. 1–12, 2019.

[28] A. Marchisio, M. A. Hanif, F. Khalid, G. Plastiras, C. Kyrkou,
T. Theocharides, and M. Shafique, “Deep learning for edge computing:
Current trends, cross-layer optimizations, and open research challenges,”
in 2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI).
IEEE, 2019, pp. 553–559.

[29] B. Sudharsan, J. G. Breslin, and M. I. Ali, “Rce-nn: a five-stage pipeline
to execute neural networks (cnns) on resource-constrained iot edge
devices,” in Proceedings of the 10th International Conference on the
Internet of Things, 2020, pp. 1–8.

[30] R. Sanchez-Iborra and A. F. Skarmeta, “Tinyml-enabled frugal smart
objects: Challenges and opportunities,” IEEE Circuits and Systems
Magazine, vol. 20, no. 3, pp. 4–18, 2020.

[31] S. Lee and S. Nirjon, “Neuro.zero: A zero-energy neural network
accelerator for embedded sensing and inference systems,” in
Proceedings of the 17th Conference on Embedded Networked
Sensor Systems, ser. SenSys ’19. New York, NY, USA: Association

for Computing Machinery, 2019, p. 138–152. [Online]. Available:
https://doi-org.recursos.biblioteca.upc.edu/10.1145/3356250.3360030

[32] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proceedings of the first edition of the
MCC workshop on Mobile cloud computing. ACM, 2012, pp. 13–16.

[33] M. Naphade, D. C. Anastasiu, A. Sharma, V. Jagrlamudi, H. Jeon,
K. Liu, M.-C. Chang, S. Lyu, and Z. Gao, “The nvidia ai city challenge,”
in 2017 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Ad-
vanced & Trusted Computed, Scalable Computing & Communications,
Cloud & Big Data Computing, Internet of People and Smart City Inno-
vation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). IEEE,
2017, pp. 1–6.

[34] “Nvidia autonomous machines: Jetson nano,” July 2019. [Online].
Available: https://www.nvidia.com/en-us/autonomous-machines

[35] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation
of gated recurrent neural networks on sequence modeling,” 2014.

[36] F. E. Harrell Jr, Regression modeling strategies: with applications to
linear models, logistic and ordinal regression, and survival analysis.
Springer, 2015.




