
1

A Fast Edge-Based Synchronizer for Tasks in
Real-Time Artificial Intelligence Applications

Richard Olaniyan and Muthucumaru Maheswaran

Abstract—Real-time artificial intelligence (AI) applications
mapped onto edge computing need to perform data capture,
process data, and device actuation within given bounds while
using the available devices. Task synchronization across the
devices is an important problem that affects the timely progress
of an AI application by determining the quality of the captured
data, time to process the data, and the quality of actuation.
In this paper, we develop a fast edge-based synchronization
scheme that can time align the execution of input-output
tasks as well compute tasks. The primary idea of the fast
synchronizer is to cluster the devices into groups that are highly
synchronized in their task executions and statically determine
few synchronization points using a game-theoretic solver. The
cluster of devices use a late notification protocol to select the
best point among the pre-computed synchronization points to
reach a time aligned task execution as quickly as possible. We
evaluate the performance of our synchronization scheme using
trace-driven simulations and we compare the performance with
existing distributed synchronization schemes for real-time AI
application tasks. We implement our synchronization scheme
and compare its training accuracy and training time with other
parameter server synchronization frameworks.

Index Terms—synchronization, game theory, AI application
tasks, parameter server.

I. INTRODUCTION

Intelligent systems such as self-driving cars and robots can
work either autonomously (i.e., doing all necessary process-
ing by themselves) or work collaboratively with other self-
driving cars or robots and environmental infrastructures [1].
For instance, self-driving cars can collaborate with smart
highways to increase the safety and overall performance under
diverse scenarios. We consider the later scenario that needs
fine-grained orchestration of all tasks that are executed by
the different components in the larger intelligent system [2],
[3]. Intelligent systems rely on artificial intelligence (AI)
or machine learning (ML) and need to process the tasks
within specified timing constraints. Data intensive AI/ML task
processing have traditionally relied on cloud computing [4].
However, the recent emergence of edge computing has intro-
duced a technology that can host the data closer to the devices
and allow faster turnaround times for the AI/ML tasks [5], [6],
[7]. In this paper, we consider task synchronization (i.e., time

This research is supported by an Ericsson/Mitacs Accelerate grant, NSERC
Discovery grant and PTDF Nigeria/PRESSID funding.

R. Olaniyan is with the School of Computer Science, McGill University,
Montreal, QC, Canada (e-mail: richard.olaniyan@mail.mcgill.ca).

M. Maheswaran is with the Department of Electrical and Computer
Engineering, McGill University, Montreal, QC, Canada (e-mail: muthu-
cumaru.maheswaran@mcgill.ca).

alignment of task executions) across the different computing
nodes for such AI/ML applications.

The problem of synchronization in real-time AI applications
stems from the trade-off between have tightly time-aligned
task executions and high throughput (fast execution times).
Due to the heterogeneous nature of edge devices, there are
new issues that arise from synchronization among the edge
workers. Synchronization is important in federated learning
where the main challenges are optimization and communica-
tion. There is a need for aggregation of local updates. The
aggregation process has to be synchronized in order to get
good results from the learning process. Current synchroniza-
tion methods in use include Asynchronous Parallel (ASP) [8],
[9], Bulk Synchronous Parallel (BSP) [10], Stale Synchronous
Parallel (SSP) [11], [12] and Dynamic SSP (DSSP) [13]
all of which include aggregating local updates at the server
(controller).

One of the required steps in real-time AI application is data
aggregation. Captured data need to be collated, cleaned and
pre-processed before training can be done. This process can
be made faster using synchronized data capture where the
capturing of data across devices is time aligned. Thus, less
time is spent in the data pre-processing stage. The quality of
data captured is likewise higher. An example is in the use
of drones in activities such as rescue missions after natural
disasters is increasing with recent advancements in drone
technologies [14]. If there is a need to recreate the search
space at a particular point in time, a time skew in the capturing
process by the different drones will lead to poor reconstruction
of the search area from the snapshots taken by the individual
drones.

We aim to develop a fast synchronization scheme with a
fast rate of synchronization by minimizing the number of
messages required to reach synchronization through the use
of a late notification protocol and clustering. The clustering
is done such that worker nodes with a high probability of
staying tightly synchronized to some bounds are put in the
same cluster. To achieve fast synchronization, we limit the
controller involvement in making synchronization decisions.
The unique contributions of this work are as follows:

1) We develop a game theoretic model to help in deciding
the best synchronization choices and fixing the synchro-
nization options for workers to synchronize.

2) We develop a disconnection tolerant late notification
protocol that maintains system efficiency in the presence
of network partitions.

3) We develop a synchronous scheduling algorithm using
clustering that achieves synchronization with the mini-

ar
X

iv
:2

01
2.

11
73

1v
1

 [
cs

.A
I]

 2
1

D
ec

 2
02

0

2

mal overhead.
4) We implement our algorithm in Ray1 (a Python frame-

work for building and running distributed applications)
and compare it against the ASP, BSP and SSP models.

II. BACKGROUND AND RELATED WORK

A. Synchronization in Real-time Artificial Intelligence

The main synchronization schemes that have been adapted
for AI tasks are the ASP, BSP, SSP and DSSP models.
Different variations and improvements of these models have
been proposed over the years. ASP is the slackest form of
synchronization where workers do not have to wait for one
another. In BSP, the next iteration only starts after all devices
have finished executing the previous iteration. Thus, a barrier
is fixed such that there is no progress until all devices get
to the barrier. While BSP guarantees total participation in
synchronization, it performs poorly in heterogeneous systems
where devices can perform the same computations for different
amount of time. This causes BSP to suffer a lot from straggling
devices.

SSP [11] on the other hand attempts to solve the strag-
gler problem by relaxing BSP’s strict barrier condition and
allowing devices to proceed to the next iteration if the gap
between the fastest and slowest device is within a bound -
called staleness value. SSP is thus an intermediate solution
between the BSP and the asynchronous approach. Although,
SSP leads to faster executions and less wait time, the quality
of synchronization is reduced compared to BSP by allowing
asynchrony.

DSSP [13] was proposed as an improvement on the SSP
model for deep neural network training. In DSSP, rather than
having static staleness, a value is dynamically selected from
a range of values based on real-time processing speeds at
runtime. A synchronization controller is used to monitor the
progress of the worker nodes. A similar approach to DSSP
was proposed in [15] where a performance monitoring model
is used to adjust the synchronization delay threshold.

B. Synchronization in Real-time Systems

In real time computing systems, synchronization is handled
using time-triggered controls where all synchronous activities
are executed at some predefined points in time [16]. Synchro-
nized clocks are used to achieve synchronization in the systems
by making all nodes have a common notion of time. Time
synchronization schemes [17], [18] have been developed for
IoT to allow devices have a common notion of time. In [18],
a time synchronization protocol was proposed to mitigate
the effect of temperature change on hardware clocks in IoT
networks using time-slotted channel hopping.

A common and naturally occurring synchronization is the
one noticed in fireflies [19], [20], [21]. Male fireflies randomly
emit flashes at night and over a period of time, the flashes
get synchronized. Analysis of firefly synchronization have
been carried out and lots of models have been developed
over the years. Pulse coupled oscillators (PCOs) have been

1https://docs.ray.io/en/latest/

used to study the synchronization behaviour in fireflies. PCOs
refer to systems with interacting oscillators that oscillate
periodically in time. Synchronization of PCO involves making
the individual oscillators emit pulses at the same time.

The synchronization schemes proposed in [22] and [23]
focused mainly on achieving synchronization without much
consideration on the message overhead caused by the constant
communication between worker nodes and the controller. The
algorithms were based on the task attributes, time and com-
ponent redundancy as well as localization of worker nodes.
The controller was heavily involved in evaluating whether the
desired ratio (quorum) of workers are available and in making
synchronization decisions. This incurred extra message over-
head since all workers need to communicate with the controller
before proceeding with synchronization.

C. Game Theoretic Synchronization Approaches

Synchronization games [24], [25] have been developed to
analyse cases where a set of players need to coordinate their
choice within a certain subset of players. A positive payoff is
gotten if all the members of a coordinating group choose the
same strategy. The utility derived from a synchronization game
is dependent on the actions the members of the coordinating
group choose.

A game theoretic approach for synchronizing pulse coupled
oscillators was proposed in [26]. The model developed is an
extension of the well-known Kuramoto model for synchroniz-
ing systems of oscillators. The game is non-cooperative with
oscillators in the system competing against one another. An
“oblivious solution” was developed where individual oscilla-
tors do not have access to the full system state. The oscillators
make decisions strictly based on local states and a consistent
average value.

D. Comparison of this Work and Related Work

The SSP and DSSP schemes allow some specified tolerated
slack in the synchronization process. However, in our work,
we do not allow any slack but allow synchronization to
proceed if we have the desired quorum of workers available to
synchronize. Unlike DSSP, where workers are expected to have
the same or very similar runtimes per iteration, we assume
a highly heterogeneous system where runtimes may vary
from one iteration to another. The synchronization schemes
in [22] and [23] incur extra communication overhead from
heavy involvement of the controller. This work achieves fast
synchronization by reducing the number of messages sent
through clustering and by minimizing the involvement of the
controller in making synchronization decisions.

III. SYSTEM MODEL

A. Node Model

A hierarchical model is used for nodes in our system as
shown in Fig. 1. Nodes at the bottom of the hierarchy are
called workers. The nodes at upper levels of the hierarchy are
called controllers. The controllers could be at three levels -
device, fog and cloud levels. Worker nodes can communicate

3

D1

Fog (F2)Fog (F1)

Cloud (C1)

Local communication allowed among workers

Fog-level
controllers

Global
controller

D2 D3

Device-level
controllers

Outliers

Cluster 1 Cluster 2

Fig. 1: Node model.

with one another leveraging the underlying fast Wi-Fi local
broadcasts. This architecture is suitable for achieving fast syn-
chronization in AI application tasks and edge-based systems
because it permits the controller to monitor the progress of
workers and allows clustering of workers to reduce message
overhead.

Workers are expected to update the controller of their
execution progress as they execute a given program. The
controller uses these updates to cluster workers. Thus, workers
are always part of a logical cluster. However, the clustering
details are used only at a synchronization point. The workers
know their clusters and the number of workers in each cluster
in the system. Tight clock synchronization is assumed across
nodes in all levels of the hierarchy. We assume that workers
have tightly synchronized clocks.

B. Application Model

An application written for our system consists primarily
of three task types - synchronous, asynchronous and local
tasks. All of the three tasks can be at the controller or at the
worker. Synchronous and asynchronous tasks are remote calls
triggered by the controller on a worker or by a worker on the
controller. Local tasks are tasks that are triggered by a node
on itself. Synchronous tasks triggered by the controller on
workers require that all (or at least a certain ratio of) workers
start the execution of the task at the same time. A return result
of the execution of a synchronous task to the calling node is
expected unlike asynchronous and local tasks. In this work,
we focus on remote calls from the controller to workers as
it poses the most challenge of coordinating the activities of
the workers. Synchronous, asynchronous and local tasks on
workers are denoted as Tws, Twa and Twl respectively.

We include another task called the progress-tracker task Tpt.
This task is a one-to-one synchronous task on workers where
workers report back to the controller on their execution time.
Progress tracking is a way for the controller to monitor the
progress of worker nodes and to make better clustering and
scheduling decisions. Tasks are created such that workers are
able to know when they get to half-way point in the execution

TABLE I: Notations.
Symbol Description
i Worker i, i = 1, 2, . . . , N .
Ck Each worker is part of a cluster k, k = 1, 2, . . . ,m.
|Ck| Size of cluster k.
|Ns| Number of workers that run a sync task.
ωi(t) Cost of waiting for t time units by worker i at sync

point.
tiav Expected available time of worker i.
tcs Sync time option c, c = 1, 2, 3.
Sc Utility derived by each worker for running sync task

at sync option c.
Fc Cost of aborting sync at sync option c.
Li(tl) Utility derived by worker i for executing local task

with execution time tl.
δ(t) Waiting cost before receiving late notification after

time t.
α Worker quorum for synchronization.

of the task. This is done such that workers are able to detect
if they will be late in finishing the task.

C. Basic Game Model

We consider a system where nodes can be grouped into
clusters such that nodes within a cluster are expected to remain
synchronized within some specified bounds. All worker nodes
must be connected to a controller to be considered part of
the system. We can thus view the controller as a mediator
(i.e., trusted third-party). The game is abstracted at the cluster-
level, that is, the game is between clusters and the strategies
are at the cluster level. However, the utilities derived by
workers are strictly based on the worker’s participation in the
synchronization process. The notations used in this work are
shown in Table I.

There are three basic choices that can be made by a worker
upon getting to a sync point - (i). wait for sync and do not wait
for sync ((ii). due to lateness or (iii). due to late notifications
received). The factors to be considered by a node in making a
choice include the waiting time, the option of running another
task, late notifications and how fast the decision to sync can
be made. The controller (mediator) uses the game in making
synchronization decisions and scheduling the sync options.
The controller specifies sync options based on the choices
that maximizes the total utility derived. We assume a silent
notification protocol for achieving consensus. Thus, workers
proceed to synchronize at the next available synchronization
option if they do not get any messages from other workers.
The multiple sync options provide workers with the next line
of action without the need to send any messages in case a sync
option fails. At runtime, late notifications are used to change
decisions, it gives a way for workers to skip a particular sync
option and choose another option or quit synchronization.

The main components of the game are:
1) Player: A strategic decision maker in the context of

the game. The two clusters in our case. They make
the decisions whether to sync or not at any given sync
option.

2) Strategy: The actions of players which include wait for
sync, no wait due to lateness and no wait due to late
notification received. All players will try to find the best
strategy to maximize their payoff.

4

IV. CLUSTERING

We cluster nodes in our system for two main reasons - (i) to
reduce the number of messages involved in synchronization,
and (ii) to help the controller in making better scheduling
decisions. Clustering of workers is done at the controller
using the report gotten from workers whenever they get to
a reporting point. Thus, the workers are iteratively reporting
their execution progress to the controller at each report point.
The clustering of workers has to be done such that workers
with similar execution progress over time are put in the same
cluster. That way, we are expecting that workers within the
same cluster will remain tightly synchronized.

We conduct initial experiments to motivate the need for
clustering workers and to determine if the choice of having
two major clusters is valid. We use the Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) clustering
algorithm [27] to group workers into clusters. DBSCAN
groups together points that are close to each other based on
a distance measurement (usually Euclidean distance) and a
minimum number of points. It also marks as outliers the points
that are in low-density regions.

We ran four example neural network training tasks using
the Python’s sklearn MLPClassifier and MLPRegressor on
sklearn’s iris dataset continuously on 54 physical machines.
We measure the runtime of each iteration for each task. We
collect a total of 6, 000 data points and create clusters using
500 data points with overlapping data points of 100 for the
next cluster created. We thus have a total of 60 clustering
points.

To evaluate the clusters created, we measure the adjusted
Rand index score (similarity measure between two clusterings)
when 2, 3 and 4 clusters are formed is shown in Fig. 2. We
do an all-to-all comparison of all the clusters formed at each
clustering point in evaluating the adjusted Rand index score.
This is because more cluster stability is expected when we
have two clusters only. As the number of clusters formed
increase, there is a higher tendency of machines changing
clusters from one clustering point to the other.

The cluster composition and the inter- and intra-cluster
distances when 2, 3 and 4 clusters are formed are shown in
Fig 3 and Fig 4 respectively. The average intra-cluster distance
for 2 clusters formed is higher than those of 3 and 4 clusters.
The average inter-cluster distance for 2 clusters is lower than
those of 3 and 4 clusters per clustering point. This is because
for 2 clusters formed, each of the two clusters is covering
a wider range and the maximum distance between machines
within a cluster is higher. However, the distances between the
two clusters will be reduced compared to 3 and 4 clusters per
clustering point.

V. SYNCHRONIZATION AS A GAME

A. Game Specification

We model the game as a non-cooperative extensive-form
game that is used to find the optimal strategy of players with
regards to synchronization. We chose an extensive-form game
because there are a different number of choices to be made
independently but the payoff derived depends on the choice

of the other player. To achieve synchronization, the required
ratio α of workers(quorum) must be available to run the sync
task. The total utility Uc derived from running a sync task at
sync option c is equally divided across all workers regardless
of the size of the cluster they are a part of.

Sc = Uc
|Ns|

The total utility derived from running a sync task is a function
of how soon the synchronization occurs. An earlier sync option
will yield a higher utility compared to other later sync options.
Therefore, players have a higher incentive to cooperate better
and sooner to maximize their payoff. We consider a two-
cluster game. The game has a fast and a slow cluster. The fast
cluster is the cluster with workers that have shorter execution
times and thus generally become available for synchronization
earlier than workers in the late cluster. Workers are grouped
into clusters based on their execution progress. There could
be outliers (workers that do not fall into any of the two major
clusters). Outliers can be part of another cluster, but they are
not considered in the game. They proceed with the execution
schedule and plan created by the outcome of the game. We
keep track of the clusters only at synchronization points.

B. Execution Time Distributions

The execution progress of workers is tracked by the con-
troller through checkpoints in the application. The controller
creates distributions for the two clusters for the expected finish
time of the task before the sync point from their previous
run of the application tasks. Each cluster is represented by a
mixture distribution of two Gaussian distributions. The first
distribution, Dearly = G(µea, σ

2
ea) represents the early execu-

tion times distribution of the cluster while the second distribu-
tion, Dlate = G(µla, σ

2
la) represents the late execution times

distribution of the cluster. We assume that the distribution of
the execution times of local tasks on workers in both clusters
are learned. The distribution is mixture of models and defined
as Dlo

early = G(µlo ea, σ
2
lo ea) and Dlo

late = G(µlo la, σ
2
lo la).

C. Late Notification Protocol

The main goal of clustering the workers in our system is
to reduce the message overhead required in reaching synchro-
nization. Thus, workers in a cluster are expected to remain
synchronized and make the same synchronization decisions.
The late strategy that involves sending late notifications to
inform the other cluster of lateness requires sending messages.
To reduce the number of messages required in classifying a
cluster as late, we develop a late notification protocol where
3 messages are expected to be received from workers in a
particular cluster for the cluster to be regarded as late. We
assume that workers are able to detect when they will be late
when they get to 50% of the current task execution based on
the predicted finish time of the cluster for that task.

The first worker in a cluster that detects it will be late sends
out a late notification to workers in the other cluster. After the
first notification, we set the probability of sending further late
notifications to:

Plate =
2

N−1

5

2 3 4
Clusters per clustering point

0.0

0.2

0.4

0.6

0.8

R
an

d
in

de
x

sc
or

e

Fig. 2: Adjusted Rand Index scores for
having 2, 3 and 4 clusters per clustering
point.

2-Clusters 3-Clusters 4-Clusters
Clusters per clustering point

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Di
st

an
ce

Intra-cluster distance
Inter-cluster distance

Fig. 3: Inter- and intra-cluster distances
for 2, 3 and 4 clusters per clustering
point.

C1 C2OUT C1 C2 C3OUT C1 C2 C3 C4OUT
Clusters

0

5

10

15

20

25

30

N
um

be
r

of
 D

ev
ic

es

2-Clusters
3-Clusters
4-Clusters

Fig. 4: Devices per cluster including out-
liers for 2, 3 and 4 clusters per clustering
point.

Thus, if all the workers in a cluster are late, we expect a total
of 3 notifications.

Workers in a cluster could get stuck at a sync option if
late notification broadcast messages are lost due to network
partitioning. Network partitioning could cause temporary or
complete isolation. A worker that is temporarily isolated
is only disconnected for one or a few iterations while a
completely isolated worker is totally disconnected from other
workers in the system. To ensure safety (to prevent a worker or
workers from being stuck at a synchronization point) in case
of temporary isolation, we embed previous late notifications in
new late notifications. Thus, the second late notification will
contain the first late notification. If the first late notification
gets lost due to network partitioning, workers in the other
cluster will get both late notifications embedded in the second
notification. A worker that is completely isolated will continue
executing tasks in isolation until it gets connected back.

D. Extensive Form of Synchronization Game

The controller in our system needs to create a static schedule
with different sync options and broadcast the schedule to
worker nodes. To fix these sync options, the controller uses
a game between worker nodes abstracted at the cluster-level.
The controller creates the schedule based on the outcome of
the game that is expected to yield the maximum payoff. The
protocols for choosing which points to synchronize at by the
workers is specified by the game. The game is played at the
cluster level, although synchronization is done by the workers.
If a worker makes a decision, we expect that all the workers
within the cluster are going to make the same decision as
the cluster. Unexpected behaviour during runtime is tackled
using late notifications. The first pass of the extensive form
of the game with two players (clusters) is shown in Fig. 5.
The strategy profile for both clusters include {sync, no-sync-
late, no-sync-late-notification}. In the first pass, there are four
possibilities as shown in Fig. 5; (i) both clusters synchronize
at first sync option (green node). (ii) sync aborted because
one of the clusters is stuck at first sync option (red node).
(iii) sync option skipped because both clusters are late (purple
node). (iv) sync option skipped because one cluster got late
notification (yellow node).

no wait LNwait for sync

no wait L

no wait L

no wait LNwait for sync
no wait L

no wait L

wait for sync

1

2 2
2

no wait L: Player will not wait due to lateness.
no wait LN: Player will not wait due to late notification received.

: Both players synchronized at sync point.
: One of the players is stuck at the sync point.
: Both players are late.
: Both players skip the sync point.

A B C

Fig. 5: First pass of the extensive form of the two-player
synchronization game. Nodes A, B and C are non-terminal
nodes where the game proceeds to the second pass.

The second pass is similar to the first pass and it originates
from the non-terminal nodes in the first pass. The choices are
the same as in the first pass. However, the payoff is cumulative,
that is, the payoff derived after the second pass is the addition
of that derived in the first pass and second pass. The second
pass likewise has 3 non-terminal nodes as in the first pass. The
third and final pass starts with the non-terminal nodes in the
second pass. All the exit nodes in the third pass are terminal
nodes. The payoff after the third pass is the sum of all the
payoffs at all the passes.

We make the following definitions.
Definition 1: The utility S1 derived by a worker from

synchronizing at the first option is much greater than the utility
S2 derived from synchronizing at the second option and the
third sync option S3 regardless of any added utility L2 derived
from running a local task.

S1 > S2 > S3
S1 > S2 + L2 > S3 + L2

(1)

Thus, the earlier synchronization is attempted, the more the
payoff that is gotten. The payoff from synchronizing at a later
time can never be more than the payoff of synchronizing at
an earlier time.

Definition 2: The cost of aborting sync increases down-
wards from the first sync option to the third sync option.

6

F1 < F2 < F3 (2)

What this means is that it is better to abort synchronization
at the first sync option and move on with the execution plan
rather than wait till other options to abort sync.

Definition 3: The strategy (sync, sync) at the first sync
option is Pareto optimal since there is no other strategy set
that gives a higher payoff.

There are other game strategies that give an optimal solution
depending on the runtime operation of the clusters. The
strategies (sync, sync) at second and third sync options are also
optimal solutions to the game depending on what happens at
runtime. However, the Pareto optimal solution is the one where
both clusters synchronize at the first sync option as evident
from Definition 1.

VI. ANALYSIS OF THE SYNCHRONIZATION GAME

A. Optimal Synchronization Options

Let (V1,V2) be the payoff vector for cluster 1 (fast cluster)
and cluster 2 (slow cluster) respectively and the cumulative
payoff P = V1 + V2. The optimum solution S∗ to the game
is defined as:

S∗ = argmin
tcs

max
P

2∑
i=1

Vi (3)

The highest payoff is gotten when both clusters decide
to wait for synchronization at the first sync option. The
combination of both strategies by both clusters forms a Nash
equilibrium since neither cluster can get a higher payoff by
switching to a different strategy as evident in Definition 1.
Thus, if one cluster chooses to wait for synchronization, it
knows that the other cluster has no incentive to not wait for
synchronization. To determine the optimal number of sync
options, we look at different scenarios in the game. We have
two clusters arriving at the sync point; fast and slow cluster.
The first choice will be to attempt synchronization at the
point where we expect to meet the desired quorum. According
to Definition 1 and the payoff gotten from synchronizing
(Sc − ω(t)), a higher payoff is gotten if synchronization is
attempted as soon as we have quorum such that ω(tw) will
be close to 0. Thus, the first sync option looks to minimize
(ω(tw1) + ω(tw2)).

If the slower cluster gets late to the first sync option, there
is a need for a second sync option. The second option has
to be fixed such that it maximizes the cumulative payoff (P).
The earlier cluster will look to get a higher payoff by running
a local task. When a cluster is late, it has no incentive not
to inform the other cluster by sending a late notification.
The optimal option is to fix the second sync option such
that if (L1(tl) > ω(tw2), then the fast cluster executes a
local task before attempting synchronization again. Else if
(L1(tl) < ω(tw2), synchronization is attempted immediately
after the late cluster becomes available. This guarantees that
the cumulative payoff for both clusters is maximized.

In a case where the fast cluster executing the local task
overshoots the second sync option, it has no incentive not

to inform the second cluster. The second cluster can in
turn run a local task to improve the cumulative payoff P if
(L2(tl) > ω(tw2)) and the third sync option can be fixed after
the expected finish time of the local task on the second cluster.
Else if running the local task does not improve the cumulative
payoff, synchronization can be attempted immediately after.
Beyond this point, there is no guarantee that an optimal
solution can be found that guarantees a higher cumulative
payoff since both clusters would have executed local tasks
and there is no other way to improve the cumulative payoff
pending synchronization. Thus, it is not an optimal strategy to
keep waiting for synchronization beyond this point.

In the case where a cluster is unable to make the first syn-
chronization option, the next optimal solution is to attempt run
any local task if available and go to the second synchronization
option. The explanation above still stands as no cluster has
any incentive to defect from waiting if the other cluster waits.
According to Definition 2, a cluster will prefer to wait for
synchronization if it expects its local task to overshoot the
sync option. In order to get S∗, it is imperative to fix the
sync options such that the number of expected workers from
both clusters is greater than or equal to the desired quorum.
Synchronization has to be attempted at the earliest possible
options.

B. Fixing the Synchronization Options

Given that we have the mixture distributions D1 and D2

for the execution times of the fast and slow clusters C1 and
C2 respectively, and likewise the distribution of the expected
execution time of local tasks on both clusters, we can fix the
three synchronization options. The expected available times of
the clusters can be chosen from the mixture distributions by
choosing the desired percentile p(x). The percentile values are
used because we expect workers in a cluster to make similar
decisions.

The sum Z of two normally distributed independent
random variables X(= G(µx, σ

2
x)) and Y (= G(µy, σ

2
y)) is

also normally distributed, Z = G(µx + µy, σ
2
x + σ2

y).

First Synchronization Option: For the first sync option, we
are interested in getting the time value t1s such that the desired
percentile p on both clusters is available and the desired
quorum is met. The percentile is sampled from the early
execution distribution D1

early and D2
early for both clusters. We

use the early execution distributions in order to fix the first
synchronization option as early as possible. Let X1 and X2

be the time values that correspond to the chosen percentiles
on both distributions for both clusters. The time t1s for the first
synchronization option can be fixed by solving the following
equation:

minimize t1s

subject to p(x) |C1|+ p(x) |C2| ≥ αN,
X1 = p(x){D1

early},
X2 = p(x){D2

early},
t1s = max(X1, X2)

(4)

7

Second Synchronization Option: The second sync option
is fixed such that the faster cluster, say C1 either waits for
the slower cluster, say C2 (which is late) or executes a local
task (if available) if it increases the cumulative payoff. The
percentile for the expected available time t2av is drawn from
the distribution D2

late. The second sync option t2s is gotten by
solving the equation:

minimize t2s

subject to
p(x1) |C1|+ p(x2) |C2| ≥ αN,
X

′

1 = X1 if L1(t
1
l) < ω(tw2),

X
′

1 = X1 + p(x1){D1
early + Dlo1

early} if L1(t
1
l) ≥ ω(tw2),

X
′

2 = p(x2){D2
late},

t2s = max(X
′

1, X
′

2)
(5)

X
′

1 is the time point where we expect a certain percentile of
the workers in the faster cluster to be available to synchronize.
If cluster C1 executes a local task, X

′

1 is gotten by getting the
desired percentile from the sum of the distributions {D1

early

and Dlo1
early}.

Third Synchronization Option: The last synchronization
option is fixed to cater for the situation where the cluster (C1)
running the local task is late to the second sync option and
sends a late notification to cluster C2. The other cluster C2

can decide to wait or run a local task. This is dependent on
which of the choices increases the cumulative payoff. The new
expected available time of C1 is drawn from the distribution
Dlo

late. t3s is fixed by solving:

minimize t3s

subject to

p(x
′

1) |C1|+ p(x
′

2) |C2| ≥ αN,
X

′′

1 = X1 + p(x
′

1){D1
early + Dlo1

late},
X

′′

2 = X
′

2 if L2(t
2
l) < ω(tw1),

X
′′

2 = X
′

2 + p(x
′

2){D2
late + Dlo2

early} if L2(t
2
l) ≥ ω(tw1),

t3s = max(X
′′

1 , X
′′

2)
(6)

X
′′

1 is the time point where we expect a certain percentile
of the workers in the faster cluster to have finished executing
the local task. We switch to the late local task execution
distribution Dlo1

late since the cluster is late. X
′′

1 is drawn from
the sum of the distributions {D1

early and Dlo1
late}. If cluster

C2 executes a local task, X
′′

2 is drawn from the sum of the
distributions {D1

early and Dlo1
early}.

C. Putting it All Together

The synchronization algorithm is shown in Algorithm 1. The
input to the algorithm is the set of two clusters C = {C1, C2}
representing the fast and slow clusters. The controller fixes the
3 sync options by solving Equations 4 - 6 in that order.

Algorithm 1: Synchronization algorithm
1 Controller:
2 Fix the three sync options t1s, t2s and t3s by solving

Equations 4, 5 and 6 respectively
3 forall workers do:
4 First sync option:
5 if (t1av ≤ X1) and (t2av ≤ X2):
6 execute(Tsync, t

1
s);

7 elif (t1av ≤ X1) and (t2av > X2) and send(C2, late notify):
8 if t1l ≤ t1s − t1av:
9 execute(Tlocal, t

1
av);

10 proceed to line 18;
11 elif (t1av > X1) and (t2av > X2):
12 proceed to line 18;
13 elif (t1av ≤ X1) and (t2av > X2) and no late notify:
14 abort(sync);
15 Second sync option:
16 if (t1av′ ≤ X

′
1) and (t2av′ ≤ X

′
2):

17 execute(Tsync, t
2
s);

18 elif (t1av′ > X
′
1) and (t2av′ ≤ X

′
2) and

send(C1,late notify):
19 if t2l ≤ t2s − t2av:
20 execute(Tlocal, t

2
av);

21 proceed to line;
22 elif (t1av ≤ X1) and (t2av > X2) and no late notify:
23 abort(sync);
24 Third sync option:
25 if (t1av′′ ≤ X

′′
1) and (t2av′′ ≤ X

′′
2):

26 execute(Tsync, t
3
s);

27 elif (t1av′′ ≤ X
′′
1) and (t2av′′ > X

′′
2):

28 abort(sync);

VII. EXPERIMENTS, RESULTS AND DISCUSSIONS

A. Simulation Configuration

We use a task graph (DAG) with a mixture of synchronous,
asynchronous and local tasks. The task graph is similar to
those used in Bulk Synchronous Parallel (BSP), Stale Syn-
chronous Parallel (SSP) [11] and Dynamic Stale Synchronous
Parallel (DSSP) [13] approaches for synchronizing parameter
updates in distributed machine learning and neural networks.
The models usually have the following four steps. (i) Com-
pute gradients using local weights. (ii) Push gradients to
parameter server to compute global weights. (iii) Pull new
computed global weights from parameter server. (iv) Update
local weights using global weights.

These models assume that workers are only involved in the
model training and updating process. However, in our work,
we consider the case where workers are not only involved
in model training, but also in the data capture process and
usage of the model’s output. We introduce local tasks to show
activities where the workers need to do some personal com-
putations for effective functioning of the running application.
Local tasks are triggered at runtime based on the application’s
needs and configurations.

The execution times of a single task on workers is based
on a mixture distribution. One for the fast execution and
the other for slow execution. The execution times used in
the simulations are gotten from traces from the clustering

8

experiments. The times are split into two to depict short
(µ = 25ms) and long tasks (µ = 80ms).

The parameters in the simulations are as follows. (i) Syn-
chronization degree: ratio of the total machines required to
pass quorum. (ii) Worker size: The maximum number of
workers present in the system at any point in time. (iii)
Simulation rounds: The number of times the task graph is
continuously run. (iv) Clustering frequency: This is the rate at
which re-clustering is done by the controller.

B. Default Parameter Values and Measurements

The following parameters are fixed in the simulations unless
otherwise stated. The number of independent runs of each
simulation is 100 while each task graph is continuously run
in each simulation for 200 times (rounds). Worker-worker
message cost is set at (µ = 2ms, σ = 0.3) and worker-
controller message cost is set at (µ = 25ms, σ = 2). The
synchronization degree is fixed at 0.7. Local tasks execution
times vary from 5ms to 10ms. Clustering cost is set at 20ms.
The same task graph is run on all workers.

The following parameters are measured in the simulations.
(i) Runtime/sync point: the time taken for a single iteration
of a task graph divided by the number of sync points. (ii)
Sync success/failure: the total number of times synchronization
was successful or failed at different synchronization options.
(iii) Sync participation: the ratio of the total devices that
synchronized at a sync point.

C. Simulation Results and Discussions

1) Single vs Flexible Clustering: We measure the impact
of re-clustering on the runtime per sync point, quorum partic-
ipation, sync success at different options and sync failure. We
consider single (fixed) clustering where workers are clustered
only once in the system. Thus, workers belong to the same
cluster all through the execution. We likewise consider the
case where clustering is done after a number of iterations (set
to 5).

Fig. 6 and 7 shows the runtime per sync point for single and
iterative clustering for varying number of workers respectively.
The runtime per sync point for single clustering is smaller
compared to that for iterative clustering. This is due to extra
cost incurred in re-clustering. However, iterative clustering has
more sync successes at the first sync option compared to single
clustering as well as less failed synchronizations as shown in
Fig. 10 and 11. This is because the schedule generated by
the cluster using the execution progress distributions of the
clusters is updated as re-clustering is done. Thus, improving
the accuracy of the schedule. Single clustering has more sync
participation than iterative clustering for varying number of
workers as seen in Fig. 8 and 9. This is because more workers
are expected to be available at the second and third sync
options as there are more sync successes at those options for
single clustering.

2) Worker Heterogeneity: To measure the effect of hetero-
geneity of workers on our algorithm, we vary the execution
time deviation of tasks across workers and explore the impact
it has on runtime per sync point and quorum participation.

Increasing the standard deviation of a task among several
workers increases the possibilities of having stragglers. The
task execution time deviation is varied from 1.5ms to 6ms for
100 workers and short tasks. Fig. 12 shows that the runtime
per sync point and the deviation increases as the variance
of task execution times across workers is increased from
1.5ms to 6ms. The average sync participation for all execution
time variances is about 0.75 with execution time variance
of 1.5 having a slightly higher average. As the execution
time variance increases, we have higher sync participation
deviation.

3) Comparison with Other Synchronization Protocols: We
evaluate the performance of our algorithm (Fast Sync) by
comparing it with the BSP, SSP and DSSP synchronization
protocols frequently used in training distributed machine learn-
ing models. For BSP, we fix the synchronization barrier at the
time point where the last worker finishes executing the task
before the sync point. Thus, fast workers need to wait for
slow workers at the synchronization barrier. For SSP, we set
the staleness threshold s to 3 and 5 with each threshold unit
being equivalent to 5ms. For DSSP, we set s to 3 and the
rmax = 7; this is the maximum allowable execution distance
between the fastest and lowest worker beyond s. We consider
a task graph with two asynchronous tasks, a single sync task
and two local tasks. For each iteration, we split the execution
time into computation, communication and clustering times.

To measure the effect of worker heterogeneity on the algo-
rithms, we measure the execution runtimes for our algorithm
and the other synchronization models with worker execution
time variance of 2ms and 10ms across 20 workers as shown in
Fig. 14 and 15 respectively. Fig. 14 shows the average runtime
for our algorithm (Fast Sync), BSP, SSP and DSSP with
worker execution time variance of 2ms while Fig. 15 shows
for varying worker execution variance of 10ms. Our algorithm
performs best in both cases, both in terms of computation
time and communication cost. DSSP performs almost as good
as our algorithm with BSP performing worst in both cases.
Our algorithm outperforms DSSP due to the fact that DSSP is
heavily reliant on the assumption that worker execution times
does not vary (or varies minimally) over different iterations.

We vary the worker-controller communication cost from
25ms to 75ms to measure the impact of network on all
algorithms as shown in Fig. 16. Our algorithm incurs the
least communication overhead for any given worker-controller
communication cost. DSSP performs better than both SSP’s
while BSP performs worst. The communication overhead
incurred by our algorithm increases at a lower rate compared to
the other algorithms as the worker-controller communication
cost is increased. This is because our algorithm has a bounded
number of messages sent within the system.

We increase the number of workers from 5 to 100 to
measure how scalable the algorithms are in terms of average
communication overhead. Our algorithm outperforms other
algorithms for increasing number of workers as shown in
Fig. 17. Increasing the number of workers has a smaller impact
on our algorithm compared to the other algorithms where the
communication overhead is directly proportional to the number
of workers. All of the other algorithms have a significant

9

 0

 0.2

 0.4

 0.6

 0.8

 1

 94 95 96 97 98 99 100 101 102

Fr
eq

ue
nc

y

Iteration runtime/sync point (ms)

5-workers
20-workers
100-workers
500-workers
1000-workers
5000-workers

CDF for short tasks (Single Clustering)

Fig. 6: Runtime for short tasks (fixed
clustering).

 0

 0.2

 0.4

 0.6

 0.8

 1

 98 99 100 101 102 103 104 105 106 107 108 109

Fr
eq

ue
nc

y

Iteration runtime/sync point (ms)

5-workers
20-workers
100-workers
500-workers
1000-workers
5000-workers

CDF for short tasks (Iterative Clustering)

Fig. 7: Runtime for short tasks (flexible
iterative clustering).

 0.75

 0.8

 0.85

 0.9

 0.95

 1

5 20 100 500 1000 5000

Sy
nc

 p
ar

tic
ip

at
io

n

Number of Workers

Sync participation for Single clustering

Fig. 8: Ratio of workers that synchro-
nized for short tasks (fixed clustering).

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

5 20 100 500 1000 5000

Sy
nc

 p
ar

tic
ip

at
io

n

Number of workers

Sync participation for iterative clustering

Fig. 9: Ratio of synchronized workers
for short tasks (flexible iterative cluster-
ing).

 0

 50

 100

 150

 200

 250

 300

 350

Opt1 Opt2 Opt3 Sync-Fail

5-wrks
20-wrks

100-wrks
500-wrks

1000-wrks
5000-wrks

Sync success for single clustering

Fig. 10: Number of successful and failed
synchronizations at different sync op-
tions (fixed clustering).

 0

 100

 200

 300

 400

 500

 600

Opt1 Opt2 Opt3 Sync-Fail

5-wrks
20-wrks

100-wrks
500-wrks

1000-wrks
5000-wrks

Sync success for iterative clustering

Fig. 11: Number of successful and failed
synchronizations at different sync op-
tions (flexible clustering).

	0

	0.2

	0.4

	0.6

	0.8

	1

	90 	92 	94 	96 	98 	100 	102 	104 	106 	108 	110

Fr
eq
ue
nc
y

Iteration	runtime/sync	point	(ms)

std=1.5
std	=	3
std	=	4.5
std	=	6

CDF	for	different	execution	time	variances

Fig. 12: Runtime for different task exe-
cution time variances.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

1.5 3 4.5 6

Sy
nc

 p
ar

tic
ip

at
io

n

Execution time variance (ms)

Sync participation for different execution time variances

Fig. 13: Ratio of synchronized workers
for different task execution time vari-
ances.

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

BSP SSP-3 SSP-5 DSSP Fast-Sync

Ti
m

e
(m

s)

Computation
Communication

Clustering

Combined runtime for worker variance = 2ms

Fig. 14: Average computation and com-
munication times for worker execution
variance of 2ms with 20 workers.

increase in the communication overhead as the number of
workers is increased from 5 to 100.

The BSP, SSP and DSSP algorithms have been proven to
converge. The BSP algorithm will always converge but the
runtime is heavily affected stragglers. The SSP and DSSP
algorithms will converge provided the staleness threshold is
within some bound. Our scheme ensures that we have at least
a certain ratio of devices to the available before synchroniza-
tion proceeds. This helps in ensuring that the algorithm will
converge.

D. Simulation Validation

A lot of studies have been conducted comparing the BSP,
SSP and DSSP synchronization schemes for parameter server
models in distributed machine learning and neural networks.
The results reported in [11] and [12] show that SSP converges
to a consensus faster than BSP. The time to reach convergence
for SSP reduces as the number of machines increase unlike
in BSP. Both the BSP and SSP have been found to converge
provided the staleness threshold for the SSP is within some
bound. The results in [13] show that DSSP converges faster
than SSP in the same corresponding staleness threshold range.

Our results are similar to those in [11], [12] and [13] with
regards to running time of the training process. BSP takes

10

 0

 50

 100

 150

 200

 250

BSP SSP-3 SSP-5 DSSP Fast-Sync

Ti
m

e
(m

s)

Computation
Communication

Clustering

Combined runtime for worker variance = 10ms

Fig. 15: Average computation and com-
munication times for worker execution
variance of 10ms with 20 workers.

 0

 50

 100

 150

 200

 250

 300

BSP SSP-3 SSP-5 DSSP Fast-Sync

C
om

m
un

ic
at

io
n

ov
er

he
ad

 (m
s)

25ms
50ms
75ms

Varying worker-controller communication cost

Fig. 16: Average communication over-
head for varying worker-controller mes-
sage cost for 20 workers.

 0

 50

 100

 150

 200

 250

BSP SSP-3 SSP-5 DSSP Fast-Sync

C
om

m
un

ic
at

io
n

ov
er

he
ad

 (m
s)

5-workers
20-workers

100-workers

Communication overhead for varying number of workers

Fig. 17: Average communication over-
head for varying number of workers.

 0

 50

 100

 150

 200

 250

 300

 350

 0 200 400 600 800 1000

Tr
ai

ni
ng

 T
im

e(
s)

Training Iteration

ASP
BSP

SSP-3
SSP-4

Fast_Sync

Fig. 18: Training time versus training
iteration for 5 workers.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 200 400 600 800 1000

Tr
ai

ni
ng

 T
im

e(
s)

Training Iteration

ASP
BSP

SSP-3
SSP-4

Fast_Sync

Fig. 19: Training time versus training
iteration for 20 workers.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 200 400 600 800 1000

Tr
ai

ni
ng

 A
cc

ur
ac

y
(%

)

Training Time(s)

ASP
BSP

SSP-3
SSP-4

Fast_Sync

Fig. 20: Training accuracy versus train-
ing time for 20 workers.

a longer time to complete a specified number of iterations
compared to SSP and DSSP. DSSP takes the shortest amount
of time. However, our algorithm outperforms BSP, SSP and
DSSP in terms of running time to complete a number of
training iterations.

E. Implementation

We evaluate the performance of our algorithm compared
to three other parameter server synchronization models (ASP,
BSP and SSP). We aim to find how our algorithm compares to
the other models in terms of accuracy and training time. We
implement all the parameter server synchronization models in
Ray. We train a simple 2D convolution neural network model
with a batch size of 16 on the KMNIST dataset2 consisting of
70, 000 28x28 gray scale images (60, 000 training and 10, 000
testing set examples). Each model is trained on a machine
with 2.4GHz Intel Core i5 machine with 12GB of memory
dedicated to the workers and 3GB dedicated to the parameter
server.

We compare the training accuracy and training time of our
algorithm, ASP, BSP and SSP models for different number
of workers. Fig 18 and 19 shows the training time versus
training iterations for our algorithm (Fast Sync), ASP, BSP,
SSP-3 (staleness threshold = 3 iterations) and SSP-4 (staleness
threshold = 4 iterations) for 5 and 20 workers respectively.
ASP reaches 1000 training iterations fastest closely followed

2https://pytorch.org/docs/stable/torchvision/datasets.html#kmnist

by SSP, then our algorithm for both 5 and 20 workers. BSP
takes the longest time to reach 1000 training iterations as
expected. However, BSP reaches a higher accuracy in a shorter
amount of time 70% in 100s followed by our algorithm 54%
in 100s. Our algorithm performs better than the ASP and SSP
models in terms of accuracy for the same training time.

VIII. CONCLUSION

In this paper, we present a game-theoretic synchronization
approach for AI application tasks. Our approach reduces
the number of messages needed in reaching synchronization
through the use of clustering and a late notification protocol.
Existing protocols such as BSP, SSP and DSSP decide the syn-
chronization time only when the workers get to the synchro-
nization point. A lot of messages are then needed in reaching
a consensus on synchronization. We develop a game to help in
deciding the optimal number of synchronization options and
determining their parameters. Thus, during runtime, workers
do not need to communicate with each other to reach, postpone
or abort synchronization. The only messages sent during the
synchronization process are bounded late notifications.

We report on a simulation study that evaluates the benefits
of our fast synchronization scheme. In particular, we explore
the performance of our synchronization scheme under different
operation conditions. We show that our scheme performs well
with increasing number of workers and increasing heterogene-
ity among workers. We compare our scheme with BSP, SSP

11

(with different staleness thresholds) and DSSP and show that
our scheme performs better or as well as BSP, SSP and DSSP.

We implement our synchronization scheme and compare it
with other parameter server synchronization schemes (ASP,
BSP and SSP) by training a 2D convolution neural work
using the KMNIST dataset. Our algorithm performs better
than ASP and SSP (with staleness threshold of 3 and 4
iterations respectively) in terms of training accuracy for the
same training duration.

One area of future work is to extend the current synchro-
nization game to more than two clusters. Another is to fully
implement our synchronization scheme into a framework and
programming language for AI application tasks. This would
allow us to evaluate our synchronization scheme under real-
life scenarios.

REFERENCES

[1] Y. C. Shin and C. Xu, Intelligent systems: modeling, optimization, and
control. CRC press, 2017.

[2] S. Wang, J. Wan, D. Zhang, D. Li, and C. Zhang, “Towards smart factory
for industry 4.0: a self-organized multi-agent system with big data based
feedback and coordination,” Computer Networks, vol. 101, pp. 158–168,
2016.

[3] J. Rios-Torres and A. A. Malikopoulos, “A survey on the coordination
of connected and automated vehicles at intersections and merging at
highway on-ramps,” IEEE Transactions on Intelligent Transportation
Systems, vol. 18, no. 5, pp. 1066–1077, 2016.

[4] L. Lovén, T. Leppänen, E. Peltonen, J. Partala, E. Harjula, P. Porambage,
M. Ylianttila, and J. Riekki, “Edge ai: A vision for distributed, edge-
native artificial intelligence in future 6g networks,” The 1st 6G Wireless
Summit, pp. 1–2, 2019.

[5] H. Li, K. Ota, and M. Dong, “Learning iot in edge: Deep learning for
the internet of things with edge computing,” IEEE network, vol. 32,
no. 1, pp. 96–101, 2018.

[6] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge
intelligence: Paving the last mile of artificial intelligence with edge
computing,” Proceedings of the IEEE, vol. 107, no. 8, pp. 1738–1762,
2019.

[7] S. Deng, H. Zhao, W. Fang, J. Yin, S. Dustdar, and A. Y. Zomaya,
“Edge intelligence: the confluence of edge computing and artificial
intelligence,” IEEE Internet of Things Journal, 2020.

[8] X. Lian, W. Zhang, C. Zhang, and J. Liu, “Asynchronous decentralized
parallel stochastic gradient descent,” in International Conference on
Machine Learning. PMLR, 2018, pp. 3043–3052.

[9] J. Keuper and F.-J. Pfreundt, “Asynchronous parallel stochastic gradient
descent: A numeric core for scalable distributed machine learning
algorithms,” in Proceedings of the Workshop on Machine Learning in
High-Performance Computing Environments, 2015, pp. 1–11.

[10] K. Siddique, Z. Akhtar, E. J. Yoon, Y.-S. Jeong, D. Dasgupta, and
Y. Kim, “Apache hama: An emerging bulk synchronous parallel com-
puting framework for big data applications,” IEEE Access, vol. 4, pp.
8879–8887, 2016.

[11] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons, G. A.
Gibson, G. Ganger, and E. P. Xing, “More effective distributed ml via
a stale synchronous parallel parameter server,” in Advances in neural
information processing systems, 2013, pp. 1223–1231.

[12] J. Cipar, Q. Ho, J. K. Kim, S. Lee, G. R. Ganger, G. Gibson, K. Keeton,
and E. Xing, “Solving the straggler problem with bounded staleness,”
in Presented as part of the 14th Workshop on Hot Topics in Operating
Systems, 2013.

[13] X. Zhao, A. An, J. Liu, and B. X. Chen, “Dynamic stale synchronous
parallel distributed training for deep learning,” in 2019 IEEE 39th
International Conference on Distributed Computing Systems (ICDCS).
IEEE, 2019, pp. 1507–1517.

[14] A. Valsan, B. Parvathy, V. D. GH, R. Unnikrishnan, P. K. Reddy, and
A. Vivek, “Unmanned aerial vehicle for search and rescue mission,”
in 2020 4th International Conference on Trends in Electronics and
Informatics (ICOEI)(48184). IEEE, 2020, pp. 684–687.

[15] J. Zhang, H. Tu, Y. Ren, J. Wan, L. Zhou, M. Li, and J. Wang, “An
adaptive synchronous parallel strategy for distributed machine learning,”
IEEE Access, vol. 6, pp. 19 222–19 230, 2018.

[16] R. Rajkumar, Synchronization in real-time systems: a priority inheri-
tance approach. Springer Science & Business Media, 2012, vol. 151.

[17] S. G. Yoo, S. Park, and W.-Y. Lee, “A study of time synchronization
methods for iot network nodes,” International journal of advanced smart
convergence, vol. 9, no. 1, pp. 109–112, 2020.

[18] A. Elsts, X. Fafoutis, S. Duquennoy, G. Oikonomou, R. J. Piechocki, and
I. Craddock, “Temperature-resilient time synchronization for the internet
of things,” IEEE Transactions on Industrial Informatics, 2017.

[19] G. Ramı́rez-Ávila, J. Kurths, and J.-L. Deneubourg, “Fireflies: a
paradigm in synchronization,” in Chaotic, Fractional, and Complex
Dynamics: New Insights and Perspectives. Springer, 2018, pp. 35–
64.

[20] F. Perez Diaz, “Firefly-inspired synchronization in swarms of mobile
agents,” Ph.D. dissertation, University of Sheffield, 2016.

[21] G. Brandner, U. Schilcher, and C. Bettstetter, “Firefly synchronization
with phase rate equalization and its experimental analysis in wireless
systems,” Computer Networks, vol. 97, pp. 74–87, 2016.

[22] R. Olaniyan and M. Maheswaran, “Synchronous scheduling algorithms
for edge coordinated internet of things,” in 2018 IEEE 2nd International
Conference on Fog and Edge Computing (ICFEC). IEEE, 2018, pp.
1–10.

[23] R. Olaniyan and M. Maheswaran, “Multipoint synchronization for fog-
controlled internet of things,” IEEE Internet of Things Journal, vol. 6,
no. 6, pp. 9656–9667, 2019.

[24] S. Simon and D. Wojtczak, “Synchronisation games on hypergraphs,”
in Proceedings of the Twenty-Sixth International Joint Conference on
Artificial Intelligence. International Joint Conferences on Artificial
Intelligence Organization, 2017.

[25] O. Saukh, F. Papst, and S. Saukh, “Synchronization games in p2p energy
trading,” in 2018 IEEE International Conference on Communications,
Control, and Computing Technologies for Smart Grids (SmartGrid-
Comm). IEEE, 2018, pp. 1–6.

[26] H. Yin, P. G. Mehta, S. P. Meyn, and U. V. Shanbhag, “Synchronization
of coupled oscillators is a game,” IEEE Transactions on Automatic
Control, vol. 57, no. 4, pp. 920–935, 2011.

[27] K. M. Kumar and A. R. M. Reddy, “A fast dbscan clustering algo-
rithm by accelerating neighbor searching using groups method,” Pattern
Recognition, vol. 58, pp. 39–48, 2016.

Richard Olaniyan is a PhD student in the School
of Computer Science, McGill University, Montreal,
Canada being sponsored by the Presidential Scholar-
ship Scheme of the Nigerian Government/Petroleum
Technology Development Fund (PTDF) Nigeria.
He is currently doing an internship with Ericsson
Canada. He received his MSc degree in Computer
Science at the University of Edinburgh, United
Kingdom in 2015. He Received his BSc degree in
Computer Engineering from Obafemi Awolowo Uni-
versity, Ile-Ife, Nigeria in 2011, where he graduated

as the best student in the department bagging two awards. His research
interests include synchronization and scheduling in clouds, clusters, fog
computing, edge computing, vehicular clouds and computing models.

Muthucumaru Maheswaran is an associate pro-
fessor in the School of Computer Science at McGill
University. He got a PhD in Electrical and Computer
Engineering from Purdue University, West Lafayette
and a BScEng degree in Electrical and Electronic
Engineering from the University of Peradeniya, Sri
Lanka. He has researched various issues in schedul-
ing, trust management, and scalable resource discov-
ery mechanisms in Clouds and Grids. Many papers
he co-authored in resource management systems
have been highly cited by other researchers in the

area. Recently, his research has focused in security, resource management,
and programming frameworks for Cloud of Things. He has supervised the
completion of 8 PhD theses in the above areas. He has published more than
120 technical papers in major journal, conferences, and workshops. He holds
a US patent in wide-area content routing.

	I Introduction
	II Background and Related Work
	II-A Synchronization in Real-time Artificial Intelligence
	II-B Synchronization in Real-time Systems
	II-C Game Theoretic Synchronization Approaches
	II-D Comparison of this Work and Related Work

	III System Model
	III-A Node Model
	III-B Application Model
	III-C Basic Game Model

	IV Clustering
	V Synchronization as a Game
	V-A Game Specification
	V-B Execution Time Distributions
	V-C Late Notification Protocol
	V-D Extensive Form of Synchronization Game

	VI Analysis of the Synchronization Game
	VI-A Optimal Synchronization Options
	VI-B Fixing the Synchronization Options
	VI-C Putting it All Together

	VII Experiments, Results and Discussions
	VII-A Simulation Configuration
	VII-B Default Parameter Values and Measurements
	VII-C Simulation Results and Discussions
	VII-C1 Single vs Flexible Clustering
	VII-C2 Worker Heterogeneity
	VII-C3 Comparison with Other Synchronization Protocols

	VII-D Simulation Validation
	VII-E Implementation

	VIII Conclusion
	References
	Biographies
	Richard Olaniyan
	Muthucumaru Maheswaran

