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Abstract—The current random access (RA) allocation tech-
niques suffer from congestion and high signaling overhead
while serving massive machine-type communication (mMTC)
applications. To this end, third-generation partnership project
introduced the need to use fast uplink grant (FUG) allocation
in order to reduce latency and increase reliability for smart
Internet of Things (IoT) applications with strict Quality-of-
Service constraints. We propose a novel FUG allocation based
on support vector machine (SVM). First, machine-type commu-
nication (MTC) devices are prioritized using an SVM classifier.
Second, a long short-term memory architecture is used for traf-
fic prediction and correction techniques to overcome prediction
errors. Both results are used to achieve an efficient resource
scheduler in terms of the average latency and total through-
put. A coupled Markov modulated Poisson process (CMMPP)
traffic model with mixed alarm and regular traffic is applied
to compare the proposed FUG allocation to other existing allo-
cation techniques. In addition, an extended traffic model-based
CMMPP is used to evaluate the proposed algorithm in a more
dense network. We test the proposed scheme using real-time mea-
surement data collected from the Numenta anomaly benchmark
(NAB) database. Our simulation results show the proposed model
outperforms the existing RA allocation schemes by achieving the
highest throughput and the lowest access delay of the order of
1 ms by achieving prediction accuracy of 98 % when serving
the target massive and critical MTC applications with a limited
number of resources.

Index Terms—Alarm traffic, fast uplink grant (FUG), Internet
of Things (IoT), machine learning, machine-type communica-
tions, resource allocation, support vector machines (SVMs).

I. INTRODUCTION

CELLULAR communications have experienced a paradigm
shift in recent years by introducing service modes dedi-

cated to machine-type communication (MTC), namely, massive
MTC (mMTC), and ultrareliable low latency communica-
tions (URLLCs) [1]. Many smart Internet of Things (IoT)
applications, such as traffic control, autonomous vehicles,
environmental monitoring, surveillance, and crowdsensing, are
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enabled by MTC [2], [3]. Due to the diversity among MTC
scenarios, the Quality-of-Service (QoS) requirements vary.
Therefore, understanding their heterogeneous traffic behavior
becomes an essential part of any communication system [4]. In
this context, traffic modeling aims to capture the behavior of
the traffic using a probabilistic model that can be implemented
easily and provide feasible means for efficient allocation of
network resources.

According to [5], MTC traffic, which is representative of
many IoT applications, is classified into three different classes:
1) periodic update (PU), which describes periodic traffic char-
acterized by a small number of short packets; 2) event driven
(ED), which describes nonperiodic traffic due to a certain ran-
dom trigger at an unknown time; and 3) payload exchange
(PE), which describes bursty traffic that usually comes after
PU or ED traffic. Traffic models are classified into source
traffic models and aggregated traffic models [6]. Source traf-
fic models, which treat every machine-type communications
device (MTD) as a single separate entity, are very accurate,
though become extremely complex when modeling highly
dense networks. Aggregated traffic models treat all MTDs
within the network as one entity by simply accumulating all
the traffic as one stream. When compared to the source traf-
fic approach, the aggregated traffic models are less complex
at cost of lower accuracy. Laner et al. [4] designed a cou-
pled Markov modulated Poisson process (CMMPP) such that
it captures the traffic behavior efficiently based on a master
node, called a background process, that describes the event.
Grigoreva et al. [7] showed that modeling CMMPP using
multiple background processes is computationally expensive
in time. They introduce the coupled Markovian arrival process
(CMAP) model based on unicast and multicast distributions
describing the regular traffic and traffic affected by events,
respectively.

In the long-term evolution (LTE) systems, devices attempt
to access the medium via random access (RA) procedures.
Thus, to obtain a radio resource and transmit a packet,
user equipment (UE) undergoes a four-handshake procedure.
This procedure suffers from high signaling overhead, which
causes longer delays that prevent achieving the URLLC QoS
requirements [8]. It also fails to meet one of the most
challenging requirements of smart IoT, namely, is real-time
performance due to high latency [9]. Additionally, highly
dense MTC deployments with hundreds of devices compet-
ing for meager resources will suffer from a large number of
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preamble collisions, which cause long delays and even pack-
ets drop [10]. To handle such issues, many solutions have
been implemented as complementary features to the existing
RA resource allocation algorithm, but they fail to guarantee
MTC demands. Other researchers proposed credible tech-
niques such as grant-free (GF) transmission, where each device
chooses randomly a resource to transmit its packets without
requests [11]. Although GF solutions overcome the exchange
of messages that causes signaling overhead problems, highly
dense mMTC scenarios, where the number of devices is usu-
ally larger than the number of available resources, still suffer
from a large number of collisions and resulting in longer
delays.

Recently, learning-based solutions have gained more atten-
tion to solve RA existing problems. In this context, fast
uplink grant (FUG) was first introduced with the 2015 third-
generation partnership project (3GPP) technical report [12],
and further discussed in [10]. It is a learning-based resource
allocation technique, where the base station (BS) preemp-
tively allocates resources to devices on a predictive basis.
FUG reduces signaling overhead and completely removes col-
lision. Introducing FUG in smart IoT applications allows for
installing a large number of IoT devices within a limited num-
ber of frequency resources while satisfying their demands
owing to efficient predictive algorithms [9], [13]. Moreover,
as FUG reduces signaling overhead and eliminates collisions,
it economizes the energy consumption of IoT devices.

II. RELATED WORKS AND CONTRIBUTIONS

In the following paragraphs, we discuss the recent works in
the literature that address the resource allocation problem in
IoT networks.

To address the high number of collisions in the GF alloca-
tion, Ali et al. [14] suggested a dynamic resource allocation
scheme, which resolves the preamble collisions rather than
avoiding them. Abbas et al. [15] presented a GF solution based
on nonorthogonal multiple access (NOMA). Unfortunately,
the proposed solutions suffer from undesired signaling over-
head and collisions [16]. Shehab et al. [17] presented a traffic
prediction framework for IoT devices, which are influenced by
binary Markovian events. A distributed NOMA solution based
on reinforcement learning is used in [18], while Ali et al. [19]
presented a sleeping multiarmed bandits (MABs) FUG solu-
tion. However, they focus only on achieving optimal resource
allocation based on the QoS requirements of each device by
employing an existing source traffic predictor and capturing
the traffic behavior efficiently.

Kwasinski et al. [20] discussed the use of reinforcement
learning and Q-tables to perform resource allocation. Shah-
Mohammadi and Kwasinski [21] proposed a multiagent deep
reinforcement learning technique, which performs distributed
joint multiresource allocation. The authors applied transfer
learning to the proposed model to speed up the convergence
compared to applying deep Q-networks without transfer learn-
ing. Despite the advantages of applying reinforcement learning
algorithms in resource allocation problems, it has two major
disadvantages: 1) RL algorithms do not use any prior data

about the network and only rely on reward signals and 2) the
convergence can be time consuming.

Our contribution relies on the CMMPP traffic model as
in [4] to evaluate the performance of our proposed model com-
pared to RA procedures. Different from [7], we introduce a
model that handles multiple background processes, called the
M-background processes CMMPP (M-CMMPP) model. This
allows us to address congested network scenarios with a large
number of active devices and a low number of resources with-
out being computationally expensive. Furthermore, we propose
a novel FUG algorithm based on three steps.

1) The first step is the device classification, whereby the BS
prioritizes the devices according to their QoS require-
ments. To classify the devices, we employ a large-margin
classifier based on support vector machines (SVMs),
which search for the optimal decision boundary that is
maximally far away from the closest points of each class
in the training set [22].

2) The second step is the traffic prediction, which is typi-
cally a time-series problem. The BS monitors the activity
behavior of each MTD and forecasts which devices are
active or inactive in a given transmission instant. In
this context, long short-term memory (LSTM) is a spe-
cial kind of recurrent neural networks (RNNs), which
comprises four artificial neural networks (ANNs) lay-
ers, instead of just one, and acts as gates along with
some pointwise operations [23]. These gates are trained
to learn what to use from short and long past and what
to forget. We apply LSTM for traffic prediction in our
proposed FUG model. Moreover, we discuss the ratio-
nale for using LSTM and how it can be applied in real
time.

3) The last step is to exploit device classification and traf-
fic prediction results to grant resources to devices that
are worth. CMMPP and M-CMMPP models are intro-
duced in the problem formulation, where we apply the
proposed FUG algorithm and compare it to existing
resource allocation techniques. Testing and simulation
are performed using real-time measurement data col-
lected from the numenta anomaly benchmark (NAB)
database.

The remainder of this article is organized as follows.
Section III presents the system model and problem formu-
lation. In Section IV, we introduce the details of the proposed
FUG solution. In Section V, we present the simulation results
and discussion. Finally, conclusion is presented in Section VI.

III. PRELIMINARIES

Consider a cellular network composed of a set D of static
MTDs served by one BS with a limited number of frequency
resources. The total number of devices is D = |D|, where |.|
returns the length of a vector, such that each device di ∈ D can
be either: 1) active or 2) silent. When active, devices can trans-
mit either data packets with lower priority or alarm packets
with higher priority. Each device di ∈ D has fixed coordinate
locations xi and yi, which are known by the BS. In this work,
for each one of the devices, we aim to first predict its state,
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Fig. 1. Considered system model. A set of D devices, which can be active
or silent. Active devices can be in either data or alarm state.

namely, silent or active, as well as the corresponding traffic
priority. Thereafter, the serving BS schedules the set of active
devices according to their priorities. We formulate the system
model using an efficient traffic model called CMMPP [4].
Then, we extend the baseline model to account for a more
dense scenario using the M-CMMPP model, which consists
of several background CMMPP processes. Fig. 1 presents the
system model.

A. CMMPP Traffic Model

The Markov processes and Poisson processes are very popu-
lar traffic and queuing models [24], [25]. Recently, the Markov
modulated Poisson processes (MMPPs) have been developed
for traffic modeling scenarios, where a Poisson process with
a rate λi[t] changes according to the state of Markov chains
sn[t], where n is the number of MTDs. Consider a two-state
MMPP, where the data state describes regular packet trans-
mission, whereas the alarm state describes longer and higher
priority packet transmission. Each device is transiting between
these two states according to the respective probabilities based
on the MMPP baseline model. Coupling Markov chains means
that multiple chains mutually influence their transition proba-
bility matrices [4]. Given the state transition probabilities, we
build a state transition matrix Ps, while the state probability
vector π is defined using the respective state probabilities as
follows:

Ps =

⎛
⎜⎜⎜⎝

p1,1 p1,2 · · · p1,j

p2,1 p2,2 · · · p2,j
...

...
. . .

...

pi,1 pi,2 · · · pi,j

⎞
⎟⎟⎟⎠, π =

⎛
⎜⎝

π1
π2
...

⎞
⎟⎠. (1)

In addition, the MMPP-based source traffic can be simpli-
fied by considering only one background process to modulate
all MTDs in case of a sudden event such as fire or high temper-
ature. Thus, the background process influences all the MTDs in
both space and time, but with different strengths according to
their distances from the epicenter (position of the background
process) and time of that background process. Moreover, it
causes some devices to transition from state 1 (data) to state
2 (alarm), while others remain in their current state. The state
probability matrix is composed of two submatrices, namely,
the coordinated matrix PC and the uncoordinated matrix PU .

The former describes the behavior of the devices near to the
event and its main characteristic is to issue an alarm at a time
(alarm state), and then go back to the data state again. On
the other hand, the latter describes the behavior of the devices
away from the background process and its main characteristic
is to remain at the data state and never switch to the alarm
state. The background process generates samples θn[t], which
are a function of time and space for all devices. The state
probability matrix is calculated as follows:

Pn[t] = θn[t].PC + (1 − θn[t]).PU (2)

θn[t] = δn.θ [t] (3)

where θ [t] ∈ [0, 1] consists of samples, uniformly distributed
over time, which describe how the devices are affected by the
background process in time. δn follows standard normal dis-
tribution whose samples describe how the devices are affected
by the background process in space. In addition, the mean
and variance of δn describe the epicenter of the background
process and how strong is the background process (high vari-
ance, means strong event, and further devices are affected),
respectively. Devices near the epicenter of the background pro-
cess are highly affected by the process and transit to state
2 (alarm). Modeling δn as normal distribution describes the
behavior of sudden events (for example, fire or high tempera-
ture) in real-time applications, where devices near to the center
of the event have higher probabilities to be affected by that
event than far devices. Multiplying θ [t] and δn results in θn[t],
which describes how the devices are affected by the back-
ground process jointly in space and time. The same idea is
repeated with the state probability vector πn[t], which will
be composed of πC and πU . Therefore, θ and δn are dis-
tributed as θ ∼ U(T, T + τ) and δn ∼ N(μ,�), where U
is the uniform distribution, N is the normal distribution, T
is the start instant of the background process, τ is the dura-
tion of the background process, while μ and � represent the
mean and the covariance matrix of the background process in
x and y coordinates, respectively. Space and time distributions
are independent. Therefore, the probability density function
(PDF) of θn[t] is defined in (4), where x, y ∈ R

+
0

fθn(x, y, t) =

⎧⎪⎪⎨
⎪⎪⎩

1
τ

2πσxσy
exp

(
− 1

2

[(
x−μx

σx

)2 +
(

y−μy
σy

)2
])

, T < t < T + τ ;
0, otherwise.

(4)

Simulating the CMMPP traffic model using the derived
equations results in four plots describing the behavior of
MTDs in space and time as shown in Fig. 2. Fig. 2 shows:
1) the startup state where all the devices are likely to transmit
data; 2) the data state in which some devices transmit data
at different instants and using different packet lengths; 3) the
alarm state where devices near to the epicenter transmit alarm
signal in a correlated behavior with large packet lengths due
to the activation of the background process; and finally, 4) the
silent state where the devices that transmitted alarm tend to
be silent [4].
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Traffic modeling results: 1000 MTD, 60-s runtime, 1000 m × 1000 m area, λData = 1/3600, λAlarm = 1, and uniformly distributed processes
epicenters, intervals, and variances. CMMPP results: (a)–(d). M-CMMPP results (M = 4): (e)–(h). (a) Startup. (b) Data. (c) Alarm. (d) Silent. (e) Startup.
(f) Data. (g) Alarm. (h) Silent.

B. M-CMMPP Traffic Model

We introduced the CMMPP model based on one background
process to represent a regular MTC use case. Some applica-
tions can have more than one background process at a time
causing a bursty scenario and network congestion [7]. Assume
M ≥ 1 background processes affect the transition of devices
from the data state to the alarm state as follows:

θnm[t] = δnmθm[t], m = 1, 2, 3, . . . , M. (5)

As the background processes are independent, we start by
calculating the probability of no alarms (PNA), which is a
function of the probability of alarm at a given process (PmA )

PNA = (
1 − P1A

)(
1 − P2A

) · · · (1 − PMA

)

=
M∏

m=1

(
1 − PmA

)
, m = 1, 2, 3, . . . , M (6)

PA = 1 − PNA = 1 −
M∏

m=1

(
1 − PmA

)
, m = 1, 2, 3, . . . , M.

(7)

The overall θn[t], which is the probability of having alarms
due to M background processes, can be derived as follows:

θn[t] = 1 −
M∏

m=1

(
1 − (

δnm .θm[t]
))

. (8)

Then, the overall θn[t] from (8) is used in (2) to form the
transition probability matrix. Therefore, θm and δnm are dis-
tributed, respectively, as θm ∼ U(Tm, Tm + τm) and δnm ∼
N(μm, �m), where U is the uniform distribution, N is the nor-
mal distribution, μm, Tm is the start instant of the background
process m, τm is the duration of the background process m, and
μm and �m represent the mean and the covariance matrix of
the background process m in x and y coordinates, respectively.
Space and time distributions are independent. Therefore, the
overall θn[t] is defined as in (9), shown at the bottom of the
page, where x, y ∈ R

+
0 , and m = 1, 2, . . . , M.

Simulating the proposed M-CMMPP traffic model using
4-background processes shows similar results to the original
CMMPP model, but with an extremely larger number of data
and alarm packets as shown in Fig. 2(e)–(h). This can cause
network congestion, which is one of the most challenging
problems in MTC applications while using current cellular
network technologies.

fθn(x, y, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
τm

⎡
⎢⎢⎣1 −

⎛
⎜⎜⎝	M

n=1

⎛
⎜⎜⎝1 −

exp

(
− 1

2

[(
x−μnx

σnx

)2+
(

y−μny
σny

)2
])

2πσnx σny

⎞
⎟⎟⎠

⎞
⎟⎟⎠

⎤
⎥⎥⎦, Tm < t < Tm + τm

0, otherwise

(9)
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IV. PROPOSED FAST UPLINK GRANT ALGORITHM

The proposed FUG model is divided into three main parts:
1) device classification; 2) traffic prediction; and 3) resource
allocation. First, the BS predicts which devices, within a cer-
tain application under its coverage area, have a higher priority
compared to other devices and need to be served first. The
second step is estimating the time, which each device needs
to access the network. Finally, the BS uses the results from the
device classification and traffic prediction to allocate resources
to the selected devices at specific time instants. The data
collection, preprocessing, and computations done on it are
performed on a server on the BS end, where it has better
computational and energy resources that can limit the latency
of the computations.

A. Device Classification Using SVM

According to the CMMPP model, the serving BS classi-
fies devices into two groups. While devices in the first group
transmit only data all the time, the second group transmit data
and alarm. Devices that transmit alarms have higher priority
than devices that transmit data. Specifically, our first step is
a typical binary classification problem. Binary classification
is a type of supervised learning, where a model is developed
to classify some candidates among two classes. The first step
in device classification is collecting an appropriate data set
with desired features and labels, which reflects different sce-
narios of the application for a period of time. Features are
the input data that the classifier should take into consideration
and learn their pattern and how they are related to their corre-
sponding labels. In MTDs classification, features are position
coordinates of the devices, while labels are the data or alarm
classes. Usually, binary classification problems are considered
as finding the best decision boundary that separates the classes
correctly.

The optimum decision boundary can be found using the
SVM algorithm. Define training points T = (�xi, zi), where �xi

are the features, and zi are the labels (−1, 1). Then, define the
decision hyperplane as b and a normal vector �w perpendicu-
lar to the hyperplane. Finally, define a point �x to be on the
hyperplane, so that

�wT�x = −b. (10)

The SVM aims to maximize the width between the nearest
features from one class to the other (support vectors of each
class) [22]. Fortunately, this optimization problem is convex,
which can be solved using the Lagrange multiplier theorem
with any quadratic programming

L = 1

2
‖w‖2 −

∑
αi

[
zi(�w.�xi + b) − 1

]
(11)

where αi is the Lagrange multiplier. Classify class 1 if
∑

αi.yi.�xi.�x + b ≤ 0. (12)

By inserting features (device coordinates) and labels (class 1
or class 2) into the classifier, we find the optimal boundary
between the two classes. However, this classifier is only appli-
cable to linearly separable feature points. The CMMPP classes

are nonlinearly separable. Thus, to avoid this problem, we use
transformation kernels (φ) to map the feature points into higher
dimensions, where they can be linearly separable

φ : �x −→ φ(�x). (13)

The radial basis function (RBF) maps the data into an infinite-
dimensional Hilbert space [22]. It is very simple and fast to
remap feature points using such kernel transformations; here,
we employ the Gaussian RBF kernel given as

K
(
�x, �x′

)
= e

−
(
�x− �x′

)2

2σ2 (14)

where �x and �x′ are two features. The RBF SVM can not only
extract the pattern of devices efficiently but also classify them
according to their priorities.

B. Traffic Prediction Using LSTM

After predicting the priorities of the devices, the serving BS
needs to predict the activation time and silent time of these
devices to implement an efficient resource scheduler. In a sim-
ple RNN architecture, input features, which are the past status
of MTDs collected by the BS, are updated each instant t and
fed into an ordinary ANN, where hidden layers are connected
to form a feedback path. In such RNNs, there are three types
of weights, which should describe the dependency between
instants: 1) wxh represents weights from input features to hid-
den layers; 2) whh corresponds to weights from hidden layers
at time instant t − 1 to hidden layers at time instant t; and
3) why yields the weights from hidden layers to output. Those
weights are used in the underlying prediction as follows:

ht = tanh(whhht−1 + wxhxt) (15)

yt = whyht (16)

where tanh(·) is the hyperbolic tangent activation function,
ht−1 is the previous hidden layer at t −1 result from the same
recurrent equation, and xt is the input features vector at t.
Afterward, a loss function and an optimizer are applied to find
the correct weights that describe the relation between inputs
and outputs [26].

Despite their astonishing ability to forecast the future, the
RNNs still have a major weakness, namely, they have difficulty
extracting relevant information located in the far past. Long
sequences cause a major problem known as vanish gradient,
where the relevant information is located far away in the past
experiences almost zero gradient [27]. To solve the problem
of long-term dependencies, Hochreiter and Schmidhuber intro-
duced their LSTM architecture in 1997 [23]. It uses the same
concept of basic RNN, but with complex four-gate func-
tions connecting past and current instants to extract relevant
information from long and short memories. As shown in Fig. 3,
the LSTM has two inputs at each instant the short-term and
the long-term memories given by ht−1 and Ct−1, respectively.
While the former yields the previous hidden layer just as in
RNN, the latter allows the LSTM to learn what to add and
what to ignore from the very long past to keep only rele-
vant information for prediction. The LSTM can be classified
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Fig. 3. Long short-term memory architecture.

into four main gates: 1) forget gate, which describes accu-
rately what information to forget from both input features and
previous hidden state; 2) learn gate, which is responsible for
learning new features related to the model; 3) remember gate,
where the long-term memory is updated, Ct, using the results
of the forget gate and the learn gate; and 4) use gate, where
the current short-term memory is updated. The LSTM key
equations are presented as follows:

⎛
⎜⎜⎝

it
ft
ot

C̃l
t

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

σ

σ

σ

tanh

⎞
⎟⎟⎠Wl

(
hl−1

t
hl

t−1

)
(17)

Cl
t = ft 
 Cl

t−1 + it 
 C̃l
t (18)

hl
t = ot 
 tanh

(
Cl

t

)
(19)

where it is the output of the learn gate, ft is the output of the
forget gate, ot is the output of the use gate, C̃l

t is the initial
long term memory vector, σ is the sigmoid function, Wl is
the weighs vector, hl−1

t is the current initial hidden layer vec-
tor, hl

t−1 is the previous hidden layer vector, Cl
t is the current

updated long-term memory, 
 is a pointwise multiplication,
and hl

t is the current updated hidden layer vector. To address
the computation efficiency of the LSTM architecture, we for-
mulate the spatial complexity of each LSTM layer in terms of
the number of parameters (K) as follows [28]:

K = 4 (I + 1) O + O2 (20)

where I is the size of the input vector to an LSTM layer, and
O is the size of the output vector of an LSTM layer.

The serving BS needs to collect a relevant data set, which
contains the status of each MTD for a period of time. This data
set is then trained with an LSTM model to predict the status
of the MTDs in the future for a certain period of time. The
training and prediction phases should be continuously alter-
nated. We divide the time axis into windows, each window
consists of two phases: 1) training phase and 2) prediction
and correction phase. In the training phase, the BS uses the

Fig. 4. Visualizing prediction of MTD status in real time. Time axis is
divided into windows, which are composed of training and prediction phases.

collected data set about each MTD activity for a certain period
of time Ttr to use it with the LSTM model to predict its activ-
ity in the following Tp. The prediction is subject to a degree
of accuracy and therefore, prone to errors. Particularly, in this
context, there are two types of errors: 1) the device is silent
and it is predicted as active and 2) the device is active and it
is predicted as silent.

Assume the BS has feedback, which we will discuss later,
that senses these errors and corrects them. Define �T as the
correction time. The serving BS should correct errors that exist
in the first Tp−�T period of the predicted samples. Afterward,
a new training phase starts by shifting the training window by
Tp − �T , where the BS uses the corrected prediction sam-
ples concatenated with the last Ttr − (Tp − �T) period of
the previous training period to train new samples using the
same model. Then, a prediction will be performed for the next
Tp with correction of errors for first the Tp − �T interval of
predicted samples. The process repeats so that we have error-
free data at every training phase. The proposed algorithm is
illustrated in Fig. 4.

C. Resource Allocation

As the serving BS classifies the type of each MTD and pre-
dicts their traffic, the next step is to schedule the resources
for these devices. The resource allocation algorithm is illus-
trated in Fig. 5. The BS predicts the active devices at each
instant, and then classifies their priorities and grants them the
needed resources with given order according to their priorities.
Devices from the same class are scheduled as first-come–
first-served (FCFS). In addition, the BS performs some error
correction techniques to perform an accurate prediction with-
out accumulation of errors at each phase. The serving BS
implements different procedures to carry out feedback and
error correction as follows.

1) The serving BS avoids eventual prediction errors by
adding safety margins. The length of Tm is chosen
according to an exploration rate1 α.

1The exploration rate α controls the margin time Tm, available resources
for RA, and available resources for random allocation. Adjusting different
exploration rates is out of the scope of this work; therefore, we arbitrarily set
these parameters based on experimentation.
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Fig. 5. Fast uplink grant resource allocation algorithm.

2) When the MTD is predicted to be active, while it is
silent, the BS senses that the allocated resource has not
been used. Afterward, the status of this device is changed
from active to silent in the data set to avoid wrong future
predictions.

3) When the MTD is predicted to be silent, while it is
active, the device should wait for a period of Tm to get
a resource. If it does not get a resource, it should com-
municate with the BS using the RA procedure. Hence,
the BS should dedicate some resources for the RA pro-
cedure to be used in the case of prediction errors. The
percentage a of dedicated RA resources is also adjusted
according to the exploration rate α.

4) The BS explores random devices, other than those
that it has predicted, using available unused resources
randomly according to α.

Algorithm 1 summarizes the proposed FUG resource alloca-
tion learning algorithm including the discussed error correction
techniques.

V. RESULTS AND DISCUSSION

In this section, we present the simulation results of the
proposed FUG. First, we introduce the performance evalu-
ation metrics. Afterward, the SVM classification results are
presented and compared to other classifiers. Then, we present
the LSTM prediction of sensors activity. Finally, we apply
those results along with the error correction techniques to
schedule resources to MTDs. The proposed FUG model is
compared with grant-based RA (GB-RA), random FUG, where
the serving BS randomly allocates resources to devices, and
genie-aided FUG, where BS knows perfectly the traffic of each
device and its priority. This comparison is done while adjust-
ing the number of available frequency resources dedicated for
1000 devices in a 1000 m × 1000 m deployment area within
60 s. Moreover, the exploration rate α is set to 0.1, a = α,
and Tm = 20 ms. The simulations are carried out on python
using Keras library. In addition, we use a single NVIDIA Tesla

Algorithm 1: Fast Uplink Grant Resource Allocation
Algorithm

1 Define Ttr.
2 Define Tp.
3 Define �T .
4 Define exploration rate α.
5 while True do
6 Run device classification.
7 Run traffic prediction.
8 Prioritize active devices.
9 Allocate resources.

10 if error then
11 Wait Tm.
12 if still error then
13 Use RA.
14 end
15 end
16 Explore random devices.
17 Correct errors in Tp - �T .
18 Create new error-free training sequence.
19 end

V100 GPU and 10 GB of RAM on a Linux operating system
server dedicated for the researchers in the Center of Wireless
Communications (CWC) at the University of Oulu to train the
model.

A. Performance Evaluation Metrics

Both the device classification and traffic prediction algo-
rithms are considered binary classification problems. Thus,
there are many appropriate evaluation metrics, which are suit-
able for skewed data applications (rare alarms), such as [29]
and [30].

1) The confusion matrix is the most important evaluation
method, which illustrates the number of correct and
wrong classifications in each class.

2) The classification accuracy describes the overall
performance of the classifier.

3) In the precision (P) and recall (R), the former describes
the ratio of true predicted samples for each class to the
total predicted samples of that class, while the latter
describes the ratio of true predicted samples for each
class to the total actual samples of that class.

4) The F1-Score (f 1s) combines the P and R measurements
via harmonic mean, resulting in a percentage near to the
minimum between them

f 1s = 2 R P

R + P
. (21)

We evaluate the performance of the network with respect
to throughput. The transmission rate is calculated using C =
log(1 + SNR |h|2), where SNR is the signal-to-noise ratio,
and h is the given channel coefficient between an MTD and
the BS. Each MTD will have a certain rate depending on the
SNR and the channel condition between that device and the
serving BS. In addition, for each transmission, different rates
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TABLE I
CONFUSION MATRIX, ACCURACY, PRECISION, RECALL, AND F1-SCORE

FOR CMMPP DEVICE CLASSIFICATION (SUPPORT: 544 DATA AND 113
ALARM) AND M-CMMPP DEVICE CLASSIFICATION (SUPPORT: 539

DATA AND 153 ALARM)

exist depending on the transmission power of an MTD and
channel condition at the time of transmission. As our main
scope is to compare FUG to other allocation techniques, we
assume the radio channel to be degraded by flat fading.

Communication systems have different sources of delay,
such as hardware delay Th, queuing delay Tq, and transmis-
sion delay Tt. The access delay Ta is the time difference
between the moment an MTD is ready for transmission and
the moment it receives a resource. It is a function of hardware
delay, signaling overhead delay, and queuing delay originated
from the existence of a lower number of resources compared
to the number of ready devices at a time. In our simulation,
we neglect the hardware delay and focus only on the access
delay as a function of queuing delay and message exchange
between MTDs and the BS. The access delay can be calculated
as follows:

Ttotal = Th + Toverhead + Tq + Tt (22)

Ta = Th + Toverhead + Tq = Ttotal − Tt. (23)

B. Simulation Results

1) Device Classification: We initially collect the training
set by running multiple CMMPP and M-CMMPP simula-
tions with uniformly distributed epicenters, variances, and
intervals of background processes. Then, we preprocess the
data by balancing, normalizing, and then removing redundan-
cies to ease the training phase and extract the correct features.
Afterward, we compare different classification algorithms to
a new CMMPP/M-CMMPP model as shown in Table I. We
observe that a polynomial kernel (degree = 6) SVM provides
good performance in the CMMPP case, but fails in the network
congestion case. An ANN architecture with four hidden layers
(16, 32, 8, and 4 neurons) works very well in both cases in
terms of data and alarm classification, where it introduced the
lowest errors (only 12 alarm errors in case of CMMPP and

2 alarm errors in case of M-CMMPP) in classifying alarms
compared to all classifiers. However, it has a relatively large
number of errors in classifying data devices.

The RBF SVM, decision trees (DTs), and random forests
(RFs) produce better results than ANN in classifying data
devices and almost similar results as ANN in classifying alarm
devices. The RBF SVM is the simplest algorithm among them
and works extremely fast. It produces a recall of 0.87 and 0.88
for data and alarm classification, respectively in the case of
CMMPP traffic and a recall of 0.96 and 0.97 for data and alarm
classification in the case of M-CMMPP traffic. These small
number of errors reflect the strength of the RBF SVM classifier
in prioritizing the devices. In addition, the RBF SVM needs
less than 3 s of execution time for both training and prediction,
which reflects its high efficiency. Hence, RBF SVM is the
chosen algorithm to be used by the BS to classify devices.

2) Traffic Prediction: The NAB is a time-series data set,
which contains 58 time-series data files designed to help
researchers in time-series prediction and streaming anomaly
detection applications [31]. This data set provides real-time
data collected from sensors monitoring different physical
quantities in industrial deployment scenarios. We do some
preprocessing steps, where the sensors are active and need
resources when their measurement exceeds a certain thresh-
old. After preprocessing steps, two months of training data
have been prepared to be used for the first training phase. The
prediction and correction window is set as Tp = 10 min and
�T = 5 min for each iteration. To illustrate the performance
of our scheme, we perform four prediction and correction
iterations.2

We build up an LSTM architecture with two hidden lay-
ers (150 and 100 Neurons), 20% dropout, mean square error
(MSE) loss function, 50 unrolling (create an array of 50 sam-
ples, then, for the next array, add one element and use the
last 49 from the previous array), 50 epochs, and using the
Adam optimizer [32]. In our predictions, this architecture pro-
duces overall accuracy of 95%, the predictor failed 11 times
to correctly infer the sensor activity of a total of 171 acti-
vation instants, and it wrongly predicts 41 times that the
sensor is active, while it is silent. Furthermore, it achieves
f1-Scores of 0.98 for silent prediction and around 0.90 for
active predictions. According to (20), the number of parame-
ters in our architecture is 2 551 100, which is computationally
efficient in terms of spatial efficiency as the larger the number
of parameters, the better the architecture can extract relevant
information [28]. In addition, each training phase needs around
200 s of execution time. We should point out that much deeper
LSTM architecture would enhance the prediction accuracy as
it may extract more relevant information, but it would increase
complexity and time of training and prediction as well. In addi-
tion, the length of the training phase can be increased, at the
expense of a long time to extract the pattern. Selecting the
appropriate neural network architecture is a very challenging

2For ease of implementation, we perform only four iterations to predict
40 min of activation. Note that these prediction iterations could be extended
deep into the future for hundreds or even thousands of iterations with almost
the same performance, thanks to the feedback and error correction procedures
that are presented in Section IV-C.
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Fig. 6. Total throughput while adjusting the number of available resources:
60 s runtime, 1000 MTDs, α = 0.1, a = 0.1, and Tm = 20 ms. Beyond 75
frequency resources, all schemes converge.

Fig. 7. Average access delay while adjusting the number of available
resources: 1000 MTDs, α = 0.1, a = 0.1, and Tm = 20 ms. Beyond 75
frequency resources, all schemes converge.

research problem, where large architectures consume a long
time, whereas short ones may introduce lower accuracy [33].
The depth of the model and the length of the training data
should be adjusted according to the available hardware at the
BS, the criticality of the application, the number of devices,
and the number of expected errors. The resulting errors are
corrected, as mentioned, to have clean training data again to
be used in the next phase.

3) Resource Allocation: Throughput and access delay are
monitored for different allocation schemes while adjusting
the number of available frequency resources at the BS. In
Fig. 6, the throughput, which is the total successfully received
packets, is plotted while adjusting the number of available
resources during 60 s. Random FUG resource allocation has
the worst performance, whereas the predicted FUG outper-
forms the GB-RA and almost achieves the genie-aided FUG
for both CMMPP and M-CMMPP. We notice that as the
number of available resources increases beyond 75 frequency
resources, all schemes start to converge and perform well.

In Figs. 7 and 8, the average access delay and maximum
access delay are plotted, respectively. The proposed predicted

Fig. 8. Maximum access delay, while adjusting the number of available
resources: 1000 MTDs, α = 0.1, a = 0.1, and Tm = 20 ms. Beyond 75
frequency resources, all schemes converge.

FUG almost approaches the genie-aided FUG. Furthermore,
the proposed FUG presents a free-collision resource alloca-
tion scheme, whereas GB-RA suffers from several preamble
collisions. The random FUG is presented to mention the
importance of having a traffic predictor with high accuracy.
Having low traffic prediction accuracy can cause even worse
performance than the RA schemes. For less than 50 frequency
resources, we notice that the predicted FUG algorithm can
achieve extremely low latency in the order of 1 to few mil-
liseconds. For this low latency, at least a total of 120 Gbytes of
packets are successfully delivered to the BS in the M-CMMPP
scenario compared to 108 and 60 Gbytes for the GB-RA and
random FUG, respectively as shown in Fig. 6. This evidences
the outstanding performance of the proposed predictive FUG
in the presence of a limited number of resources serving a
massive IoT deployment, which is the case of interest.

VI. CONCLUSION

In this article, we have proposed a novel FUG resource allo-
cation scheme based on SVM and LSTM. First, we have set up
the CMMPP and M-CMMPP models to be our system mod-
els. Next, we have implemented an SVM algorithm to classify
devices into different priorities. Then, we have developed
an LSTM architecture to predict the traffic of a real-time
MTD data set. Afterward, the device classification and traf-
fic prediction were used to schedule the resources. Simulation
results have shown that the proposed FUG outperforms RA
schemes and almost approaches genie-aided FUG in terms
of throughput and latency. We have presented different kinds
of error correction techniques that are used to avoid error
accumulation. In addition, we have shown the importance of
having an accurate traffic predictor to avoid random alloca-
tion behavior. Applying learning-based solutions to choose the
appropriate exploration rate α is an open research problem for
future work.
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